SELF-ALIGNMENT FOR OFFLINE SAFE REINFORCE MENT LEARNING

Anonymous authors

004

010 011

012

013

014

015

016

017

018

019

021

023

025

026

Paper under double-blind review

Abstract

Deploying an offline reinforcement learning (RL) agent into a downstream task is challenging and faces unpredictable transitions due to the distribution shift between a offline RL dataset and a real environment. To solve the distribution shift problem, some prior works aiming to learn a well-performing and safer agent have employed conservative or safe RL methods in the offline setting. However, the above methods require a process of retraining from scratch or fine-tuning to satisfy the desired criteria for performance and safety. In this work, we present a simple modelbased RL method with a transformer and a world model, and propose a Lyapunov conditioned self-alignment method, which does not require retraining and conducts the test-time adaptation for the desired criteria. We show that our model-based RL with the transformer architecture can be described as a model-based hierarchical RL. As a result, we can combine hierarchical RL and in-context learning for selfalignment in transformers. The proposed self-alignment framework aims to make the agent safe by self-instructing with the Lyapunov condition. In experiments, we demonstrate that our self-alignment algorithm outperforms safe RL methods in continuous control and safe RL benchmark environments in terms of return, costs, and failure rate.

028 1 INTRODUCTION

Ensuring safety in real-world online reinforcement learning (RL) is crucial to making recent advances 031 in deep RL algorithms (Haarnoja et al., 2018; Janner et al., 2019; Lee et al., 2023; Eysenbach et al., 2022) more practical, especially when a *downstream controller* (RL agent) suffers from 033 underactuated robotics (Tedrake, 2009) or is deployed in the wild. Offline RL (Kumar et al., 2020) 034 studies have shown that RL agents can be pretrained with well-curated offline RL datasets with human supervision, such as D4RL (Fu et al., 2021b), RL-unplugged (Gulcehre et al., 2020), and DSRL (Liu et al., 2023a) to learn better-performing and safer policy by utilizing the existing data. However, deploying a pretrained offline RL model naively without considering the many facets of unknown 037 test-time environment is not sufficient to guarantee the safety of downstream controller. Recent two results (Ghosh et al., 2022b; 2021) have provided some insight into the challenge that a downstream controller suffer from by highly uncertain and partially observable test time environment. These 040 studies point out that, even for the same observation, the transition probability can be unpredictable 041 due to the uncertain nature of the system's dynamics at each step. Hence, specifying and adapting 042 the environment transition during test-time for an RL agent is necessary to avoid risky consequence. 043 (Ghosh et al., 2022b) learned explicit belief as an augmented input for policy to adapt the test-time 044 environment can help an downstream controller to be safer.

Belief based adaptation, however, requires its own pretraining algorithm from scratch for test-time adaptation. It is hard to align the pretrained agent to be safe without additional fine-tuning procedure. Self-alignment by leveraging the pretrained distribution from offline RL dataset could be an easier way to deploy an agent more safely. Self-alignment (Sun et al., 2023) is one of the alignment approaches for Large Language Models (LLMs), which induces desirable outputs for specific instruction prompts. It enables efficient adaptation of LLMs for a particular purpose without fine-tuning by utilizing the reasoning and generative power of transformer-based large models. To apply self-alignment to model-based RL agent, we use the proposed transformer-based architecture which is composed of an agent and a world model to learn policy and predictive model simultaneously, by generating a virtual imagination of agent trajectory.

Figure 1: An illustration of the three stages of our Self-Alignment for offline safe RL. We illustrate one of the safety gym environments in the middle box, where small circles and squares represent hazards, and a green circle indicates the goal region. At test time for the downstream task, we first use the RL transformer to generate several imagined trajectories for a given initial state. Secondly, we compute the occupancy measure and the Lyapunov condition of state-action pairs in imagined trajectories to determine which trajectory violates the Lyapunov condition the least. For example, ***** denotes a (s, a) pair that incurs a high cost and violates the Lyapunov condition simultaneously. Finally, we retrieve the best trajectory segment from the candidate imaginations for prompt and augment the retrieved segment and initial state for self-instruction at test time.

065

066

067

068

069

071

072

Transformer-based RL has shown the ability of prompt-based alignment, which enforces transformers 075 to conduct in-context learning and produce a desirable behavior for a given prompt. For example, 076 training multi-modal prompts, which consist of text, video, and trajectory data (Jiang et al., 2023a), 077 enables the model to solve various robot manipulation tasks and shows remarkable generalization capability for unseen complex tasks. However, the specific structure of the training input data, where 079 the prompt and trajectory tokens lie in consecutive order, is needed to adapt to a newly defined task.

In this work, we propose a *self-alignment technique by self-generated prompt* to guarantee the better 081 safety. Our self-generated prompt for safety is based on Lyapunov condition. To implement selfalignment for safety, we present a novel formulation of Lyapunov condition as a probabilistic inference 083 and transformer-based RL world model as a *model-based hierarchical RL agent*, respectively, to 084 provide in-context learning based self-alignment. We present an overview of our algorithm, which 085 we call self-alignment for safety (SAS), in fig. 1. First, the proposed transformer-based model with the agent and the world model generates several imagined trajectories using the learned policy and 087 predictive model from the data distribution. We evaluate the safety using the proposed inference 088 model of the Lyapunov condition, and feed the most likely trajectory in terms of the Lyapunov stability 089 condition into a prompt of our model. The given prompt instructs our model to act in accordance with its Lyapunov condition property. We explain this ability of our transformer-based architecture as a skill-conditioned hierarchical RL in section 5.1. In our experiments, we demonstrate the efficiency 091 and safe deployment of SAS in 12 Safety Gymnasium environments (Ji et al., 2023) and OpenAI 092 Gym Mujoco (Brockman et al., 2016). SAS outperforms prior safe RL methods by up to 2 times on 093 Safety Gymnasium benchmarks and 2 times on Mujoco in terms of failure rate. 094

095

RELATED WORK 2

096 097

098 **Transformer-based RL.** Transformer-based RL (Janner et al., 2021; Chen et al., 2021) has been 099 emerged by making a connection between pretraining of GPT (Radford et al., 2018) and offline RL 100 with prior data. Recently, several model-based RL methods with transformers, which are called world 101 model, lead to sample efficient online RL by leveraging the structure of auto-regressive generation 102 in terms of imagination in model-based RL, such as TWM (Robine et al., 2023) and IRIS (Micheli 103 et al., 2023). For predictive model, TWM applies VAE (Kingma & Welling, 2013), and IRIS uses 104 VQGAN (Esser et al., 2021) to reconstruct the observation. Prompting on transformer-based RL was 105 also proposed to help task specification with multi-model prompts (Jiang et al., 2023b), and achieve test-time adaptation by learning with prompts from scratch (Xu et al., 2022b). CDT(Liu et al., 2023b) 106 is similar to our work since CDT uses decision transformer for offline safe RL by modifying the 107 DT architecture to feed the cost value to train an offline safe RL agent. Unlike prior works, we aim

to align *the transformer for model-based RL* by providing self-generated instruction for in-context learning without any fine-tuning.

111 **Safe RL and Lyapunov condition.** Lyapunov condition has been applied to safe control (Chang 112 et al., 2019) and safe RL (Chow et al., 2018) in many different ways. LDM (Kang et al., 2022) 113 proposed an integration of Lyapunov condition and offline RL to avoid distribution shift for safety. While safe RL algorithms are usually formulated as constrained MDP, which introduces a control 114 barrier functions to prevent an RL agent from entering unsafe regions (Bansal & Tomlin, 2021; Ganai 115 et al., 2023; Kim et al., 2023), we instead focus on validating Lyapunov condition for safety to avoid 116 unsafe regions caused by the distribution shift (Tedrake, 2009; Bharadhwaj et al., 2020). DCRL (Qin 117 et al., 2021) is similar to ours in online safe RL, which employs a constraint on the level of state 118 density to stay in the highly probable states. In contrast, SAS does not require a constrained RL 119 tuning for transformer or cost, and adapt a safe RL task by self-alignment at test time. 120

121 Large model alignment. Alignments in LLMs have been proposed to learn human preference 122 or make pretrained models safer and more helpful recently (Ouyang et al., 2022). For example, a 123 pretrained general language assistant can be aligned to be helpful, honest, harmless (HHH) (Askell 124 et al., 2021). Alignment methods for LLMs can be classified into RLHF (John Schulman, 2022) and 125 instruction based in-context learning (Sun et al., 2023; Wang et al., 2023). Alignment by instruction 126 is an emerging technique to align large language models (LLMs) output with a specific desired behavior by engineering instruction prompt (Brown et al., 2020), RLHF (Ouyang et al., 2022), and 127 zero-shot reasoner (Kojima et al., 2022). In RL, aligning Large Models (LMs) from pretrained 128 distribution is natural and well-behaved in LLMs for human preference, but very limited for unseen 129 task specification by demonstration (Jiang et al., 2023a) and learning for augmented prompt (Xu 130 et al., 2022b), even though alignment for safety is essential to ensure safety in real-world RL. 131

132 133

134

155

158

3 PRELIMINARIES

Problem Setting. We consider a discounted Markov Decision Process $\langle S, A, \mathcal{R}, C, \mathcal{P}, \mathcal{P}_{S_1}, \gamma \rangle$, 135 where S, and A are observation and action spaces, $\mathcal{R} : S \times A \times S \to \mathbb{R}$ and $\mathcal{C} : S \times A \times S \to \mathbb{R}$ 136 are reward and cost functions, $\mathcal{P}: \mathcal{S} \times \mathcal{A} \to \mathcal{S}$ is the transition operator, $\mathcal{P}_{\mathcal{S}_1}: \mathcal{S} \to [0, 1]$ is the 137 initial state distribution, and $\gamma \in (0,1)$ is the discount factor. We first define latent skill space Z 138 and consider two following hierarchical policies. The high-level policy $\pi_{\theta}^{\text{high}}: S \times Z \to Z$ with 139 parameter θ for skill selection maps the previous latent skill and the observation to the choice of 140 learned skills $\mathbf{z} \in \mathcal{Z}$ from the pre-collected experience. The low-level policy $\pi_{\phi}^{\text{low}} : \mathcal{S} \times \mathcal{Z} \to \mathcal{A}$ with 141 parameter ϕ interacts with environment with given skill in the agent's action space. 142

143 **Density Constrained Safe RL.** From a conservatism, constraining the density of states and actions 144 has been studied to enhance the agent safety. Lyapunov Density Model (LDM) (Kang et al., 2022) 145 and DCRL (Qin et al., 2021) are offline and online safe RL frameworks, which design the constraint 146 regions based on density. In the case of offline safe RL, LDM leverages Lyapunov stability condition 147 to constrain the density of state-action pairs over a long horizon. Finding a control Lyapunov function 148 for arbitrary MDP is a challenging problem. To tackle this issue, LDM provides a modified version 149 of Bellman operator which can be interpreted as learning a control Lyapunov function by the offline data. Specifically, this learning process stitches policies toward more probable terminal states. To 150 guarantee that an offline RL agent does not escape from sinking into the low density region, we first 151 introduce the control invariant set and the condition of Lyapunov model of LDM as follows: 152

Definition 3.1. Let $(\mathbf{s}_e, \mathbf{a}_e)$ be an equilibrium point and $\tau = ((\mathbf{s}_1, \mathbf{a}_1), \cdots, (\mathbf{s}_e, \mathbf{a}_e))$ be an Lyapunov stable trajectory. For all Lyapunov stable trajectories τ , LDM $G(\mathbf{s}_t, \mathbf{a}_t)$ must satisfy the following:

(1)
$$G(\mathbf{s}_e, \mathbf{a}_e) = 0$$
, (2) $G(\mathbf{s}_t, \mathbf{a}_t) > 0$, $\forall (\mathbf{s}_t, \mathbf{a}_t) \neq (\mathbf{s}_e, \mathbf{a}_e)$, (3) $G(\mathbf{s}_t, \mathbf{a}_t) \ge G(\mathbf{s}_{t+1}, \mathbf{a}_{t+1})$.

To learn a valid control Lyapunov function, the LDM backup operator is defined as

$$\mathcal{T}_{\text{LDM}}G(s,a) = \max\{-\log\rho(s,a), \gamma\min_{a'}G(\mathcal{P}(s,a),a')\}$$
(1)

where $\rho(s, a)$ is a density of given state and action. For a Lyapunov density model $G(\mathbf{s}_t, \mathbf{a}_t)$, there exists a control invariant set for a constant c > 0:

$$\mathcal{R}_c = \{(\mathbf{s}_t, \mathbf{a}_t) | G(\mathbf{s}_t, \mathbf{a}_t) \le c\}$$

Intuitively, a greedy policy of the Lyapunov density model, $\arg \min_a G(s, a)$ does not escape from the control invariant set \mathcal{R}_c and eventually reaches the equilibrium point where, by the definition, has the highest density value in the control invariant set \mathcal{R}_c .

4 MODELING OFFLINE SAFE RL AS DENSITY-BASED LYAPUNOV CONTROL

In this work, we introduce a transformer network based on the *Decision Transformer* (Chen et al., 2021) architecture and extend this to include a VAE (Kingma & Welling, 2013) based predictive model to incorporate imaginations for searching safe candidate trajectories within the model-based RL framework. The detailed architecture of our transformer model is described in table 5. Since we pretrain our transformer using the offline RL dataset D, we utilize learned predictive model distribution and the policy distribution to compute an approximate Control Lyapunov function which is analogous to LDM. Rather than using one-step density value, we use the occupancy measure estimate $\hat{\rho}$ by computing the following equation:

$$\hat{\rho}(s,a) = \sum_{t=0}^{\infty} \gamma^t \rho(\mathbf{s}_t = s, \mathbf{a}_t = a | P_{\mathcal{S}_1}, \pi, \mathcal{T}) = \sum_{t=0}^{\infty} \gamma^t \rho_{\text{VAE}}(\mathbf{s}_t = s | P_{\mathcal{S}_1}, \pi, \mathcal{T}) \pi(\mathbf{a}_t = a | \mathbf{s}_t = s),$$

where ρ_{VAE} and π denotes the density estimation of VAE and the policy. We note that the occupancy measure estimate $\hat{\rho}$ can be computed from the generated trajectory τ of autoregressive transformer.

To capture the connection between the density and offline safe RL, we introduce safe RL problem as the constrained optimization problem as follows:

$$\max J_R(\pi) \quad \text{s.t.} \ J_C(\pi) \le d, \tag{2}$$

where $J_R(\pi)$, $J_C(\pi)$ are the expected discounted sum of reward/cost functions, respectively. We reformulate eq. (2) in terms of occupancy measure as

$$\max_{\sigma} \mathbb{E}_{s,a} \left[\rho^{\pi}(s,a) r(s,a) \right] \quad \text{s.t.} \quad \mathbb{E}_{s,a} \left[\rho^{\pi}(s,a) C(s,a) \right] \le d.$$

190 Let U be the universal set of state-action space and B be the set $\{(s,a)|(s,a), C(s,a) < C_{th}\}$ where 191 C_{th} is the some threshold of cost which satisfies $C_{th} \leq d(1 - \gamma)$. Assume that the cost value is 192 bounded as $0 \leq C(s,a) \leq C_{max}$. We define a volume constant $\alpha = \mathbb{E}_{(s,a)\sim U}[\mathbf{1}((s,a) \in B)]$, which 193 is $0 < \alpha < 1$. Then, we can write the above inequality as

166

167 168

169

170

171

172

173

174

175

176 177 178

185

187 188 189

196

215

 $J_{C}(\pi) = \mathbb{E}_{(s,a)\sim B} \left[\hat{\rho}^{\pi}(s,a)C(s,a) \right] + \mathbb{E}_{(s,a)\sim B^{C}} \left[\hat{\rho}^{\pi}(s,a)C(s,a) \right]$ $J_{C}(\pi) - d = \mathbb{E}_{(s,a)\sim B} \left[\hat{\rho}^{\pi}(s,a)C(s,a) \right] - \alpha d + \mathbb{E}_{(s,a)\sim B^{C}} \left[\hat{\rho}^{\pi}(s,a)C(s,a) \right] - (1-\alpha)d$ $\leq \mathbb{E}_{(s,a)\sim B} \left[\hat{\rho}^{\pi}(s,a)C_{th} - d \right] + \mathbb{E}_{(s,a)\sim B^{C}} \left[\hat{\rho}^{\pi}(s,a)C_{max} - d \right].$ (3)

We can observe that expert policies in the offline RL dataset \mathcal{D} should have low values in B^{C} to 199 satisfy the constraint inequality of eq. (3) less than zero. Now, we know that reducing the marginal value of occupancy measure over B^C leads to the lower bound of the cost function of π . Suppose that $\hat{\rho}^{\pi}(s,a) \leq \frac{d}{C_{max}}$ for $(s,a) \in B^C$. We consider the definition of occupancy measure and assume that occupancy measure is a continuous function. We have $\frac{d}{C_{max}} \leq \hat{\rho}^{\pi}(s,a) \leq \frac{d}{C_{th}} \leq \frac{1}{1-\gamma}$ for 200 201 202 203 $(s, a) \in B$, and then get $J_C(\pi) - d \leq 0$. This is an intuitive condition to be an expert policy trained 204 by the constrained RL in eq. (2). Now, we generalize the above condition into more general offline RL 205 scenario. We consider the occupancy measure of the given offline data, $\rho_{\text{data}}(s, a)$ and the occupancy 206 measure of optimal policy $\hat{\rho}^{\pi*}$ satisfies the single policy concentrability: 207

 $\hat{\rho}^{\pi*}(s,a)/\rho_{\text{data}}(s,a) \le D$

where all $(s, a) \in S \times A$, and $D = \max_{\pi} D^{\pi}$ represents the widely-used uniform concentrability coefficient. This assumption, drawn from (Rashidinejad et al., 2021), is used to incorporate various sources of offline RL data, including medium-level datasets. To prevent having overestimated density in the region which might lead to failure, we insert the concentrability coefficient as a margin for defining the target control invariant set under the pretrained distribution,

$$R_{\rho} = \{(s,a) | \rho_{\text{data}}(s,a) \ge \frac{d}{C_{max}D} \}.$$

$$\tag{4}$$

216 This implies that the offline RL agent can avoid moving toward $(s, a) \in B^C$ by applying a penalty 217 using D. Our key idea is to search a density-based Lyapunov stable trajectory sample by the 218 imagination process of our model-based RL transformer. We first define the Energy $E = -\log \hat{\rho}_{data}$ 219 for convenience. From eq. (1), we define our approximate Lyapunov model as

$$G_{\text{SAS}}(\mathbf{s}_t, \mathbf{a}_t) = \log \hat{\rho}_{\text{data}}(\mathbf{s}_t, \mathbf{a}_t) - \max \min_{\mathbf{t}'} \log \hat{\rho}_{\text{data}}(\mathbf{s}_{t'}, \pi(\mathbf{s}_{t'}))$$
(5)

$$= \min_{\pi} \max_{t'} E(\mathbf{s}_{t'}, \pi(\mathbf{s}_{t'})) - E(\mathbf{s}_t, \mathbf{a}_t).$$
(6)

where $\hat{\rho}_{data}$ is the learned distribution of the offline RL dataset distribution ρ_{data} . By randomly 224 sampling using the VAE and the stochastic policy of our transformer, we generate multiple trajectories 225 from imagination and compute the optimal sample based on eq. (5) across trajectories and time. Note that repeating to get more samples induces the tighter upper bound of the control invariant set having more probable actions. Finally, we define the target control invariant set in terms of $\rho_{data}(s, a)$ as 228

$$\mathcal{R}_G^{\text{SAS}} = \{ (\mathbf{s}_t, \mathbf{a}_t) | G_{\text{SAS}}(\mathbf{s}_t, \mathbf{a}_t) \le -\log \frac{d}{C_{\max}D} \}.$$
(7)

We note that the cost condition of d is applied to the density constraint in terms of control invariant set. Now, we solve a Lyapunov stable policy in terms of G_{SAS} , then have the offline safe RL policy.

4.1 DENSITY-BASED LYAPUNOV CONTROL AS PROBABILISTIC INFERENCE

To search and infer safe imagined trajectory samples, we propose the probabilistic inference formulation of Lyapunov condition in Definition 3.1.

Theorem 4.1 (Lyapunov Condition Observable). Let two observables U_t and V_t be the indicator variables

$$\mathcal{U}_t = \mathbf{1} \left[G_{\text{SAS}}(\mathbf{s}_t, \mathbf{a}_t) > 0 \right], \quad \mathcal{V}_t = \mathbf{1} \left[G_{\text{SAS}}(\mathbf{s}_t, \mathbf{a}_t) - G_{\text{SAS}}(\mathbf{s}_{t+1}, \mathbf{a}_{t+1}) \ge 0 \right].$$
(8)

242 The problem of finding a trajectory from Lyapunov stable controller is equivalent to solve the following inference problem: 243

$$\max_{\tau} \frac{1}{T} \sum_{t} \log \left(P(\mathcal{U}_t = 1 | \tau) P(\mathcal{V}_t = 1 | \mathcal{U}_t = 1, \tau) \right), \tag{9}$$

where T is the length of trajectory τ . 247

248 See appendix E for proof. We note that the first Lyapunov condition observable \mathcal{U}_t is indirectly 249 computed by lines 1 to 6 in Algorithm 1. In the first loop of Algorithm 1, among the N iterations, we 250 select the episode with the lowest maximum energy value reached by each imagined trajectory. In line 251 6, we set the selected lowest maximum energy E_i as the value of our approximate Lyapunov model 252 for the equilibrium point, $G_{\text{SAS}}(s_e, a_e) = \min_{\pi} \max_{t'} E(s_e, a_e) - e(s_e, a_e) = E_j - E(s_e, a_e) = 0.$ 253 Then, all other N-1 episodes have steps with G(s, a) < 0 inevitably due to $G_{SAS}(s_e, a_e)$, leading 254 to violation of the condition $U_t = 1$. To search for a Lyapunov stable policy which guarantees all 255 state-action pair elements are in R_G^{SAS} in Equation 7, we assume that a test-time agent can access a set 256 of previously learned policies, $\Pi = {\pi_i}_{i=1}^N$ from pretrained distribution. Each generated trajectory 257 at *i*-th iteration, τ_i , corresponds one-to-one to a certain $\pi_i \in \Pi$ at given initial state s_0 . As we 258 increase the number of iterations of the first loop, $N \to \infty$, we can get a lower E_i , which leads to 259 the more probable subsequent (s, a) and equilibrium point. Furthermore, selecting the most probable 260 index k^* in the second for-loop implies that we choose the optimal-selection policy which violates 261 the condition \mathcal{V}_t least. Then, the selected π is highly likely to satisfying in the control invariant set 262 $\{(s,a)|0 \leq G_{SAS}(s,a) \leq E_i\}$. Now, we rewrite Equation 6 for Algorithm 1 as

263 264 265

220

221 222

223

226

227

229 230 231

232

233 234

235 236

237

238

239

240 241

244 245 246

$$G_{\text{SAS}}(\mathbf{s}_t, \mathbf{a}_t) = \log \hat{\rho}_{\text{data}}(\mathbf{s}_t, \mathbf{a}_t) - \max_{i=1, \cdots, N} \min_{j=1, \cdots, T} \log \hat{\rho}_{\text{data}}(\mathbf{s}_j, \pi_i(\mathbf{s}_j))$$
$$= \min_{i=1, \cdots, N} \max_{j=1, \cdots, T} E(\mathbf{s}_j, \pi_i(\mathbf{s}_j)) - E(\mathbf{s}_t, \mathbf{a}_t).$$

266 267 268

We now demonstrate that Algorithm 1 reduces the probability of escaping from the control invariant 269 set as the numbers of iterations, N and M for the first and second loops, respectively, increase.

270 Algorithm 1 Self Alignment To be Safe (SAS). Self-generating prompt for instruction. 271 **Require:** Pretrain transformer from \mathcal{D} and environment initial state $\mathbf{s}_{1}^{\text{test}} \sim \mathcal{P}_{\mathcal{S}_{1}}$ 272 1: for $i = 1, 2, 3, \ldots, N$ do \triangleright for condition \mathcal{U}_t 273 Sample $\tau_i \sim p(\tau | \mathbf{s}_1^{\text{test}})$ by imagination 2: 274 Compute E_t of each time-step t3: 275 $\hat{E}_i, t_i \leftarrow \max_t E_t, \arg\max_t E_t$ 4: 276 5: end for 277 6: $j \leftarrow \arg\min \hat{E}_i$ 278 279 7: Compute an initial prompt $\tilde{\mathbf{p}}_{1:L} \leftarrow \tau_j [t_j - L : t_j]$ 8: for $k = 1, 2, 3, \dots, M$ do \triangleright for condition \mathcal{V}_t Sample $\tau'_k \sim p(\tau | \tilde{\mathbf{p}}_{1:L}, \mathbf{s}_1^{\text{test}})$ 9: 281 Compute E_t of each time-step t 10: 282 11: $\hat{E}_k, t_k \leftarrow \max_t E_t, \arg\max_t E_t$ 12: $v_k \leftarrow \sum_t \mathcal{V}_t$ 13: end for 283 284 285 286 14: $k^* \leftarrow \arg \max v_k$ 287 15: Prompt $\mathbf{p}_{1:L} \leftarrow \tau'_{k^*}[t_{k^*} - L : t_{k^*}]$ ▷ self-alignment 288 289

Proposition 4.2 (Probability of out-of-distribution trajectory). Assume that the sampled state action pairs (s_t, a_t) in the trajectory is i.i.d. Let $\tau = \{(s_t, a_t)\}_{t=1}^T$ denote the set of state-action pairs in the trajectory with length T and D is the pretrained distribution of expert trajectories. By Assumption E.1, the probability that the best trajectory escapes from the target control invariant set in Algorithm 1 is bounded and decreases as the numbers of iterations $N, M \to \infty$ as follows:

$$P\left[\tau_{best} \not\subset \mathcal{R}\right] \le \left[\frac{\mathbb{E}_{(s,a)\sim\mathcal{D}}\left[-\log\hat{\rho}_{data}(s,a)\right]}{c_2}\right]^{NT} + \exp\left(-\frac{2M\kappa^2(c_2-c_1)^2}{TL^2}\right)$$
(10)

The proof is in appendix E.3.

5 SELF-ALIGNMENT FOR SAFE RL WITH LYAPUNOV CONDITION

When we aim to make a transformer-based model aligned for a downstream task, the model can learn the given task by conditioning a prompt which is composed of demonstration examples. This remarkable ability is called in-context learning, which can be explained by the implicit Bayesian conditional inference with demonstration prompt in NLP domain (Xie et al., 2021). The given demonstration prompt into transformer predicts an aligned output which is conditioned on the prompt. The inference probability is defined as the following posterior predictive distribution:

$$p(\text{output}|\text{prompt}) = \int p(\text{output}|\text{prompt}, \theta) p(\theta|\text{prompt}) d\theta,$$

312 where θ is called *latent concept*. The latent concept θ serves as a parameter determining the transition 313 of the hidden Markov model $p(\text{output}|\text{prompt},\theta)$, which corresponds to a learned conditional dis-314 tribution of pretraining sequence dataset on a latent concept θ . Then, the conditional inference of latent 315 concept θ on prompt selects the parameter of $p_{\theta}(\text{output}|\text{prompt}) = p(\text{output}|\text{prompt}, \theta)$ 316 and makes it possible to generate an aligned output. In this section, we formulate our transformer 317 as a hierarchical RL and decompose the policy into two policies, high-level and low-level policies. 318 Analogous to the above implicit Bayesian concept, we now assume that the parameter of high-level policy corresponds to the latent concept. All proofs in appendix E. 319

320 321

322

290

291

292

293

300 301

302 303

304

305

306

307

308

- 5.1 MODEL-BASED RL WITH TRANSFORMER AS PROBABILISTIC INFERENCE
- 323 We extend the probabilistic graphical model of skill-based hierarchical RL to describe our model. We show that the pretrained transformer can implicitly perform Bayesian inference. To define the world

model as a HMM, we consider a probability distribution of trajectory τ as

$$p(\tau) = p(\mathbf{s}_1) \prod_{t=1} p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) p(\mathbf{a}_t | \mathbf{s}_t, \mathbf{z}_t) p(\mathbf{z}_t | \mathbf{s}_t, \mathbf{z}_{t-1}).$$

328 where $p(\mathbf{s}_{t+1}|\mathbf{s}_t, \mathbf{a}_t)$ denotes the transition probability of transformer, and we abuse the notation $p(\mathbf{z}_1|\mathbf{s}_1,\mathbf{z}_0)$ as 330 $p(\mathbf{z}_1|\mathbf{s}_1)$ for brevity and clear notation. To understand 331 this graphical model as a hierarchical RL, we consider 332 the hidden layer of transformer as a *latent skill variable* 333 \mathbf{z}_t . To show that the transformer has the property of incontext predictor, we also define the conditional probabil-334 ity $p(\tau | \mathbf{p}_{1:L}, \mathbf{s}_1^{\text{test}})$ where $\mathbf{s}_1^{\text{test}}$ is the initial state at test-time, 335 $\mathbf{p}_{1:L}$ is a prompt demonstration with length L, as 336

$$p(\tau | \mathbf{p}_{1:L}, \mathbf{s}_1^{\text{test}}) = \int_{\theta} p(\tau | \mathbf{p}_{1:L}, \mathbf{s}_1^{\text{test}}, \theta) p(\theta) d\theta, \quad (11)$$

where we define θ as the parameter of high-level policy $\pi_{\theta}^{\text{high}}$. At test time, we generate an output trajectory starting from $\mathbf{s}_{1}^{\text{test}}$ by predicting the first latent skill variable $\mathbf{z}_{1}^{\text{test}}$ with the prompt demonstration $\mathbf{p}_{1:L}$ and θ . We can write the conditional probability $p(\tau | \mathbf{p}_{1:L}, \mathbf{s}_{1}^{\text{test}}, \theta)$ for a given θ as

Figure 2: The probabilistic graphical model of model-based hierarchical RL. Our model is a HMM where O_t is the optimality variable that correspond to $P(U_t = 1, V_t = 1)$.

$$\tau \sim \sum_{\mathbf{z}_{1}^{\text{test}} \in \mathcal{Z}} \left[p(\tau | \mathbf{s}_{1}^{\text{test}}, \mathbf{z}_{1}^{\text{test}}, \theta) p(\mathbf{z}_{1}^{\text{test}} | \mathbf{p}_{1:L}, \mathbf{s}_{1}^{\text{test}}, \theta)) \right]$$
$$= \sum_{\mathbf{z}_{1}^{\text{test}} \in \mathcal{Z}} \prod_{t=1} \underbrace{p(\mathbf{s}_{t+1}^{\text{test}} | \mathbf{s}_{t}^{\text{test}}, \mathbf{a}_{t}^{\text{test}})}_{\text{VAE decoder}} \underbrace{p(\mathbf{a}_{t}^{\text{test}} | \mathbf{s}_{t}^{\text{test}}, \mathbf{z}_{t}^{\text{test}})}_{\pi_{\phi}^{\text{how}}} \underbrace{p_{\theta}(\mathbf{z}_{t}^{\text{test}} | \mathbf{s}_{t}^{\text{test}}, \mathbf{z}_{t-1}^{\text{test}})}_{\pi_{\theta}^{\text{high}}} =: \sum_{\mathbf{z}_{1}^{\text{test}} \in \mathcal{Z}} g_{\pi_{\theta}}(\tau, \mathbf{z}_{1}^{\text{test}}), \quad (12)$$

where we abuse the notation $p_{\theta}(\mathbf{z}_{1}^{\text{test}}|\mathbf{s}_{1}^{\text{test}}, \mathbf{z}_{0}^{\text{test}}) = p_{\theta}(\mathbf{z}_{1}^{\text{test}}|\mathbf{p}_{1:L}, \mathbf{s}_{1}^{\text{test}})$ for clarity. It implies that we have the random skill variable $\mathbf{z}_{1}^{\text{test}}$ which is sampled by the given the highlevel policy parameter θ . We also note that $\mathbf{p}_{1:L}$ is a demonstration state-action sequence, $(\mathbf{s}_{-L+1}, \mathbf{a}_{-L+1}, \mathbf{s}_{-L+2}, \mathbf{a}_{-L+2}, \cdots, \mathbf{s}_{0}, \mathbf{a}_{0})$. Then, the prompt can be viewed as a concatenation in front of the following trajectory in Figure 2.

Our goal is to find the safe policy $\pi_{\theta^*}^{\text{high}}$ analogous to the demonstration prompt $\mathbf{p}_{1:L}$. We note that the pretrained transformer marginalize over the family of high-level policies in the offline RL dataset as in eq. (11). More specifically, the dataset \mathcal{D} is composed of the trajectories from behavior polices, and then it implies that the transformer learns the distribution from the feasible high-level policy parameter space. To retrieve θ^* of the safe high-level policy $\pi_{\theta^*}^{\text{high}}$ corresponding to a given prompt $\mathbf{p}_{1:L}$, we first define the optimality variable \mathcal{O}_t in Figure 2 as $\mathcal{O}_t = \mathbf{1} [(\mathbf{s}_t, \mathbf{a}_t) \in C_t]$ where $C_t = \{(\mathbf{s}_t, \mathbf{a}_t) | (\mathbf{s}_t, \mathbf{a}_t) \sim \sum_{\mathbf{z}_t, \mathbf{z}_{t-1}} \pi_{\phi}^{\text{low}}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{z}_t) \pi_{\theta^*}^{\text{high}}(\mathbf{z}_t | \mathbf{s}_{t-1}, \mathbf{z}_{t-1})\}$, the set of all possible state-action pairs with θ^* . We can describe the inference $p(\mathcal{O}_{\text{traj}} | \mathbf{p}_{1:L}, \mathbf{s}_1^{\text{test}})$ as follows:

366 367

368 369

326 327

337

338 339

340

341

342

343

344

345

$$p(\mathcal{O}_{\text{traj}}|\mathbf{p}_{1:L}, \mathbf{s}_1^{\text{test}}) = \int_{\theta} \sum_{\mathbf{z}_1^{\text{test}} \in \mathcal{Z}} \left(g_{\pi_{\theta}}(\tau, \mathbf{z}_1^{\text{test}}) \prod_{t=1} p(\mathcal{O}_t | \mathbf{s}_t^{\text{test}}, \mathbf{a}_t^{\text{test}}) \right) e^{L \cdot r_L(\theta)} p(\theta) d\theta, \quad (13)$$

where $r_L(\theta) = \frac{1}{L} \log \frac{p(\mathcal{O}_{1:L}, \mathbf{s}_1^{\text{test}} | \theta)}{p(\mathcal{O}_{1:L}, \mathbf{s}_1^{\text{test}} | \theta^*)}$. The prompt $(\mathbf{s}_{L-1}, \mathbf{a}_{L-1}, \cdots, \mathbf{s}_0, \mathbf{a}_0)$ is originally from the high-level policy with θ^* . We have $\mathcal{O}_{1:L} = 1$ when $\theta = \theta^*$ is selected and get $e^{L \cdot r_L(\theta)} \rightarrow 1$. Then, we can retrieve the safe high-level policy parameter of $\pi_{\theta^*}^{\text{high}}$ to the demonstration prompt $\mathbf{p}_{1:L}$ by the above selection property in eq. (13) and regenerate and execute at the test time under θ^* . This differs from the original implicit Bayesian inference (Xie et al., 2021) in two ways: (1) we introduce the low-level policy $\pi_{\phi}^{\text{low}}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{z}_t)$ term that enable the implicit Bayesian inference method to work on the RL domain with action space; and (2) the transformer inherits the *predictive transition model* $p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t)$ to generate an imaginary trajectory coincided with the real environment.

391

392

393

397

398

399

400

401

378

379

380

Figure 3: SAS dodges hazard better. We visualize PointGoal1-v0. Left: The illustrated env. has 8 fixed hazards, one movable obstacle vase, and one goal position. Middle: We visualize $\hat{\rho}_{data}(\mathbf{s})$ at each point by using our transformer. Right: We illustrate two trajectories without self-alignment and our DT+SAS. The landscape visualizes G_{SAS} where the blue color indicates the sub-level of G_{SAS} . We mark Region Of Attraction (ROA) with blue dot lines, which means a forward invariant set where we can guarantee the upper bound of density. Red lines means the invalid region where exceed the 95 percentile of $G_{SAS}(\mathbf{s}_t, \mathbf{a}_t)$, which indicates unsafe region.

402 403 404

405

5.2 INSTRUCTION PROMPT GENERATION FOR SAFETY

406 Offering good exemplar in-context demonstrations (prompt) for alignment usually relies on extensive 407 human supervision. Inspired by Dromedary (Sun et al., 2023) for LLMs, we align our transformer 408 to act more stable and safer by itself without any human instruction or seed prompts. In algorithm 1, our Self-Aligning RL agent behavior to be Safe (SAS) method involves the following procedures. 1) 409 Lyapunov-conditioned instruction generation provides the selection rule for Lyapunov condition 410 to create an exemplar demonstration for reasoning a safer high-level policy $\pi_{\theta}^{\text{high}}$ by imagination of 411 transformer. To generate instruction demonstration for in-context learning, we follow eq. (9) to satisfy 412 Lyapunov condition from line 1 to 14. 2) Internal thoughts is the generated behavior trajectory 413 which already satisfies Lyapunov condition enough in line 7 and 14. We do not need to prepare a few 414 in-context learning demonstration to generate internal thoughts for the final instruction. 3) Guiding 415 the final behavior of RL transformer is the final stage with the internal thoughts for in-context 416 learning demonstrations to align with a safer $\pi_{\theta}^{\text{high}}$ by annotating with initial state in line 15. 417

418 419

6 EXPERIMENTS

We demonstrate the performance of SAS in mujoco (Brockman et al., 2016) and Safety Gymnasium (Ji et al., 2023) to evaluate the three metrics, reward return, cost return, and failure rate. We use D4RL dataset (Fu et al., 2021a) for mujoco and DSRL (Liu et al., 2023a) for safety gymnasium. We use normalization of both reward and cost returns. We denote DT as DT+SAS and CDT as CDT+SAS when we apply SAS. We modify DT (Chen et al., 2021) to predicts next state and next return-to-go as well as action. In all results, we abbreviate the task name as follows: (PointGoal1, PG1), (PointPush1, PP1) and (CarButton2, CB2). The detailed experiment setting is in appendix B.

427

428 Does the proper internal thought make a safer decision? Overall, DT+SAS shows the lower 429 cost and failure rate than DT in most environments in table 1. We note that reward may decrease as a 430 trade-off by Lyapunov condition to reduce the aspect of pursuing high reward in DT. However, in 431 some tasks, such as PG2, it is surprising that the reward of DT+SAS is higher than DT. In tasks, like 431 PB1, all metrics, reward, cost and failure rate increase simultaneously. It implies that DT has trained

Table 1: Ablation study in the Safety Gymnasium. DT+rand involves inserting a random trajectory into the prompt, and DT+maxmax includes the trajectory with the argmax of the maximum value of E as the prompt. **Bold**: the smallest cost among the four models. **Blue**: DT+SAS has a lower failure rate than DT. **Red**: DT+SAS has a higher cost than DT but the reward is also higher.

Environme	nt	PG1	PG2	PP1	PP2	PB1	PB2	CG1	CG2	CP1	CP2	CB1	CB2
	reward	0.660	0.377	0.218	0.202	0.379	0.495	0.638	0.513	0.35	0.204	0.237	0.212
DT	cost	1.319	2.625	0.927	0.782	1.188	1.309	0.976	1.466	0.678	1.174	1.419	1.045
	failure	0.883	1.000	0.667	0.875	0.950	0.983	0.917	0.925	0.667	0.950	0.950	0.950
	reward	0.655	0.650	0.283	0.242	0.485	0.508	0.666	0.483	0.307	0.218	0.174	0.138
DT+SAS(ours)	cost	1.185	1.783	0.622	0.639	1.375	1.205	0.846	1.148	0.513	1.158	1.083	0.836
	failure	0.867	0.983	0.767	0.850	0.950	0.967	0.867	0.850	0.483	0.900	0.975	1.000
	reward	0.665	0.587	0.303	0.240	0.445	0.462	0.672	0.507	0.311	0.230	0.175	0.111
DT+rand	cost	1.258	1.811	0.678	0.758	1.485	0.960	1.002	1.438	0.549	1.341	1.259	0.963
	failure	0.900	1.000	0.767	0.875	1.000	0.950	0.867	0.975	0.617	0.950	0.975	0.925
	reward	0.644	0.521	0.271	0.200	0.486	0.441	0.636	0.512	0.321	0.206	0.131	0.126
DT+maxmax	cost	0.990	2.152	0.640	0.730	1.808	1.273	1.034	1.497	0.574	1.271	1.103	0.911
	failure	0.775	1.000	0.767	0.783	1.000	0.950	0.817	0.933	0.625	0.975	0.967	0.975

Table 2: Full Results in Safety Gymnasium. The values are averaged across three different cost thresholds, 20 evaluation episodes, and three random seeds. Gray: Unsafe agents. **Bold**: Safe agents whose normalized cost is less than 1. **Blue**: Agents which has highest reward among safe agents.

Tack	DT +	DT + SAS		CDT + SAS		CDT		All	BC-S	afe	BCQ-	Lag	BEAR	-Lag	CPQ		COptiDICE		DCRL	
IdSK	reward	cost	reward	cost	reward	cost	reward	cost	reward	cost	reward	cost	reward	cost	reward	cost	reward	cost	reward	cost
PointGoal1	0.66	1.19	0.65	1.27	0.69	1.12	0.65	0.95	0.43	0.54	0.71	0.98	0.74	1.18	0.57	0.35	0.49	1.66	0.24	0.86
PointGoal2	0.65	1.78	0.52	0.94	0.59	1.34	0.54	1.97	0.29	0.78	0.67	3.18	0.67	3.11	0.4	1.31	0.38	1.92	0.28	0.26
PointPush1	0.28	0.62	0.26	0.54	0.24	0.48	0.19	0.61	0.13	0.43	0.33	0.86	0.22	0.79	0.2	0.83	0.13	0.83	0.01	0.52
PointPush2	0.24	0.64	0.20	0.53	0.21	0.65	0.18	0.91	0.11	0.8	0.23	0.99	0.16	0.89	0.11	1.04	0.02	1.18	0.02	0.07
PointButton1	0.49	1.38	0.51	1.27	0.5	1.68	0.1	10.5	0.06	0.52	0.24	1.73	0.2	1.6	0.69	3.2	0.13	1.4	0.01	0.48
PointButton2	0.51	1.14	0.41	0.98	0.46	1.57	0.27	2.02	0.16	1.1	0.4	2.66	0.43	2.47	0.58	4.3	0.15	1.51	0.18	0.64
CarGoal1	0.67	0.85	0.65	0.90	0.66	1.21	0.39	0.33	0.24	0.28	0.47	0.78	0.61	1.13	0.79	1.42	0.35	0.54	0.35	0.88
CarGoal2	0.48	1.15	0.42	0.98	0.48	1.25	0.23	1.05	0.14	0.51	0.3	1.44	0.28	1.01	0.65	3.75	0.25	0.91	0.11	2.51
CarPush1	0.31	0.51	0.31	0.49	0.31	0.4	0.22	0.36	0.14	0.33	0.23	0.43	0.21	0.54	-0.03	0.95	0.23	0.5	-0.1	0.09
CarPush2	0.22	1.16	0.21	0.75	0.19	1.3	0.14	0.9	0.05	0.45	0.15	1.38	0.1	1.2	0.24	4.25	0.09	1.07	-0.13	0.17
CarButton1	0.17	1.08	0.27	0.98	0.21	1.6	0.03	1.38	0.07	0.85	0.04	1.63	0.18	2.72	0.42	9.66	-0.08	1.68	0.12	0.95
CarButton2	0.14	0.84	0.30	1.11	0.13	1.58	-0.13	1.24	-0.01	0.63	0.06	2.13	-0.01	2.29	0.37	12.51	-0.07	1.59	0.09	1.42

insufficiently by evaluating long-horizon $\hat{\rho}$ enough, so SAS can correct long-term behavior that can increase reward, but cost also increase by the absence of enough cost information.

DT+SAS has the lower cost com-pared to random trajectory instruc-tion (DT+rand) in table 1. The cost values of DT+rand are higher than DT in half of total safety-gymnasium tasks. We can confirm that SAS is a valid self-generated instruction for DT. SAS uses E in Condition \mathcal{U}_t to be more stable and selects the trajectory with the minimum value of the max-imum E among steps in a trajectory. For ablation study, we also conduct

Table 3: Performance of the DT and DT+SAS in the MuJoCo environments with D4RL datasets. Only in this table, we compute rewards using the normalized scoring method from the CQL paper (Kumar et al., 2020). **Bold**: Agents with lower failure or higher reward.

Environment		Hc	opper	Wal	ker2d	Humanoid			
		expert	expert medium		medium	expert	medium		
DT	reward	110.7	86.6	107.7	82.2	98.5	40.5		
	failure	0.05	1	0	0.54	0.20	0.97		
DTISAS	reward	110.7	87.5	107.7	89.5	103.5	50.6		
DITSAS	failure	0.03	1	0	0.46	0.10	0.87		

the case of selecting a trajectory with the maximum value of maximum step E among trajectories (maxmax). In table 1, it is evident that, compared to the DT+SAS model, DT+maxmax model exhibits higher cost and failure in the majority of environments. Additionally, the DT+maxmax model demonstrates lower reward values compared to the DT+SAS model, except in 2 tasks. As seen in the results of DT+rand and DT+maxmax, our SAS algorithm-based prompting, which verifies the Lyapunov function, enables the Transformer to make much safer choices during the action selection process. This demonstrates that providing a prompt generated before interacting with the actual environment influences the overall performance throughout the episode, much like selecting an appropriate initial skill in hierarchical RL. In table 3, DT was trained on both medium and expert datasets. In mujoco, cost is not explicitly provided, so we only report reward and failure. As we mentioned above, we evaluate the failure when the agent terminated before max episode length. DT+SAS generally shows higher reward and lower failure compared to DT. In Walker2d, the failure rate of DT for expert dataset is already 0 with 100 episodes, so we cannot observe the improvement of SAS. However, for medium dataset, we observe the better performance in both reward and failure,

498

499

500

501 502

504

505

506

507 508

Figure 4: The undertrained DT graph illustrates the performance with and without SAS to the undertrained DT. Without \mathcal{V}_t represents the results of the ablation study without \mathcal{V}_t in section 5.3. UV corresponds to SAS, and U represents without applying \mathcal{V}_t . The remaining figures are in Appendix C.

which means SAS is also effective in Walker2d. In Humanoid, both in the expert and medium dataset, DT+SAS outperforms DT in all three metrics. APE-V algorithm (Ghosh et al., 2022a) (belief-based adaptation) uses offline ensemble C51 with SAC-N to enhance the performance by adaptive training for downstream task. In walker2d medium APE-V algorithm improved the average return by 2.7%, but we note that DT+SAS outperform DT by improving 8.9% for the average return in Table 3. SAS does not require fine-tuning or retraining, but APE-V shows the worse test-time performance.

509 **Does SAS outperform than offline safe RL methods?** Since SAS is designed for test time adaptation of DT, we can apply both DT and CDT for alignment. In table 2, We can see that SAS 510 method shows safer performance than without SAS, as cost and failure rate decrease in most tasks. 511 Except for PG1, PP1, and PB1 environments, DT+SAS or CDT+SAS achieves the highest rewards 512 among all baselines even with cost less than 1. In particular, in PB2, CDT+SAS stands out as 513 the only safe algorithm demonstrating decent rewards. Compared to baselines, CDT+SAS exhibits 514 superior performance in CB2, while in CB1, DT+SAS performs remarkably better. When we compare 515 CDT+SAS with CDT, it is evident that cost consistently decreases. In addition, in six tasks, cost even 516 decreases falling below 1, which means it lowers the target cost to be safe. SAS ensures that, at test 517 time, the pretrained DT can be aligned better with the distribution of the offline dataset. When DT 518 is worse than the collected expert in offline dataset, SAS boost the performance of reward. We also 519 conduct the case that the Decision Transformer that had not been sufficiently trained (undertrained 520 DT), and the outcomes are detailed in fig. 4. As observed, while the cost and failure rates experienced an increase, the reward also increased. Our method is effective in enhancing the reward of a less 521 trained Decision Transformer at the test time. We utilize the initial prompt derived from \mathcal{U}_t and 522 generate the prompt with \mathcal{V}_t . We conducted tests using the initial prompt obtained from \mathcal{U}_t directly at 523 test time, without incorporating \mathcal{V}_t . We can observe that the cost decreases in all three environments. 524 In the case of failure, the failure decreased in all environments except for the CarGoal1 tasks. 525

Offline RL methods often rely heavily on one-step RL, whereas our SAS approach performs depth-526 first search during the inference process through internal thought. This allows for verification of safe 527 control performance for the entire episode of the selected high-level policy. This advantage explains 528 why our method outperforms traditional safe RL methods. It's also important to note that even in 529 scenarios where cost-based offline safe RL has already been applied to CDT, prompting can further 530 improve the overall performance throughout the episode which can be seen in table 2. 531

532

7 CONCLUSION

533 534

Deploying downstream controller with offline RL is an important key to achieving real-world deep 536 RL practical. Unlike the other machine learning domains, such as NLP, it is hard to collect high quality real-world dataset for pretraining. To solve this problem, we propose self-alignment method for transformer based RL to align an offline RL agent to be stable for safety and better performance. 538 It is hoped that the proposed method may trigger new insights on further improvements in safe exploration and stable downstream task deployment in RL.

540 REFERENCES

- Amanda Askell, Yuntao Bai, Anna Chen, Dawn Drain, Deep Ganguli, Tom Henighan, Andy Jones,
 Nicholas Joseph, Ben Mann, Nova DasSarma, et al. A general language assistant as a laboratory
 for alignment. *arXiv preprint arXiv:2112.00861*, 2021.
- Somil Bansal and Claire J Tomlin. Deepreach: A deep learning approach to high-dimensional reachability. In 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 1817–1824. IEEE, 2021.
- Homanga Bharadhwaj, Aviral Kumar, Nicholas Rhinehart, Sergey Levine, Florian Shkurti, and
 Animesh Garg. Conservative safety critics for exploration. In *International Conference on Learning Representations*, 2020.
- Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
 Wojciech Zaremba. Openai gym, 2016.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- Ya-Chien Chang, Nima Roohi, and Sicun Gao. Neural lyapunov control. Advances in neural information processing systems, 32, 2019.
- Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
 Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
 modeling. Advances in neural information processing systems, 34:15084–15097, 2021.
- Yinlam Chow, Ofir Nachum, Edgar Duenez-Guzman, and Mohammad Ghavamzadeh. A lyapunov based approach to safe reinforcement learning. *Advances in neural information processing systems*, 31, 2018.
- Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming transformers for high-resolution image
 synthesis. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*,
 pp. 12873–12883, 2021.
- Benjamin Eysenbach, Alexander Khazatsky, Sergey Levine, and Russ R Salakhutdinov. Mismatched no more: Joint model-policy optimization for model-based rl. *Advances in Neural Information Processing Systems*, 35:23230–23243, 2022.
- Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
 data-driven reinforcement learning, 2021a.
- Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4{rl}: Datasets for deep data-driven reinforcement learning, 2021b. URL https://openreview.net/forum?id= px0-N3_KjA.
- Milan Ganai, Zheng Gong, Chenning Yu, Sylvia Lee Herbert, and Sicun Gao. Iterative reachability
 estimation for safe reinforcement learning. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine. Why generalization in RL is difficult: Epistemic POMDPs and implicit partial observability. In A. Beygelz-imer, Y. Dauphin, P. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL https://openreview.net/forum?id=QWIvzSQaX5.
- Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline rl policies should be trained to be adaptive, 2022a.
- Dibya Ghosh, Anurag Ajay, Pulkit Agrawal, and Sergey Levine. Offline RL policies should be trained
 to be adaptive. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu,
 and Sivan Sabato (eds.), *Proceedings of the 39th International Conference on Machine Learning*,
 volume 162 of *Proceedings of Machine Learning Research*, pp. 7513–7530. PMLR, 17–23 Jul
 2022b. URL https://proceedings.mlr.press/v162/ghosh22a.html.

594 595 596	Caglar Gulcehre, Ziyu Wang, Alexander Novikov, Thomas Paine, Sergio Gómez, Konrad Zolna, Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz, Cosmin Paduraru, et al. Rl unplugged: A suite of benchmarks for offline reinforcement learning. Advances in Neural Information Processing
597	Systems, 33:7248–7259, 2020.
598	
599	Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
600	maximum entropy deep reinforcement learning with a stochastic actor. In International conference
601	on machine learning, pp. 1801–1870. PMILK, 2018.
602	Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. When to trust your model: Model-based
603	policy optimization. Advances in neural information processing systems, 32, 2019.
604	Michael Janner Oiyang Li, and Sergey Levine, Offline rainforcement learning as one big sequence.
605 606	modeling problem. In Advances in Neural Information Processing Systems, 2021.
607 608 609	Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng, Yifan Zhong, Juntao Dai, and Yaodong Yang. Safety-gymnasium: A unified safe reinforcement learning benchmark, 2023.
610	Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yonggiang Dou, Yaniun Chen, Li Fei-Fei,
611 612	Anima Anandkumar, Yuke Zhu, and Linxi Fan. Vima: Robot manipulation with multimodal prompts. In <i>International Conference on Machine Learning</i> , pp. 14975–15022. PMLR, 2023a.
613	
614	Yunfan Jiang, Agrim Gupta, Zichen Zhang, Guanzhi Wang, Yongqiang Dou, Yanjun Chen, Li Fei-Fei,
616	prompts In Andreas Krause Emma Brunskill Kyunghyun Cho, Barbara Engelhardt Siyan
617	Sabato and Ionathan Scarlett (eds.) <i>Proceedings of the 40th International Conference on Machine</i>
619	Learning, volume 202 of Proceedings of Machine Learning Research, pp. 14975–15022. PMLR,
610	23-29 Jul 2023b. URL https://proceedings.mlr.press/v202/jiang23b.html.
620	the first start in ChatCDT and the data to
621 622	chatgpt, 2022.
623	Katie Kang, Paula Gradu, Jason J Choi, Michael Janner, Claire Tomlin, and Sergey Levine. Lya-
624 625	punov density models: Constraining distribution shift in learning-based control. In <i>International Conference on Machine Learning</i> , pp. 10708–10733. PMLR, 2022.
626	
627 628	Donyeong Kim, Kyungjae Lee, and Songhwai On. Trust region-based safe distributional reinforce- ment learning for multiple constraints. In <i>Thirty-seventh Conference on Neural Information</i>
620	Processing Systems, 2025.
630 631	Diederik P Kingma and Max Welling. Auto-encoding variational bayes. <i>arXiv preprint arXiv:1312.6114</i> , 2013.
620	
633	lakeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
634	22199–22213 2022
635	221))-22213, 2022.
636	Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative q-learning for offline
637	reinforcement learning. Advances in Neural Information Processing Systems, 33:1179–1191, 2020.
638	Dobyeok Lee Seungyub Han Taebyun Cho, and Jungwoo Lee SPOR: Controlling geneemble inde-
639	pendence with spiked random model for reinforcement learning. In <i>Thirty-seventh Conference on</i>
640	Neural Information Processing Systems, 2023. URL https://openreview.net/forum?
641	id=q0sdoFIfNg.
642	Jongmin Las Cosmin Dedurant, Deniel I. Mankowitz, Nicolas Hessa, Deine Dresur, Ver Fur-Vier
643	Jongmin Lee, Cosmin Paduraru, Damei J. Mankowitz, Nicolas Heess, Doina Precup, Kee-Eung Kim, and Arthur Guez. Contidice: Offline constrained rainforcement learning via stationery distribution
644	correction estimation 2022
645	Concertain Commutany, 2022.
646	Zuxin Liu, Zijian Guo, Haohong Lin, Yihang Yao, Jiacheng Zhu, Zhepeng Cen, Hanjiang Hu,
647	Wenhao Yu, Tingnan Zhang, Jie Tan, and Ding Zhao. Datasets and benchmarks for offline safe reinforcement learning, 2023a.

- 648 Zuxin Liu, Zijian Guo, Yihang Yao, Zhepeng Cen, Wenhao Yu, Tingnan Zhang, and Ding Zhao. 649 Constrained decision transformer for offline safe reinforcement learning, 2023b. 650
- Vincent Micheli, Eloi Alonso, and Francois Fleuret. Transformers are sample-efficient world models. 651 In The Eleventh International Conference on Learning Representations, 2023. 652
- 653 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong 654 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow 655 instructions with human feedback. Advances in Neural Information Processing Systems, 35: 656 27730-27744, 2022.
 - Zengyi Qin, Yuxiao Chen, and Chuchu Fan. Density constrained reinforcement learning. In International Conference on Machine Learning, pp. 8682–8692. PMLR, 2021.
- Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language 661 understanding by generative pre-training. 2018.
- Paria Rashidinejad, Banghua Zhu, Cong Ma, Jiantao Jiao, and Stuart Russell. Bridging offline rein-663 forcement learning and imitation learning: A tale of pessimism. Advances in Neural Information 664 Processing Systems, 34:11702–11716, 2021. 665
- 666 Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. Transformer-based world models are happy with 100k interactions. In The Eleventh International Conference on Learning Representations, 2023. 668
- 669 Zhiqing Sun, Yikang Shen, Qinhong Zhou, Hongxin Zhang, Zhenfang Chen, David Daniel Cox, 670 Yiming Yang, and Chuang Gan. Principle-driven self-alignment of language models from scratch 671 with minimal human supervision. In Thirty-seventh Conference on Neural Information Processing 672 Systems, 2023. URL https://openreview.net/forum?id=p40XRfBX96. 673
- Russ Tedrake. Underactuated robotics: Learning, planning, and control for efficient and agile 674 machines course notes for mit 6.832. Working draft edition, 3(4):2, 2009. 675

676 Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and 677 Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions. In 678 Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual 679 Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2023, Toronto, Canada, July 9-14, 2023, pp. 13484–13508. Association for Computational Linguistics, 680 2023. doi: 10.18653/V1/2023.ACL-LONG.754. URL https://doi.org/10.18653/v1/ 681 2023.acl-long.754. 682

- 683 Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context 684 learning as implicit bayesian inference. In International Conference on Learning Representations, 685 2021. 686
 - Haoran Xu, Xianyuan Zhan, and Xiangyu Zhu. Constraints penalized q-learning for safe offline reinforcement learning, 2022a.
- 689 Mengdi Xu, Yikang Shen, Shun Zhang, Yuchen Lu, Ding Zhao, Joshua Tenenbaum, and Chuang Gan. 690 Prompting decision transformer for few-shot policy generalization. In international conference on machine learning, pp. 24631–24645. PMLR, 2022b.

692 693

691

687

688

657

658

659

662

667

- 696
- 697
- 699
- 700

A MODEL ARCHITECTURE

702

703 704 705

706

708

709 710

711

712

713

714

715

716 717

721 722

723 724

725

 (\hat{R}_t)

EXPERIMENT SETTING AND HYPERPARAMETERS

VAE

 $p(s_{t+1}|s_t, a_t)$

Linear

 $N \times$

Add & Norm

Feed Forward

 $\pi_{\theta}(z_t|s_t,z_{t-1})$

Add & Norm

Masked

Multi-Head

Add & Norm

Masked Multi-Head

Attention

Inputs & Position Embedding

 s_t

 a_t

Attentior

 Z_1

policy

 $\pi_{\phi}(a_t|s_t, z_t)$

Linear ϕ

θ

 s_t

s_t

s_t

731

732

733

В

734 735

736

B.1 EXPERIMENT SETTING

737 We conduct Hopper, Walker2d, and Humanoid in OpenAI Gym, where the agent fails and terminates 738 when the sum of unhealthy rewards get larger. For Safety Gymnasium, we use two different robots 739 (Point, Car) in 3 tasks (Goal, Push, Button) with two difficulties (1, 2) respectively. In 740 Goal and Button tasks, an agent navigate to the goal while avoiding touching hazards, and an 741 agent push a box to the goal in Push task. We denote normalized reward and cost returns as reward 742 and cost for simplicity, and use failure in Tables for failure rate. If an agent experiences any cost due 743 to encountering a hazard within an episode or exceeding unhealthy cost for mujoco (terminated), 744 we considered that episode as a failure episode. The baselines we used are CDT (Liu et al., 2023b), 745 Imitation Learning (BC-Safe, BC-All(Liu et al., 2023b; Xu et al., 2022a)), Distribution Correction Estimation (COptiDICE(Lee et al., 2022)), and Q-learning (CPQ, BCQ-Lag, BEAR-Lag(Xu et al., 746 2022a)). 747

748

749 B.2 NORMALIZED SCORE 750

We applied normalization to both reward return and cost return to make it easier to compare for all environments. Let $r_{max}(\mathcal{M})$ and $r_{min}(\mathcal{M})$ denote the maximum reward return and minimum reward return in the dataset \mathcal{T} , respectively. Then, the normalized reward return is computed as:

$$R_{normalized} = \frac{R_{\pi} - r_{min}(\mathcal{M})}{r_{max}(\mathcal{M}) - r_{min}(\mathcal{M})}$$

where \mathcal{R}_{π} denotes the evaluated reward return obtained by the agent. Normalized cost return is defined as the ratio between the cost return obtained by the agent and the target cost κ :

$$C_{normalized} = \frac{C_{\pi} + \epsilon}{\kappa + \epsilon}$$

where ϵ is a small positive number for numerical stability. The values are averaged across three different cost thresholds, 20 evaluation episodes, and three random seeds.

B.3 DATASET DETAILS

We conducted experiments using the OpenAI Gym's medium and expert datasets from https: //github.com/Farama-Foundation/D4RL and the Safety Gymnasium's expert dataset from https://github.com/liuzuxin/OSRL/tree/main. Detailed information about the dataset is presented in Table 4. The Max Cost means the maximum cost return in dataset trajectories.

770 771 772

784

785 786

787

759

760

761

762

764 765

766

767

768

769

10	Benchmark	Task	Max Timestep	Action Space	State Space	Max Cost	Trajectories
74		SafetyPointGoal1-v0			60	100	2022
75		SafetyPointGoal2-v0			60	200	3442
70		SafetyPointPush1-v0			76	150	2379
/0		SafetyPointPush2-v0			76	200	3242
77		SafetyPointButton1-v0			76	200	2268
78	Sofaty Gumpacium	SafetyPointButton2-v0	1000	2	76	250	3288
	Safety Gymnasium	SafetyCarGoal1-v0		2	72	200	1671
79		SafetyCarGoal2-v0			72	250	4105
80		SafetyCarPush1-v0			88	250	2871
01		SafetyCarPush2-v0			88	400	4407
01		SafetyCarButton1-v0			88	250	2656
82		SafetyCarButton2-v0			88	300	3755
83							

Table 4: Dataset details

B.4 Hyperparameters for the Experiments

During the training of Decision Transformer, we applied warmup for the first 10000 steps, and we used the ReLU activation function. Further details about the hyperparameters can be found in table 5.

Table 5:	Hvper	parameters	for the	experiments

Common Parameters	Safety-Gymnasium	Parameters	CDT	DT
Action hidden size	[256, 256] for all methods except CDT, DT	Number of layers	3	3
VAE hidden size	[400, 400] BCQ-Lag, BEAR-Lag, CPQ	Number of attention heads	8	1
Cost thresholds	[20, 40, 80]	Embedding dimension	128	128
Gradient steps	100000	Batch size	2048	64
$[K_{\mathcal{P}}, K_{\mathcal{I}}, K_{\mathcal{D}}]$	[0.1, 0.003, 0.001] BCQ-Lag, BEAR-Lag	Context length K	300	20
Batch size	512	Learning rate	0.0001	0.0001
Actor learning rate	0.0001	Dropout	0.1	0.1
Critic learning rate	0.001	Adam betas	(0.9, 0.999)	(0.9, 0.999)

798 799

796 797

800

С

801 802 803

C.1 NUMBER OF TRAJECTORIES SAMPLED FOR IMAGINATION

ABLATION STUDIES

We employ Decision Transformer to imagine multiple trajectories under both condition U_t and condition V_t . In our case, we sampled 5 trajectories for each condition U_t and V_t . As part of an ablation study, we compared the results of sampling 100 trajectories in experiment with our experimental results. As we can see in fig. 6, the experiment revealed that there was not a significant difference in the model's performance due to the difference in the number of sampled trajectories. In PointGoal1 environment, an increase in cost was observed when the number of sampled trajectories was 100.

numbers of prompt PointGoal1 PointPush2 CarGoal1 1.5 normalized score 1.0 0.5 0.0 5 3 5 З 1 3 1 1 5

Figure 6: Ablation studies on number of trajectories sampled for imagination. Red bar, blue bar, green bar is reward, cost, failure score respectively

C.2 TIME STEP LENGTH TO CALCULATE E

We calculated and approximated E from trajectories imagined by Decision Transformer under both conditions U and V. We conducted experiments with a default time step length of 3 for computing E. As part of an ablation study, we also experimented with time step lengths of 1 and 10, comparing the results with our findings, which are presented in fig. 4. In the results for the CarGoal1 environment, the cost is lowest when the time step length is 10, while in the PointGoal1 environment, it is actually highest. This indicates that increasing the time step length for calculating E does not noticeably improve the model's performance.

838 C.3 TIME STEP LENGTH OF TRAJECTORY IN PROMPT 839

We extracted the trajectory from a specific time t to 5 time steps before that from trajectories generated through Condition U_t and V_t . We then fed this truncated trajectory into the prompt of Decision Transformer at the test time. As part of an ablation study, we experimented with the time step length of Decision Transformer's prompt, setting it to 3 and 10, and the results are presented in fig. 4. For each time step length of the prompt (3, 5, 10), there are instances where the cost in the experimental results is the highest, as well as instances where it is the lowest. Hence, it can be concluded that the time step length of the prompt does not significantly impact the model's performance.

- 847 848 C.4 NUMBER OF PROMPTS
- We proceeded by using a single trajectory fragment generated by our algorithm as the prompt for Decision Transformer. As part of an ablation study, we compared the performance of our approach with the method of concatenating three or five trajectory fragments obtained by running our algorithm three or five times, respectively, and using them as a prompt. The experimental results in fig. 4 show that the method of using five trajectory fragments as a prompt resulted in higher costs. While there is some difference in the PointPush2 environment when the number of fragments is 1 or 3, overall, the performance fluctuates without a clear trend.
- 856 857

858

810

811 812

813

814 815

816

817 818 819

820 821

822

823 824 825

826 827 828

829

837

C.5 MODEL SIZE OF DECISION TRANSFORMER

We conducted experiments to observe how the effectiveness of SAS varies with the model size of the Decision Transformer. Starting from the smallest size, the default Decision Transformer, we experimented with sizes ranging from gpt-mini to larger sizes like gpt2, and the results are depicted in fig. 4. When examining the PointGoal1 environment, it seems that as the model size increases, the cost also tends to increase. However, looking at the PointPush2 environment, the opposite trend is observed, where the model with the smallest size has the highest cost, suggesting that there may not

be a significant correlation. However, concerning failures, except for the gpt-mini size in PointGoal1, it can be observed that as the model size increases, failures generally decrease.

D **COMPLETE EXPERIMENT RESULTS**

D.1 **RESULTS FOR ALL THE DATASETS**

We present the results for a total of 16 datasets in table 6. These results include an additional experiment on four Circle tasks (PointCircle1, PointCircle2, CarCircle1, CarCircle2) and eight tasks in bullet-safety-gym environment(BallRun, CarRun, DroneRun, AntRun, BallCircle, CarCircle, DroneCircle, AntCircle). In PC2, CC1, and CC2 environments, CDT+SAS exhibited the highest reward among safe agents. CDT+SAS demonstrates lower costs than CDT in all four environments.

Table 6: Complete evaluation results of the baselines and the Decision Transformer with our method (DT+SAS) and Constrained Decision Transformer with our method (CDT+SAS) in the Safety Gymnasium environment. The values are averaged across three different cost thresholds, 20 evaluation episodes, and three random seeds. Gray: Unsafe agents. Bold: Safe agents whose normalized cost is less than 1. Blue: Agents which has highest reward among safe agents

004		DT + ours		CDT +	ours	CD	Т	BC-	All	BC-S	afe	BCQ-	Lag	BEAR	-Lag	CP	Q	COptiI	DICE
885	Task	reward	cost	reward	cost	reward	cost	reward	cost	reward	cost	reward	cost	reward	cost	reward	cost	reward	cost
886	PointGoal1	0.66	1.19	0.65	1.27	0.69	1.12	0.65	0.95	0.43	0.54	0.71	0.98	0.74	1.18	0.57	0.35	0.49	1.66
000	PointGoal2	0.65	1.78	0.52	0.94	0.59	1.34	0.54	1.97	0.29	0.78	0.67	3.18	0.67	3.11	0.4	1.31	0.38	1.92
887	PointPush1	0.28	0.62	0.26	0.54	0.24	0.48	0.19	0.61	0.13	0.43	0.33	0.86	0.22	0.79	0.2	0.83	0.13	0.83
888	PointPush2	0.24	0.64	0.20	0.53	0.21	0.65	0.18	0.91	0.11	0.8	0.23	0.99	0.16	0.89	0.11	1.04	0.02	1.18
000	PointButton1	0.49	1.38	0.51	1.27	0.5	1.68	0.1	10.5	0.06	0.52	0.24	1.73	0.2	1.6	0.69	3.2	0.13	1.4
889	PointButton2	0.51	1.14	0.41	0.98	0.46	1.57	0.27	2.02	0.16	1.1	0.4	2.00	0.43	2.47	0.58	4.3	0.15	1.51
890	PointCircle?	0.09	1.61	0.54	0.21	0.59	1.05	0.79	3.98 4.17	0.41	0.10	0.54	2.38	0.75	5.28 4.27	0.45	3.58	0.85	3.31 8.61
	CarGoall	0.42	0.85	0.65	0.90	0.66	1.05	0.00	0.33	0.40	0.28	0.00	0.78	0.61	1.13	0.24	1.42	0.35	0.54
891	CarGoal2	0.48	1.15	0.42	0.98	0.48	1.25	0.23	1.05	0.14	0.51	0.3	1.44	0.28	1.01	0.65	3.75	0.25	0.91
892	CarPush1	0.31	0.51	0.31	0.49	0.31	0.4	0.22	0.36	0.14	0.33	0.23	0.43	0.21	0.54	-0.03	0.95	0.23	0.5
000	CarPush2	0.22	1.16	0.21	0.75	0.19	1.3	0.14	0.9	0.05	0.45	0.15	1.38	0.1	1.2	0.24	4.25	0.09	1.07
893	CarButton1	0.17	1.08	0.27	0.98	0.21	1.6	0.03	1.38	0.07	0.85	0.04	1.63	0.18	2.72	0.42	9.66	-0.08	1.68
894	CarButton2	0.14	0.84	0.30	1.11	0.13	1.58	-0.13	1.24	-0.01	0.63	0.06	2.13	-0.01	2.29	0.37	12.51	-0.07	1.59
005	CarCircle1	0.41	1.84	0.47	0.52	0.6	1.73	0.72	4.39	0.37	1.38	0.73	5.25	0.76	5.46	0.02	2.29	0.7	5.72
895	CarCircle2	0.63	1.69	0.56	0.62	0.66	2.53	0.76	6.44	0.54	3.38	0.72	6.58	0.74	6.82	0.44	2.69	0.77	7.99
896	BallRun	0.99	1.6	0.04	0.29	0.39	1.16	0.6	5.08	0.27	1.46	0.76	3.91	-0.47	5.03	0.22	1.27	0.59	3.52
007	CarRun	8.12	1.06	0.72	0.39	0.99	0.65	0.97	0.33	0.94	0.22	0.94	0.15	0.68	7.78	0.95	1.79	0.87	0
897	DroneRun	0.76	1.58	0.33	0.78	0.63	0.79	0.24	2.13	0.28	0.74	0.72	5.54	0.42	2.47	0.33	3.52	0.67	4.15
898	AntRun	1.08	2.43	0.32	0.14	0.72	0.91	0.72	2.93	0.65	1.09	0.76	5.11	0.15	0.73	0.03	0.02	0.61	0.94
200	CarCircle	0.81	1.41	0.32	0.38	0.77	1.07	0.74	4.71	0.52	0.05	0.69	2.30	0.86	3.09	0.64	0.70	0.7	2.01
033	DroneCircle	0.83	1.70	0.19	0.22	0.75	0.95	0.38	3.03	0.5	0.64	0.05	3.07	0.74	2.10	0.22	1.28	0.49	1.02
900	AntCircle	0.59	1.55	0.26	0.34	0.54	1 78	0.58	4.9	0.30	0.96	0.58	2.87	0.78	5.08	0.22	0	0.17	5.04
001												0.00	2.07		2.10	5	5		2.01

Table 7: The modified version of Tab	le 2 with standard	deviation across :	3 cost thresholds, 20
evaluation episodes, and 3 random seed	5.		

006	06 - Cranadon episodes, and 5 random seeds.																
900			С	DT			CDT	+ours			D	Т			DT+	ours	
907	Task	rew	reward		cost		ard	co	ost	rew	ard	co	st	rew	ard	co	st
908		mean	std	mean	std	mean	std	mean	std	mean	std	mean	std	mean	std	mean	std
000	PointGoal1	0.69	0.007	1.12	0.037	0.65	0.007	1.27	0.062	0.66	0.02	1.32	0.31	0.66	0.03	1.19	0.15
909	PointGoal2	0.59	0.017	1.34	0.054	0.52	0.036	0.94	0.158	0.38	0.02	2.63	0.05	0.65	0.09	1.78	0.17
910	PointPush1	0.24	0.012	0.48	0.023	0.26	0.027	0.54	0.019	0.22	0.06	0.93	0.21	0.28	0.01	0.62	0.10
911	PointPush2	0.21	1.363	0.65	31.063	0.20	0.038	0.53	0.089	0.20	0.08	0.78	0.45	0.24	0.06	0.64	0.09
0.1.0	PointButton1	0.5	0.006	1.68	0.049	0.51	0.026	1.27	0.044	0.38	0.04	1.19	0.18	0.49	0.05	1.38	0.21
912	PointButton2	0.46	0.019	1.57	0.047	0.41	0.019	0.98	0.026	0.50	0.06	1.31	0.14	0.51	0.00	1.14	0.13
913	CarGoal1	0.66	0.008	1.21	0.057	0.65	0.008	0.90	0.035	0.64	0.02	0.98	0.12	0.67	0.03	0.85	0.16
01/	CarGoal2	0.48	0.032	1.25	0.095	0.42	0.032	0.98	0.047	0.51	0.04	1.47	0.32	0.48	0.03	1.15	0.20
514	CarPush1	0.31	0.018	0.4	0.068	0.31	0.018	0.49	0.097	0.35	0.07	0.68	0.22	0.31	0.01	0.51	0.15
915	CarPush2	0.19	0.022	1.3	0.081	0.21	0.023	0.75	0.120	0.20	0.03	1.17	0.26	0.22	0.01	1.16	0.26
916	CarButton1	0.21	0.014	1.6	0.106	0.27	0.081	0.98	0.006	0.24	0.04	1.42	0.04	0.17	0.03	1.08	0.17
917	CarButton2	0.13	0.031	1.58	0.034	0.30	0.009	1.11	0.025	0.21	0.04	1.05	0.21	0.14	0.03	0.84	0.08

918 D.2 Additional comparison with SOTA offline RL methods and offline meta-RL 919

920 We note that our DT+SAS which uses the pretrained DT without cost training data outperforms the 921 above SOTA offline safe RL methods. Moreover, we provide the comparison with CQL, SAC-n, and APE-V which is the online (few-shot) adaptation method for the offline RL algorithm in the 922 table below. We note that our method shows the better improvement compared to the reported value 923 of SAC-n \rightarrow APE-V in APE-V paper. However, the target task of offline meta-RL focuses on the 924 adaptation performance when the goal of the target task changes significantly, which differs critically 925 from measuring the generalization performance that is the aim of our paper, making it challenging to 926 conduct additional experiments. 927

Table 8: Experiment results with CQL algorithm (Kumar et al., 2020) and APE-V algorithm (Ghosh et al., 2022a) in D4RL (Fu et al., 2021b) datasets.

Took Nome	CQL	CQL DT		DT+	ours		SAC-N	APE-V	
Task Name	reward	reward	failure	reward	failure	improve(%)	reward	reward	improve(%)
hopper-medium-expert	96.9	111.8	0.1	110.4	0.05	-1.25	110	105.7	-3.91
hopper-medium-replay	86.3	94.3	0	97.3	0	3.18	101.8	98.5	-3.24
walker2d-medium-expert	109.1	108.3	0	107.5	0	-0.74	116	110	-5.17
walker2d-medium-replay	76.8	43.9	1	69.1	0.6	57.4	78.7	82.9	5.34

E Proof

928 929

930

939 940

941

942

943 944

945

946

954

955 956

961

969 970

971

We first provide technical results in the main paper. We consider MDP as a graphical model, then we can augment the graphical model with an optimality variable \mathcal{O}_t , which denotes $\mathbf{1} [(\mathbf{s}_t, \mathbf{a}_t) \in C_t]$ where $C_t = \{(\mathbf{s}_t, \mathbf{a}_t) | (\mathbf{s}_t, \mathbf{a}_t) \sim \sum_{\mathbf{z}_t, \mathbf{z}_{t-1}} \pi_{\phi}^{\text{low}}(\mathbf{a}_t | \mathbf{s}_t, \mathbf{z}_t) \pi_{\theta^*}^{\text{high}}(\mathbf{z}_t | \mathbf{s}_{t-1}, \mathbf{z}_{t-1})\}$, the set of all possible state-action pairs with θ^* . In MDP, we can get high rewarded states in some transitions and hope to allocate high weight for high-rewarded trajectories and low weight for suboptimal trajectories. To denote this high rewarded time-step, we use the above optimality variable \mathcal{O}_t .

By defining the condition probability of prompt $p_{1:L}$ given high-level policy $\pi_{\theta}^{\text{high}}$, we leverage $r_L(\theta)$ to make sure that the well-designed prompt is selected when it is from underlying the safe high-level policy $\pi_{\theta^*}^{\text{high}}$. In details, the length variable L can be composed of two conditions, the length of prompt and the number of prompt. We conduct the ablation study for this condition in fig. 4. We note that we can have high probability of $p(\mathcal{O}_t = 1 | \mathbf{z}_t) = \exp(r(\pi_{\theta}^{\text{high}}))$ when we provide the most matching prompt \mathbf{p}^* with the underlying $\pi_{\theta^*}^{\text{high}}$.

E.1 PROOF OF EQ. (13)

To show the derivation, we start from Equation 1,

$$p(\tau | \mathbf{p}_{1:L}, \mathbf{s}_1^{\text{test}}) = \int_{\theta} p(\tau | \mathbf{p}_{1:L}, \mathbf{s}_1^{\text{test}}, \theta) p(\theta) d\theta.$$

To check the optimality between the generated trajectory and the prompt, we prove the following equation.

$$p(\mathcal{O}_{\text{traj}}|\mathbf{p}_{1:L}, \mathbf{s}_1^{\text{test}}) = \int_{\theta} \sum_{\mathbf{z}_1^{\text{test}} \in \mathcal{Z}} \left(g_{\pi_{\theta}}(\tau, \mathbf{z}_1^{\text{test}}) \prod_{t=1} p(\mathcal{O}_t | \mathbf{s}_t^{\text{test}}, \mathbf{a}_t^{\text{test}}) \right) e^{L \cdot r_L(\theta)} p(\theta) d\theta,$$

where

$$\sum_{\mathbf{z}_{1}^{\text{test}} \in \mathcal{Z}} \prod_{t=1} p(\mathbf{s}_{t+1}^{\text{test}} | \mathbf{s}_{t}^{\text{test}}, \mathbf{a}_{t}^{\text{test}}) \underbrace{p(\mathbf{a}_{t}^{\text{test}} | \mathbf{s}_{t}^{\text{test}}, \mathbf{z}_{t}^{\text{test}})}_{\pi_{\phi}^{\text{low}}} \underbrace{p_{\theta}(\mathbf{z}_{t}^{\text{test}} | \mathbf{s}_{t}^{\text{test}}, \mathbf{z}_{t-1}^{\text{test}})}_{\pi_{\theta}^{\text{high}}} =: \sum_{\mathbf{z}_{1}^{\text{test}} \in \mathcal{Z}} g_{\pi_{\theta}}(\tau, \mathbf{z}_{1}^{\text{test}})$$

By the Bayes' rule and the law of total probability, we have ſ

$$\begin{split} p(\mathcal{O}_{\text{traj}}|\mathbf{p}_{1:L}, \mathbf{s}_{1}^{\text{test}}) &= \int_{\theta} p(\tau|\mathbf{p}_{1:L}, \mathbf{s}_{1}^{\text{test}}, \theta) p(\theta|\mathbf{p}_{1:L}, \mathbf{s}_{t}^{\text{test}}) d\theta \\ &\propto \int_{\theta} p(\tau|\mathbf{p}_{1:L}, \mathbf{s}_{1}^{\text{test}}, \theta) p(\mathbf{p}_{1:L}, \mathbf{s}_{t}^{\text{test}}|\theta) p(\theta) d\theta \\ &= \int_{\theta} \sum_{\mathbf{z}_{1}^{\text{test}} \in \mathcal{Z}} \left(g_{\pi_{\theta}}(\tau, \mathbf{z}_{1}^{\text{test}}) \prod_{t=1} p(\mathcal{O}_{t}|\mathbf{s}_{t}^{\text{test}}, \mathbf{a}_{t}^{\text{test}}) \right) \frac{p(\mathbf{p}_{1:L}, \mathbf{s}_{t}^{\text{test}}|\theta)}{p(\mathbf{p}_{1:L}, \mathbf{s}_{t}^{\text{test}}|\theta)} p(\theta) d\theta \\ &= \int_{\theta} \sum_{\mathbf{z}_{1}^{\text{test}} \in \mathcal{Z}} \left(g_{\pi_{\theta}}(\tau, \mathbf{z}_{1}^{\text{test}}) \prod_{t=1} p(\mathcal{O}_{t}|\mathbf{s}_{t}^{\text{test}}, \mathbf{a}_{t}^{\text{test}}) \right) \frac{p(\mathcal{O}_{1:L}, \mathbf{s}_{t}^{\text{test}}|\theta)}{p(\mathcal{O}_{1:L}, \mathbf{s}_{t}^{\text{test}}|\theta)} p(\theta) d\theta \\ &= \int_{\theta} \sum_{\mathbf{z}_{1}^{\text{test}} \in \mathcal{Z}} \left(g_{\pi_{\theta}}(\tau, \mathbf{z}_{1}^{\text{test}}) \prod_{t=1} p(\mathcal{O}_{t}|\mathbf{s}_{t}^{\text{test}}, \mathbf{a}_{t}^{\text{test}}) \right) \exp\left(L \cdot r_{L}(\theta)\right) p(\theta) d\theta. \end{split}$$

By the definition of $r_L(\theta)$, we can show that under distinguishability for all $\pi_{\theta}^{\text{high}} \neq \pi_{\theta^*}^{\text{high}}$, then $r_L(\theta)$ converges to a negative constant, and by letting $L \to \infty$ we have $\exp(r_L(\pi_{\theta}^{\text{high}})) = 0$ for all $\pi_{\theta}^{\text{high}} \neq \pi_{\theta^*}^{\text{high}}$ and $\exp(r(\pi_{\theta}^{\text{high}})) = 1$ for $\pi_{\theta^*}^{\text{high}} = \pi_{\theta^*}^{\text{high}}$. The more detailed derivation of distinguishability is described in (Via et al. 2021). In addition bility is described in (Xie et al., 2021). In addition, we can note that the probability graphical model has the term $p(\mathbf{z}_t | \mathbf{s}_t, \mathbf{z}_{t-1})$, which samples the latent skill variable when \mathbf{s}_t is given. By the definition of high-level policy, we now can call the transformer with latent variables is intrinsically hierarchical RL with high-level policy $\pi_{\theta}^{\text{high}} = p(\mathbf{z}_t | \mathbf{s}_t, \mathbf{z}_{t-1}).$

As we can explain our transformer as implicit Bayesian inference of in-context learning (Xie et al., 2021), we now have that the safe high-level policy when we successfully sample a trajectory instruc-tion in algorithm 1 to satisfy Lyapunov conditions perfectly in every time step. Then, the in-context learner RL model can also predict action at the given test-time initial state with Lyapunov stable policy.

E.2 PROOF OF THEOREM 4.1

Since \mathcal{U}_t and \mathcal{V}_t are both optimality variable to indicate their Lyapunov condition, we apply the probability inferecne for RL as follows:

$$\log p(\mathcal{U}_{1:T}, \mathcal{V}_{1:T} | \tau) = \log \left(p(\mathbf{s}_1) \prod_{t=1} p(\mathcal{U}_t, \mathcal{V}_t | \mathbf{s}_t, \mathbf{a}_t) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) p(\mathbf{a}_t | \mathbf{s}_t, \mathbf{z}_t) p(\mathbf{z}_t | \mathbf{s}_t, \mathbf{z}_{t-1}) \right)$$

$$= \log \left(\prod_{t=1} p(\mathcal{U}_t, \mathcal{V}_t | \mathbf{s}_t, \mathbf{a}_t) \right) + \log \left(\prod_{t=1} p(\mathbf{s}_1) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) p(\mathbf{a}_t | \mathbf{s}_t, \mathbf{z}_t) p(\mathbf{z}_t | \mathbf{s}_t, \mathbf{z}_{t-1}) \right)$$

$$= \log \left(\prod_{t=1} p(\mathcal{U}_t, \mathcal{V}_t | \mathbf{s}_t, \mathbf{a}_t) \right) + \log \left(\prod_{t=1} p(\mathbf{s}_1) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) p(\mathbf{a}_t | \mathbf{s}_t, \mathbf{z}_t) p(\mathbf{z}_t | \mathbf{s}_t, \mathbf{z}_{t-1}) \right)$$

$$= \sum_{t=1} \log \left(p(\mathcal{U}_t, \mathcal{V}_t | \mathbf{s}_t, \mathbf{a}_t) \right) + \log \left(\prod_{t=1} p(\mathbf{s}_1) p(\mathbf{s}_{t+1} | \mathbf{s}_t, \mathbf{a}_t) p(\mathbf{a}_t | \mathbf{s}_t, \mathbf{z}_t) p(\mathbf{z}_t | \mathbf{s}_t, \mathbf{z}_{t-1}) \right)$$

$$= \sum \log \left(p(\mathcal{U}_t, \mathcal{V}_t | \mathbf{s}_t, \mathbf{a}_t) \right) + C.$$

1014
$$= \sum_{t=1} \log \left(p(\mathcal{U}_t, \mathcal{V}_t | \mathbf{s}_t, \mathbf{a}_t) \right)$$

When all \mathcal{U}_t , \mathcal{V}_t are 1, then we know that the trajectory gurantees the Lyapunov condition perfectly. Recall that the trajectory is asymptotically stable if the following conditions are satisfied as described in Definition 3.1.

1019
1020 (1)
$$G(\mathbf{s}_e, \mathbf{a}_e) = 0$$
, (2) $G(\mathbf{s}_t, \mathbf{a}_t) > 0$, $\forall (\mathbf{s}_t, \mathbf{a}_t) \neq (\mathbf{s}_e, \mathbf{a}_e)$, (3) $G(\mathbf{s}_t, \mathbf{a}_t) \ge G(\mathbf{s}_{t+1}, \mathbf{a}_{t+1})$.

Since we design our Lyapunov function G_{SAS} as

$$G_{\text{SAS}}(\mathbf{s}_t, \mathbf{a}_t) = \min_{\pi} \max_{t'} E(\mathbf{s}_{t'}, \pi(\mathbf{s}_{t'})) - E(\mathbf{s}_t, \mathbf{a}_t),$$

the equilibrium point is defined as $G_{SAS}(s_e, a_e) = \min_{\pi} \max_{t'} E(s_e, a_e) - E(s_e, a_e) = E_i$ $E(s_e, a_e) = 0$. Then, the condition $\mathcal{U}_t = 1$ corresponds to the condition (2): $G(s_t, a_t) > 0$

1026 If we choose the distributions of U_t , V_t as 1027

$$p(\mathcal{U}_t = 1 | s_t, a_t) \propto \exp\left(\mathbf{1} \left[G_{SAS}(s_t, a_t) > 0\right]\right), p(\mathcal{V}_t = 1 | s_t, a_t) \propto \exp\left(\mathbf{1} \left[G_{SAS}(s_t, a_t) - G_{SAS}(s_{t+1}, a_{t+1}) \ge 0\right]\right),$$

then, we can rewrite the above equation as

$$\sum_{t=1}^{t} \log p(\mathcal{U}_t, \mathcal{V}_t | \mathbf{s}_t, \mathbf{a}_t) = \sum_{t=1}^{t} \log p(\mathcal{V}_t | \mathbf{s}_t, \mathbf{a}_t, \mathcal{U}_t) p(\mathcal{U}_t | \mathbf{s}_t, \mathbf{a}_t)$$
$$\propto \sum_{t=1}^{t} \mathbf{1} \left[G_{\text{SAS}}(s_t, a_t) > 0 \right] + \sum_{t=1}^{t} \mathbf{1} \left[G_{\text{SAS}}(s_t, a_t) - G_{\text{SAS}}(s_{t+1}, a_{t+1}) \ge 0 \right]$$

1037 Then, the maximizing the above equation implies that the trajectory get close to the Lyapunov condition.

1040 E.3 PROOF OF EQ. (10)

The goal of our method is to keep occupancy measures in the distribution of the target controlinvariant set $\mathcal{R} = \{(s_t, a_t) | c_1 \leq E(s_t, a_t) \leq c_2\}$ where $E(s_t, a_t) = -\log \rho(s_t, a_t)$ for utilizing the pretrained expert distribution. As our Lyapunov function approximation is defined as

$$G(s_t, a_t) = \min_{i=1, \cdots, N} \max_{j=1, \cdots, T} E(s_j, \pi_i(s_j)) - E(s_t, a_t)$$

for N sample trajectories with the episode length T in the first loop of Algorithm 1. Suppose that c_2 is some constant that is larger than $\min_{i=1,\dots,N_j=1,\dots,T} \max_{i=1,\dots,T} E(s_j, \pi_i(s_j))$ for any N, T. We now demonstrate that Algorithm 1 reduces the probability of escaping from the control invariant set as the numbers of iterations, N and M for the first and second loops, respectively, increase.

1051 Assumption E.1. The difference $||G(s_t, a_t) - G(s_{t+1}, a_{t+1})||$ in Eq. (3) over the transition \mathcal{T} is 1052 bounded as $||G(s_t, a_t) - G(s_{t+1}, a_{t+1})|| \le L$ for all t.

Proof. First note that $P[\tau \not\subset \mathcal{R}]$ is less than the sum of the probability of $E(s_t, a_t) \ge c_2$ for all data 1055 points in N trajectories and the probability that all M trials moves below $E(s_t, a_t) \le c_1$. By using 1056 Markov's inequality for the first term of RHS and Hoeffding's inequality for the second term of RHS. 1057 Then, we have

$$P[\tau_{\text{best}} \not\subset \mathcal{R}] \le \left(P\left[E(s,a) \ge c_2\right]\right)^{NT} + \left(P\left[\sum_{t=1}^T \mathbf{1}(\mathcal{V}_t \neq 1) \ge \frac{\kappa(c_2 - c_1)}{L}\right]\right)^M$$
$$\le \left[\frac{\mathbb{E}_{(s,a)\sim\mathcal{D}}[E(s,a)]}{c_2}\right]^{NT} + \exp\left(-\frac{2M\kappa^2(c_2 - c_1)^2}{TL^2}\right)$$

1064 for some constant κ to describe the average distance to escape.