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ABSTRACT

Multivariate time series (MTS) anomaly diagnosis, which encompasses both
anomaly detection and localization, is critical for the safety and reliability of
complex, large-scale real-world systems. The vast majority of existing anomaly
diagnosis methods offer limited theoretical insights, especially for anomaly lo-
calization, which is a vital but largely unexplored area. The aim of this contri-
bution is to study the learning process of a Transformer when applied to MTS
by revealing connections to statistical time series methods. Based on these the-
oretical insights, we propose the Attention Low-Rank Transformer (ALoRa-T)
model, which applies low-rank regularization to self-attention, and we introduce
the Attention Low-Rank score, effectively capturing the temporal characteristics
of anomalies. Finally, to enable anomaly localization, we propose the ALoRa-Loc
method, a novel approach that associates anomalies to specific variables by quan-
tifying interrelationships among time series. Extensive experiments and real data
analysis, show that the proposed methodology significantly outperforms state-of-
the-art methods in both detection and localization tasks.

1 INTRODUCTION

Driven by the rapid growth of the Internet of Things (IoT), real-world systems have become increas-
ingly more complex and vulnerable to faults. These anomalies frequently result in abnormal patterns
for a stream of MTS. In this context, the diagnosis of anomalies in MTS is of great importance to
ensure the reliability, safety, and efficiency of critical systems. Due to the scarcity of labeled data,
anomaly diagnosis is commonly formulated as an unsupervised learning problem. It typically in-
volves two key tasks: anomaly detection, which determines which timestamps are anomalous, and
anomaly localization, which identifies the specific time series responsible for the detected anomalies.

MTS data exhibit complex dynamics, including temporal dependencies (relationships over time) and
spatial dependencies (relationships across series). Effective anomaly diagnosis depends on reliably
estimating these spatio-temporal dynamics. Deep learning models are widely applied to this task
for their strong representation learning capabilities, with Transformer-based architectures shown to
be especially effective in modeling the complex dynamics of MTS (Zerveas et al., 2021). However,
the limited available theoretical insights into their decision process undermine reliability and trust
in safety-critical settings, while also complicating anomaly localization. Practitioners often raise
important questions regarding the learning process, the interrelationships within the data learned by
the model, and the need for a localization method, since detection alone provides limited practical
value in complex, large-scale systems. As illustrated in Fig. 1, two of the main contributions of this
work are to address these open questions, which have remained largely unanswered.

In addition, several existing detection methods are built around the point-adjustment evaluation
strategy, whereby detecting any point within an anomalous segment suffices to consider the entire
segment as an observed anomaly (Xu et al., 2022; Song et al., 2023; Shen et al., 2020). This
approach often inflates performance metrics, since even random scoring methods can appear com-
petitive under such evaluation (Kim et al., 2021; Huet et al., 2022). To ensure reliable evaluation,
trustworthy detection metrics must accurately reflect the temporal characteristics of anomalies.

To address the challenges of reliable detection scoring, interpretability, and effective localization,
this study makes the following contributions:
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Figure 1: (A): Unresolved key questions commonly raised by practitioners. (B): The proposed
localization method (Sec. 5.2), and the theoretical analysis (Sec. 4), addresses these challenges. The
Figure illustrates anomaly propagation in MTS data. An anomaly originating in an input series
i ∈ {1, · · · , d} can propagate to the latent space and subsequently to the reconstructed outputs. This
propagation is quantified by contribution weights: Eij ∈ R, capturing the influence of input series
i on latent feature j ∈ {1, · · · , dmodel}, and Cij ∈ R, capturing its influence on the reconstructed
output series {j ∈ 1, · · · , d}. Together, these weights enable tracing of anomalies across different
stages of the model, thereby supporting effective localization and interpretability.

• Theoretical insights of Transformer encoders on MTS: We study how Transformer en-
coders learn from MTS data, shedding light on how the learned representations relate to
classical time series. These insights advance the design of anomaly diagnosis methods and
deepen the understanding of Transformers in sequential modeling. (Section 4)

• Attention Low-Rank Transformer (ALoRa-T) for anomaly detection: We propose the
ALoRa-T method, which enhances anomaly detection by applying low-rank regulariza-
tion to self-attention, and introduce a novel detection metric, the Self-Attention Low-Rank
score (ALoRa-T score). This method outperforms state-of-the-art methods across multi-
ple benchmark datasets, and captures effectively the temporal characteristics of anomalies.
(Section 5.1)

• ALoRa-Loc method for anomaly localization: We introduce ALoRa-Loc, a localization
method that first derives contribution weights that quantify the learned interrelationships
between time series, offering key insights into the model’s decision-making process. More
critically, these weights capture how anomalies propagate across time series during model-
ing, enabling ALoRa-Loc to trace anomalies back to their origin and attribute them to the
most relevant input variables. (Section 5.2)

2 RELATED WORK

Anomaly detection: Due to its importance for the safety and reliability of many critical infras-
tructure systems, such as water distribution networks (Eliades et al., 2025), power systems (Kyri-
akides & Polycarpou, 2015) and healthcare (Tang et al., 2022), unsupervised anomaly detection in
MTS has attracted significant attention. Traditional unsupervised methods (Liu et al., 2008; Bre-
unig et al., 2000; Schölkopf et al., 2001) have been applied to this task, but may not perform well
since they do not learn complex dependencies. To address these limitations, deep learning models
that capture temporal and inter-variable relationships have shown improvements over existing meth-
ods. A major class of deep learning approaches is reconstruction-based methods, typically using an
encoder-decoder architecture trained in a self-supervised manner. The main idea is to learn mean-
ingful latent representations that mimic the normal behavior. The models are expected to reconstruct
normal sequences accurately. An unsuccessful reconstruction, in the sense of inflated errors, indi-
cates potential anomalies in the data. Representative examples include RNN-based models such as
LSTM-VAE (Park et al., 2018), OmniAnomaly (Su et al., 2019), and InterFusion (Li et al., 2021), as
well as the CNN-based model MSCRED (Zhang et al., 2019). More recently, Transformer models
(Vaswani et al., 2017) have been proven highly effective for sequential modeling and well-suited to
the complex dynamics of MTS (Nie et al., 2023). Anomaly-Transformer (Xu et al., 2022) introduces
the AssDis metric, which compares each row of the self-attention matrix to a prior Gaussian distribu-
tion. MEMTO (Song et al., 2023) enhances a Transformer encoder with a gated memory module that
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learns memory items representing normal behavior. As new data arrives, it selectively updates these
items. For anomaly detection, they introduce the LSD score, the distance between input queries and
their closest memory items. Although the aforementioned models have shown strong performance
under point-adjustment metrics, they may often not produce meaningful and reliable anomaly scores,
as illustrated later in Figure 4. Lai et al. (2023) use the Performer model (Choromanski et al., 2021)
to perform both point-wise and segment-wise reconstruction, defining the anomaly score as the ratio
of their reconstruction errors. SARAD (Dai et al., 2024) uses a Transformer on transposed input
windows, and thus the attention weights express feature-wise associations. To guide training and
detect anomalies, SARAD relies on SAR metric, which tracks changes in attention weights, based
on the intuition that anomalies disrupt feature associations.

Anomaly Localization: Anomaly localization has remained to a large extent an unexplored re-
search area in deep learning. Recently it begun to attract more attention, with some of the afore-
mentioned approaches also addressing this critical issue. Localization effectiveness depends on two
key factors: first, the model’s ability to reconstruct normal patterns accurately. Second, the ability
to interpret the reconstruction errors in a way that isolates the true sources of anomalies without
being distorted by their effects. Some methods rely directly on the reconstruction error to inform
the localization. For example, SARAD and OmniAnomaly (Su et al., 2019) perform localization
by ranking the reconstruction errors of individual time series. While this provides a baseline ap-
proach, anomaly propagation can obscure true anomaly sources. More advanced techniques refine
the reconstruction signal to improve localization. InterFusion (Li et al., 2021) applies Markov Chain
Monte Carlo to adjust reconstruction errors. However, due to its computational complexity, it is
limited to interpreting anomaly segments instead of individual time steps. Finally, DAEMON (Chen
et al., 2023) leveragess integrated gradients (Sundararajan et al., 2017) to trace anomaly attribution
back to individual dimensions.

Research gaps: Although the aforementioned methods propose innovative architectures and scoring
metrics, they often overlook key aspects: understanding what the model learns, how each time series
is represented, and how these representations contribute to the final decisions. Such understanding
is crucial for making detection applicable and trustworthy, and for enabling effective localization.

3 MULTIVARIATE TIME SERIES (MTS) NOTATION

A Multivariate Time Series (MTS) is a sequence of observations recorded over time across multiple
variables. It is denoted as Y = [y1,y2, . . . ,yN ]⊤, where each row vector yt ∈ Rd, t = 1, . . . , N ,
denotes the multivariate observation at time step t. Each column vector of Y , denoted as y(i) ∈ RN

represents the i-th univariate time series of length N , and y
(i)
t ∈ R is the value of the i-th series at

time t. Given the streaming nature of time-series data, modeling the MTS at an arbitrary time t relies
on it’s history X(t;T ), defined as the most recent T observations up to t: X(t;T ) = Y(t−T :t] =

[yt−T+1, . . . ,yt]
⊤ ∈ RT×d. Applying this construction to the full MTS Y ∈ RN×d produces a

sequence of overlapping windows, each serving as the model input. Since the subsequent sections
concern an arbitrary time t, we omit the index and, for simplicity, denote the window as X .

4 THEORETICAL ANALYSIS OF TRANSFORMER ENCODER

This section presents a theoretical analysis of the learning dynamics of the Transformer encoder
in the context of MTS. In particular, it relates the components of a standard Transformer model to
classical statistical models.

Embedding: Given a MTS window at time t, denoted as X ∈ RT×d, a Transformer encoder
typically begins by embedding the input into a higher-dimensional space using a 1D-convolutional
layer, i.e it maps X to X̃ ∈ RT×dmodel , where dmodel is the embedding (model) dimension. Applying
the 1D-convolution, the k-th embedded time series value at time step t, x̃(k)

t , is computed as:

x̃
(k)
t =

d∑
i=1

 m−1
2∑

j=−m−1
2

w
(k)
i,j · x

(i)
t+j


︸ ︷︷ ︸

Weighted average of the i’th raw time series

(1)
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This operation is mathematically equivalent to a learnable Vector Moving Average (VMA) filtering
(Brockwell & Davis, 2002), where the output at time t is a weighted sum of multiple time series
values in a local window around t. The filter weights w(k)

i,j determine the influence of time series i
on the output feature k, at lag j. The constant m is the kernel size.

Self-Attention Latent Space: The output of the embedding layer, X̃ ∈ RT×dmodel , is passed as
input to the attention mechanism. At each layer l, the self-attention mechanism projects the previous
layer’s output Z(l−1) ∈ RT×dmodel into the Query (Ql), Key (Kl), and Value (V l) matrices using
learnable projection matrices W (Q,l) = {w(Q,l)

ij }, W (K,l) = {w(K,l)
ij }, and W (V,l) = {w(V,l)

ij },
each of dimension Rdmodel×dmodel . These projections are computed as:

Ql = Z(l−1)W (Q,l), Kl = Z(l−1)W (K,l), V l = Z(l−1)W (V,l).

The self-attention scores at layer l are computed as the matrix S(l) ∈ RT×T :

S(l) = softmax
(
Ql(Kl)⊤√

dmodel
+M

)
, (2)

where M ∈ RT×T is an optional masking matrix, and the softmax is applied row-wise. The latent
representation at layer l is updated through the residual attention mechanism, defined as:

Z(l) = Z̃(l) +Z(l−1), where Z̃(l) = S(l)Z(l−1)W (V,l). (3)

If skip connections are omitted, the update simplifies to Z(l) = Z̃(l). By unrolling Eq. (3), we
can derive formulations that relate the final latent representation, to useful statistical models. In the
absence of skip connections, the latent representation at time step t can be written as:

Zt = AtX̃B, (4)

where At = S
(L)
t,: S(L−1) · · ·S(1) ∈ R1×T , B = W (V,1) · · ·W (V,L) ∈ Rdmodel×dmodel and S

(L)
t,: ∈

R1×T denotes the t-th row of the final self-attention (SA) matrix S(L). When skip connections are
included (the standard case), the final representation becomes:

Z(L) = X̃ +
∑

∅̸=I⊆{1,...,L}

∏
i∈I↓

S(i)

 X̃

∏
i∈I↑

W (V,i)

 , (5)

where I↓ and I↑ denote the indices in descending and ascending order, respectively. Based on
Eqs (4) and (5), the transformation of the input data in the Transformer is expressed as a left multi-
plication of the self-attention matrices across layers and a right multiplication of the Value projection
matrices. The former is input-dependent, while the latter are learned parameters independent of the
data. These two equations form the basis for the following proposition, which defines the struc-
ture of the self-attention latent space. An analytical proof is provided in Appendix G, along with
additional details on the derived statements.

Proposition 1 (Space-Time Autoreggresive (STAR) structure of the self-attention latent space)

1. Without skip connections: Each time series in the Transformer’s latent space follows a STAR-like
structure. In particular, it can be expressed as z(j)t =

∑dmodel
k=1 bkj

(∑t
q=1 atq x̃

(k)
q

)
, which has the

exact same form as the classical STAR model (Cressie & Wikle, 2011). The key distinction is that,
while traditional STAR models use fixed lag weights atq estimated by minimizing a loss function
(e.g., mean squared error), the Transformer computes these weights dynamically from the input
through the attention mechanism, with Q and K guiding their estimation in real time.

2. With skip connections: Each time series in the final representation, Eq. (5), can be interpreted
as a linear combination of multiple STAR-like processes, where each component captures distinct
temporal and feature-level dependencies of the original MTS.

3. With feed-forward layers: Adding feed-forward layers does not alter the STAR-like structure of the
latent space. The only difference is that the spatial weights take a more complex form, as explained
analytically in Proof G.
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Linear Projection for the Reconstruction: The final reconstructed MTS at time step t is com-
puted by applying a linear projection to the latent representation at the same time step:

Ŷt = Z
(L)
t W out =⇒ ŷ

(k)
t =

dmodel∑
j=1

wout
jk z

(L,j)
t , (6)

where W out ∈ Rdmodel×d is the output projection matrix that maps the final latent representation to
the original input space. This reveals that the model learns to reconstruct each time series using a
linear combination of multiple STAR processes (Proposition 1).

5 PROPOSED ANOMALY DIAGNOSIS METHOD

This section presents the proposed anomaly diagnosis method. Section 5.1 introduces the ALoRa-
T model and its associated anomaly detection score, which together form the ALoRa-Det module,
with an overview provided in Fig. 2. Section 5.2 then presents the ALoRa-Loc method for anomaly
localization, illustrated in Fig. 1. The corresponding pseudocodes are provided in Appendix F and a
computational analysis of the model is provided in Appendix C.

Figure 2: Overview of ALoRa-T and ALoRa-Det. (1) The architecture comprises the LightSMTS-
Embed module, ALoRa layers, and a decoder. (2) The embedding module exploits correlation
structures to retain only the most significant variable pairs, significantly reducing complexity by
avoiding unnecessary information. (3) ALoRa layers impose a low-rank constraint on the self-
attention matrix through a novel loss and a regularization term in the objective function, producing
a signal for abnormality. (4) During inference, anomalous windows yield higher attention ranks,
which are captured by the ALoRa score, providing a clear indicator of anomalies.

5.1 ATTENTION LOW-RANK TRANSFORMER FOR ANOMALY DETECTION (ALORA-DET)

ALoRa-Det consists of the ALoRa-T architecture together with its detection scoring method. We
begin by describing the ALoRa-T architecture. The model begins with a lightweight MTS em-
bedding module, followed by multi-head low-rank self-attention layers (ALoRa layers) with skip
connections. As stated in Proposition 1 (see the proof in Section G), feedforward layers do not alter
the structure of the latent space and are therefore omitted to avoid unnecessary complexity. The
reconstruction step is implemented through a linear projection layer.

LightMTS-Embed: As shown in Section 4, embedding with 1D convolutions is equivalent to ap-
plying VMA filtering to MTS. However, using fully dense filters that mix all input series across
embedding dimensions is both computationally expensive and less interpretable. In practice, not all
time series are correlated with one another, and ignoring this fact can obscure the underlying dynam-
ics in subsequent layers while further reducing interpretability. To address this, each convolutional
kernel is restricted to aggregate information from exactly two input series. Specifically, for each
output time series k, the (sparce) kernel contains only two non-zero weights w(k)

i,j , corresponding to

5
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a particular pair of input series. To avoid including pairs without strong dependence, only the top-
K pairs are retained, ranked by Spearman correlation on the training data (commonly K = 512).
When the total number of possible pairs does not exceed K, all

(
d
2

)
pairs are included. This design

improves efficiency, promotes sparsity, and enhances interpretability while preserving performance.
An ablation study on the parameter efficiency and performance of the proposed embedding module,
compared with the standard Transformer embedding, is provided in Appendix D.1.

Low-Rank Regularization in Self-Attention: Based on Eq. (4), since the SA-matrices are the only
input-dependent learnable components, their spectral properties can serve as informative signals for
anomaly detection. In particular, the rank of a matrix, defined as the number of non-zero singular
values, provides a useful indicator of abnormal behavior. Empirically, we observe that the rank of
SA-matrices increases in the presence of anomalies, as illustrated in Fig. 3 (right). Motivated by
this observation, we propose ALoRa layers, which extend the standard self-attention mechanism
by explicitly promoting a low-rank structure in the attention matrices. This is achieved throught
the ALoRa loss, a regularization term applied to each attention matrix S(l), defined as the truncated
Geman nuclear norm (Geman & Yang, 1995), which enforces singular values close to zero.

LALoRa(S
(l)) =

T∑
i=r+1

σ
(l)
i

(σ
(l)
i + 1)

, (7)

where σ(l)
1 ≥ · · · ≥ σ

(l)
T ≥ 0 are the singular values of S(l). The parameter r specifies the number of

leading singular values that are preserved without penalty. Since S(l) is row-stochastic (Eq. 2) with
fixed largest singular value σ1 = 1, we set r = 1, since penalizing it is unnecessary. The ALoRa
layer is extended to the multi-head attention (MHA) setting by defining S(l) = 1

H

∑H
h=1 S

(l)
h , where

S
(l)
h denotes the self-attention matrix of head h = 1, . . . ,H , and H is the number of heads.

Training: The objective function, LTotal, used to train the model includes two key components:

LTotal = ∥Y − Ŷ ∥2F + λreg

l=L∑
l=1

·LALoRa(S
(l)) . (8)

The first term penalizes the Frobenius norm of the reconstruction error, while the second term en-
courages a low-rank structure by summing the ALoRa losses of the SA-matrices S(l) across all lay-
ers. The regularization strength is controlled by the parameter λreg. The effectiveness of the proposed
low-rank regularization is illustrated in Fig. 3, which compares the rank of self-attention matrices
with and without regularization. In both cases, rank differences between normal and anomalous
inputs are evident but become substantially more pronounced with regularization. Consequently,
anomalous patterns are more easily distinguished, providing a new abnormality signal.

Figure 3: Layer-wise rank of SA-matrices across transformer layers, without (left) and with (right)
the low-rank regularization term, on the SMD dataset. The discrepancy in rank between normal and
anomalous inputs becomes more pronounced with regularization, improving anomaly sensitivity.

Model inference - Anomaly detection: As in training, the MTS is processed in overlapping
windows to ensure fair reconstruction across all time steps, enabling unbiased anomaly detection
(Toscano & Recchioni, 2022). The detection anomaly score (AS) for the time steps t is defined as:

AS(xt) = ∥yt − ŷt∥22 · (ALoRa-T) ∈ R, (9)

ALoRa-T(yt;S(L)) =

T∑
i=1

1{σ(L)
i >h1}

∈ R, (10)
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where {σ(L)
1 , . . . , σ

(L)
k } are the singular values of the SA-matrix S(L), used during the encoding-

decoding of the MTS at time step t. The indicator function 1{·} returns 1 if the condition is true
and 0 otherwise. The threshold h1 is introduced because, while the low-rank regularization encour-
ages many singular values to be close to zero, they are often not exactly zero. Moreover, when the
anomaly score exceeds a threshold, AS(xt) > h2, an anomaly alarm is triggered. Details about h1

and h2 selection is provided in Appendix A. The ALoRa-T score captures the temporal character-
istics of anomalies, providing earlier and more reliable indications than other scoring functions, as
shown in Figure 4 (see also Figs. 11 and 10 in Appendix F).

5.2 ALORA-LOC FOR MTS ANOMALY LOCALIZATION AND INTEPRETATIONS

Effective anomaly localization in MTS requires a deep understanding of the model’s learning pro-
cess. Practitioners often ask: How does the model make decisions, and which variables influence
each output? However, due to a limited understanding of the learning dynamics, such questions
remain largely unanswered in the context of deep learning. In contrast, linear regression remains
popular for its simplicity and interpretability. Each reconstructed value follows x̂i =

∑
j cijxj + bi,

where cij quantifies the influence of input xj on output x̂i.

The proposed localization method (ALoRa-Loc) first addresses this gap by deriving weights that
capture how each input time series contributes to both the learned latent representation and the re-
construction of each output time series. This is particularly important, since during model inference
one can quantify how strongly the model relies on a given time series i, as measured by its rela-
tive contribution with magnitude Cij/

∑
k Cik, j ∈ {1, · · · , d}. For the anomaly localization task,

such interpretability of the model’s decision process is even more critical. As demonstrated in Ap-
pendix E, anomalies in one series can propagate to others during the modeling process, making it
essential to capture these propagation effects. The contribution weights Eij and Cij provide exactly
this capability: Eij traces the influence of input series i on the latent features, while Cij extends this
influence to the reconstructed outputs. By leveraging these weights, ALoRa-Loc enables tracing
anomalies backward from the reconstructions to the latent space and ultimately to the originating
input series, thereby supporting accurate anomaly localization. The derivation of the contribution
weights is based on the theoretical analysis in Section 4, with analytical details in Appendix G.1.

Contribution of each input time series to the latent space: From Eq. (4) and Eq. (5), the latent
representation is governed by the product of two matrices. The left product captures the covariance
contributions, whereas the right product corresponds to shared weights across all time series and
therefore does not affect the variability of individual contributions (see Appendix G.1 for details).

Accounting for the embedding module, the final contribution weights from the input space to the
latent space are given by:

Eij =

dmodel∑
k=1


m−1
2∑

l=−m−1
2

w
(k)
i,l

 bkj , B =


∏L

i=1

(
W (V,i) + I

)
, with skip connections (Eq. (5)),∏L

i=1 W
(V,i), without skip connections (Eq. (4)).

(11)
Here, bij denotes the (i, j)-th entry of B ∈ Rdmodel×dmodel , and w

(k)
i,l are the embedding filter weights

for input series i at lag l. In the absence of embedding, the weights reduce to E = B.

Contribution of each input time series to the reconstrucion space: From Eq. (6), it follows that
the overall contribution of the i-th input time series to the j-th reconstructed time series is given by:

Cij =

dmodel∑
k=1

wout
kj · Eik (12)

Based on these insights, we define the localization anomaly score (LAS) for each time series i at
time t as:

LAS
(i)
t =

d∑
j=1

Cij∥y(j)t − ŷ
(j)
t ∥22 (13)
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The intuition behind this score is that each term (Cij∥y(j)t − ŷ
(j)
t ∥22) represents the magnitude of the

anomaly in the i-th time series that has propagated to the reconstruction of the j-th one. Summing
over all j captures the total influence of the anomaly in time series i across the system. In practice,
it is often more effective to sum only over the top-k dimensions with the largest Cij , focusing on the
most influential components. We refer to this variant as ALoRa-Loc (top-k).

6 EXPERIMENTS

6.1 DATASETS, BASELINES AND EVALUATION METRICS

Datasets & baselines: We evaluated ALoRa on six widely used datasets from diverse domains:
SWaT (Mathur & Tippenhauer, 2016) and HAI (Shin et al., 2021) from industrial control, SMD (Su
et al., 2019) and PSM (Abdulaal et al., 2021) from IT monitoring, and MSL (Hundman et al.,
2018) from spacecraft telemetry. For localization evaluation, we use SMD, SWaT, and the MSDS
dataset (Nedelkoski et al., 2020). We compare ALoRa against a wide range of baselines, including
classical methods (PCA (Shyu et al., 2003), KNN (Ramaswamy et al., 2000), IForest (Liu et al.,
2008), LOF (Breunig et al., 2000), OC-SVM (Schölkopf et al., 2001)), notable deep-learning mod-
els (Omni-Anomaly (Su et al., 2019), Interfusion (Li et al., 2021)), and recent SOTA approaches
such as Anomaly Transformer (A.T) (Xu et al., 2022), MEMTO (Song et al., 2023), NPSR (Lai
et al., 2023), D3R (Wang et al., 2023), and SARAD (Dai et al., 2024). All results are from our own
runs using official or public code with recommended settings. See Appendix B for details.

Detection metrics: Recent studies on MTS anomaly detection evaluation have shown that range-
based metrics are the most appropriate, as they address the limitations of point-adjusted and point-
wise evaluation methods (Liu & Paparrizos, 2024). Moreover, since MTS anomaly detection in-
volves highly imbalanced datasets, F1-score–based metrics are considered the most reliable. Ac-
cordingly, our evaluation focuses on the affiliation-based F1-score, precision, and recall (Huet et al.,
2022). For fair comparison, we report the best F1-scores and the corresponding precision and re-
call, avoiding method-specific thresholds. Additional results using the range-based F1-score (RF1)
(Hwang et al., 2019), VUS-AUC (VA), and VUS-PR (VPR) (Paparrizos et al., 2022) are provided in
Appendix F. Additional details on the selection of evaluation metrics are provided in Appendix B.3.

Localization metrics: We evaluate localization performance using standard metrics such as Hit Rate
(Su et al., 2019) and Normalized Discounted Cumulative Gain (NDCG) (Järvelin & Kekäläinen,
2002). Additionally, we use the Interpretation Score (IPS), which measures how accurately anoma-
lies are localized at the segment level. Further details are provided in Appendix B.3.

6.2 RESULTS

All experiments were conducted over five runs, and we report the average performance values. Due
to space restrictions, the standard deviations are presented in Appendix F.

Detection Results: As shown in Table 1, ALoRa-Det outperforms all baselines on four out of five
datasets and ranks second on SWaT, it still significantly outperforms most other methods. Compared
to the second-best performing models, ALoRa-Det achieves absolute improvements in affiliation-
based F1-score of 11.5% on SMD, 7.8% on PSM, 5.9% on MSL, and 8.9% on the HAI dataset.
These results highlight the effectiveness and generalizability of our detection approach. Notably,
our method is not only highly accurate, but its ALoRa-T score also provides a highly informative
anomaly signal (see Figure 4 and Appendix F) that captures the characteristics of anomalies and
enables much earlier detection than competing methods in most cases.

Computational Analysis: To evaluate the practical efficiency of ALoRa-Det, we compare its model
size (number of learnable parameters), training time, and inference time per sample with other SOTA
methods. Due to page limitations, the detailed results are provided in Appendix C. As shown in
Table 4, the proposed method is computationally efficient and suitable for real-world applications.

Localization Results: We use ALoRa-Loc (top-2) for SMD and the standard version for the other
two datasets. Table 2 shows that ALoRa-Loc consistently outperforms the compared methods.
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Table 1: Detection performance. P, R and F1 denotes Precision, Recall, and F1-score respectively.
The best F1-scores are highlighted in bold, and the second-best are underlined.

SMD PSM MSL SWaT HAI

Method P R F1 P R F1 P R F1 P R F1 P R F1

KNN 0.70 0.34 0.46 0.53 0.98 0.68 0.50 0.25 0.33 0.45 0.41 0.43 0.48 0.36 0.41
PCA 0.84 0.40 0.54 0.92 0.38 0.54 0.55 0.32 0.41 0.49 0.43 0.46 0.51 0.40 0.45
LOF 0.56 0.35 0.43 0.60 0.41 0.49 0.52 0.30 0.38 0.50 0.38 0.43 0.47 0.34 0.39

OC-SVM 0.44 0.28 0.34 0.88 0.47 0.62 0.53 0.29 0.38 0.46 0.36 0.40 0.42 0.30 0.35
IsolationForest 1.00 0.09 0.17 1.00 0.03 0.06 0.62 0.08 0.14 0.50 0.11 0.18 0.68 0.07 0.13
OmniAnomaly 0.68 0.66 0.67 0.70 0.64 0.67 0,5 0,93 0,64 0.49 0.52 0.50 0.51 0.39 0.44

InterFusion 0.67 0.66 0.67 0.69 0.65 0.67 0.51 0.92 0.64 0,47 0,40 0.43 0.50 0.93 0.64
A.T. 0.58 0.88 0.70 0.55 0.83 0.66 0.51 0.96 0.67 0.57 0.37 0.45 0.61 0.52 0.56

MEMTO 0.78 0.86 0.79 0.63 0.75 0.68 0.53 0.95 0.67 0.60 0.61 0.60 0.60 0.66 0.64
NPSR 0.77 0.98 0.87 0.67 0.89 0.76 0.52 0.98 0.68 0.98 0.16 0.28 0.98 0.65 0.79
D3R 0.77 0.99 0.87 0.63 0.96 0.76 0.65 0.63 0.64 0.65 0.77 0.71 0.74 0.87 0.79

SARAD 0.88 0.67 0.78 0.73 0.505 0.56 0.56 0.83 0.67 0.54 0.33 0.41 0.51 0.70 0.66

ALoRa-Det 0.97 0.98 0.97 0.82 0.83 0.82 0.57 0.98 0.72 0.68 0.67 0.68 0.98 0.76 0.86

Figure 4: Anomaly scores for the SMD and PSM, datasets. The red segment indicates the ground
truth of anomalies. MEMTO and Anomaly Transformer behave close to random guessing, mak-
ing detection unreliable. While SARAD provides more informative scores does not fully capture
anomaly temporal patterns, often resulting in increased waiting time (WT) until detection. In con-
trast, ALoRa-T score captures these patterns effectively, enabling faster and more precise anomaly
detection. Appendix F presents additional visualizations, including more datasets and methods.

Moreover, ALoRa-Loc provides meaningful interpretations of the learning process, which are es-
sential for practitioners, as discussed in Section 5.2.

Table 2: Localization performance. We report HR@P%, NDCG@P%, and range-based IPS@P%
for P ∈ {100, 150}. The best scores are shown in bold, with the second-best underlined. The
Interfusion method applies only to segment-based localization, so only the IPS metric is reported.

Method
SMD MSDS SWaT

HR@P NDCG@P IPS@P HR@P NDCG@P IPS@P HR@P NDCG@P IPS@P
100 150 100 150 100 150 100 150 100 150 100 150 100 150 100 150 100 150

MEMTO 0.32 0.48 0.26 0.36 0.19 0.28 0.14 0.33 0.10 0.22 0.02 0.04 0.01 0.01 0.01 0.02 0.05 0.05
OMNI 0.29 0.46 0.24 0.34 0.17 0.26 0.13 0.35 0.09 0.21 0.01 0.03 0,01 0,01 0,01 0,01 0,04 0,04

Interfusion - - - - 0.59 0.75 - - - - 0.03 0.05 - - - - 0,10 0,12
SARAD 0.44 0.56 0.47 0.55 0.61 0.74 0.25 0.40 0.31 0.39 0.04 0.06 0.03 0,03 0,03 0,04 0,11 0,12

ALoRa-Loc 0.56 0.76 0.60 0.70 0.60 0.81 0.30 0.57 0.32 0.45 0.03 0.05 0,042 0,068 0,041 0,056 0,16 0,20

7 CONCLUSION

We study Transformer encoders on MTS and contribute theoretical insights into their learning be-
havior. Based on this, we propose ALoRa-Det for anomaly detection, and ALoRa-Loc for local-
ization. Our methods achieve SOTA performance on both tasks. Directions for future work are as
follows. Currently, the theoretical insights focus on single-head attention; future work will extend
the analysis to multi-head attention.
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8 REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide the source code in the supplementary ma-
terial, along with a README file that outlines the steps required to reproduce the experiments
and results presented in this work. Appendix A provides details on parameter selection, while Ap-
pendix B describes the datasets used and the baseline methods. For ease of reproducibility the
supplementary material also contains data from two datasets, while the remaining datasets can be
obtained from the sources listed in Appendix B.1. For each compared method, we provide source
code links (Appendix B.2) and follow the recommended settings from the original studies.
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APPENDIX TO: LOW RANK TRANSFORMER FOR MULTIVARIATE TIME SERIES
ANOMALY DETECTION AND LOCALIZATION

A TRAINING DETAILS

ALoRa-T architecture design and hyperparameter selection: The ALoRa-T model consists of
three self-attention layers with skip connections. Each layer uses H = 8 attention heads across all
datasets. Training is performed using the ADAM optimizer with a learning rate of 10−4, and early
stopping is applied to prevent overfitting. A fixed regularization parameter of λreg = 10 is used for
all datasets.

Window Size T : The window size T is an important hyperparameter that determines how much
past information the model can utilize at each time step. To assess its impact, we conduct an ablation
study evaluating ALoRa-Det on the validation set with different values of T , as shown in Figure 5.

Figure 5: Validation F1-scores across different window sizes for each dataset. The average over 5
runs is reported along with the standard deviation.

The figure shows that ALoRa-Det’s performance is not sensitive to the choice of window size. It is
worth noting that smaller T values lead to faster training and inference, while larger values result in
longer processing times. Based on these considerations, we select the following window sizes for
each dataset: SMD (20), PSM (100), MSL (20), SWaT (20), and HAI (20). For the MSDS dataset
used for localization, the window size is set to 100.

Selection of h1, used in eq. (10) : We present the process followed for selecting the threshold
parameter h1. As discussed in Section 5, ALoRa-T incorporates a low-rank regularization term,
which encourages the self-attention matrices S(L) to have a reduced-rank structure. The selection
is guided by spectral analysis of the self-attention matrices, informed by the findings of Geshkovski
et al. (2023), which show that when multiple transformer layers are used, the rank of the self-
attention matrix in the final layer typically does not exceed 3 under normal conditions. Leveraging
this insight, h1 is chosen to retain only the dominant eigenvalues. More specifically, we analyze
the distribution of the fourth and fifth largest eigenvalues of S(L) and set the cutoff to preserve a
typical rank of around 3 to 4. This ensures that h1 captures the dominant components associated
with normal behavior. Figure 6 illustrates this selection process. Based on this analysis, we set
h1 = 10−2 for SMD, 10−3 for PSM, 3× 10−2 for SWaT and MSL, and 2× 10−1 for HAI.
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Figure 6: Distribution of the fourth and fifth largest eigenvalues of S(L) computed over normal train-
ing data. The red dashed line indicates the selected h1 value, chosen to zero out smaller eigenvalues
and ensure a typical rank no larger than 4.
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B EXPERIMENTAL SETTING

B.1 DATASETS

The datasets used in our experiments are publicly available and can be downloaded from the links
provided below:

• Secure Water Treatment (SWaT) Li et al. (2019): This dataset captures data from a
real-world industrial water treatment system monitored by 51 sensors over 11 days. The
first 7 days contain normal operations, while the last 4 include 41 manually injected
anomalies.
Download: https://itrust.sutd.edu.sg/itrust-labs-home/
itrust-labs_swat/

• Server Machine Dataset (SMD) Su et al. (2019): A large-scale dataset with 38 features
collected over five weeks from server machines in a major Internet company, covering
various system performance metrics.
Download: https://github.com/NetManAIOps/OmniAnomaly/tree/
master/ServerMachineDataset

• Pooled Server Metrics (PSM) Abdulaal et al. (2021): Collected internally at eBay, this
dataset contains 25 dimensions from application server nodes, including 13 weeks of train-
ing data and 8 weeks of test data.
Download: https://github.com/eBay/RANSynCoders/tree/main/data

• Mars Science Laboratory (MSL) Hundman et al. (2018): Provided by NASA, this dataset
includes telemetry data with 55 features recorded from the MSL rover during space mis-
sions.
Download: https://github.com/khundman/telemanom

• HIL-based Augmented ICS Security Dataset (HAI) Shin et al. (2021): Collected from a
realistic ICS testbed enhanced with a Hardware-In-the-Loop simulator, this dataset contains
78 dimensions from sensors and actuators under normal conditions and during 38 simulated
cyber-attacks.
Download: https://github.com/icsdataset/hai

• Multi-Source Distributed System (MSDS) Nedelkoski et al. (2020): Collected
from a cloud-based OpenStack testbed, this dataset contains multi-source monitoring
data—including metrics, logs, and traces—under normal and fault-injected conditions. It
includes root cause labels, making it suitable for anomaly localization task.
Download: https://zenodo.org/record/3842450

Table 3 summarizes key statistics of the datasets used in our experiments, including the number of
features, training and test samples, and the anomaly proportion in the test set.

Table 3: Summary of the five benchmark datasets used in our experiments. ‘Dim’ denotes the
number of features. ‘Train’ and ‘Test’ indicate the number of samples in the training and test sets.
’Anomaly rate (%)’ shows the percentage of anomalies in the test set.

Dim Application Train Test Anomaly rate(%)
SWaT 51 Water 495,000 449,919 0.121
SMD 38 Server 28479 28479 0.156
PSM 25 Server 132481 87841 0.278
MSL 55 Space 58317 73729 0.105
HAI 78 Power 921603 402005 0.223

MSDS 10 AIOps 29268 29286 0.72

Dataset Preprocessing: For each dataset, we first normalize each time series individually before
passing the data to the model. This normalization is performed using the mean and standard devi-
ation computed from the training set. The same normalization parameters are then applied to the
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corresponding test set. For the SWaT and HAI datasets, which contain a very large number of time
steps due to high-frequency (per-second) sampling, we downsample the data to one-minute intervals
by averaging the values over every 60-second window.

B.2 BASELINES

We reproduced the results of all baseline methods using their official or publicly available imple-
mentations on GitHub. For each baseline, we followed the configuration settings recommended in
their respective papers to ensure optimal performance. The baselines and their implementations can
be found at the following links:

• kNN: https://github.com/yzhao062/pyod

• PCA: https://github.com/yzhao062/pyod

• LOF: https://github.com/yzhao062/pyod

• OCSVM: https://github.com/yzhao062/pyod

• IForest: https://github.com/yzhao062/pyod
• OmniAnomaly: https://github.com/NetManAIOps/OmniAnomaly

• InterFusion: https://github.com/ryu-ichiro/InterFusion

• Anomaly Transformer: https://github.com/thuml/
Anomaly-Transformer

• MEMTO: https://github.com/dreamgonfly/memto

• NPSR: https://github.com/lai-chihyu/NPSR

• SARAD: https://github.com/ZhihaoDai/SARAD

• D3R: https://github.com/Wang-Xinyu666/D3R

B.3 EVALUATION METRICS

Detection: The evaluation of multivariate time series anomaly detection has attracted growing re-
search attention, largely due to the challenge of measuring model performance in a manner that
aligns with real-world temporal decision-making. Anomalies usually span continuous ranges rather
than isolated points. As a result, point-wise evaluation that treats each timestamp independently is
inappropriate because it ignores temporal continuity and unfairly penalizes slight delays or near-
misses in detection. Traditionally, the point-adjustment method was used to address this limitation,
where detecting any point within an anomalous segment suffices to consider the entire segment as
an observed anomaly (Xu et al., 2022; Song et al., 2023; Shen et al., 2020). However, this ap-
proach often inflates performance metrics, as even a random anomaly scoring method can achieve
performance comparable to that of a well-informed method, which effectively captures the temporal
characteristics of anomalies (Kim et al., 2021; Huet et al., 2022). This limitation of point-adjusted
metrics is further illustrated in Figure 7.

Recognizing these limitations, many studies (Liu & Paparrizos, 2024; Hwang et al., 2019) have sug-
gested range-based evaluation metrics as the most appropriate choice for multivariate time series
anomaly detection. For instance, Hwang et al. (2019) proposed the range-based F1, precision, and
recall (RF1, R-P, R-R). An advancement over these are the affiliation-based F1, precision, and recall
(Huet et al., 2022), which demonstrate superior performance and robustness compared to the afore-
mentioned metrics. Unlike traditional metrics, this approach accounts for the temporal alignment
between predicted and actual anomalies. Precision is computed as the average directed distance
from predicted anomaly events to their nearest ground truth counterparts, while recall measures the
average directed distance from ground truth events to their closest predictions. For a more detailed
explanation of how these metrics are computed, we refer the reader to the original paper (Huet et al.,
2022). Paparrizos et al. (2022) introduced VUS-ROC and VUS-PR as range-aware alternatives
to traditional AUC. However, because MTS anomaly detection is a highly imbalanced classification
problem, F1-like metrics are the most appropriate and reliable for evaluation, while VUS metrics can
provide additional insights but should be used together with F1-like metrics. Given the superior ro-
bustness and effectiveness of affiliation-based metrics, we adopt the affiliation-based F1-score as our
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Figure 7: Line (a) shows the anomaly scores from an informative anomaly scoring approach, while
Line (c) represents a random scoring method. The middle section displays the binary decisions
(where anomaly = 1, otherwise 0) made by both methods using the point adjustment technique,
which ultimately led to the same outcome. The red segments indicate the ground truth abnormal
time steps, while the red dot in Line (c) marks the only time step that, by chance, exceeded the
anomaly threshold.

primary evaluation metric. Results for the range-based F1-score (RF1), along with the VUS-ROC
(VROC) and VUS-PR (VPR) metrics, are reported in Table 6. Nevertheless, due to the highly im-
balanced nature of MTS anomaly localization, F1-like metrics remain the most appropriate choice,
as they explicitly capture the trade-off between precision and recall.

Localization: At each time step t, anomaly localization is evaluated by identifying which features
(time series) contribute to the detected anomaly. The ground-truth for localization is provided as a
binary label vector Gi ∈ {0, 1}N , where Gi = 1 indicates that the i-th feature is anomalous at time
t, and Gi = 0 otherwise.

After computing the anomaly score AS
(i)
t for each feature using eq.( 13), features are ranked in

descending order of their scores to identify those most likely responsible for the anomaly. The top-k
features are selected as:

Γt@P% = Top-k features ranked by AS
(i)
t , where k = ⌈|Gi| × P%⌉

For example, if there are 3 anomalous features (i.e., |Gi| = 3) and we evaluate at P = 150, then
k = 5. The localization performance is then quantified using the Hit Rate (HR) at P%, which
measures the fraction of truly anomalous features that appear in the top-k predictions:

HRt@P% =
|Gi ∩ Γt@P%|
|Gi|

(14)

Normalized Discounted Cumulative Gain (NDCG): Let rj ∈ {0, 1} indicate whether the j-th
ranked feature in Γt@P% is truly anomalous (i.e., belongs to Gi). The Discounted Cumulative Gain
(DCG) and its ideal counterpart (IDCG) are defined as:
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DCGt@P% =

k∑
j=1

rj
log2(j + 1)

IDCGt =

|Gi|∑
j=1

1

log2(j + 1)

The resulting NDCG is:

NDCGt@P% =
DCGt@P%

IDCGt
, (15)

NDCG ranges from 0 to 1, with higher values indicating better-ranked localization.

Interpretation Score (IPS): To evaluate anomaly localization at the segment level, we use the
Interpretation Score (IPS) Li et al. (2021). For each anomaly segment Si, we first compute a single
score for each feature by taking the maximum anomaly score within the segment:

AS
(j)
Si

= max
t∈Si

AS
(j)
t (16)

We then identify the top-ranked features as the predicted anomalous dimensions PSi
, and compare

them against the ground-truth anomalous features GSi
. The IPS measures the average proportion of

correctly predicted features across all segments:

IPS =
1

N

N∑
i=1

|GSi
∩ PSi

|
|GSi |

, (17)

where N is the total number of anomalous segments. Each segment is equally weighted in the final
score.

C COMPUTATIONAL ANALYSIS

To evaluate the practical efficiency of ALoRa-Det, we compare its model size (number of learnable
parameters), total training time (in seconds), and inference time per sample (in milliseconds) against
three state-of-the-art baselines: MEMTO, SARAD, and D3R. The results across three benchmark
datasets are reported in Table 4.

Table 4: Computational efficiency comparison. The table reports the number of learnable parameters
(in millions), total training time (s), and inference time per sample (ms).

Method SMD (d=38) SWaT (d=51) HAI (d=78)
Params / Inf/ms / Train(s) Params / Inf/ms / Train(s) Params / Inf/ms / Train(s)

MEMTO 5.9M / 1.10 / 108 5.9M / 5.71 / 57 6M/ 6.8 / 96
SARAD 9.6M / 0.11 / 147 9.6 / 0.16 / 652 9.6M / 0.48 / 126
D3R 52.3M / 4.83 / 994 52.3 / 6.27 / 283 52.5 M/ 21.6 /1077
ALoRa-Det 3.2 M/ 0.13 / 75 3.2M / 0.12 / 45 3.2M / 0.13 / 36

The results in Table 4 indicate that ALoRa-Det almost always outperforms the competing methods
across all three metrics. Unlike other approaches, the total number of parameters remains constant
as input dimensionality increases, while both inference time per sample and training time remain
consistently low. These advantages become more evident as the dimensionality of the MTS grows,
highlighting the scalability of the proposed method to high-dimensional settings. Taken together,
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these findings confirm that ALoRa-Det is not only more efficient than existing baselines but also
highly suitable for real-time applications.

D ABLATION STUDIES

D.1 LIGHTWEIGHT MTS EMBEDDING PARAMETER EFFICIENCY

Table 5 shows the parameter efficiency of the lightweight embedding used in our method, comparing
it to standard fully dense filters.

Table 5: Parameter comparison between standard fully dense filters wiht model dimenion,dmodel =
512 and the proposed Lightweight MTS Embedding module.

Input Size d Standard Weights Custom Weights
10 15,360 90
20 30,720 380
40 61,440 1,024
50 76,800 1,024

100 153,600 1,024
200 307,200 1,024

In addition, we compare the standard and Lightweight-MTS embedding methods in terms of de-
tection performance to demonstrate that the proposed lightweight approach does not compromise
effectiveness. On the contrary, it maintains, and in some cases even improves performance. Figure 8
presents the F1 scores achieved by both embeddings, along with boxplots showing the distribution
of reconstruction errors on normal test samples, providing further insight into the reconstruction
behavior of each method.

(a) SMD (b) HAI (c) SWaT

Figure 8: Model performance under the standard and lightweight embeddings for the SMD, HAI,
and SWaT datasets. In each subplot, the figure on the left shows the F1 score comparison, and the
figure on the right presents the boxplot of reconstruction errors on normal test samples.
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E ANOMALOUS EFFECT ATTRIBUTION VIA EFFECT WEIGHTS

To examine how anomalies in one time series affect others through shared latent representations,
we design a controlled simulation using a simple self-attention model. This setup also demonstrates
how the effect weights introduced in Section 4 quantify influence in both latent and reconstruction
spaces.

We generate bivariate i.i.d. data X ∈ RT×2, where:

x
(1)
t ∼

{
N (µ1 +∆, σ2

1), for t1 ≤ t < t2
N (µ1, σ

2
1), otherwise

, x
(2)
t ∼ N (µ2, σ

2
2) ∀t

We set T = 500, t1 = 200, and t2 = 300. The model consists of a 2-layer, 1-head self-attention
mechanism. We fix the value matrices W

(l)
V for layers l = 1, 2, as well as the output projection

matrix Wout, while the remaining parameters are kept learnable:

W
(1)
V = I2, W

(2)
V =

[
0.2 0.7
0.8 0.3

]
, Wout =

[
0.1 0.9
0.9 0.1

]
This controlled setup allows us to observe how a localized anomaly in one input series propagates
through the latent space and affects the reconstructed time series. As shown in Fig. 9, the effect
weights E1j and C1j reflect how the anomaly in the first input series propagates through the latent
space and influences the reconstructed time series, respectively. Together, they provide meaningful
and interpretable attributions of anomaly influence across the model’s internal and output represen-
tations.
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Figure 9: Averaged results over 100 simulation runs. Top: Input time series with an anomaly
introduced in series 1 between time steps 200 and 300. Middle: Latent representations; effect
weights E1j quantify the contribution of the anomaly in series 1 to each latent dimension. Bottom:
Reconstructed time series; effect weights C1j reflect how the anomaly influences the reconstruction
of each output series.

F EXPERIMENTS - SUPPLEMENT

To assess the performance of the proposed ALORA-DET method, we provide additional results
using three evaluation metrics. The selection of these metrics is explained in Appendix B.3. Table 6
presents the performance of the proposed method and all compared methods using the range-based
F1-score (RF1), as well as the VUS-ROC (VROC) and VUS-PR (VPR).

Comparison of ALoRa-T Scores with State-of-the-Art Methods: To support and extend the
findings in the main paper, this appendix presents additional visualizations to demonstrate the gen-
eralizability of the ALoRa-T anomaly scoring method. First, we provide additional abnormal seg-
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Table 6: Range-aware evaluation metrics. RF1 denotes Range-based F1-score; VROC and VPR
denote the Volume Under the Surface ROC and precision, respectively. Best scores are highlighted
in bold, and second-best are underlined.

SMD PSM MSL SWaT HAI

Method RF1 VROC VPR RF1 VROC VPR RF1 VROC VPR RF1 VROC VPR RF1 VROC VPR

KNN 0.15 0.42 0.09 0.31 0.40 0.28 0.11 0.37 0.08 0.10 0.44 0.35 0.12 0.09 0.12
PCA 0.18 0.65 0.11 0.48 0.58 0.42 0.15 0.62 0.20 0.13 0.68 0.51 0.21 0.63 0.13

IsolationForest 0.19 0.68 0.1 0.23 0.54 0.33 0.14 0.57 0.17 0.13 0.42 0.12 0.17 0.69 0.12
OC-SVM 0.11 0.58 0.08 0.19 0.53 0.37 0.13 0.59 0.18 0.03 0.62 0.52 0.23 0.64 0.14

OmniAnomaly 0.17 0.33 0.07 0.14 0.29 0.05 0.12 0.50 0.11 0.021 0.37 0.12 0.20 0.73 0.22
InterFusion 0.18 0.36 0.08 0.19 0.34 0.12 0.14 0.53 0.12 0.09 0.40 0.14 0.28 0.75 0.23

A.T. 0.11 0.50 0.10 0.19 0.26 0.37 0.14 0.51 0.12 0.13 0.61 0.22 0.09 0.59 0.21
MEMTO 0.26 0.52 0.11 0.29 0.50 0.29 0.13 0.50 0.12 0.14 0.68 0.39 0.16 0.60 0.22

NPSR 0.43 0.89 0.48 0.49 0.63 0.47 0.20 0.53 0.13 0.33 0.83 0.64 0.20 0.75 0.44
D3R 0.1 0.91 0.57 0.2 0.65 0.46 0.18 0.61 0.15 0.09 0.84 0.38 0.1 0.89 0.61

SARAD 0.34 0.80 0.16 0.25 0.62 0.42 0.12 0.53 0.13 0.171 0.59 0.33 0.07 0.70 0.21

ALoRa-Det 0.50 0.93 0.58 0.45 0.69 0.50 0.28 0.58 0.15 0.23 0.78 0.57 0.62 0.92 0.62

ments from the SMD and PSM datasets (Fig. 10) to reinforce our earlier results. Second, we include
anomaly scores from the SWaT and HAI datasets (Fig. 11) to illustrate ALoRa-T’s effectiveness
across multiple domains. Based on Fig. 11 and 10, the ALoRa-T score continues to stand out for
its effectiveness to capture the temporal characteristics of anomalies, providing timely and highly
informative responses to anomalous patterns. The score rises quickly and remains aligned with
the duration and structure of the anomalies. In some cases, the ALoRa-T score remains high for
a short period of time, even after the labeled anomaly segment ends. However, this behavior can
be meaningfully interpreted: the self-attention matrices at post-anomaly timesteps still incorporate
abnormal information from earlier points. The score gradually decreases after T timesteps—where
T is the window size, once the attention mechanism no longer includes the earlier abnormal data.
This demonstrates the effectiveness of the ALoRa-T score to accurately detect anomalies and to
provide interpretable signals for both true and false alarms. In contrast, MEMTO and Anomaly
Transformer still behave similarly to their performance in the main results (see Fig. 4), where their
outputs resemble random guessing. This makes their detection signals unreliable. SARAD and
NPSR produce more informative patterns. However, they frequently fail to capture the temporal
dynamics of anomalies accurately, often resulting in delayed or unsuccessful detection.
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Figure 10: Anomaly scores for the SMD and PSM, datasets. The red segment indicates the ground
truth of anomalies

Figure 11: Anomaly scores for the SWat and HAI, datasets. The red segment indicates the ground
truth of anomalies
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Standard Deviation of Anomaly Diagnosis Results: We report the standard deviations of the
anomaly diagnosis results presented in Section 6, as well as for the additional evaluation metrics
presented in Table 6. Specifically, Table 7 shows the standard deviations of the detection results
reported in Table 1, while Table 9 reports the standard deviations for the results in Table 6. Finally,
Table 8 presents the standard deviations of the localization results shown in Table 2.

Table 7: Standard deviation of detection metrics, for the results in Table 1. P, R and F1 denote
the standard deviation of Precision, Recall, and F1-score respectively.

SMD PSM MSL SWaT HAI

Method P R F1 P R F1 P R F1 P R F1 P R F1

KNN 0.006 0.004 0.005 0.003 0.002 0.002 0.009 0.006 0.008 0.003 0.002 0.002 0.006 0.004 0.005
PCA 0.009 0.007 0.008 0.006 0.004 0.005 0.003 0.002 0.002 0.009 0.007 0.008 0.003 0.002 0.002
LOF 0.003 0.002 0.002 0.009 0.007 0.008 0.006 0.004 0.005 0.006 0.005 0.005 0.003 0.002 0.002

OC-SVM 0.006 0.004 0.005 0.006 0.004 0.005 0.003 0.002 0.002 0.009 0.007 0.008 0.009 0.007 0.008
IsolationForest 0.009 0.007 0.008 0.003 0.002 0.002 0.006 0.004 0.005 0.006 0.004 0.005 0.009 0.007 0.008
OmniAnomaly 0.022 0.018 0.020 0.012 0.009 0.010 0.022 0.017 0.020 0.011 0.009 0.010 0.012 0.008 0.010

InterFusion 0.012 0.009 0.010 0.021 0.018 0.020 0.012 0.009 0.010 0.021 0.018 0.020 0.012 0.009 0.010
A.T. 0.021 0.023 0.020 0.020 0.03 0.030 0.020 0.016 0.018 0.017 0.014 0.016 0.02 0.016 0.017

MEMTO 0.065 0.055 0.060 0.009 0.006 0.007 0.009 0.007 0.008 0.025 0.019 0.022 0.053 0.045 0.050
NPSR 0.003 0.002 0.002 0.002 0.001 0.001 0.002 0.001 0.001 0.003 0.002 0.002 0.004 0.003 0.003
D3R 0.005 0.003 0.004 0.004 0.003 0.003 0.002 0.001 0.001 0.008 0.006 0.007 0.006 0.004 0.005

SARAD 0.10 0.028 0.022 0.13 0.08 0.021 0.021 0.044 0.018 0.025 0.022 0.013 0.017 0.10 0.110
ALoRa-Det 0.011 0.011 0.012 0.013 0.014 0.014 0.012 0.011 0.011 0.012 0.011 0.010 0.010 0.009 0.015

Table 8: Standard deviation of localization scores, for the results in Table 2. The Interfusion
method applies only to segment-based localization, so the standard deviation is reported only for the
IPS metric.

Method
SMD MSDS SWaT

HR@P NDCG@P IPS@P HR@P NDCG@P IPS@P HR@P NDCG@P IPS@P
100 150 100 150 100 150 100 150 100 150 100 150 100 150 100 150 100 150

MEMTO 0.020 0.019 0.024 0.027 0.022 0.041 0.031 0.048 0.021 0.039 0.005 0.018 0.0012 0.0035 0.0003 0.0012 0.0011 0.028
OMNI 0.041 0.041 0.045 0.045 0.028 0.029 0.04 0.03 0.03 0.04 0.002 0.002 0.02 0.025 0.033 0.022 0.01 0.01
Interfusion - - - - 0.029 0.031 - - - - 0.001 0.001 - - - - 0.01 0.01
SARAD 0.018 0.017 0.023 0.025 0.021 0.043 0.03 0.05 0.02 0.04 0.006 0.02 0.001 0.003 0.0002 0.001 0.001 0.03

ALoRa-Loc 0.05 0.05 0.06 0.06 0.09 0.07 0.01 0.05 0.01 0.02 0.001 0.003 0.006 0.005 0.006 0.001 0.01 0.007

Table 9: Standard deviation for the results in Table 6. RF1 denotes Range-based F1-score; VROC
and VPR denote the Volume Under the Surface ROC and PR, respectively.

SMD PSM MSL SWaT HAI

Method RF1 VROC VPR RF1 VROC VPR RF1 VROC VPR RF1 VROC VPR RF1 VROC VPR

KNN 0.006 0.008 0.004 0.005 0.006 0.005 0.007 0.009 0.006 0.004 0.006 0.005 0.006 0.007 0.005
PCA 0.009 0.012 0.006 0.008 0.010 0.007 0.006 0.009 0.005 0.010 0.013 0.007 0.007 0.009 0.006

IsolationForest 0.012 0.014 0.007 0.010 0.012 0.009 0.009 0.011 0.006 0.011 0.013 0.008 0.010 0.012 0.007
OC-SVM 0.010 0.011 0.006 0.011 0.012 0.008 0.007 0.010 0.006 0.012 0.014 0.009 0.011 0.013 0.007

OmniAnomaly 0.020 0.022 0.012 0.017 0.020 0.011 0.019 0.021 0.013 0.018 0.020 0.011 0.019 0.022 0.013
InterFusion 0.018 0.020 0.011 0.019 0.022 0.012 0.017 0.019 0.011 0.018 0.021 0.012 0.020 0.022 0.013

A.T. 0.015 0.018 0.010 0.017 0.020 0.012 0.016 0.018 0.011 0.019 0.021 0.012 0.018 0.020 0.012
MEMTO 0.025 0.028 0.015 0.021 0.025 0.013 0.023 0.027 0.015 0.026 0.030 0.016 0.022 0.026 0.014

NPSR 0.007 0.009 0.005 0.008 0.010 0.006 0.009 0.011 0.006 0.007 0.009 0.005 0.008 0.010 0.006
D3R 0.011 0.013 0.007 0.010 0.012 0.007 0.011 0.013 0.007 0.012 0.014 0.008 0.011 0.013 0.007

SARAD 0.013 0.016 0.009 0.015 0.018 0.010 0.014 0.017 0.010 0.015 0.018 0.011 0.014 0.017 0.010

ALoRa-Det 0.009 0.011 0.006 0.010 0.012 0.007 0.009 0.011 0.006 0.010 0.012 0.007 0.009 0.011 0.006
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PSEUDOCODES FOR ALORA-DET AND ALORA-LOC:

Algorithm 1 ALoRa-Det: Attention Low-Rank Transformer for MTS Anomaly Detection

Input: X ∈ RT×d: Multivariate Time Series
H: Number of attention heads, L: Number of Transformer layers.
dmodel: Embedding dimension, λreg: ALoRa regularization coefficient.

Output: Anomaly scores AS(xt) ∈ R for all t
Stage 1: LightMTS-Embed ▷ see Section 5

1: Define kernel size m (default: 3) and variable pair set P = {(i, j) | 1 ≤ i < j ≤ d}
2: Define sparse kernel tensor W ∈ R|P|×d×m

3: X̃:,k = Conv1D(X;Wk) ∀k ∈ [1, |P|]
Stage 2: ALoRa-T — Attention Low-Rank Transformer

4: Initialize total ALoRa loss: LALoRa ← 0
5: for l = 1, . . . , L do
6: Z(l) ← MHA(X(l−1)) +X(l−1), X(0) = X̃ ▷ MHA + Residual connection
7: X(l) ← Z(l) ▷ (Optionally apply an activation function, e.g., GELU)
8: Compute LALoRa(S

(l)) ▷ Eq. (7), S(l) = 1
H

∑H
h=1 S

(l)
h

9: LALoRa ← LALoRa + LALoRa(S
(l))

10: end for

Stage 3: Reconstruction and Training:
11: Reconstruction: X̂ = Z(L)W out ∈ RT×d

12: Training Objective:Ltotal = ∥X − X̂∥22 + λreg · LALoRa ▷ Eq. (8)

Stage 4: Inference - Anomaly Detection
13: Anomaly score for time t : AS(xt) = ∥xt − x̂t∥22 · ALoRa-T(xt) ▷ Eq. 9
14: return AS(xt)

Algorithm 2 ALoRa-Loc: Attention Low-Rank Transformer for MTS Anomaly Localization

Stage 1: ALoRa-T Parameter Tracking During Final Epoch of Training
1: During the last epoch of ALoRa-Det training:
2: Track LightMTS-Embed convolution kernels Wk ∈ Rd×m for all k = 1, . . . , dmodel

3: for each Transformer layer l = 1, . . . , L do
4: Track value projection matrix W (V,l) ∈ Rdmodel×dmodel

▷ If MHA is used: then W (V,l) = [W (V,1,l), . . . ,W (V,H,l)] ·WV-proj,l, where each
W (V,h,l) ∈ Rdmodel×

dmodel
H and WV-proj,l ∈ R

dmodel
H ×dmodel , H is the number of heads

5: end for

6: Keep track of output projection matrix W out ∈ Rdmodel×d ▷ (Eq. (6))

Stage 2: Compute Input-to-Output Contribution Matrices : ▷ (see Section 4)

7: Compute contribution matrices B ∈ Rdmodel×dmodel and E ∈ Rd×dmodel ▷ see Section 4
8: Contribution of input time series to the reconstructed ones: C ∈ Rd×d ▷ Eq. (12)

Stage 3: Inference — Anomaly Localization

9: ALoRa-Loc: LAS
(i)
t =

∑d
j=1 Cij · ∥x(j)

t − x̂
(j)
t ∥22

10: ALoRa-Loc (top-k): LAS
(i,topk)
t =

∑
j∈I(i)

k

Cij · ∥x(j)
t − x̂

(j)
t ∥22

11: ▷ I(i)k : indices of top-k values in row i of C
12: ALoRa-Loc∗: LAS

∗(i)
t = ∥x(i)

t − x̂
(i)
t ∥22

13: return LAS
(i)
t , LAS

(i,topk)
t , and LAS

∗(i)
t for all i, t
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G ANALYTICAL PROOFS

[Proof of Proposition 1] To begin the proof, we first define the Space-Time Autoregressive (STAR)
model. Let yt ∈ R1×d, for t = 1, . . . , N , denote the multivariate observation at time step t, where
y
(i)
t ∈ R represents the value of the i-th series at time t. The STAR model assumes that each time

series is influenced by its own past values as well as by the past values of spatially neighboring
series.

STAR Model Definition. For a STAR model with p + 1 temporal lags, and q + 1 spatial lags, the
model is defined as

yt =

p∑
k=0

q∑
l=0

a
(l)
tk yt−kB

(l) =

q∑
l=0

A
(l)
t XB(l) (18)

where B(l) ∈ Rd×d is the spatial weight matrix of order l, and B
(l)
ij represents the spatial

dependency of time series i on time series j in the l-th spatial lag. The coefficient a(l)tk denotes the
temporal weight for lag k at time t, corresponding to the l-th spatial lag. The final equality follows
by defining the matrix X = [yt−p, · · · ,yt]

⊤ ∈ Rp×d. In the case where the spatial dependence can
be represented as a single lag (i.e., the spatial lags are collapsed into one), the model simplifies to:

STAR model with p+ 1 temporal lags and one spatial lag:

yt =

p∑
k=0

atk yt−kB = At XB, (19)

where At ∈ R1×p is the vector of temporal weights used for modeling time step t. Finally, the j-th
component of yt, denoted by y

(j)
t , can be written as:

y
(j)
t =

p∑
k=0

d∑
i=1

Atk Bij y
(i)
t−k =

d∑
i=1

Bij

(
p∑

k=0

Atk y
(i)
t−k

)
(20)

The STAR model can be fitted by minimizing the least square error between the observed data yt

and the fitted values. We note that all the learnable weights are not input-dependent.

Statement 1: When no skip connections are used in the self-attention mechanism, the update rule
at layer l is defined as:

Z(l) = S(l)Z(l−1)W (V,l), where, Z(0) = X̃

By unrolling the above equation, it follows that after L layers of self-attention, the latent represen-
tation at time step t can be expressed as:

Z
(L)
t = S

(L)
t S(L−1) · · ·S(1)X̃W (V,1) · · ·W (V,L) (21)

where each S(i) ∈ RT×T is the SA-matrix at layer i, and S
(L)
t ∈ R1×T is the t′th row (last one) of

the final SA-matrix. Each W (V,i) ∈ Rdmodel×dmodel is the value projection matrix at layer i. By defining
the product of attention matrices up to layer L at time step t as At = S

(L)
t S(L−1) · · ·S(1) ∈ R1×T ,

and the product of all value projection matrices as B = W (V,1) · · ·W (V,L) ∈ Rdmodel×dmodel , the final
latent representation is compactly expressed by:

Zt = AtX̃B ∈ R1×dmodel (22)

Then, by expanding the above equation for each component, we can derive its analytical expression.
The expression for each latent space time series at time step t is given by:

z
(j)
t =

dmodel∑
k=1

bkj

(
t∑

q=1

atq x̃
(k)
q

)
,

By comparing the derived equation with Eq. (20), it is evident that the two models share the same
structure. The key difference lies in how the weights atq are obtained: traditional STAR models use
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fixed lag weights estimated by minimizing a loss function (e.g., mean squared error), whereas the
Transformer computes these weights dynamically through the attention mechanism, with the queries
Q and keys K determining them in real time.

Statement 2:
When skip connections are applied in the self-attention mechanism, the update rule at layer l is
defined as:

Z(l) = Z̃(l) +Z(l−1), where Z̃ = S(l)Z(l−1)W (V,l). (23)

To clarify the structure of the derived Eq. (5), assume without loss of generality that the total number
of layers is L = 3. Then, the final representation can be written as:

z
(3)
t = yt + S

(1)
t︸︷︷︸

A
(1)
t

X̃ W (V,1)︸ ︷︷ ︸
B(1)

+S
(2)
t︸︷︷︸

A
(2)
t

X̃ W (V,2)︸ ︷︷ ︸
B(2)

+S
(3)
t︸︷︷︸

A
(3)
t

X̃ W (V,3)︸ ︷︷ ︸
B(3)

+ S
(2)
t S

(1)
t︸ ︷︷ ︸

A
(4)
t

X̃ W (V,1)W (V,2)︸ ︷︷ ︸
B(4)

+ S
(3)
t S

(1)
t︸ ︷︷ ︸

A
(5)
t

X̃ W (V,1)W (V,3)︸ ︷︷ ︸
B(5)

+ S
(3)
t S

(2)
t︸ ︷︷ ︸

A
(6)
t

X̃ W (V,2)W (V,3)︸ ︷︷ ︸
B(6)

+ S
(3)
t S

(2)
t S

(1)
t︸ ︷︷ ︸

A
(7)
t

X̃ W (V,1)W (V,2)W (V,3)︸ ︷︷ ︸
B(7)

.

(24)

Each component of Eq. (24) has the form A
(j)
t X̃B(j) for j = 0, . . . , 2L−1, where A(j)

t ∈ R1×T de-
notes the row vector appearing to the left of X̃ , and B(j) ∈ Rdmodel×dmodel denotes the matrix product
appearing to the right of X̃ in the j-th term. For example, for j = 4: A(4)

t = S
(2)
t S

(1)
t andB(4) =

W (V,1)W (V,2). As shown in the proof of Statement 1, each such component induces a structure
analogous to that of a STAR model. Thus, the overall latent representation Zt can be interpreted as a
linear combination of multiple STAR-like processes, where each component has its own temporal
(atq) and spatial weights (bkj). In other words, each term A

(j)
t X̃B(j) defines a distinct STAR-like

model with potentially different spatial and temporal lag structures.

We can obtain a more specific interpretation of this representation by comparing Eq. (24) with the
general definition of a STAR model in Eq. (18). In particular, Eq. (24) corresponds to a STAR
model with p = T (the window size) temporal lags and q = 8 =

(
L
2

)
spatial lags, where B(0) = Id

and A
(0)
t = e(T ) = [0, 0, . . . , 1]. The explicit structure of each A

(l)
t and B(l) is indicated by the

underbraces in Eq. (24).

Statement 3:

The feed-forward layer, linearly combines values across all series at the same time step to produce
a new time series y(j)t . We now show that the transformed representation for each time series, after
applying the feed-forward layer, can be written in the same structure as in Eq. (22): For ease of
presentation let T = 2 and the latent dimension dmodel = 3. The new j-th time series at time step t

is defined as: y(j)t = w1jz
(1)
t + w2jz

(2)
t + w3jz

(3)
t .

Expanding each z
(i)
t :

y
(j)
t = w1j

[
b11

(
at,t−1x̃

(1)
t−1 + attx̃

(1)
t

)
+ b21

(
at,t−1x̃

(2)
t−1 + attx̃

(2)
t

)
+ b31

(
at,t−1x̃

(3)
t−1 + attx̃

(3)
t

)]
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+w2j

[
b12

(
at,t−1x̃

(1)
t−1 + attx̃

(1)
t

)
+ b22

(
at,t−1x̃

(2)
t−1 + attx̃

(2)
t

)
+ b32

(
at,t−1x̃

(3)
t−1 + attx̃

(3)
t

)]

+w3j

[
b13

(
at,t−1x̃

(1)
t−1 + attx̃

(1)
t

)
+ b23

(
at,t−1x̃

(2)
t−1 + attx̃

(2)
t

)
+ b33

(
at,t−1x̃

(3)
t−1 + attx̃

(3)
t

)]
By regrouping the terms,(

at,t−1x̃
(1)
t−1 + attx̃

(1)
t

)
(w1jb11 + w2jb12 + w3jb13)︸ ︷︷ ︸

b̃1j

+
(
at,t−1x̃

(2)
t−1 + attx̃

(2)
t

)
(w1jb21 + w2jb22 + w3jb23)︸ ︷︷ ︸

b̃2j

+
(
at,t−1x̃

(3)
t−1 + attx̃

(3)
t

)
(w1jb31 + w2jb32 + w3jb33)︸ ︷︷ ︸

b̃3j

so for general latent space dimension dmodel and for general window size T :

y
(j)
t =

dmodel∑
k=1

[
b̃kj

(
t∑

q=1

atqx̃
(k)
q

)]
, where b̃kj =

dmodel∑
r=1

wrjbkr. (25)

Therefore, from the first statement of the proposition, it follows that the structure of the latent space
time series remains unchanged, that is, it retains a STAR-like form. The only difference is that the
new weights b̃kj now determine the contribution of each input time series, replacing the original
weights bkj .

G.1 DERIVATION OF CONTRIBUTION WEIGHTS FROM INPUT SPACE TO LATENT AND
RECONSTRUCTION SPACES (RELATED TO SECTION 5.2)

The latent representation at the final layer is given by Eq. (5). In Eq. (24), we provide an analytical
expression for the case of a three-layer model. Each component of Eq. (24) has the form A

(k)
t X̃B(k)

for k = 0, . . . , 2L − 1, where A
(k)
t ∈ R1×T denotes the row vector appearing to the left of X̃ , and

B(k) ∈ Rdmodel×dmodel denotes the matrix product appearing to the right of X̃ in the k-th term. For
example, for k = 4: A

(4)
t = S

(2)
t S

(1)
t and B(4) = W (V,1)W (V,2). Each of these components

contributes to the overall contribution weights we aim to derive. As a first step, we consider how each
embedding-space time series contributes to the representation of the j-th time series (column) in the
k-th component of Eq. (24) ( A(k)

t X̃B(k)). The j-th time series (column) in the k-th component,
can be expressed as:

z
(j,k)
t =

dmodel∑
r=1

b
(k)
rj

(
t∑

q=1

a
(k)
tq x̃(r)

q

)
,

where b(k)rj denotes the (r, j)-th entry of B(k) and measures how strongly the r-th embedding-space

time series contributes to the j-th latent series in the k-th component. The coefficient a(k)tq is the

(t, q)-th entry of A(k)
t and serves as a temporal weighting factor. Importantly, the dependence on

a
(k)
tq does not alter the interpretation of b(k)rj . To illustrate this, we consider the case T = 2 and

dmodel = 3. In this setting, the three latent space time series are given by:

z
(1,k)
t = b

(k)
11 (a

(k)
t,t−1x̃

(1)
t−1 + a

(k)
t,t x̃

(1)
t ) + b

(k)
21 (a

(k)
t,t−1x̃

(2)
t−1 + a

(k)
t,t x̃

(2)
t ) + b

(k)
31 (a

(k)
t,t−1x̃

(3)
t−1 + a

(k)
t,t x̃

(3)
t )

z
(2,k)
t = b

(k)
12 (a

(k)
t,t−1x̃

(1)
t−1 + a

(k)
t,t x̃

(1)
t ) + b

(k)
22 (a

(k)
t,t−1x̃

(2)
t−1 + a

(k)
t,t x̃

(2)
t ) + b

(k)
32 (a

(k)
t,t−1x̃

(3)
t−1 + a

(k)
t,t x̃

(3)
t )
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z
(3,k)
t = b

(k)
13 (a

(k)
t,t−1x̃

(1)
t−1 + a

(k)
t,t x̃

(1)
t ) + b

(k)
23 (a

(k)
t,t−1x̃

(2)
t−1 + a

(k)
t,t x̃

(2)
t ) + b

(k)
33 (a

(k)
t,t−1x̃

(3)
t−1 + a

(k)
t,t x̃

(3)
t )

In all three equations above: The temporal attention weights a
(k)
t,t−1 and a

(k)
t,t are shared across all

parentheses in each equation and are also shared across all equations, as they remain the same
for z

(1,k)
t , z

(2,k)
t , z

(3,k)
t . What differentiates how much each embedding space time series (x̃(i))

contributes to each latent space series (z(j,k)) is only the contribution weight b(k)ij .

Then, by summing the contribution weights over all components of Eq. (24), we obtain the matrix
that characterizes how embedding-space time series contribute to the latent space, defined as

B =

L∏
i=1

(
W (V,i) + I

)
.

Finally, by accounting for the embedding module, the contribution weights from the raw input time
series to the latent space time series are given by:

Eij =

dmodel∑
k=1


m−1
2∑

l=−m−1
2

w
(k)
i,l

 bkj (26)

Then, the reconstruction of each time series is produced as follows: x̂(k)
t =

∑dmodel

j=1 wout
jk z

(L,j)
t

This explains why the final derived contribution weights of the input time series to the reconstructed
time series are given by:

Cij =

dmodel∑
k=1

wout
kj ik

.
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