Under review as a conference paper at ICLR 2025

SELF-ALIGNMENT FOR OFFLINE SAFE REINFORCE-
MENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Deploying an offline reinforcement learning (RL) agent into a downstream task is
challenging and faces unpredictable transitions due to the distribution shift between
a offline RL dataset and a real environment. To solve the distribution shift problem,
some prior works aiming to learn a well-performing and safer agent have employed
conservative or safe RL methods in the offline setting. However, the above methods
require a process of retraining from scratch or fine-tuning to satisfy the desired
criteria for performance and safety. In this work, we present a simple model-
based RL method with a transformer and a world model, and propose a Lyapunov
conditioned self-alignment method, which does not require retraining and conducts
the test-time adaptation for the desired criteria. We show that our model-based RL
with the transformer architecture can be described as a model-based hierarchical
RL. As a result, we can combine hierarchical RL and in-context learning for self-
alignment in transformers. The proposed self-alignment framework aims to make
the agent safe by self-instructing with the Lyapunov condition. In experiments, we
demonstrate that our self-alignment algorithm outperforms safe RL methods in
continuous control and safe RL benchmark environments in terms of return, costs,
and failure rate.

1 INTRODUCTION

Ensuring safety in real-world online reinforcement learning (RL) is crucial to making recent advances
in deep RL algorithms (Haarnoja et al., 2018}, Janner et al.l 2019; [Lee et al., 2023; [Eysenbach
et al., 2022) more practical, especially when a downstream controller (RL agent) suffers from
underactuated robotics (Tedrake| [2009)) or is deployed in the wild. Offline RL (Kumar et al.,2020)
studies have shown that RL agents can be pretrained with well-curated offline RL datasets with human
supervision, such as D4RL (Fu et al.|, 2021b), RL-unplugged (Gulcehre et al.,2020), and DSRL (Liu
et al.| [2023a) to learn better-performing and safer policy by utilizing the existing data. However,
deploying a pretrained offline RL model naively without considering the many facets of unknown
test-time environment is not sufficient to guarantee the safety of downstream controller. Recent two
results (Ghosh et al}2022b; |2021) have provided some insight into the challenge that a downstream
controller suffer from by highly uncertain and partially observable test time environment. These
studies point out that, even for the same observation, the transition probability can be unpredictable
due to the uncertain nature of the system’s dynamics at each step. Hence, specifying and adapting
the environment transition during test-time for an RL agent is necessary to avoid risky consequence.
(Ghosh et al., [2022b) learned explicit belief as an augmented input for policy to adapt the test-time
environment can help an downstream controller to be safer.

Belief based adaptation, however, requires its own pretraining algorithm from scratch for test-time
adaptation. It is hard to align the pretrained agent to be safe without additional fine-tuning procedure.
Self-alignment by leveraging the pretrained distribution from offline RL dataset could be an easier way
to deploy an agent more safely. Self-alignment (Sun et al., 2023) is one of the alignment approaches
for Large Language Models (LLMs), which induces desirable outputs for specific instruction prompts.
It enables efficient adaptation of LLMs for a particular purpose without fine-tuning by utilizing
the reasoning and generative power of transformer-based large models. To apply self-alignment to
model-based RL agent, we use the proposed transformer-based architecture which is composed of an
agent and a world model to learn policy and predictive model simultaneously, by generating a virtual
imagination of agent trajectory.

Under review as a conference paper at ICLR 2025

Imagined
trajectories
X X Q ®

o
:
L0
<) trajectory
XX O *

Figure 1: An illustration of the three stages of our Self-Alignment for offline safe RL. We illustrate
one of the safety gym environments in the middle box, where small circles and squares represent
hazards, and a green circle indicates the goal region. At test time for the downstream task, we first
use the RL transformer to generate several imagined trajectories for a given initial state. Secondly,
we compute the occupancy measure and the Lyapunov condition of state-action pairs in imagined
trajectories to determine which trajectory violates the Lyapunov condition the least. For example,
% denotes a (s, a) pair that incurs a high cost and violates the Lyapunov condition simultaneously.
Finally, we retrieve the best trajectory segment from the candidate imaginations for prompt and
augment the retrieved segment and initial state for self-instruction at test time.

Transformer-based RL has shown the ability of prompt-based alignment, which enforces transformers
to conduct in-context learning and produce a desirable behavior for a given prompt. For example,
training multi-modal prompts, which consist of text, video, and trajectory data (Jiang et al.,[2023al),
enables the model to solve various robot manipulation tasks and shows remarkable generalization
capability for unseen complex tasks. However, the specific structure of the training input data, where
the prompt and trajectory tokens lie in consecutive order, is needed to adapt to a newly defined task.

In this work, we propose a self-alignment technique by self-generated prompt to guarantee the better
safety. Our self-generated prompt for safety is based on Lyapunov condition. To implement self-
alignment for safety, we present a novel formulation of Lyapunov condition as a probabilistic inference
and transformer-based RL world model as a model-based hierarchical RL agent, respectively, to
provide in-context learning based self-alignment. We present an overview of our algorithm, which
we call self-alignment for safety (SAS), in fig.[I] First, the proposed transformer-based model with
the agent and the world model generates several imagined trajectories using the learned policy and
predictive model from the data distribution. We evaluate the safety using the proposed inference
model of the Lyapunov condition, and feed the most likely trajectory in terms of the Lyapunov stability
condition into a prompt of our model. The given prompt instructs our model to act in accordance
with its Lyapunov condition property. We explain this ability of our transformer-based architecture as
a skill-conditioned hierarchical RL in section[5.1} In our experiments, we demonstrate the efficiency
and safe deployment of SAS in 12 Safety Gymnasium environments and OpenAl
Gym Mujoco (Brockman et al.,2016). SAS outperforms prior safe RL methods by up to 2 times on
Safety Gymnasium benchmarks and 2 times on Mujoco in terms of failure rate.

2 RELATED WORK

Transformer-based RL. Transformer-based RL (Janner et al, 2021} [Chen et al., [2021) has been
emerged by making a connection between pretraining of GPT (Radford et al.,[2018)) and offline RL
with prior data. Recently, several model-based RL methods with transformers, which are called world
model, lead to sample efficient online RL by leveraging the structure of auto-regressive generation
in terms of imagination in model-based RL, such as TWM (Robine et al.,2023) and IRIS
2023). For predictive model, TWM applies VAE (Kingma & Welling, 2013)), and IRIS uses
VQGAN 2021)) to reconstruct the observation. Prompting on transformer-based RL was
also proposed to help task specification with multi-model prompts 2023b), and achieve
test-time adaptation by learning with prompts from scratch 12022b). CDT(L1u et al|

is similar to our work since CDT uses decision transformer for offline safe RL by modifying the
DT architecture to feed the cost value to train an offline safe RL agent. Unlike prior works, we aim

Under review as a conference paper at ICLR 2025

to align the transformer for model-based RL by providing self-generated instruction for in-context
learning without any fine-tuning.

Safe RL and Lyapunov condition. Lyapunov condition has been applied to safe control (Chang
et al.l [2019) and safe RL (Chow et al.| [2018)) in many different ways. LDM (Kang et al., [2022)
proposed an integration of Lyapunov condition and offline RL to avoid distribution shift for safety.
While safe RL algorithms are usually formulated as constrained MDP, which introduces a control
barrier functions to prevent an RL agent from entering unsafe regions (Bansal & Tomlin, 2021;|Ganai
et al.} 2023 Kim et al.||2023)), we instead focus on validating Lyapunov condition for safety to avoid
unsafe regions caused by the distribution shift (Tedrake, [2009; Bharadhwaj et al., 2020). DCRL (Qin
et al., 2021) is similar to ours in online safe RL, which employs a constraint on the level of state
density to stay in the highly probable states. In contrast, SAS does not require a constrained RL
tuning for transformer or cost, and adapt a safe RL task by self-alignment at test time.

Large model alignment. Alignments in LLLMs have been proposed to learn human preference
or make pretrained models safer and more helpful recently (Ouyang et al.l |2022). For example, a
pretrained general language assistant can be aligned to be helpful, honest, harmless (HHH) (Askell
et al.| [2021). Alignment methods for LLMs can be classified into RLHF (John Schulman, [2022) and
instruction based in-context learning (Sun et al., 2023} [Wang et al.,|2023)). Alignment by instruction
is an emerging technique to align large language models (LLMs) output with a specific desired
behavior by engineering instruction prompt (Brown et al., |2020), RLHF (Ouyang et al., [2022), and
zero-shot reasoner (Kojima et al.l 2022). In RL, aligning Large Models (LMs) from pretrained
distribution is natural and well-behaved in LLMs for human preference, but very limited for unseen
task specification by demonstration (Jiang et al., [2023a)) and learning for augmented prompt (Xu
et al.| 2022b), even though alignment for safety is essential to ensure safety in real-world RL.

3 PRELIMINARIES

Problem Setting. We consider a discounted Markov Decision Process (S, A, R,C,P,Ps,,7),
where S, and A are observation and action spaces, R : S X A XS > RandC: S x A xS —- R
are reward and cost functions, P : § x A — S is the transition operator, Ps, : S — [0, 1] is the
initial state distribution, and vy € (0, 1) is the discount factor. We first define latent skill space Z

and consider two following hierarchical policies. The high-level policy nggh : S X Z — Z with
parameter 6 for skill selection maps the previous latent skill and the observation to the choice of
low

learned skills z € Z from the pre-collected experience. The low-level policy 7% : & x Z — A with
parameter ¢ interacts with environment with given skill in the agent’s action space.

Density Constrained Safe RL. From a conservatism, constraining the density of states and actions
has been studied to enhance the agent safety. Lyapunov Density Model (LDM) (Kang et al., [2022)
and DCRL (Qin et al.,[2021) are offline and online safe RL frameworks, which design the constraint
regions based on density. In the case of offline safe RL, LDM leverages Lyapunov stability condition
to constrain the density of state-action pairs over a long horizon. Finding a control Lyapunov function
for arbitrary MDP is a challenging problem. To tackle this issue, LDM provides a modified version
of Bellman operator which can be interpreted as learning a control Lyapunov function by the offline
data. Specifically, this learning process stitches policies toward more probable terminal states. To
guarantee that an offline RL agent does not escape from sinking into the low density region, we first
introduce the control invariant set and the condition of Lyapunov model of LDM as follows:

Definition 3.1. Let (s, a.) be an equilibrium point and 7 = ((s1,a1), - , (Se, &.)) be an Lyapunov
stable trajectory. For all Lyapunov stable trajectories 7, LDM G/(s;, a;) must satisfy the following:

(1) G(se,ac) =0, (2) G(st,a:) >0, V(sg,ar) # (se,ae),) G(sg,ar) > G(spy1,ai41).
To learn a valid control Lyapunov function, the LDM backup operator is defined as
RDMG(& CL) = max{— log p(S, Cl), 'yml/nG(P(s, a)7 al)} (1)

where p(s, a) is a density of given state and action. For a Lyapunov density model G(s;, a;), there
exists a control invariant set for a constant ¢ > 0:

RC = {(st,at)|G(st,at) S C}.

Under review as a conference paper at ICLR 2025

Intuitively, a greedy policy of the Lyapunov density model, arg min, G(s, a) does not escape from
the control invariant set R . and eventually reaches the equilibrium point where, by the definition, has
the highest density value in the control invariant set R..

4 MODELING OFFLINE SAFE RL AS DENSITY-BASED LYAPUNOV CONTROL

In this work, we introduce a transformer network based on the Decision Transformer (Chen et al.,
2021) architecture and extend this to include a VAE (Kingma & Welling|, |2013)) based predictive
model to incorporate imaginations for searching safe candidate trajectories within the model-based
RL framework. The detailed architecture of our transformer model is described in table[Sl Since
we pretrain our transformer using the offline RL dataset D, we utilize learned predictive model
distribution and the policy distribution to compute an approximate Control Lyapunov function which
is analogous to LDM. Rather than using one-step density value, we use the occupancy measure
estimate p by computing the following equation:

o0 oo
p(s,a) = nytp(st =s,a; =a|lPs,,m,T) = Z'ytpVAE(st = s|Ps,,m, T)n(a; = als; = s),
t=0 =0

where pyag and 7 denotes the density estimation of VAE and the policy. We note that the occupancy
measure estimate p can be computed from the generated trajectory 7 of autoregressive transformer.

To capture the connection between the density and offline safe RL, we introduce safe RL problem as
the constrained optimization problem as follows:

max Jr(m) st Jeo(n) <d, 2)

where Jg(7), Jo(m) are the expected discounted sum of reward/cost functions, respectively. We
reformulate eq. (2) in terms of occupancy measure as

max Esolp"(s,a)r(s,a)] st Egq[p"(s,a)C(s,a)] <d.

Let U be the universal set of state-action space and B be the set {(s,a)|(s,a), C(s,a) < Ci} where
Cyp, 1s the some threshold of cost which satisfies Cy, < d(1 —). Assume that the cost value is
bounded as 0 < C(s,a) < Cyaz. We define a volume constant o = E; oy [1((s,a) € B)], which
is 0 < a < 1. Then, we can write the above inequality as

Jo(m) = Ea)~B [0"(5,a)C(s,a)] + E(s g)~pe [p7 (s,a)C(s,a)]
JC(TF) —d= IE(s,a)rvB [ﬁﬂ-(sv G)O(S, CL)] —ad+ E(s,a)NBC [ﬁﬂ(sv CL)C(S, Cl)] - (1 - Oé)d
< E(s,a)~B [07(5,0)Cin — d] + E(s ynpe [07(5,0)Crnaz — d] - (3)

We can observe that expert policies in the offline RL dataset D should have low values in B¢ to
satisfy the constraint inequality of eq. (3) less than zero. Now, we know that reducing the marginal
value of occupancy measure over B¢ leads to the lower bound of the cost function of 7. Suppose

that p™(s,a) < & d — for (s,a) € B . We consider the definition of occupancy measure and assume

that occupancy measure is a continuous function. We have 24— < P (s,a) < d < L for
Crmazx Cin 1—v

(s,a) € B, and then get Jo(7) — d < 0. This is an intuitive condition to be an expert policy trained
by the constrained RL in eq. (2)). Now, we generalize the above condition into more general offline RL
scenario. We consider the occupancy measure of the given offline data, pgaa(s, @) and the occupancy
measure of optimal policy p™* satisfies the single policy concentrability:

ﬁﬂ*(& a)/pdata(sa a) <D

where all (s,a) € S x A, and D = maxDT represents the widely-used uniform concentrability

s
coefficient. This assumption, drawn from (Rashidinejad et al., |2021)), is used to incorporate various
sources of offline RL data, including medium-level datasets. To prevent having overestimated density
in the region which might lead to failure, we insert the concentrability coefficient as a margin for
defining the target control invariant set under the pretrained distribution,

d

G @

RP = {(S’a)lpdata<s>a) >

Under review as a conference paper at ICLR 2025

This implies that the offline RL agent can avoid moving toward (s,a) € BY by applying a penalty
using D. Our key idea is to search a density-based Lyapunov stable trajectory sample by the
imagination process of our model-based RL transformer. We first define the Energy £ = — log pyat
for convenience. From eq. (), we define our approximate Lyapunov model as

Gsas (81, a) = 108 paata (St @) — max min 10g puaa (s, 7(s07)) ©)
= min max E(sy,m(s¢)) — E(st,a). (6)

where pgaa 1S the learned distribution of the offline RL dataset distribution pg.,. By randomly
sampling using the VAE and the stochastic policy of our transformer, we generate multiple trajectories
from imagination and compute the optimal sample based on eq. (3)) across trajectories and time. Note
that repeating to get more samples induces the tighter upper bound of the control invariant set having
more probable actions. Finally, we define the target control invariant set in terms of pga. (s, a) as

RSGAS = {(Staat”GSAS(Shat) < —log

< D b N

We note that the cost condition of d is applied to the density constraint in terms of control invariant
set. Now, we solve a Lyapunov stable policy in terms of Gsas, then have the offline safe RL policy.

4.1 DENSITY-BASED LYAPUNOV CONTROL AS PROBABILISTIC INFERENCE

To search and infer safe imagined trajectory samples, we propose the probabilistic inference formula-
tion of Lyapunov condition in Definition 3.1}

Theorem 4.1 (Lyapunov Condition Observable). Let two observables U; and V; be the indicator
variables

Uy = 1[Gsas(st,ar) > 0], Vo =1[Gsas(st,ar) — Gsas(Se41,ai41) > 0] (8)

The problem of finding a trajectory from Lyapunov stable controller is equivalent to solve the following
inference problem:

1
max zt:log (PU, = 1|7)P(Vy = 1Ly = 1,7)),)

where T' is the length of trajectory T.

See appendix [E] for proof. We note that the first Lyapunov condition observable U/, is indirectly
computed by lines 1 to 6 in Algorithm[I} In the first loop of Algorithm 1, among the N iterations, we
select the episode with the lowest maximum energy value reached by each imagined trajectory. In line
6, we set the selected lowest maximum energy Ej as the value of our approximate Lyapunov model
for the equilibrium point, G'sas(Se, @) = min, maxy E(se, ae) — €(Se, ae) = Ej — E(8e,ae) = 0.
Then, all other N — 1 episodes have steps with G (s, a) < 0 inevitably due to G'sas(se, a.), leading
to violation of the condition U; = 1. To search for a Lyapunov stable policy which guarantees all
state-action pair elements are in RSéAS in Equation we assume that a test-time agent can access a set
of previously learned policies, IT = {7; }}¥, from pretrained distribution. Each generated trajectory
at i-th iteration, 7;, corresponds one-to-one to a certain m; € II at given initial state sg. As we
increase the number of iterations of the first loop, N — oo, we can get a lower Ej, which leads to
the more probable subsequent (s, a) and equilibrium point. Furthermore, selecting the most probable
index k* in the second for-loop implies that we choose the optimal-selection policy which violates
the condition V; least. Then, the selected 7 is highly likely to satisfying in the control invariant set
{(5,a)|0 < Gsas(s,a) < F;}. Now, we rewrite Equation%lfor Algorithmas

Gsas(st,at) = 10g Paata(St, ar) — i:TF?J_XN j:Hllin-T log ﬁdata(sja 771'(53'))

= minN [max E(s;,mi(sj)) — E(s¢, a).

=1,

We now demonstrate that Algorithm 1 reduces the probability of escaping from the control invariant
set as the numbers of iterations, N and M for the first and second loops, respectively, increase.

Under review as a conference paper at ICLR 2025

Algorithm 1 Self Alignment To be Safe (SAS). Self-generating prompt for instruction.

Require: Pretrain transformer from D and environment initial state st ~ Pg,
:fori=1,2,3,...,Ndo > for condition Uf;
Sample 7; ~ p(7|st™) by imagination
Compute E; of each time-step ¢

FE;,t; < max F;, argmax F,
t t

1

2

3

4

5: end for .

6: j < argmin E;
i

7: Compute an initial prompt py.7, < 75[t; — L : t;]

8: fork=1,2,3,..., M do > for condition V;

9: Sample 7/, ~ p(7|P1.L,ST™)

0 Compute E} of each time-step ¢

1 B, t, — mtax FE;, argmax F;

t
12: Vg Zt Vi

13: end for
14: k* < arg max vy
k

10:
11:

15: Prompt pi.1, < Ty [tk — L @ tg-] > self-alignment

Proposition 4.2 (Probability of out-of-distribution trajectory). Assume that the sampled state action
pairs (s¢, at) in the trajectory is i.i.d. Let T = {(s¢,a;) }1_, denote the set of state-action pairs in the
trajectory with length T and D is the pretrained distribution of expert trajectories. By Assumption
[E7]] the probability that the best trajectory escapes from the target control invariant set in Algorithm
1 is bounded and decreases as the numbers of iterations N, M — oo as follows:

]E(s a)~D [_ log ﬁdata(sa CL)] NT 2M Kk? (Cg — (21)2
< > i S B
)< ca exp TL?

P [Tbesl ¢ R (10)

The proof is in appendix

5 SELF-ALIGNMENT FOR SAFE RL WITH LYAPUNOV CONDITION

When we aim to make a transformer-based model aligned for a downstream task, the model can
learn the given task by conditioning a prompt which is composed of demonstration examples. This
remarkable ability is called in-context learning, which can be explained by the implicit Bayesian
conditional inference with demonstration prompt in NLP domain (Xie et al., |2021). The given
demonstration prompt into transformer predicts an aligned output which is conditioned on the prompt.
The inference probability is defined as the following posterior predictive distribution:

p(output|prompt) = /p(output|prompt,6’);0((9|p]:ompt)d97

where 0 is called latent concept. The latent concept serves as a parameter determining the transition
of the hidden Markov model p(output|prompt, 8), which corresponds to a learned conditional dis-
tribution of pretraining sequence dataset on a latent concept 6. Then, the conditional inference of latent
concept on prompt selects the parameter of pg(output|prompt) = p(output|prompt,f)
and makes it possible to generate an aligned output. In this section, we formulate our transformer
as a hierarchical RL and decompose the policy into two policies, high-level and low-level policies.
Analogous to the above implicit Bayesian concept, we now assume that the parameter of high-level
policy corresponds to the latent concept. All proofs in appendix [E]

5.1 MODEL-BASED RL WITH TRANSFORMER AS PROBABILISTIC INFERENCE

We extend the probabilistic graphical model of skill-based hierarchical RL to describe our model. We
show that the pretrained transformer can implicitly perform Bayesian inference. To define the world

Under review as a conference paper at ICLR 2025

model as a HMM, we consider a probability distribution of trajectory 7 as

p(7) = p(s1) Hp(5t+1|5t7 ag)p(a|st, 2)p(2else, 2—1).
t=1

where p(s;.1|st, a;) denotes the transition probability of
transformer, and we abuse the notation p(z1|s1,2¢) as
p(z1]s1) for brevity and clear notation. To understand
this graphical model as a hierarchical RL, we consider
the hidden layer of transformer as a latent skill variable
z;. To show that the transformer has the property of in-
context predictor, we also define the conditional probabil-

1typ(7'|p1 L,S test) test ;

where sT* is the initial state at test-time,
P1.z is a prompt demonstration with length L, as

p(7lpL, 85 = / (rlpr, s, O)p(0)ds, (1)
0

where we define 6 as the parameter of high-level policy Figure 2: The probabilistic graphical
glgh At test time, we generate an output trajectory start- model of model-based hierarchical RL.
ing from st by predicting the first latent skill variable Our model is a HMM where O; is the
z with the prompt demonstration p;.7, and . We can optimality variable that correspond to
wrlte the conditional probability p(7|p1.r,st™,0) fora PU; =1,V = 1).

given 6 as

T~ Z test Ztlest7) (test‘pl L’stest))]

lL\leZ
test test test test lesl lest test test test lest

E | I p St+1)p(‘S)p@(|S § 9779 T, zl 7 (12)

l it l it

rez =1 VAE decoder mlow rhigh €2

b To
: test te@t test — test test : H

where we abuse the notation pg(zP™[sT™,z5™) = po(z7|p1.L,sT™) for clarity. It im-

plies that we have the random sklll Varlable z' which is sampled by the given the high-
level policy parameter #. We also note that pp.;, is a demonstration state-action sequence,
(S—p+1,8_141,S_L+2,8_[192, " ,S0,ag). Then, the prompt can be viewed as a concatenation in
front of the following trajectory in Figure 2]

Our goal is to find the safe policy ﬂgigh analogous to the demonstration prompt p;.,. We note
that the pretrained transformer marginalize over the family of high-level policies in the offline
RL dataset as in eq. (IT). More specifically, the dataset D is composed of the trajectories from
behavior polices, and then it implies that the transformer learns the distribution from the feasible
hlgh -level policy parameter space. To retrieve 8* of the safe high-level policy 7r9* igh corresponding to
a given prompt p;.r, we first define the optimality Varlable (’)t in Flgurelas Or = 1[(st,a:) € Cy]

where C; = {(st, a¢)|(st,a¢) ~ ZZt 2ot Wg’w azlst, zt) 770* (zt|st 1,%¢—1)}, the set of all possible
state-action pairs with 6*. We can describe the inference p(Oy.j|p1.1, st™) as follows:

POulprest) = [3 <gm, et [T O >> L Opo)ds, (13)

le\l cZ

where 71,(f) = T log p((ou’sf 9. The prompt (S;_1,az_1, - ,So,ap) is originally from the

p(O1.,s7"07)
high-level policy with §*. We have O;.;, = 1 when @ = #* is selected and get eZ"=(®) — 1. Then,
we can retrieve the safe h1gh level pohcy parameter of ﬂhlgh to the demonstration prompt p;.z, by the
above selection property in eq. (13) and regenerate and execute at the test time under 6*. This differs
from the original implicit Bayesian inference (Xie et al., 2021) in two ways: (1) we introduce the
low-level policy ﬂ'k’w (a¢|st, z¢) term that enable the implicit Bayesian inference method to work on
the RL domain w1th action space; and (2) the transformer inherits the predictive transition model
p(St+1]8t, ar) to generate an imaginary trajectory coincided with the real environment.

Under review as a conference paper at ICLR 2025

le-23

T 8.0 r 1.20

r7.2

— o
6.4
O

4.8
° Ha0

r3.2

r1.05

r0.90
[invalid region

to7s TZ1ROA
. DT
fo60 EEE DT+SAS

r0.45

r0.30

-

r2.4 r0.15

Ty :
16 L 0.00

- 8.0 o ’ m 12

’7 Y W p

- t72 S ')
- A el 2| Fro

N o s

t6.4 i
' 24 . ro.8
. t5.6 A5
b - Q Los
e® _ |-
0.4
®9 | @

] [32) o2

2.4 = 0.0

Figure 3: SAS dodges hazard better. We visualize PointGoall-vO0. Left: The illustrated env.
has 8 fixed hazards, one movable obstacle vase, and one position. Middle: We visualize
Ddata(s) at each point by using our transformer. Right: We illustrate two trajectories without
self-alignment and our DT+SAS. The landscape visualizes Gsas where the blue color indicates the
sub-level of Gsas. We mark Region Of Attraction (ROA) with blue dot lines, which means a forward
invariant set where we can guarantee the upper bound of density. Red lines means the invalid region
where exceed the 95 percentile of Gsas(st, a;), which indicates unsafe region.

5.2 INSTRUCTION PROMPT GENERATION FOR SAFETY

Offering good exemplar in-context demonstrations (prompt) for alignment usually relies on extensive
human supervision. Inspired by Dromedary (Sun et al.|[2023) for LLMs, we align our transformer
to act more stable and safer by itself without any human instruction or seed prompts. In algorithm|[T}
our Self-Aligning RL agent behavior to be Safe (SAS) method involves the following procedures. 1)
Lyapunov-conditioned instruction generation provides the selection rule for Lyapunov condition
to create an exemplar demonstration for reasoning a safer high-level policy nggh by imagination of
transformer. To generate instruction demonstration for in-context learning, we follow eq. (9) to satisfy
Lyapunov condition from line 1 to 14. 2) Internal thoughts is the generated behavior trajectory
which already satisfies Lyapunov condition enough in line 7 and 14. We do not need to prepare a few
in-context learning demonstration to generate internal thoughts for the final instruction. 3) Guiding
the final behavior of RL transformer is the final stage with the internal thoughts for in-context

learning demonstrations to align with a safer wgigh by annotating with initial state in line 15.

6 EXPERIMENTS

We demonstrate the performance of SAS in mujoco (Brockman et all 2016) and Safety
Gymnasium (J1 et al., 2023) to evaluate the three metrics, reward return, cost return, and fail-
ure rate. We use D4RL dataset (Fu et al.| 2021a) for mujoco and DSRL (Liu et al.,|2023a)) for safety
gymnasium. We use normalization of both reward and cost returns. We denote DT as DT+SAS and
CDT as CDT+SAS when we apply SAS. We modify DT (Chen et al.,[2021) to predicts next state and
next return-to-go as well as action. In all results, we abbreviate the task name as follows: (PointGoall,
PG1), (PointPushl, PP1) and (CarButton2, CB2). The detailed experiment setting is in appendix [B]

Does the proper internal thought make a safer decision? Overall, DT+SAS shows the lower
cost and failure rate than DT in most environments in table |1} We note that reward may decrease as a
trade-off by Lyapunov condition to reduce the aspect of pursuing high reward in DT. However, in
some tasks, such as PG2, it is surprising that the reward of DT+SAS is higher than DT. In tasks, like
PB1, all metrics, reward, cost and failure rate increase simultaneously. It implies that DT has trained

Under review as a conference paper at ICLR 2025

Table 1: Ablation study in the Safety Gymnasium. DT+rand involves inserting a random trajectory
into the prompt, and DT+maxmax includes the trajectory with the argmax of the maximum value of
E as the prompt. Bold: the smallest cost among the four models. Blue: DT+SAS has a lower failure
rate than DT. Red: DT+SAS has a higher cost than DT but the reward is also higher.

Environment PG1 PG2 PP1 PP2 PB1 PB2 CG1 CG2 CP1 CP2 CBI1 CB2
reward | 0.660 0377 0218 0202 0.379 0495 0.638 0.513 035 0204 0237 0212

DT cost 1.319 2.625 0927 0.782 1188 1309 0976 1466 0.678 1.174 1419 1.045
failure | 0.883 1.000 0.667 0.875 0.950 0.983 0917 0925 0.667 0.950 0.950 0.950

reward | 0.655 0.650 0283 0242 0485 0508 0.666 0483 0307 0218 0.174 0.138

DT+SAS(ours) cost 1185 1.783 0.622 0.639 1375 1205 0.846 1.148 0.513 1.158 1.083 0.836
failure | 0.867 0.983 0.767 0.850 0.950 0.967 0.867 0.850 0.483 0.900 0.975 1.000

reward | 0.665 0.587 0.303 0.240 0445 0462 0.672 0.507 0311 0.230 0.175 0.111

DT+rand cost 1.258 1.811 0.678 0.758 1.485 0.960 1.002 1438 0.549 1.341 1.259 0.963
failure | 0.900 1.000 0.767 0.875 1.000 0.950 0.867 0.975 0.617 0.950 0.975 0.925

reward | 0.644 0521 0271 0200 0486 0.441 0.636 0.512 0.321 0.206 0.131 0.126

DT+maxmax cost 0.990 2.152 0.640 0.730 1.808 1.273 1.034 1497 0.574 1271 1.103 0911
failure | 0.775 1.000 0.767 0.783 1.000 0.950 0.817 0933 0.625 0975 0967 0975

Table 2: Full Results in Safety Gymnasium. The values are averaged across three different cost
thresholds, 20 evaluation episodes, and three random seeds. Gray: Unsafe agents. Bold: Safe agents
whose normalized cost is less than 1. Blue: Agents which has highest reward among safe agents.

Task DT + SAS CDT + SAS CDT BC-All BC-Safe BCQ-Lag BEAR-Lag CPQ COptiDICE DCRL

reward cost reward cost reward cost reward cost reward cost reward cost reward cost reward cost reward cost reward cost

PointGoal I 0.66 1.19 | 0.65 127 | 0.69 1.12] 065 095 | 043 054 | 071 098 | 074 118 | 057 0.35 0.49 166 | 024 0.86
PointGoal2 0.65 1.78 0.52 0.94 0.59 1.34 0.54 1.97 0.29 0.78 0.67 3.18 0.67 3.11 0.4 1.31 0.38 1.92 0.28 0.26
PointPushl 028 0.62| 026 054 024 048 | 0.19 0.61 013 043 | 033 086 | 022 079 0.2 0.83 0.13 083 | 0.01 0.52
PointPush2 024 064 | 020 053] 021 065| 018 091 | 0.11 0.8 023 099 | 0.16 089 | 0.11 1.04 0.02 118 | 002 0.07
PointButtonl | 049 138 | 051 127| 05 1.68 | 0.1 105] 006 052 024 173 | 02 1.6 | 0.69 32 0.13 14| 001 048
PointButton2 0.51 1.14 0.41 0.98 0.46 1.57 0.27 2.02 0.16 1.1 0.4 2.66 0.43 2.47 0.58 4.3 0.15 1.51 0.18 0.64
CarGoall 0.67 085 | 0.65 090 | 0.66 1.21 039 033 | 024 028 047 078 | 0.0l L13 | 079 1.42 035 054 | 035 088
CarGoal2 0.48 1.15 042 0.98 0.48 1.25 0.23 1.05 0.14 0.51 0.3 1.44 0.28 1.01 0.65 3.75 0.25 0.91 0.11 251
CarPushl 0.31 0.51 0.31 0.49 | 031 0.4 022 036 | 014 033 | 023 043 | 021 054 | -0.03 095 0.23 0.5 -0.1 0.09
CarPush2 0.22 1.16 0.21 0.75 0.19 1.3 0.14 0.9 0.05 0.45 0.15 1.38 0.1 1.2 0.24 4.25 0.09 1.07] -013 017
CarButton1 0.17 108] 027 098 | 021 1.6 0.03 138 | 0.07 085 | 0.04 1.63 | 0.8 272 042 966 | -0.08 168 012 095
CarButton2 0.14 0.84 0.30 1.11 0.13 1.58 0.13 1241 -0.01 0.63 0.06 2.13 0.01 2.29 0.37 12.51 0.07 1.59 0.09 1.42

insufficiently by evaluating long-horizon p enough, so SAS can correct long-term behavior that can
increase reward, but cost also increase by the absence of enough cost information.

DT+SAS has the lower cost com- .
pared to random trajectory instruc- Table 3: Performance of the DT and DT+SAS in the MuJoCo

tion (DT+rand) in table m The cost environments with D4RL datasets. Only in this table, we
values of DT+rand are higher than compute rewards using the normalized scoring method from
DT in half of total safety-gymnasium the CQL paper (Kumar et al., [2020). Bold: Agents with

tasks. We can confirm that SAS is lower failure or higher reward.

a valid self-generated instruction for Environment expef"pf:er o expe\:ialk:ZSium exple-lrltlma::l(:(;lium
DT. SAS uses E in Condition Z({t to be or | tevward [1107 866 | 1077 822 | 985 405
more stable and selects the trajectory failure | 0.05 | 0 0.54 0.20 0.97
with the minimum value of the max- DT+sAs | e¥ard [1107 875 [1077 895 [1035 50.6
imum F among steps in a trajectory' failure | 0.03 1 0 0.46 0.10 0.87

For ablation study, we also conduct

the case of selecting a trajectory with the maximum value of maximum step E among trajectories
(maxmax). In table m it is evident that, compared to the DT+SAS model, DT+maxmax model
exhibits higher cost and failure in the majority of environments. Additionally, the DT+maxmax
model demonstrates lower reward values compared to the DT+SAS model, except in 2 tasks. As seen
in the results of DT+rand and DT+maxmax, our SAS algorithm-based prompting, which verifies the
Lyapunov function, enables the Transformer to make much safer choices during the action selection
process. This demonstrates that providing a prompt generated before interacting with the actual
environment influences the overall performance throughout the episode, much like selecting an
appropriate initial skill in hierarchical RL. In table[3] DT was trained on both medium and expert
datasets. In mujoco, cost is not explicitly provided, so we only report reward and failure. As we
mentioned above, we evaluate the failure when the agent terminated before max episode length.
DT+SAS generally shows higher reward and lower failure compared to DT. In Walker2d, the failure
rate of DT for expert dataset is already 0 with 100 episodes, so we cannot observe the improvement
of SAS. However, for medium dataset, we observe the better performance in both reward and failure,

Under review as a conference paper at ICLR 2025

undertrained DT without V¢ GPT size

PointGoall PointPush2 CarGoall PoiniGoall PointPush2 CarGoall PointGoall PointPush2

cac
5
H g §
g g Z0
5 = 05 gw
202 2 2
00 00 00
! v v v — s

prompt length occupancy measure length

PointGoall PointPush2 CarGoall PoiniGoall PointPush2 CarGoall

g1

3 5 10

5 100 5 100 5 100 3 510

Figure 4: The undertrained DT graph illustrates the performance with and without SAS to the
undertrained DT. Without V; represents the results of the ablation study without V; in section 5.3. UV
corresponds to SAS, and U represents without applying V;. The remaining figures are in Appendix C.

which means SAS is also effective in Walker2d. In Humanoid, both in the expert and medium dataset,
DT+SAS outperforms DT in all three metrics. APE-V algorithm (Ghosh et al,[2022a)) (belief-based
adaptation) uses offline ensemble C51 with SAC-N to enhance the performance by adaptive training
for downstream task. In walker2d medium APE-V algorithm improved the average return by 2.7%,
but we note that DT+SAS outperform DT by improving 8.9% for the average return in Table[3] SAS
does not require fine-tuning or retraining, but APE-V shows the worse test-time performance.

Does SAS outperform than offline safe RL methods? Since SAS is designed for test time
adaptation of DT, we can apply both DT and CDT for alignment. In table 2] We can see that SAS
method shows safer performance than without SAS, as cost and failure rate decrease in most tasks.
Except for PG1, PP1, and PB1 environments, DT+SAS or CDT+SAS achieves the highest rewards
among all baselines even with cost less than 1. In particular, in PB2, CDT+SAS stands out as
the only safe algorithm demonstrating decent rewards. Compared to baselines, CDT+SAS exhibits
superior performance in CB2, while in CB1, DT+SAS performs remarkably better. When we compare
CDT+SAS with CDT, it is evident that cost consistently decreases. In addition, in six tasks, cost even
decreases falling below 1, which means it lowers the target cost to be safe. SAS ensures that, at test
time, the pretrained DT can be aligned better with the distribution of the offline dataset. When DT
is worse than the collected expert in offline dataset, SAS boost the performance of reward. We also
conduct the case that the Decision Transformer that had not been sufficiently trained (undertrained
DT), and the outcomes are detailed in fig.[d} As observed, while the cost and failure rates experienced
an increase, the reward also increased. Our method is effective in enhancing the reward of a less
trained Decision Transformer at the test time. We utilize the initial prompt derived from {; and
generate the prompt with V;. We conducted tests using the initial prompt obtained from I/; directly at
test time, without incorporating V;. We can observe that the cost decreases in all three environments.
In the case of failure, the failure decreased in all environments except for the CarGoall tasks.

Offline RL methods often rely heavily on one-step RL, whereas our SAS approach performs depth-
first search during the inference process through internal thought. This allows for verification of safe
control performance for the entire episode of the selected high-level policy. This advantage explains
why our method outperforms traditional safe RL methods. It’s also important to note that even in
scenarios where cost-based offline safe RL has already been applied to CDT, prompting can further
improve the overall performance throughout the episode which can be seen in table 2]

7 CONCLUSION

Deploying downstream controller with offline RL is an important key to achieving real-world deep
RL practical. Unlike the other machine learning domains, such as NLP, it is hard to collect high
quality real-world dataset for pretraining. To solve this problem, we propose self-alignment method
for transformer based RL to align an offline RL agent to be stable for safety and better performance.
It is hoped that the proposed method may trigger new insights on further improvements in safe
exploration and stable downstream task deployment in RL.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory
for alignment. arXiv preprint arXiv:2112.00861, 2021.

Somil Bansal and Claire J Tomlin. Deepreach: A deep learning approach to high-dimensional
reachability. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp.
1817-1824. IEEE, 2021.

Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and
Animesh Garg. Conservative safety critics for exploration. In International Conference on
Learning Representations, 2020.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym, 2016.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural lyapunov control. Advances in neural
information processing systems, 32, 2019.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084—15097, 2021.

Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov-
based approach to safe reinforcement learning. Advances in neural information processing systems,
31, 2018.

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
synthesis. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 12873-12883, 2021.

Benjamin Eysenbach, Alexander Khazatsky, Sergey Levine, and Russ R Salakhutdinov. Mismatched
no more: Joint model-policy optimization for model-based rl. Advances in Neural Information
Processing Systems, 35:23230-23243, 2022.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning, 2021a.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4{rl}: Datasets for deep
data-driven reinforcement learning, 2021b. URL https://openreview.net/forum?id=
px0-N3_KjA.

Milan Ganai, Zheng Gong, Chenning Yu, Sylvia Lee Herbert, and Sicun Gao. Iterative reachability
estimation for safe reinforcement learning. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine. Why gen-
eralization in RL is difficult: Epistemic POMDPs and implicit partial observability. In A. Beygelz-
imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
Processing Systems, 2021. URL https://openreview.net/forum?id=0WIvzSQaX5.

Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline rl policies should be trained
to be adaptive, 2022a.

Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline RL policies should be trained
to be adaptive. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
and Sivan Sabato (eds.), Proceedings of the 39th International Conference on Machine Learning,
volume 162 of Proceedings of Machine Learning Research, pp. 7513-7530. PMLR, 17-23 Jul
2022b. URL https://proceedings.mlr.press/v162/ghosh22a.html.

11

https://openreview.net/forum?id=px0-N3_KjA
https://openreview.net/forum?id=px0-N3_KjA
https://openreview.net/forum?id=QWIvzSQaX5
https://proceedings.mlr.press/v162/ghosh22a.html

Under review as a conference paper at ICLR 2025

Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gémez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel] Mankowitz, Cosmin Paduraru, et al. Rl unplugged: A
suite of benchmarks for offline reinforcement learning. Advances in Neural Information Processing
Systems, 33:7248-7259, 2020.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861-1870. PMLR, 2018.

Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
policy optimization. Advances in neural information processing systems, 32, 2019.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence
modeling problem. In Advances in Neural Information Processing Systems, 2021.

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng,
Yifan Zhong, Juntao Dai, and Yaodong Yang. Safety-gymnasium: A unified safe reinforcement
learning benchmark, 2023.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yonggiang Dou, Yanjun Chen, Li Fei-Fei,
Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: Robot manipulation with multimodal
prompts. In International Conference on Machine Learning, pp. 14975-15022. PMLR, 2023a.

Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yonggiang Dou, Yanjun Chen, Li Fei-Fei,
Anima Anandkumar, Yuke Zhu, and Linxi Fan. VIMA: Robot manipulation with multimodal
prompts. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 14975-15022. PMLR,
23-29 Jul 2023b. URL|https://proceedings.mlr.press/v202/jiang23b.html.

et. al. John Schulman. Introducing ChatGPT — openai.com. https://openai.com/blog/
chatgpt, 2022.

Katie Kang, Paula Gradu, Jason J Choi, Michael Janner, Claire Tomlin, and Sergey Levine. Lya-
punov density models: Constraining distribution shift in learning-based control. In International
Conference on Machine Learning, pp. 10708—10733. PMLR, 2022.

Dohyeong Kim, Kyungjae Lee, and Songhwai Oh. Trust region-based safe distributional reinforce-
ment learning for multiple constraints. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:

22199-22213, 2022.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. Advances in Neural Information Processing Systems, 33:1179-1191, 2020.

Dohyeok Lee, Seungyub Han, Tachyun Cho, and Jungwoo Lee. SPQR: Controlling g-ensemble inde-
pendence with spiked random model for reinforcement learning. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
id=g0sdoFIfNg.

Jongmin Lee, Cosmin Paduraru, Daniel J. Mankowitz, Nicolas Heess, Doina Precup, Kee-Eung Kim,
and Arthur Guez. Coptidice: Offline constrained reinforcement learning via stationary distribution
correction estimation, 2022.

Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu,
Wenhao Yu, Tingnan Zhang, Jie Tan, and Ding Zhao. Datasets and benchmarks for offline safe
reinforcement learning, 2023a.

12

https://proceedings.mlr.press/v202/jiang23b.html
https://openai.com/blog/chatgpt
https://openai.com/blog/chatgpt
https://openreview.net/forum?id=q0sdoFIfNg
https://openreview.net/forum?id=q0sdoFIfNg

Under review as a conference paper at ICLR 2025

Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wenhao Yu, Tingnan Zhang, and Ding Zhao.
Constrained decision transformer for offline safe reinforcement learning, 2023b.

Vincent Micheli, Eloi Alonso, and Frangois Fleuret. Transformers are sample-efficient world models.
In The Eleventh International Conference on Learning Representations, 2023.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730-27744, 2022.

Zengyi Qin, Yuxiao Chen, and Chuchu Fan. Density constrained reinforcement learning. In
International Conference on Machine Learning, pp. 8682—8692. PMLR, 2021.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-
forcement learning and imitation learning: A tale of pessimism. Advances in Neural Information
Processing Systems, 34:11702-11716, 2021.

Jan Robine, Marc Hoftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world
models are happy with 100k interactions. In The Eleventh International Conference on Learning
Representations, 2023.

Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David Daniel Cox,
Yiming Yang, and Chuang Gan. Principle-driven self-alignment of language models from scratch
with minimal human supervision. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023. URL https://openreview.net/forum?id=p40XREBX96

Russ Tedrake. Underactuated robotics: Learning, planning, and control for efficient and agile
machines course notes for mit 6.832. Working draft edition, 3(4):2, 2009.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In
Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 13484—-13508. Association for Computational Linguistics,
2023. doi: 10.18653/V1/2023.ACL-LONG.754. URL https://doi.org/10.18653/v1l/
2023.acl-1ong. 754l

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In International Conference on Learning Representations,

2021.

Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized g-learning for safe offline
reinforcement learning, 2022a.

Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang Gan.
Prompting decision transformer for few-shot policy generalization. In international conference on
machine learning, pp. 24631-24645. PMLR, 2022b.

13

https://openreview.net/forum?id=p40XRfBX96
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754

Under review as a conference paper at ICLR 2025

A MODEL ARCHITECTURE

VAE policy

P(Se+1lse, ar) T (aclse z¢)
f t
Linear [Linear ¢]
. —
4)
Add & Norm h 0
Feed Forward St
o (Z¢|St Z¢-1)
N x Masked
Multi-Head St
Attention
Masked
Multi-Head St
Attention
- — J

[Inputs & Position Embedding]

®
Figure 5: The architecture of decision transformer with VAE for model-based RL. The only difference
with decision transformer is the additional linear layer and VAE decoder to predict the next state.
We consider the output of feed-forward layer as the predictor of z; with the parameter § which

corresponds to the high-level policy, and the combined values of s, z; by the attention and residual
connection are fed into the low-level policy with the linear layer ¢.

B EXPERIMENT SETTING AND HYPERPARAMETERS

B.1 EXPERIMENT SETTING

We conduct Hopper, Walker2d, and Humanoid in OpenAl Gym, where the agent fails and terminates
when the sum of unhealthy rewards get larger. For Safety Gymnasium, we use two different robots
(Point, Car)in3tasks (Goal, Push, Button) with two difficulties (1, 2) respectively. In
Goal and Button tasks, an agent navigate to the goal while avoiding touching hazards, and an
agent push a box to the goal in Push task. We denote normalized reward and cost returns as reward
and cost for simplicity, and use failure in Tables for failure rate. If an agent experiences any cost due
to encountering a hazard within an episode or exceeding unhealthy cost for mujoco (terminated),
we considered that episode as a failure episode. The baselines we used are CDT (Liu et al., [2023b)),
Imitation Learning (BC-Safe, BC-All(Liu et al.|[2023b; [Xu et al., [2022a))), Distribution Correction
Estimation (COptiDICE(Lee et al.,2022)), and Q-learning (CPQ, BCQ-Lag, BEAR-Lag(Xu et al.|
20224).

B.2 NORMALIZED SCORE

We applied normalization to both reward return and cost return to make it easier to compare for
all environments. Let 7,4, (M) and 7,5, (M) denote the maximum reward return and minimum
reward return in the dataset 7, respectively. Then, the normalized reward return is computed as:

R) o R‘n’ — "'min (M))
normalized — rom (M) — rmin(M)

14

Under review as a conference paper at ICLR 2025

where R, denotes the evaluated reward return obtained by the agent. Normalized cost return is
defined as the ratio between the cost return obtained by the agent and the target cost «:
Cr+e

K+ €

where ¢ is a small positive number for numerical stability. The values are averaged across three
different cost thresholds, 20 evaluation episodes, and three random seeds.

Cnormalized =

B.3 DATASET DETAILS

We conducted experiments using the OpenAl Gym’s medium and expert datasets from https |
//github.com/Farama-Foundation/D4RL| and the Safety Gymnasium’s expert dataset
from https://github.com/liuzuxin/OSRL/tree/main. Detailed information about
the dataset is presented in Table 4. The Max Cost means the maximum cost return in dataset
trajectories.

Table 4: Dataset details

Benchmark Task Max Timestep | Action Space | State Space | Max Cost | Trajectories
SafetyPointGoal1-v0 60 100 2022
SafetyPointGoal2-v0 60 200 3442
SafetyPointPush1-v0 76 150 2379
SafetyPointPush2-v0 76 200 3242

SafetyPointButton1-v0 76 200 2268

. SafetyPointButton2-v0 76 250 3288

Safety Gymnasium | "o - CarGoal 1-v0 1000 2 7 200 1671
SafetyCarGoal2-v0 72 250 4105

SafetyCarPush1-v0 88 250 2871

SafetyCarPush2-v0 88 400 4407

SafetyCarButton1-v0 88 250 2656

SafetyCarButton2-v0 88 300 3755

B.4 HYPERPARAMETERS FOR THE EXPERIMENTS

During the training of Decision Transformer, we applied warmup for the first 10000 steps, and we
used the ReLU activation function. Further details about the hyperparameters can be found in table [5

Table 5: Hyperparameters for the experiments

Common Parameters Safety-Gymnasium Parameters CDT DT
Action hidden size [256, 256] for all methods except CDT, DT Number of layers 3 3
VAE hidden size [400, 400] BCQ-Lag, BEAR-Lag, CPQ Number of attention heads 8 1
Cost thresholds [20, 40, 80] Embedding dimension 128 128
Gradient steps 100000 Batch size 2048 64
[Kp, K7, Kp] [0.1, 0.003, 0.001] BCQ-Lag, BEAR-Lag Context length K 300 20
Batch size 512 Learning rate 0.0001 0.0001
Actor learning rate 0.0001 Dropout 0.1 0.1
Critic learning rate 0.001 Adam betas (0.9, 0.999) (0.9, 0.999)

C ABLATION STUDIES

C.1 NUMBER OF TRAJECTORIES SAMPLED FOR IMAGINATION

We employ Decision Transformer to imagine multiple trajectories under both condition U/; and
condition V;. In our case, we sampled 5 trajectories for each condition U; and V;. As part of
an ablation study, we compared the results of sampling 100 trajectories in experiment with our
experimental results. As we can see in fig.[6] the experiment revealed that there was not a significant
difference in the model’s performance due to the difference in the number of sampled trajectories. In
PointGoall environment, an increase in cost was observed when the number of sampled trajectories
was 100.

15

https://github.com/Farama-Foundation/D4RL
https://github.com/Farama-Foundation/D4RL
https://github.com/liuzuxin/OSRL/tree/main

Under review as a conference paper at ICLR 2025

numbers of prompt

PointGoall PointPush?2 CarGoal1l

1.5
(9]
8
3 1.0
=
[<F)
N
=
E 0.5
o
=

0.0

1 3 5 1 3 5 1 3 5

Figure 6: Ablation studies on number of trajectories sampled for imagination. Red bar, blue bar,
green bar is reward, cost, failure score respectively

C.2 TIME STEP LENGTH TO CALCULATE F

We calculated and approximated E from trajectories imagined by Decision Transformer under both
conditions U and V. We conducted experiments with a default time step length of 3 for computing E.
As part of an ablation study, we also experimented with time step lengths of 1 and 10, comparing the
results with our findings, which are presented in fig. 4] In the results for the CarGoall environment,
the cost is lowest when the time step length is 10, while in the PointGoall environment, it is actually
highest. This indicates that increasing the time step length for calculating E' does not noticeably
improve the model’s performance.

C.3 TIME STEP LENGTH OF TRAJECTORY IN PROMPT

We extracted the trajectory from a specific time t to 5 time steps before that from trajectories generated
through Condition U/; and V;. We then fed this truncated trajectory into the prompt of Decision
Transformer at the test time. As part of an ablation study, we experimented with the time step length
of Decision Transformer’s prompt, setting it to 3 and 10, and the results are presented in fig.[d] For
each time step length of the prompt (3, 5, 10), there are instances where the cost in the experimental
results is the highest, as well as instances where it is the lowest. Hence, it can be concluded that the
time step length of the prompt does not significantly impact the model’s performance.

C.4 NUMBER OF PROMPTS

We proceeded by using a single trajectory fragment generated by our algorithm as the prompt for
Decision Transformer. As part of an ablation study, we compared the performance of our approach
with the method of concatenating three or five trajectory fragments obtained by running our algorithm
three or five times, respectively, and using them as a prompt. The experimental results in fig. @] show
that the method of using five trajectory fragments as a prompt resulted in higher costs. While there is
some difference in the PointPush2 environment when the number of fragments is 1 or 3, overall, the
performance fluctuates without a clear trend.

C.5 MODEL SIZE OF DECISION TRANSFORMER

We conducted experiments to observe how the effectiveness of SAS varies with the model size of
the Decision Transformer. Starting from the smallest size, the default Decision Transformer, we
experimented with sizes ranging from gpt-mini to larger sizes like gpt2, and the results are depicted
in fig. El When examining the PointGoall environment, it seems that as the model size increases, the
cost also tends to increase. However, looking at the PointPush2 environment, the opposite trend is
observed, where the model with the smallest size has the highest cost, suggesting that there may not

16

Under review as a conference paper at ICLR 2025

be a significant correlation. However, concerning failures, except for the gpt-mini size in PointGoall,
it can be observed that as the model size increases, failures generally decrease.

D COMPLETE EXPERIMENT RESULTS

D.1 RESULTS FOR ALL THE DATASETS

We present the results for a total of 16 datasets in table [f] These results include an additional
experiment on four Circle tasks (PointCirclel, PointCircle2, CarCirclel, CarCircle2) and eight tasks
in bullet-safety-gym environment(BallRun, CarRun, DroneRun, AntRun, BallCircle, CarCircle,
DroneCircle, AntCircle). In PC2, CC1, and CC2 environments, CDT+SAS exhibited the highest
reward among safe agents. CDT+SAS demonstrates lower costs than CDT in all four environments.

Table 6: Complete evaluation results of the baselines and the Decision Transformer with our method
(DT+SAS) and Constrained Decision Transformer with our method (CDT+SAS) in the Safety
Gymnasium environment. The values are averaged across three different cost thresholds, 20 evaluation
episodes, and three random seeds. Gray: Unsafe agents. Bold: Safe agents whose normalized cost is
less than 1. Blue: Agents which has highest reward among safe agents

Task DT + ours CDT + ours CDT BC-All BC-Safe BCQ-Lag BEAR-Lag CPQ COptiDICE
reward cost | reward cost | reward cost | reward cost | reward cost | reward cost | reward cost | reward cost | reward cost
PointGoall 0.66 1.19 0.65 1.27 0.69 1.12 0.65 0.95 0.43 0.54 0.71 0.98 0.74 1.18 0.57 0.35 0.49 1.66
PointGoal2 0.65 1.78 0.52 0.94 0.59 1.34 0.54 1.97 0.29 0.78 0.67 3.18 0.67 3.11 0.4 1.31 0.38 1.92
PointPush1 028 062 | 026 054 | 024 048 | 019 061 | 013 043 | 033 086 | 022 0.79 0.2 0.83 013 083
PointPush2 024 064 | 020 053] 021 0.65| 018 091 | 0.11 0.8 023 099 | 0.16 089 0.11 1.04 0.02 1.18
PointButtonl 0.49 1.38 0.51 1.27 0.5 1.68 0.1 10.5 0.06 0.52 0.24 1.73 0.2 1.6 0.69 32 0.13 1.4
PointButton2 0.51 1.14 0.41 0.98 0.46 1.57 0.27 2.02 0.16 1.1 0.4 2.66 0.43 247 0.58 4.3 0.15 1.51
PointCirclel 0.69 1.81 0.54 0.21 059 0.69 0.79 3.98 0.41 0.16 | 0.54 2.38 0.73 3.28 0.43 0.75 0.86 5.51
PointCircle2 0.42 1.69 0.63 0.47 0.64 1.05 0.66 4.17 048 0.99 0.66 2.6 0.63 4.27 0.24 3.58 0.85 8.61
CarGoall 0.67 085 | 0.65 0.90 | 0.66 1211 039 033 024 028 047 078 | 061 .13 | 0.79 1.42 0.35 0.54
CarGoal2 0.48 1.15 0.42 0.98 0.48 1.25 0.23 1.05 0.14 0.51 0.3 1.44 0.28 1.01 0.65 3.75 0.25 0.91
CarPushl 0.31 0.51 0.31 049 | 031 0.4 0.22 036 | 014 033 0.23 043 | 0.21 0.54 | -0.03 0.95 0.23 0.5
CarPush2 0.22 1.16 0.21 0.75 0.19 1.3 0.14 0.9 0.05 045 0.15 1.38 0.1 1.2 0.24 4.25 0.09 1.07
CarButton1 0.17 1.08 0.27 0.98 0.21 1.6 0.03 1.38 0.07 0.85 0.04 1.63 0.18 2.72 0.42 9.66 -0.08 1.68
CarButton2 014 0.84 | 030 1.11 0.13 1.58 | -0.13 1241 -0.01 0.63 0.06 2.13 | -0.01 2.29 0.37 12.51 -0.07 1.59
CarCirclel 0.41 1.84 047 0.52 0.6 1.73 0.72 4.39 0.37 1.38 0.73 5.25 0.76 5.46 0.02 229 0.7 5.72
CarCircle2 0.63 1.69 0.56 0.62 0.66 2.53 0.76 6.44 0.54 3.38 0.72 6.58 0.74 6.82 0.44 2.69 0.77 7.99
BallRun 0.99 1.6 0.04 0.29 0.39 1.16 0.6 5.08 0.27 1.46 0.76 391 -0.47 5.03 0.22 1.27 0.59 3.52

CarRun 8.12 1.06 0.72 039 | 099 0.65 0.97 033 | 094 022 0.94 0.15 0.68 7.78 0.95 1.79 0.87 0
DroneRun 0.76 1.58 0.33 0.78 0.63 0.79 0.24 2.13 0.28 0.74 0.72 5.54 0.42 247 0.33 3.52 0.67 4.15
AntRun 1.08 243 032 014 | 072 091 | 072 293| 0.65 1.09 | 076 511 | 015 073 | 0.03 0.02 0.61 0.94
BallCircle 0.81 1.41 0.32 0.38 0.77 1.07 0.74 471 052 0.65 0.69 2.36 0.86 3.09 0.64 0.76 0.7 2.61
CarCircle 0.85 176 | 019 022 | 075 095 | 058 3.74 0.5 0.84 | 0.63 1.89 | 074 218 0.71 0.33 0.49 3.14
DroneCircle 0.82 1.55 0.51 0.42 0.63 0.98 0.72 3.03 0.56 0.57 0.8 3.07 0.78 3.68 -0.22 1.28 0.26 1.02
AntCircle 0.59 1.18 0.26 0.34 0.54 1.78 0.58 4.9 0.4 0.96 0.58 2.87 0.65 5.48 0 0 0.17 5.04

Table 7: The modified version of Table 2 with standard deviation across 3 cost thresholds, 20
evaluation episodes, and 3 random seeds.

CDT CDT+ours DT DT+ours
Task reward cost reward cost reward cost reward cost
mean std mean std mean std mean std mean | std | mean | std | mean | std | mean | std

PointGoall 0.69 | 0.007 | 1.12 | 0.037 | 0.65 | 0.007 | 1.27 | 0.062 | 0.66 | 0.02 | 1.32 | 0.31 | 0.66 | 0.03 | 1.19 | 0.15
PointGoal2 | 0.59 | 0.017 | 1.34 | 0.054 | 0.52 | 0.036 | 0.94 | 0.158 | 0.38 | 0.02 | 2.63 | 0.05 | 0.65 | 0.09 | 1.78 | 0.17
PointPush1 024 | 0.012 | 048 | 0.023 | 0.26 | 0.027 | 0.54 | 0.019 | 0.22 | 0.06 | 0.93 | 0.21 | 0.28 | 0.01 | 0.62 | 0.10
PointPush2 | 0.21 | 1.363 | 0.65 | 31.063 | 0.20 | 0.038 | 0.53 | 0.089 | 0.20 | 0.08 | 0.78 | 0.45 | 0.24 | 0.06 | 0.64 | 0.09
PointButtonl | 0.5 | 0.006 | 1.68 | 0.049 | 0.51 | 0.026 | 1.27 | 0.044 | 0.38 | 0.04 | 1.19 | 0.18 | 0.49 | 0.05 | 1.38 | 0.21
PointButton2 | 0.46 | 0.019 | 1.57 | 0.047 | 041 | 0.019 | 098 | 0.026 | 0.50 | 0.06 | 1.31 | 0.14 | 0.51 | 0.00 | 1.14 | 0.13
CarGoall 0.66 | 0.008 | 1.21 | 0.057 | 0.65 | 0.008 | 0.90 | 0.035 | 0.64 | 0.02 | 098 | 0.12 | 0.67 | 0.03 | 0.85 | 0.16
CarGoal2 0.48 |0.032 | 1.25 | 0.095 | 042 | 0.032 | 098 | 0.047 | 0.51 | 0.04 | 1.47 | 032 | 048 | 0.03 | .15 | 0.20
CarPushl 031 | 0.018 | 0.4 0.068 | 0.31 | 0.018 | 0.49 | 0.097 | 0.35 | 0.07 | 0.68 | 0.22 | 0.31 | 0.01 | 0.51 | 0.15
CarPush2 0.19 | 0.022 | 1.3 0.081 | 0.21 | 0.023 | 0.75 | 0.120 | 0.20 | 0.03 | 1.17 | 0.26 | 0.22 | 0.01 | 1.16 | 0.26
CarButton1 021 | 0.014 | 1.6 0.106 | 0.27 | 0.081 | 0.98 | 0.006 | 0.24 | 0.04 | 1.42 | 0.04 | 0.17 | 0.03 | 1.08 | 0.17
CarButton2 | 0.13 | 0.031 | 1.58 | 0.034 | 0.30 | 0.009 | 1.1l | 0.025 | 0.21 | 0.04 | 1.05 | 0.21 | 0.14 | 0.03 | 0.84 | 0.08

17

Under review as a conference paper at ICLR 2025

D.2 ADDITIONAL COMPARISON WITH SOTA OFFLINE RL METHODS AND OFFLINE META-RL

We note that our DT+SAS which uses the pretrained DT without cost training data outperforms the
above SOTA offline safe RL methods. Moreover, we provide the comparison with CQL, SAC-n,
and APE-V which is the online (few-shot) adaptation method for the offline RL algorithm in the
table below. We note that our method shows the better improvement compared to the reported value
of SAC-n — APE-V in APE-V paper. However, the target task of offline meta-RL focuses on the
adaptation performance when the goal of the target task changes significantly, which differs critically
from measuring the generalization performance that is the aim of our paper, making it challenging to
conduct additional experiments.

Table 8: Experiment results with CQL algorithm (Kumar et al.l 2020) and APE-V algorithm (Ghosh
et al.} |2022a)) in D4RL (Fu et al.,[2021b) datasets.

Task Name CQL DT DT+0ur§ SAC-N APE-V
reward | reward failure reward failure improve(%) | reward reward improve(%)
hopper-medium-expert 96.9 111.8 0.1 110.4 0.05 -1.25 110 105.7 -3.91
hopper-medium-replay 86.3 94.3 0 97.3 0 3.18 101.8 98.5 -3.24
walker2d-medium-expert | 109.1 108.3 0 107.5 0 -0.74 116 110 -5.17
walker2d-medium-replay | 76.8 43.9 1 69.1 0.6 57.4 78.7 82.9 5.34
E PROOF

We first provide technical results in the main paper. We consider MDP as a graphical model, then
we can augment the graphical model with an optimality variable O, which denotes 1 [(s¢, a;) € Ct]
where Cy = {(s¢, ar)| (st a) ~ >, . | wbﬁ’w(at\st, zt)wg'*gh(zt|st_1, z;_1)}, the set of all possible
state-action pairs with 6*. In MDP, we can get high rewarded states in some transitions and hope to
allocate high weight for high-rewarded trajectories and low weight for suboptimal trajectories. To
denote this high rewarded time-step, we use the above optimality variable O;.

By defining the condition probability of prompt p;.1, given high-level policy wzigh, we leverage r1,(6)
to make sure that the well-designed prompt is selected when it is from underlying the safe high-level

policy Whlg In details, the length variable L can be composed of two conditions, the length of prompt
and the number of prompt. We conduct the ablation study for this condition in fig. @] We note that

we can have high probability of p(O; = 1|z;) = exp(r(m h'gh)) when we provide the most matching

prompt p* with the underlying 7rh”°h.

E.1 PROOF OF EQ.

To show the derivation, we start from Equation 1,

p(rIpror, st) = /9 (rlpr.c, S5, 6)p(6)db.

To check the optimality between the generated trajectory and the prompt, we prove the following
equation.

(Otl‘dj ‘pl L,S IESl / Z

lesl cZ

(gﬂe (r,25) [[p(Oulsi™, 2} >> et Op(0)do),

t=1

where

test tesl tesl test | Jtest test test| Ltest test test
E Hp Sit1ls) p(ag™[se™, z¢™) po (2™ sy, 2¢7) E Gy (T, 24
ZSez t=1 ez

low high
T Ty

18

Under review as a conference paper at ICLR 2025

By the Bayes’ rule and the law of total probability, we have

P(Ouws[P1:1,57™) :/p(7-|p1:L7Stle ,0)p(O0lp1.z,s¢™)do
(4

x / (7[p1 85 0)p(pros SE16)p(6)d0

Z test H O| test test) (Pl :L,S test|9) 9)d9
Gro (T, 27 p(Olsy™, ay »(PLL, Slestw*)p(

les\ czZ

01 I Slest|9)
- Lesl O test test (’ 0 d0
A e (.g o\ Ty 2y Hp t|St Ay)) (01:L7S§§CSI|9*)p()

/ Z (g,rs (1,2%) Hp (Oy]sF, ‘e“)> exp (L -r(0))p(6)do.

((.\\EZ
By the definition of r7,(#), we can show that under distinguishability for all h’gh =+ ﬂgi*gh, then
r1,(f)converges to a negative constant, and by letting L. — co we have exp(rr (m glgh)) = 0 for all
ThE" £ i and exp(r(mye")) = 1 for 7p =" = 2", The more detailed derivation of distinguisha-
b111ty is descrlbed in (Xie et al.,[2021). In addition, we can note that the probability graphical model
has the term p(z|s;, z;—1), which samples the latent skill variable when s; is given. By the definition
of high-level policy, we now can call the transformer with latent variables is intrinsically hierarchical
RL with high-level policy 7" = p(z|s;, 2 1).
As we can explain our transformer as implicit Bayesian inference of in-context learning (Xie et al.,
2021), we now have that the safe high-level policy when we successfully sample a trajectory instruc-
tion in algorithm [I]to satisfy Lyapunov conditions perfectly in every time step. Then, the in-context
learner RL model can also predict action at the given test-time initial state with Lyapunov stable
policy.

E.2 PROOF OF THEOREM [.1]

Since U; and V; are both optimality variable to indicate their Lyapunov condition, we apply the
probability inferecne for RL as follows:

log p(Us.r, Vi |T) = log (p(sl) Hp(ut, Vilst, ar)p(set1lse, ar)p(as|se, z¢)p(zelst, Zt—l))
t=1

= log (HP(Ut,Vdstaat)) + log (HP(Sl)P(SHﬂSuat)P(atStazt)p(zt|st,zt—1)>

t=1 t=1

= Zlog (p(U, Vielst, a)) + log <HP s1)p St+1|Staat)p(atStvzt)P(Zt|St,Zt1))

t=1

= Zlog Z/{t,Vt|St,at))+C

When all U, V; are 1, then we know that the trajectory gurantess the Lyapunov condition perfectly.
Recall that the trajectory is asymptotically stable if the following conditions are satisfied as described
in Definition 3.}

(1) G(Sezsae) = Oa (2) G(St:at) > 05 V(Sttat) 7& (Seaae): (3) G(Staat) > G(St-‘rlaat-&-l)-
Since we design our Lyapunov function Ggas as
Gsas(st,a:) = min max E(sy,m(sy)) — E(st, ap),

the equilibrium point is defined as Gsas(Se, @) = ming maxy FE(se, a.) — E(se,a.) = E
E(se,a.) = 0. Then, the condition ¢/, = 1 corresponds to the condition (2): G(sq, at)
0,V(s¢,a;) # (Se,ac), and the condition V; = 1 corresponds to G(s¢, a;) > G(S¢11,a441)-

19

Under review as a conference paper at ICLR 2025

If we choose the distributions of I4;, V, as
p(Us = 1|8, ar) o< exp (1 [Gsas(st, ar) > 0]),
p(Vt = 1|5t7at) X exp(l [GSAS(Staat) - GSAS(5t+17at+1) > 0])7
then, we can rewrite the above equation as
Z logp(b{t, Vt‘sta at) = ZIOgP(thsta at,ut)p(ut|st, at)
t=1 t=1

o > 1[Gsas(si,ar) > 01+ > 1[Gsas(st, ar) — Gsas(sit1, arg1) > 0]
=1 =1

Then, the maximizing the above equation implies that the trajectory get close to the Lyapunov
condition.

E.3 PROOF OF EQ. (T0)

The goal of our method is to keep occupancy measures in the distribution of the target control-
invariant set R = {(s¢, a¢)|c1 < E(st,a¢) < co} where E(sy, a;) = —log p(st, a;) for utilizing the
pretrained expert distribution. As our Lyapunov function approximation is defined as

G(St, (Lt) = Zzllnlanil}a,XIE(Sj, TI'i(Sj)) — E‘(St7 (lt)

for N sample trajectories with the episode length T in the first loop of Algorithm 1. Suppose that co
is some constant that is larger than minN ' HiaXTE (sj,mi(s;)) forany N,T. We now demonstrate
NG

i=1,---, ;
that Algorithm 1 reduces the probability of escaping from the control invariant set as the numbers of
iterations, N and M for the first and second loops, respectively, increase.

Assumption E.1. The difference ||G(s¢,a:) — G(S¢+1, a141)
bounded as ||G(s¢, ar) — G(se41, aer1)|| < L forall ¢.

| in Eq. (3) over the transition 7 is

Proof. First note that P [T ¢ R] is less than the sum of the probability of E(s:,a;) > cs for all data
points in N trajectories and the probability that all M trials moves below E(s;, a;) < ¢;. By using
Markov’s inequality for the first term of RHS and Hoeffding’s inequality for the second term of RHS.
Then, we have

> M

for some constant « to describe the average distance to escape. O

K(ea — 1)
P

P[roes R] < (P[E(s,a) > o)V + (P
t=1

E(s,a)~p[E(s;a)] N 2MK*(co — c1)?
< ? -
e +exp TL?

20

	Introduction
	Related Work
	Preliminaries
	Modeling Offline Safe RL as Density-based Lyapunov Control
	Density-based Lyapunov Control as Probabilistic Inference

	Self-Alignment for safe RL with Lyapunov condition
	Model-based RL with transformer as Probabilistic Inference
	Instruction Prompt Generation for Safety

	Experiments
	Conclusion
	Model Architecture
	Experiment Setting and Hyperparameters
	Experiment setting
	Normalized Score
	Dataset Details
	Hyperparameters for the Experiments

	Ablation Studies
	Number of trajectories sampled for imagination
	Time step length to calculate E
	Time step length of trajectory in prompt
	Number of prompts
	Model size of Decision Transformer

	Complete Experiment Results
	Results for all the datasets
	Additional comparison with SOTA offline RL methods and offline meta-RL

	Proof
	Proof of eq:incontextpredictor
	Proof of thm:lyapunovgm
	Proof of eq:hoeffding

