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Abstract

State-of-the-art deep learning models for tabular data have recently achieved ac-
ceptable performance to be deployed in industrial settings. However, the robustness
of these models remains scarcely explored. Contrary to computer vision, there are
no effective attacks to properly evaluate the adversarial robustness of deep tabular
models due to intrinsic properties of tabular data, such as categorical features,
immutability, and feature relationship constraints. To fill this gap, we first propose
CAPGD, a gradient attack that overcomes the failures of existing gradient attacks
with adaptive mechanisms. This new attack does not require parameter tuning and
further degrades the accuracy, up to 81% points compared to the previous gradient
attacks. Second, we design CAA, an efficient evasion attack that combines our
CAPGD attack and MOEVA, the best search-based attack. We demonstrate the
effectiveness of our attacks on five architectures and four critical use cases. Our
empirical study demonstrates that CAA outperforms all existing attacks in 17 over
the 20 settings, and leads to a drop in the accuracy by up to 96.1% points and
21.9% points compared to CAPGD and MOEVA respectively while being up to
five times faster than MOEVA. Given the effectiveness and efficiency of our new
attacks, we argue that they should become the minimal test for any new defense or
robust architectures in tabular machine learning.

1 Introduction

Evasion attack is the process of slightly altering an original input into an adversarial example
designed to force a machine learning (ML) model to output a wrong decision. Robustness to
adversarial examples is a problem of growing concern among the secure ML community, with
over 10,000 publications on the subject since 2014 [7]. Recent studies also report real-world
occurrences of evasion attacks, which demonstrate the importance of studying and defending against
this phenomenon [20].

While research has studied the robustness of deep learning models in Computer Vision (CV) and
Natural Language Processing (NLP) tasks, many real-world applications instead deal with tabular
data, including in critical fields like finance, energy, and healthcare. If classical “shallow” models (e.g.
random forests) have been the go-to solution to learn from tabular data [21], deep learning models
are becoming competitive [5]. This raises anew the need to study the robustness of these models.

However, robustness assessment for tabular deep learning models brings a number of new challenges
that previous solutions — because they were originally designed for CV or NLP tasks — do not
consider. One such challenge is the fact that tabular data exhibit feature constraints, i.e. complex
relationships and constraints across features. The satisfaction of these feature constraints can be a
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non-convex or even non-differentiable problem; this implies that established evasion attack algo-
rithms relying on gradient computation do not create valid adversarial examples (i.e., constraint
satisfying) [18]. Meanwhile, attacks designed for tabular data also ignore feature type constraints
[3] or, in the best case, consider categorical features without feature relationships [39, 40, 4] and are
evaluated on datasets that exclusively contain such features. This restricts their application to other
domains that present heterogeneous feature types.

The only published evasion attacks that support feature constraints are Constrained Projected Gradient
Descent (CPGD) and Multi-Objective Evolutionary Adversarial Attack (MOEVA) [35]. CPGD is
an extension of the classical gradient-based PGD attack with a new loss function that encodes how
far the generated examples are from satisfying the constraints. Although theoretically elegant and
practically efficient, this attack suffers from a low success rate due to its difficulty to converge toward
both model classification and constraint satisfaction [35]. Conversely, MOEVA is based on genetic
algorithms. It offers an outstanding success rate compared to CPGD and works on shallow and deep
learning models. However, it is computationally expensive and requires numerous hyper-parameters
to be tuned (population size, mutation rate, generations, etc.). This prevents this attack from scaling
to larger models and datasets.

Overall, research on adversarial robustness for tabular machine learning in general (and tabular deep
learning in particular) is still in its infancy. This is in stark contrast to the abundant literature on
adversarial robustness in CV [28] and NLP tasks [15]. Given this limited state of knowledge, the
objective of this paper is to propose novel and effective attack methods for tabular models subject to
feature constraints.

We hypothesize that gradient-based algorithms have not been explored adequately in [35] and that
the introduction of dedicated adaptive mechanisms can outperform CPGD. To verify this, we design
a new adaptive attack, named Constrained Adaptive PGD (CAPGD), whose only free parameter
is the number of iterations and that does not require additional parameter tuning (Section 4). We
demonstrate that the different mechanisms we introduced in CAGPD contribute to improving the
success rate of this attack compared to CPGD, by 81% points. Across all our datasets, the set of
adversarial examples that CAPGD generates subsumes all the examples generated by any other
gradient-based method. Furthermore, CAPGD is 75 times faster than MOEVA, while the latter
reaches the highest success rate across all datasets.

These results motivate us to design Constrained Adaptive Attack (CAA), an adaptive attack that
combines our new gradient-based attack (CAPGD) with MOEVA for an increased success rate at
a lower computational cost. Our experiments show that CAA reaches the highest success rate for
all models/datasets we considered, except in one case where CAA is second-best. With this attack,
we offer a strong baseline for future research on evasion attacks for tabular models, which should
become the minimal test for robust tabular architectures and other defense mechanisms.

Our contributions can be summarized as follows:

1. We design a new parameter-free attack, CAPGD that introduces momentum and adaptive
steps to effectively evade tabular models while enforcing the feature constraints. We show
that CAPGD outperforms the other gradient-based attacks in terms of capability to generate
valid (constraint-satisfying) adversarial examples.

2. We propose a new efficient and effective evasion attack (CAA) that combines gradient and
search attacks to optimize both effectiveness and computational cost.

3. We evaluate CAA in a large-scale evaluation over four datasets, five architectures, and two
training methods (standard and adversarial training). Our results show that CAA outperforms
all other attacks and is up to 5 times more efficient.

2 Related work

2.1 Tabular Deep Learning

Tabular data remains the most commonly used form of data [34], especially in critical applications
such as medical diagnosis [38, 36], financial applications [18, 11, 8], user recommendation sys-
tems [45], cybersecurity [9, 1], and more. Improving the performance and robustness of tabular
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Table 1: Evasion attacks for tabular machine learning. Attacks with a public implementation in bold.

Attack Supported features Supported constraints
Categorical Discrete Relations

LowProFool (LPF) [3] Continuous No No No
Cartella et al. [8] Continous, Discrete, Categorical Yes Yes No
Gressel et al. [19] Continous, Discrete, Categorical Yes Yes No
Xu et al. [40] Categorical Yes No No
Wang et al. [39] Categorical Yes No No
Bao et al. [4] Categorical Yes No No
BF*/BFS [26, 25] Continous, Discrete, Categorical Yes Yes No
Mathov et al. [30] Continous, Discrete, Categorical Yes Yes No
CPGD, MOEVA [35] Continous, Discrete, Categorical Yes Yes Yes
CAPGD, CAA (OURS) Continous, Discrete, Categorical Yes Yes Yes

machine learning models for these applications is becoming critical as more ML-based solutions are
cleared to be deployed in critical settings.

Borisov et al. [5] showed that traditional deep neural networks tend to yield less favorable results in
handling tabular data when compared to more shallow machine learning methods, such as XGBoost.
However, recent approaches like RLN [33] and TabNet [2] are catching up and even outperforming
shallow models in some settings. We argue that DNNs for Tabular Data are sufficiently mature and
competitive with shallow models and require therefore a thorough investigation of their safety and
robustness. Our work is the first exhaustive study of these critical properties.

2.2 Realistic Adversarial Examples

Initially applied to computer vision, adversarial examples have also been adapted and evaluated on
tabular data. Ballet et al. [3] considered feature importance to craft the attacks, Mathov et al. [30]
considered mutability, type, boundary, and data distribution constraints, Kireev et al. [24] suggested
considering both the cost and benefit of perturbing each feature, and Simonetto et al. [35] introduced
domain-constraints (relations between features) as a critical element of the attack.

While domain constraints satisfaction is essential for successful attacks, research on robustness for
industrial settings (eg Ghamizi et al. [18] with a major bank) also demonstrated that imperceptibility
remains important for critical systems with human-in-the-loop mechanisms, which could deflect
attacks with manual checks from human operators. Imperceptibility is domain-specific, and mul-
tiple approaches have been suggested [3, 24, 16]. None of these approaches was confronted with
human assessments or compared with each other, and in our study, we decided to use the most
established L2 norm. Our algorithms and approaches are generalizable to further distance metrics
and imperceptibility definitions.

Overall, except the work from Simonetto et al. [35], none of the existing attacks for tabular machine
learning supports the feature relationships inherent to realistic tabular datasets, as summarized in
Table 1. Nevertheless, we evaluate all the approaches that support continuous values and where a
public implementation is available to confirm our claims: LowProFool, BF*, CPGD, and MOEVA.

3 Problem formulation

We formulate the problem of evasion attacks under constraints. We assume the attack to be untargeted
(i.e. it aims to force misclassification in any incorrect class); the formulation for targeted attacks is
similar and omitted for space reasons.

We denote by x ∈ Rd an input example and by y ∈ {1, . . . , C} its correct label. Let h : Rd → RC

be a classifier and hck(x) the classification score that h outputs for input x to be in class ck. Let
∆ ⊆ Rd be the space of allowed perturbations. Then, the objective of an evasion attack is to find a
δ ∈ ∆ such that argmaxc∈{1,...,C}hc(x+ δ) ̸= y.
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In image classification, the set ∆ is typically chosen as the perturbations within some lp-ball around
x, that is, ∆p = {δ ∈ Rd, ||δ||p ≤ ϵ} for a maximum perturbation threshold ϵ. This restriction aims
at preserving the semantics of the original input by assuming that small enough perturbations will
yield images that humans perceive the same as the original images and would therefore classify the
perturbed input into the same class (while the classifier predicts another class). This also guarantees
that the example remains meaningful, that is, x+ δ is not an image with random noise.

Tabular data are by nature different from images. They typically represent objects of the considered
application domain (e.g. botnet traffic [10], financial transaction [18]). We denote by φ : Z → Rd

the feature mapping function that maps objects of the problem space Z to a d-dimensional feature
space defined by the feature set F = {f1, f2, ...fd}. Each object z ∈ Z must inherently respect some
natural condition to be valid (to be able to exist in reality). In the feature space, these conditions
translate into a set of constraints on the feature values, which we denote by Ω. By construction, any
input example x obtained from a real-world object z satisfies Ω, noted x |= Ω.

Thus, in the case of tabular data, we additionally require the perturbation δ applied to x to yield a
valid example x+ δ satisfying Ω, that is, ∆p(x) = {δ ∈ Rd : ||δ||p ≤ ϵ ∧ x+ δ |= Ω}.
To define the constraint language expressing Ω, we consider the four types of constraint introduced
by Simonetto et al. [35]. These four constraint types cover all the constraints of the datasets in
our empirical study. Hence, immutability defines what features cannot be changed by an attacker;
boundaries defines upper / lower bounds for feature values; type specifies a feature to take continuous,
discrete, or categorical values; and feature relationships capture numerical relations between features.
Feature relationship constraints can be expressed with the following grammar:

ω := ω1 ∧ ω2 | ω1 ∨ ω2 | ψ1 ⪰ ψ2 (1)
ψ := c | fi | ψ1 ⊕ ψ2 | xi (2)

Equation 1 means that a constraint formula ω can either be an intersection (∧), or a union (∨) of
two other constraint formulae ω1, ω2, or ω can be a comparison operator ⪰∈ {<,≤,=, ̸=,≥, >}
between two values ψ1 and ψ2.

Equation 2 details the numeric expressions that are supported by the grammar. A numeric expression
ψ can be constant c, an operation ⊕ ∈ {+,−, ∗, /} between two other numerical expressions ψ1 and
ψ2, or a specific feature fi, or the i-th feature of the clean sample. The difference between fi and xi
is that fi corresponds to the current value of the evaluated example and xi corresponds to its original
value in the clean example.

Let’s consider one complex constraint from the LCLD credit scoring use case: the term of the loan
can only be 36 or 60 months and the number of open accounts is lower than the number of allowed
accounts for this client. Such a constraint can be formally written as:

ω1 = ((fterm = 36) ∨ (fterm = 60)) ∧ (fopen_acc ≤ ftotal_acc) (3)

.

We provide other examples in Appendix A.1.

3.1 Constrained Projected Gradient Descent

Constrained Projected Gradient Descent (CPGD) is an extension of the PGD attack [29] to generate
adversarial examples satisfying constraints in tabular machine learning. It integrates constraint
satisfaction into the loss function that PGD optimizes. This is achieved by translating each constraint
ω into a differentiable function penalty(x, ω) that values to zero if x |= ω; otherwise, the function
represents how far x is from satisfying ω. We follow the definition of Table 5 in Appendix A.1 to
translate each construct of the constraints grammar into a penalty function.

For instance, the penalty function of ω1 in Equation 3 is:

penalty(x, ω1) = min(|fterm − 36|, |fterm − 60|) +max(0, fopen_acc − ftotal_acc) (4)

Based on this, CPGD produces adversarial examples from an initial sample xorig classified as y by
iteratively computing:
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x(k+1) = RΩ

(
PS

(
x(k) + η(k)∇L(x(k), y, h,Ω)

))
(5)

where x0 = xorig (the original input), RΩ is a domain-specific repair operator [35], PS is the
projection onto S = {x ∈ Rd, ||x− xorig||p ≤ ϵ}, ∇L is the gradient of loss function L, defined as

L(x, y, h,Ω) = l(h(x), y)−
∑
ωi∈Ω

penalty(x, ωi). (6)

In the original CPGD implementation, the step size η(k) follows a predefined decay schedule,
η(k) = ϵ× 10−(1+⌊k/⌊K/M⌋⌋), with M = 7, and K = max(k). L′(x) abbreviates L(x, y, h,Ω).

3.2 Experimental settings

Our experiments are driven by the following datasets, models, and attack parameters. More details
about the datasets and models are given in Appendix A.5.

Datasets To conduct our study, we selected tabular datasets that present feature constraints from
their respective application domain. URL [22] is a dataset of legitimate and phishing URLs. With only
14 linear domain constraints and 63 features, it is the simplest of our empirical study. LCLD [17] is a
credit-scoring dataset with non-linear constraints. The WiDS [27] dataset contains medical data on
the survival of patients admitted to the ICU. It has only 30 linear domain constraints. The CTU [10]
dataset reports legitimate and botnet traffic from CTU University. The challenge of this dataset lies in
its large number of linear domain constraints (360). We detail the datasets in the Appendix A.4.

Architectures We evaluate five top-performing architectures from a recent survey on tabular ML [5]:
TabTransformer [23] and TabNet [2] are transformer-based models. RLN [33] uses a regularization
coefficient to minimize a counterfactual loss. STG [42] optimizes feature selection with stochastic
gates, and VIME [43] relies on self-supervised learning. These architectures achieve performance
equivalent to XGBoost, the best shallow machine learning model for our use cases.

Perturbation parameters We use the L2-norm to measure the distance between original and
perturbed inputs, because this norm is suitable for both numerical and categorical features. We set ϵ to
0.5 for all datasets. Each dataset has a critical (negative) class, respectively phishing URLs, rejected
loans, flagged botnets, and not surviving patients. Hence, we only attack clean examples from the
critical class that are not already misclassified by the model and report robust accuracy of models.

Evaluation metrics We measure the effectiveness of our attack using robust accuracy defined as
the accuracy of valid examples generated by a given attack. If a clean example is misclassified, we do
not perturb it. If the attack generates an invalid example, we consider it as correctly classified. We
measure the efficiency of the attacks in computational time.

4 Our Constrained Adaptive PGD

The relative lack of effectiveness of CPGD as reported in its original publication leads us to investigate
the cause of these weaknesses. We investigate four factors that may affect the success rate of the
attack: (1) we conjecture that the fixed step size and predefined decay in CPGD might be suboptimal
because the choice of the step size is known to largely impact the effectiveness of gradient-based
attacks [31]; (2) CPGD is unaware of the trend, i.e. it does not consider whether the optimization is
evolving successfully and is not able to react to it; (3) CPGD does not check constraint satisfaction
between the iterations, which could “lock” the algorithm into a part of the invalid data space; (4)
CPGD starts with the original example, whereas classical gradient-based attacks often benefit from
random initialization.

4.1 CAPGD algorithm

We propose Constrained Adaptive PGD (CAPGD), a new constraint-aware gradient-based attack
that aims to overcome the limitations of CPGD and improve its effectiveness. We detail CAPGD in
Algorithm 1 in Appendix A.2, and summarize its components below.
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Step size selection We introduce a step-size adaptation. We follow the exploration-exploitation
principle by gradually reducing the gradient step [13]. However, unlike CPGD, this reduction does
not follow a fixed schedule but is determined by the optimization trend. If the value of the loss
function grows, we keep the same step size; otherwise, we halve it. That is, we start with a step
η(0) = 2ϵ, and we identify checkpoints w0 = 0, w1, ..., wn at which we decide whether it is necessary
to halve the size of the current step. We halve the step size if any of the following two conditions
holds:

1. Since the last checkpoint, we count how many cases since the last checkpoint wj−1 the
update step has successfully increased L′. The condition holds if the loss has increased for
at least a fraction of ρ steps (we set ρ = 0.75):

wj−1∑
i=wj−1

1L′(x(i+1))>L′(x(i)) < ρ · (wj − wj−1). (7)

2. The step has not been reduced at the last checkpoint and the loss is less or equal to the loss
of the last checkpoint:

η(wj−1) ≡ η(wj) ∧ L(wj−1)
max ≡ L(wj)

max (8)

where L′(x) is the loss function, L(wj)
max is the highest loss value in the first j + 1 iterations.

Repair operator While equality constraints are included in the penalty function, optimization
alone does not achieve exact equality of feature values. Our new repair operator RΩ improved from
[35] addresses this by setting the value of the left-hand side of an equation of the form fi = ψ to
match the evaluation of the right-hand side in each iteration. It maintains other dataset constraints
such as bounds, mutability, and feature types but does not ensure other relational constraints are met.
The operator can violate maximum perturbation constraints, yet at each iteration, the perturbation is
corrected back within the allowed maximum. This approach has been shown to improve the success
rate of CAPGD, as demonstrated by our ablation study in Table 8. We provide the algorithm in
Appendix A.2.

Initial state As for initialization, we apply the attack from two initial states: the original example
xorig and a random example sampled from S (the Lp-ball around xorig). The goal behind this second
initialization is to reduce the risk of being immediately locked into local optima that encompass only
invalid examples. Our experiments later reveal the complementary of these two initializations.

Gradient step Finally, we introduce in CAPGD a momentum [14]. Let η(k) be the step size at
iteration k, then we first compute z(k+1) before the updated example x(k+1).

z(k+1) = PS
(
x(k) + η(k)(∇L′(x(k))

)
(9)

x(k+1) = RΩ

(
PS

(
x(k) + α · (z(k+1) − x(k)) + (1− α) · (x(k) − x(k−1))

))
where α ∈ [0, 1] (we use α = 0.75 following [13]) regulates the influence of the previous update on
the current, and PS is the projection onto S = {x ∈ Rd, ||x− xorig||p ≤ ϵ}.

4.2 Comparison of CAPGD to gradient-based attacks

To evaluate the benefits of CAPGD, we compare it with CPGD as well as LowProFool, to the best
of our knowledge, the only other public gradient attack for tabular models that can be extended to
support all types of features.

CAPGD is more successful than existing gradient attacks. In Table 2, we compare the robust
accuracy across our four datasets and five architectures with CPGD, LowProFool, and CAPGD.
CAPGD significantly outperforms CPGD and LowProFool. It decreases the robust accuracy on URL,
LCLD, and WIDS datasets to as low as 10.9%, 0.2%, and 10.2% respectively.
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LowProFool

CAPGD

CPGD 6597
132 3

Figure 1: Visualization of the complementarity
of CAPGD, CPGD, and LowProFool with the
number of successful adversarial examples.

Table 2: Robust accuracy against CAPGD and
SOTA gradient attacks. A lower robust accuracy
means a more effective attack (lowest in bold).

DS Model Clean LPF CPGD CAPGD

URL

TabTr. 93.6 93.6 91.9 10.9
RLN 94.4 94.4 92.8 12.6
VIME 92.5 92.5 90.7 56.3
STG 93.3 93.3 93.3 72.6
TabNet 93.4 93.4 88.5 19.3

LCLD

TabTr. 69.5 69.2 69.5 27.1
RLN 68.3 68.3 68.3 0.2
VIME 67.0 67.0 67.0 2.6
STG 66.4 66.4 66.4 55.5
TabNet 67.4 67.4 67.4 6.3

CTU

TabTr. 95.3 95.3 95.3 95.3
RLN 97.8 97.8 97.8 97.8
VIME 95.1 95.1 95.1 95.1
STG 95.3 95.3 95.3 95.3
TabNet 96.1 96.1 96.1 96.1

WIDS

TabTr. 75.5 75.5 75.2 48.0
RLN 77.5 77.5 77.3 61.8
VIME 72.3 72.3 71.5 51.4
STG 77.6 77.6 77.5 65.1
TabNet 79.7 79.7 76.0 10.2

The results also reveal that gradient attacks are in-
effective on the CTU dataset. These results demon-
strate that gradient-based attacks are not enough
and motivate us to consider combining CAPGD
with search-based attacks, as investigated in Sec-
tion 5.

CAPGD subsumes all gradient attacks. We analyze in detail the original examples from which
attacks could generate valid and successful adversarial examples. For each attack, we take the union
of the sets of clean examples across 5 seeds. We generate the Venn diagram for CPGD, LowProFool,
and CAPGD, for all datasets and model architectures. We sum the partition values in Figure 1.
CAPGD generates adversarial examples for 6597 original examples from which none of the other
gradient attacks could produce adversarial examples. In contrast, all successful adversarial examples
by CPGD (132) and LowProFool (3) are also generated by CAPGD.

All components of CAPGD contribute to its effectiveness. We analyze in detail each of the com-
ponents of CAPGD in Appendix B.1. These results and ablation studies confirm the complementarity
of our new mechanisms and their contribution to the effectiveness of CAPGD.

5 CAA: an ensemble of gradient and search attacks

MOEVACAPGD

BF*

477

5299
953

953

357
53

Figure 2: Visualization of the comple-
mentarity of CAPGD, MOEVA, and BF*
with the number of successful adversar-
ial examples.

We next propose Constrained Adaptive Attack (CAA), an
effective and efficient ensemble of gradient- and search-
based attacks. The idea underlying CAA is that gradient-
based attacks for tabular data are more efficient but less
successful than search-based attacks. Thus, CAA inte-
grates the best search-based attacks from each family in
a complementary way, such that we maximize the set of
adversarial examples that can be generated.

5.1 Design of CAA

Following our related work study, we consider the search
attacks MOEVA and BF* Kulynych et al. [26], Kireev
et al. [25]. As a first step, we compare in Figure 2 these
two attacks in terms of the original examples for which
they could generate successful adversarial examples. We
also include CAPGD in this comparison, since we have
shown that this attack subsumes the other gradient-based attacks. Our results reveal that CAPGD
and MOEVA together subsume BF* except for 5 examples. Additionally, CAPGD and MOEVA
are complementary, with CAPGD generating 477 unique examples and MOEVA 953. Overall, the
combination of CAPGD with MOEVA yields the strongest method including only one gradient-based
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Table 3: Robust accuracy and attack duration for CAPGD, MOEVA, and CAA. The Clean column
corresponds to the accuracy of the model on the subset of clean samples that we attack. A lower
robust accuracy means a more effective attack. The lowest robust accuracy is in bold. A lower
duration is better. The lowest time between MOEVA and CAA is in bold.

Robust accuracy (↓) Duration in seconds (↓)
Dataset Model Clean CAPGD BF* MOEVA CAA CAPGD BF* MOEVA CAA

URL

TabTr. 93.6 10.9±0.1 93.2±0 18.2±0.8 8.9±0.2 1±0 33±0 75±2 17±1

RLN 94.4 12.6±0.2 93.8±0 23.6±0.5 10.8±0.2 1±0 27±0 74±3 19±1

VIME 92.5 56.3±0.1 92.2±0 56.5±0.9 49.5±0.5 2±1 32±0 70±1 51±2

STG 93.3 72.6±0.0 93.2±0 58.2±0.9 58.0±0.8 2±0 58±0 90±0 73±3

TabNet 93.4 19.3±0.6 90.9±0 17.5±0.6 11.0±0.5 8±0 444±0 165±4 58±1

LCLD

TabTr. 69.5 27.1±0.9 61.1±0 10.7±0.8 7.9±0.6 5±1 154±0 124±5 83±2

RLN 68.3 0.2±0.1 38.9±0 0.8±0.2 0.0±0.0 1±0 147±0 50±1 10±3

VIME 67.0 2.6±0.2 52.6±0 24.1±1.5 2.4±0.1 1±0 149±0 49±2 13±1

STG 66.4 55.5±0.2 53.0±0 55.4±0.2 53.6±0.1 3±0 191±0 60±2 57±2

TabNet 67.4 6.3±0.4 49.0±0 0.8±0.1 0.4±0.1 4±0 754±0 68±2 23±0

CTU

TabTr. 95.3 95.3±0.0 95.3±0 95.3±0.0 95.3±0.0 4±0 371±0 98±4 110±5

RLN 97.8 97.8±0.0 97.5±0 94.0±0.2 94.0±0.2 9±8 12±0 98±3 112±4

VIME 95.1 95.1±0.0 95.1±0 40.8±4.7 40.8±4.7 4±0 924±0 107±3 116±2

STG 95.3 95.3±0.0 95.3±0 95.3±0.0 95.3±0.0 5±0 548±0 105±3 119±4

TabNet 96.1 96.1±0.0 13.0±0 0.0±0.0 0.0±0.0 7±0 816±0 157±7 182±4

WIDS

TabTr. 75.5 48.0±0.3 67.7±0 59.2±0.6 45.9±0.3 3±0 440±0 65±3 49±1

RLN 77.5 61.8±0.3 77.0±0 67.7±0.3 60.9±0.2 3±0 2520±0 52±1 49±2

VIME 72.3 51.4±0.3 71.2±0 59.4±0.5 50.3±0.2 2±0 1406±0 48±2 41±1

STG 77.6 65.1±0.4 77.5±0 68.8±0.3 63.8±0.2 3±0 1888±0 64±1 59±1

TabNet 79.7 10.2±0.3 73.1±0 13.9±0.4 5.3±0.4 5±0 10472±0 77±4 25±1

attack and one search-based attack. One could also include BF* for a slight increase in effectiveness,
but this would come at the computational cost of running this attack in addition to the other two; our
experimental results (presented below) actually reveal that BF* brings a substantial computational
cost compared to CAPGD and MOEVA. Hence, we stick to CAPGD and MOEVA only.

The principle of CAA is thus to successively apply CAPGD and MOEVA, in that order. By applying
CAPGD first, CAA has the opportunity to generate valid adversarial examples at low computational
cost (benefiting from the performance of gradient attacks compared to search attacks). If CAPGD
fails on an original example, CAA executes the slower but more effective MOEVA method.

5.2 Effectiveness and efficiency of CAA

We evaluated the effectiveness (robust accuracy) and efficiency (computation time) of CAA compared
to the other methods. The hyperparameters of all attacks are fixed for all experiments (see Section
A.6 of the appendix) and follow the recommendation given in their original paper.

Table 3 shows that CAA achieves the best performance in all cases but one: for STG model and
LCLD dataset, BF* achieves a robust accuracy 0.6 percentage points lower than CAA – these are the
unique original examples from which BF* could generate successful adversarial examples. Overall,
CAA leads to a decrease in accuracy of up to 96.1%, 84.3%, and 21.7% compared to CAPGD, BF*,
and MOEVA respectively.

The main advantage of CAA is its ability to find "easy" constrained adversarial using the cheaper
gradient attack CAPGD, before processing harder examples with expensive search. We compare
in the right panel of Table 3 the cost of running each attack, i.e., its execution time. CAA shines
particularly in terms of efficiency. CAA reduces execution costs by up to 5 times compared to
MOEVA. It is significantly faster than MOEVA for LCLD, URL, and WIDS datasets (except STG),
and marginally more costly for CTU.

CAA is up to 418 times faster than BF*. In particular, in the only case where BF* marginally
outperforms CAA, BF* requires 3.4 times more computation to generate the adversarial examples.

In Appendix B.5, we evaluate our attack on shallow models in direct and transferability settings.
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Figure 3: Impact of CAA budget on the robust accuracy for CTU dataset.

Table 4: CAA performances (XX+/-YY) against Madry adversarially trained model. XX refers to
accuracy. YY is the difference between the accuracy of the adversarially trained model and standard
training (cf. Table 3), such that ’+’ means a higher accuracy for the adversarially trained model.

Dataset Accuracy TabTr. RLN VIME STG TabNet

URL Clean 93.9+0.3 95.2+0.8 93.4+0.9 94.3+1.0 99.5+6.1

CAA 56.7+47.8 56.2+45.4 69.8+20.3 90.0+32.0 91.8+80.8

LCLD Clean 73.9+4.4 69.5+1.2 65.5−1.5 15.6−50.8 0.0−67.4

CAA 70.3+62.4 63.0+63.0 10.4+8.0 12.1−41.5 0.0−0.4

CTU Clean 95.3+0.0 97.3−0.5 95.1+0.0 95.1−0.2 0.2−95.8

CAA 95.3+0.0 97.1+3.0 94.0+53.2 95.1−0.2 0.2+0.2

WIDS Clean 77.3+1.8 78.0+0.5 72.1−0.2 62.6−15.1 98.4+18.6

CAA 65.1+19.2 66.6+5.7 52.1+1.8 45.2−18.6 58.4+53.1

CAPGD and MOEVA fail to generate adversarial examples on CTU for 2 out of 5 models. In
Appendix B.3, we provide a possible explanation for this dataset by evaluating our attacks on different
sub-sets of constraints with varying complexity.

5.3 Impact of attack budget

We study the impact of the attacker’s budget on the effectiveness of CAA, in terms of (i) maximum
perturbation ϵ and (ii) the number of iterations of its components. We focus on the CTU dataset,
which models are the only ones to remain robust through our previous experiments. All the datasets
are evaluated in Appendix B.2. Figure 3 reveals in (a) that the maximum perturbation distance ϵ has
little impact on the effectiveness of the attack. Increasing the number of iterations for the gradient
attack component (b) does not have an impact on the success rate of CAA. Increasing the budget
of the search attack component (c) significantly impacts the robustness of some models. While
TabTransformer and STG remain robust, the robust accuracy of RLM and VIME drops below 0.4
when doubling the number of search iterations to 200, and to zero with 1000 search iterations.

5.4 Impact of Adversarial training

We evaluate the effectiveness of our attack against models made robust with Madry’s adversarial
training (AT) [29], using examples generated by the PGD attack. We consider this defense because
adversarial training-based methods were shown to be the only reliable defense against evasion attacks
[37, 6]. In Table 4, we show the clean accuracy and the robust accuracy (against CAA) of the
adversarially trained models (big numbers in Table 4). We also show the accuracy difference with
the models trained with standard training (small numbers). In Appendix B.4, we evaluate additional
defenses based on adversarial training and data augmentations.

Adversarial training can degrade clean and robust performance. As a preliminary check, we
investigate whether adversarial training degrades the clean performance of the models. This is
important to ensure that a non-increase of robust accuracy does not originate from clean performance
degradation (instead of being due to CAA’s strength). Our evaluation shows that adversarial training
significantly degrades clean performance of the STG and Tabnet architectures. The accuracy of STG
models drops to 15.6% and 62.6% for LCLD and WIDS respectively. As for Tabnet models, the clean
accuracy drops to 0.0% (LCLD) and 0.2% (CTU). In all other cases, clean accuracy remains stable.
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CAA remains effective against adversarial training for some architectures. The effectiveness
of CAA against robust models is architecture- and dataset-dependent. The attack remains effective
on VIME architecture applied to LCLD and WIDS, with robust accuracy as low as 10.1% and
52.2% respectively, as well as on RLN architecture on the WIDS dataset (66.6% robust accuracy and
only +5.7% improvement compared to standard training). However, the robustness against CAA of
Tabtransformer architecture is significantly improved on URL and LCLD datasets by respectively
47.8% and 62.4%, and marginally improved on WIDS dataset by 19.2%. Similarly, RLN robustness
to CAA improves on URL (+45.4%) and LCLD (+63%).

6 Limitations

We identify three main limitations of our work.

Marginal overhead of CAA: In scenarios where CAPGD struggles to attack tabular models, CAA
CAA can exhibit a computation overhead (<14%) compared to MOEVA. However, in 4 out of 5
evaluated settings, CAA is faster than MOEVA (up to 5 times).

CAPGD effectiveness with complex constraints: CAPGD effectiveness drops when increasing the
constraint’s complexity in the number of constraints or the number of features involved in each
constraint.

Coherence of constraints: The mechanisms of CAA assume that the constraints definitions are
sound. Incoherences between boundary constraints and feature relation constraints can lead to invalid
adversarial examples with large ϵ budgets.

7 Broader Impact

Our work proposes CAA, the most effective evasion attack against constrained tabular ML. We also
provided for each dataset at least one combination of architecture combined with AT where CAA
can be mitigated. We expect that our work will have a more positive impact by leading to improved
defenses in the scarcely explored field of robust tabular ML.

8 Conclusion

In this work, we first propose CAPGD, a new parameter-free gradient attack for constrained tabular
machine learning. We also design CAA, a new Constrained Adaptive Attack that combines the
best gradient-based attack (CAPGD) and the best search-based attack (MOEVA). We evaluate our
attacks over four datasets and five architectures and demonstrated that our new attacks outperform all
previous attacks in terms of effectiveness and efficiency. We believe that our work is a springboard
for further research on the robustness of tabular machine learning and to open multiple research
perspectives on constrained tabular ML. We hope that CAA will contribute to a faster development
of adversarial defenses and recommend it as part of a standard evaluation pipeline of new tabular
machine models.
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Table 5: From constraint formulae to penalty functions. τ is an infinitesimal value. term, open_acc,
total_acc, rec_per_month, record, month are features and instances of f in the grammar. 60 and 36
are constants and instances of c in the grammar.

Constraint Penalty function Constraint example Penalty function example

ψ1 = ψ2 | ψ1 − ψ2 | rec_per_month = record/month | rec_per_month − (record/month) |
ψ1 ≤ ψ2 max(0, ψ1 − ψ2) open_acc ≤ total_acc max(0, open_acc − total_acc)

ψ1 < ψ2 max(0, ψ1 − ψ2 open_acc < total_acc max(0, open_acc − total_acc
+τ) +10−5)

ω1 ∧ ω2 ω1 + ω2 ((term = 36) ∨ (term = 60))∧ min(| term − 36 |, | term − 60 |)+
(open_acc ≤ total_acc) max(0, open_acc − total_acc)

ω1 ∨ ω2 min(ω1, ω2) (term = 36) ∨ (term = 60) min(| term − 36 |, | term − 60 |)

Appendix

A Experimental protocol

A.1 Constraints penalty function

The penalty function transforms each constraint formulation into a differentiable loss function to be
minimized by gradient descent (or search algorithm). Table 5 inspired from [35] shows the supported
constraints, their translation to penalty function, and examples for each supported constraint. Let’s
consider one complex constraint from the LCLD credit scoring use case: The term of the loan can
only be 36 or 60 months and the number of open accounts is lower than the number of allowed
accounts for this client. Such a constraint can be formally written as term ∈ {36, 60})∧ (open_acc ≤
total_acc). The AND operator ∧ is equivalent to a sum of losses, while the OR operator ∨ is
described as min(|c− a|, |c− b|, ...) in a loss function. Finally, the a ≤ b operator is equivalent to a
min(0, a− b) in a loss function. Hence, the complex constraint translates as the following penalty:
min(|term− 36|, |term− 60|) +max(0, open_acc− total_acc).

A.2 CAPGD Algorithm

Algorithm 1 summarizes the process of CAPGD. At each iteration, we compute the perturbation
according to the definition of Equation (l. 7-9). We keep track of the best loss and accordingly best
adversarial example found so far (l. 10-12). If we reach a checkpoint in W and one of the conditions
of Equation 7 or Equation 8 we half the step size η (l. 13-17). We return the best adversarial example
xmax.

Algorithm 2 describes the repair operator. For each constraint Ω, if the constraint is an equality =
and the left operand ω.left_operand is a feature (l. 3), we verify if the constraint is respected. If not
(penalty(x,Ω) > 0)(l.4), we reset the value corresponding to feature ω.left_operand in x such that
it equals the penalty function of the right operand ω.right_operand (l. 5). According to the grammar
Equation 1 and the penalty function definition in Table 5, the value feature ω.left_operand must equal
the penalty function of ω.right_operand to satify the constraint.

A.3 CAA Algorithm

Algorithm 3 summarizes the process of CAA. The algorithm takes as input the clean examples X ,
their associated labels Y , and the classifier H such that H(x) = argmaxc∈{1,...,C}hc(x) (including
its weights, loss function and probability function), Ω the set of domain constraints, and ϵ the
maximum perturbation. We start by creating the mask of examples that are already adversarial (i.e.
misclassified by the model) (l.3). We then split the clean examples that are already adversarial X ′

(l.4), and the candidates XC on which we will execute the attacks. For each of our attacks (l.6), we
generate a set of potentially adversarial examples from the candidate clean examples (l.7). Once
again, we compute the mask of examples that are adversarial according to the subprocedure is_adv
described below. According to the mask, we add the successful attack to the output X ′ (l.8) and
remove the associated clean examples from the candidate set XC . Hence, for a given example, the
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Algorithm 1: CAPGD

1: Input: L, h S, Ω, x(0), y, η, Niter, W = {w0, . . . , wn}
2: Output: xmax
3: x(1) ← PS

(
x(0) + η∇L′(x(0))

)
4: Lmax ← max{L′(x(0)),L′(x(1))}
5: xmax ← x(0) if Lmax ≡ L′(x(0)) else xmax ← x(1)

6: for k = 1 to Niter−1 do
7: z(k+1) ← PS

(
x(k) + η∇L′(x(k))

)
8: x(k+1) ← PS

(
x(k) + α(z(k+1) − x(k))

+(1− α)(x(k) − x(k−1))
)

9: x(k+1) ← RΩ(x
(k+1))

10: if L′(x(k+1)) > Lmax then
11: xmax ← x(k+1) and Lmax ← L′(x(k+1))
12: end if
13: if k ∈W then
14: if Condition 1 or Condition 2 then
15: η ← η/2
16: end if
17: end if
18: end for

Algorithm 2: Constraint Repair for Input x and Constraints Set Ω
1: Input: x, Ω
2: for each ω ∈ Ω do
3: if ω is an EqualityConstraint and ω.left_operand ∈ F then
4: if penalty(x, ω) > 0 then
5: xω.left_operand ← penalty(x, ω.right_operand)
6: end if
7: end if
8: end for

Algorithm 3: CAA
1: Input: X,Y,H,Ω, ϵ
2: Output: X ′

3: adv_mask = is_adv(X,X, Y,H,Ω, ϵ)
4: X ′ ← X[adv_mask]
5: Xc ← X[¬adv_mask], Yc = Y [¬adv_mask]
6: for Attack in {CAPGD,MOEV A} do
7: Xi ← Attack(Xc, Yc, H,Ω, ϵ)
8: adv_mask ← is_adv(Xi, Xc, Yc, H,Ω, ϵ)
9: X ′ ← X ′ ∪Xi[adv_mask]

10: Xc ← Xc[¬adv_mask], Yc ← Yc[¬adv_mask]
11: end for
12: X ′ ← X ′ ∪Xc

13: SubProcedure is_adv(Xi, Xc, Yc, H,Ω, ϵ) :
14: adv_mask ← {}
15: for k = 1 to Niter|X| do
16: adv ← (Xi[k] |= Ω) ∧ (H(Xi[k]) ̸= Yc[k]) ∧ (Lp(Xi[k], Xc[k]) ≤ ϵ)
17: adv_mask ← adv_mask ∪ adv
18: end for
19: return adv_mask
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Table 6: The datasets evaluated in the empirical study, with the class imbalance of each dataset.

Dataset Properties
Task Size # Features Balance (%)

LCLD [17] Credit Scoring 1 220 092 28 80/20
CTU-13 [10] Botnet Detection 198 128 756 99.3/0.7
URL [22] Phishing URL detection 11 430 63 50/50
WIDS [27] ICU patient survival 91 713 186 91.4/8.6

next attack is only executed if no attack has been successful, reducing the overall cost of CAA. At the
end of CAA, we had the remaining candidates, for which we have not found adversarial examples to
the output set of potentially adversarial examples X ′, to ease the calculation of robust accuracy (e.g.
in transferable settings).

The sub procedure is_adv goes through all the examples Xi[k] ∈ Xi and adds True to the mask, if
all of the following conditions hold:

• Xi[k] respects the domain constraints,

• Xi[k] classification by His different from its true label Yc[k],

• Xi[k] pertubation w.r.t to Xc[k] is lower or equal to ϵ.

A.4 Datasets

Our dataset design followed the same protocol as Simonetto et al.[35]. We present in Table 6 the
attributes of our datasets and the test performance achieved by each of the architectures.

Credit scoring - LCLD (licence: CC0: Public Domain) We engineer a dataset from the publicly
available Lending Club Loan Data1. This dataset contains 151 features, and each example represents
a loan that was accepted by the Lending Club. However, among these accepted loans, some are not
repaid and charged off instead. Our goal is to predict, at the request time, whether the borrower will
be repaid or charged off. This dataset has been studied by multiple practitioners on Kaggle. However,
the original version of the dataset contains only raw data and to the extent of our knowledge, there
is no featured engineered version commonly used. In particular, one shall be careful when reusing
feature-engineered versions, as most of the versions proposed present data leakage in the training set
that makes the prediction trivial. Therefore, we propose our own feature engineering. The original
dataset contains 151 features. We remove the example for which the feature “loan status” is different
from “Fully paid” or “Charged Off” as these represent the only final status of a loan: for other values,
the outcome is still uncertain. For our binary classifier, a ‘Fully paid” loan is represented as 0 and
a “Charged Off” as 1. We start by removing all features that are not set for more than 30% of the
examples in the training set. We also remove all features that are not available at loan request time,
as this would introduce bias. We impute the features that are redundant (e.g. grade and sub-grade)
or too granular (e.g. address) to be useful for classification. Finally, we use one-hot encoding for
categorical features. We obtain 47 input features and one target feature. We split the dataset using
random sampling stratified on the target class and obtained a training set of 915K examples and a
testing set of 305K. They are both unbalanced, with only 20% of charged-off loans (class 1). We
trained a neural network to classify accepted and rejected loans. It has 3 fully connected hidden
layers with 64, 32, and 16 neurons.

For each feature of this dataset, we define boundary constraints as the extremum value observed
in the training set. We consider the 19 features that are under the control of the Lending Club as
immutable. We identify 10 relationship constraints (3 linear, and 7 non-linear ones).

URL Phishing - ISCX-URL2016 (license CC BY 4.0) Phishing attacks are usually used to conduct
cyber fraud or identity theft. This kind of attack takes the form of a URL that reassembles a legitimate
URL (e.g. user’s favorite e-commerce platform) but redirects to a fraudulent website that asks the
user for their personal or banking data. [22] extracted features from legitimate and fraudulent URLs

1https://www.kaggle.com/wordsforthewise/lending-club
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Table 7: The three model architectures of our study.

Family Model Hyperparameters

Transformer TabTransformer hidden_dim, n_layers,
learning_rate, norm, θ

Transformer TabNet
n_d, n_steps,
γ, cat_emb_dim, n_independent,
n_shared, momentum, mask_type

Regularization RLN
hidden_dim, depth,
heads, weight_decay,
learning_rate, dropout

Regularization STG hidden_dims, learning_rate, lam
Encoding VIME pm, α, K, β

as well as external service-based features to build a classifier that can differentiate fraudulent URLs
from legitimate ones. The feature extracted from the URL includes the number of special substrings
such as “www", “&", “,", “$", "and", the length of the URL, the port, the appearance of a brand in the
domain, in a subdomain or in the path, and the inclusion of “http" or “https". External service-based
features include the Google index, the page rank, and the presence of the domain in the DNS records.
The complete list of features is present in the reproduction package. [22] provide a dataset of 5715
legit and 5715 malicious URLs. We use 75% of the dataset for training and validation and the
remaining 25% for testing and adversarial generation.

We extract a set of 14 relation constraints between the URL features. Among them, 7 are linear
constraints (e.g. length of the hostname is less or equal to the length of the URL) and 7 are Boolean
constraints of the type ifa > 0 then b > 0 (e.g. if the number of http > 0 then the number slash “/"
> 0).

Botnet attacks - CTU-13 (license CC BY NC SA 4.0) This is a feature-engineered version of
CTU-13 proposed by [9]. It includes a mix of legit and botnet traffic flows from the CTU University
campus. Chernikova et al. aggregated the raw network data related to packets, duration, and bytes for
each port from a list of commonly used ports. The dataset is made of 143K training examples and
55K testing examples, with 0.74% examples labeled in the botnet class (traffic that a botnet generates).
Data have 756 features, including 432 mutable features. We identified two types of constraints
that determine what feasible traffic data is. The first type concerns the number of connections and
requires that an attacker cannot decrease it. The second type is inherent constraints in network
communications (e.g. maximum packet size for TCP/UDP ports is 1500 bytes). In total, we identified
360 constraints.

WiDS (license: PhysioNet Restricted Health Data License 1.5.0 2) [27] dataset contains medical
data on the survival of patients admitted to the ICU. The goal is to predict whether the patient will
survive or die based on biological features (e.g. for triage). This very unbalanced dataset has 30
linear relation constraints.

A.5 Model architectures

Table 7 summarizes the family, model architecture, and hyperparameters tuned during the training of
our models.

TabTransformer is a transformer-based model [23]. It uses self-attention to map the categorical
features to an interpretable contextual embedding, and the paper claims this embedding improves the
robustness of models to noisy inputs.

TabNet is another transformer-based model [2]. It uses multiple sub-networks that are used in
sequence. At each decision step, it uses sequential attention to choose which features to reason.
TabNet aggregates the outputs of each step to obtain the decision.

2https://physionet.org/content/widsdatathon2020/view-license/1.0.0/
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RLN or Regularization Learning Networks [33] uses an efficient hyperparameter tuning scheme in
order to minimize a counterfactual loss. The authors train a regularization coefficient to weights in
the neural network in order to lower the sensitivity and produce very sparse networks.

STG or Stochastic Gates [42] uses stochastic gates for feature selection in neural network estimation
problems. The method is based on probabilistic relaxation of the l0 norm of features or the count of
the number of selected features.

VIME or Value Imputation for Mask Estimation [43] uses self and then semi-supervised learning
through deep encoders and predictors.

A.6 Attacks parameters

For existing attacks, we reuse the hyperparameters proposed in their respective papers. For LowPro-
Fool, we use a small step size of η = 0.001, λ = 8.5 rade off factor between fooling the classifier
and generating imperceptible adversarial example, and run the attack for Niter = 20, 000 iterations.
All other gradient attacks run for Niter = 10 iterations. The schedule of decreasing steps of CPGD
uses M = 7. In CAPGD, we fix the checkpoints as wj = ⌈pjNiter⌉ ≤ Niter, with pj ∈ [0, 1] defined
as p0 = 0, p1 = 0.22 and

pj+1 = pj +max{pj − pj−1 − 0.03, 0.06}.

. The influence of the previous update on the current update is set to α = 0.75, and ρ = 0.75 for the
halving of the step. MOEVA runs for ngen = 100 iterations generating noff = 100 offspring per
iteration. Among the offspring, npop = 200 survive and are used for mating in the next iteration.
With BF*, we discretize numerical features in nbin = 150 bins. We run the attack for a maximum of
Niter = 100 iterations. CAA applies CAPGD and MOEVA with the same parameters.

A.7 Hardware

We run our experiments on an HPC cluster node with 32 cores and 64GB of RAM dedicated to our
task. Each node consists of 2 AMD Epyc ROME 7H12 @ 2.6 GHz for a total of 128 cores with 256
GB of RAM.

A.8 Reproduction package and availability

The source code, datasets and pre-trained models to reproduce the experiments of this paper are
available with the submission. The source code will be available publicly upon acceptance under the
MIT license or similar.

B Additional results

B.1 Components of CAPGD

All components of CAPGD contribute to its effectiveness. We conduct an ablation study on the
components of CAPGD. We evaluate CAPGD without the repair operator at each iteration (NREP),
without the initialization with clean example (NINI), without the initialization with random sampling
(NRAN), and without the adaptive step (NADA). Table 8 reveals that removing a component of
CAPGD reduces its effectiveness. Interestingly, not all components affect all datasets similarly. For
instance, removing the repair at each gradient iteration only affects the LCLD datasets’ success rate.
For URL and WIDS, CAPGD-NREP remains in the confidence interval of CAPGD. Removing any
other components always negatively affects CAPGD, up to an improvement of 32.1% of the robust
accuracy for CAPGD-NADA on the WIDS dataset and TabNet model.

CAPGD components are complementary. None of the components of CAPGD negatively affects
its capability of finding an adversarial example for a given clean example. In Figure 4, we analyze
the coverage of each CAPGD variant A (Covering Attack) with regard to another variant B (Coverred
Attack). For A and B, we compute the set of clean examples CA and CB on which the attacks are
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Figure 4: Visualization of the utility of CAA’s components. For attack A (respectively B) we compute
the set of clean examples CA (respectively CB)) on which the attack is successful. The percentage
represents the proportion of the set CA ∪ CB is covered by CB . CAPGD-NADA is CAPGD without
adaptive step, CAPGD-NRAN is CAPGD without the random start, CAPGD-NINI is CAPGD without
the clean example initialization and CAPGD NREP is CAPGD without repair at each iteration.

successful. The percentage in the heatmaps represents the proportion of CA ∪ CB covered by CB ,
that is

coverage =
|CB |

|CA ∪ CB |
where |C| is the cardinality of C. Attack B subsumes A when coverage = 1. In practice, to avoid
random effect, we run the attack for N = 5 seeds, and take the union of clean examples on which we
generate a successful example.

Figure 4 reveals that CAPGD subsumes all its variants with coverage over 99%, while none of
the variants subsumes CAPGD. Therefore all components of CAPGD are necessary to obtain the
strongest attack.

B.2 Budget of attacker

In this section, we study the impact of CAA’s budget on its effectiveness. We consider 3 budgets: the
maximum perturbation ϵ allowed, the number of iterations in the gradient attack CAPGD (without
changing MOEVA’s budget), and the number of iterations in the search attack MOEVA (without
changing CAPGD’s budget).
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Table 8: Ablation study: Robust accuracy for CAPGD and its variant without key components. The
Clean column corresponds to the accuracy of the model on the subset of clean samples that we attack.
A lower robust accuracy means a more effective attack. The lowest robust accuracy is in bold.

Dataset Model Clean NREP NINI NRAN NADA CAPGD

URL

TabTr. 93.6 10.9±0.1 11.8±0.3 12.6±0.0 34.6±0.4 10.9±0.1

RLN 94.4 12.7±0.2 14.9±0.2 14.8±0.0 30.2±0.5 12.6±0.2

VIME 92.5 56.3±0.1 58.1±0.3 56.9±0.0 65.2±0.1 56.3±0.1

STG 93.3 72.6±0.0 73.4±0.2 73.0±0.0 75.3±0.1 72.6±0.0

TabNet 93.4 19.2±0.7 27.6±0.8 29.7±0.0 34.4±0.3 19.3±0.6

LCLD

TabTr. 69.5 38.3±0.4 38.0±0.9 38.0±0.0 44.4±1.1 27.1±0.9

RLN 68.3 5.3±0.2 1.4±0.3 1.6±0.0 1.1±0.3 0.2±0.1

VIME 67.0 17.9±0.6 7.1±0.5 7.3±0.0 3.6±0.4 2.6±0.2

STG 66.4 59.4±0.1 58.0±0.3 56.5±0.0 59.7±0.2 55.5±0.2

TabNet 67.4 30.4±0.6 33.1±1.4 10.8±0.0 7.3±0.4 6.3±0.4

CTU

TabTr. 95.3 95.3±0.0 95.3±0.0 95.3±0.0 95.3±0.0 95.3±0.0

RLN 97.8 97.8±0.0 97.8±0.0 97.8±0.0 97.8±0.0 97.8±0.0

VIME 95.1 95.1±0.0 95.1±0.0 95.1±0.0 95.1±0.0 95.1±0.0

STG 95.3 95.3±0.0 95.3±0.0 95.3±0.0 95.3±0.0 95.3±0.0

TabNet 96.1 96.1±0.0 96.1±0.0 96.1±0.0 96.1±0.0 96.1±0.0

WIDS

TabTr. 75.5 48.2±0.3 54.7±0.9 53.3±0.0 64.9±0.6 48.0±0.3

RLN 77.5 61.8±0.3 66.3±0.4 63.7±0.0 72.3±0.5 61.8±0.3

VIME 72.3 51.4±0.3 55.6±0.9 54.1±0.0 62.9±0.4 51.4±0.3

STG 77.6 65.1±0.4 68.9±0.3 67.6±0.0 74.0±0.2 65.1±0.4

TabNet 79.7 10.1±0.5 20.7±0.9 17.5±0.0 42.3±0.7 10.2±0.3

For each budget, we provide figures and detailed numerical results in tables, corresponding to the
same experiment.

Maximum perturbation ϵ Figure 5 (numerical results in Table 9) reveals that increasing the
maximum perturbation ϵ for CAA reduces the robust accuracy of the model in 16/20 cases.

Number of CAPGD iterations Figure 6 (numerical results in Table 10) reveals that increasing
the number of iterations for the gradient attack component has a limited impact on the success
rate of CAA. The maximum drop of accuracy is 3.5% points between 10 and 100 iterations for
WIDS/TabNet.

Number of MOEVA iterations Figure 8 (numerical results in Table 11) reveals that increasing the
number of iterations for the search attack component only reduces the robust accuracy in 4/20 cases
(URL/VIME, URL/STG, CTU/VIME, and CTU/RLN).

We also observe that for TabTransformer and LCLD the robust accuracy increases with the number
of search iterations. MOEVA is a multi-objective genetic algorithm. An inherent problem of multi-
objective optimization is the trade-off between the objectives. If all solutions in the population
are on the Pareto front, the algorithm must decide which solutions to discard for the next iteration,
potentially discarding a valid adversarial example in our case.

Figure 7 shows the evolution of the success rate of MOEVA with the number of iterations in the same
settings as in Figure 8b for TabTransformer. We find that the success rate reaches a maximum with
100 iterations. We argue that valid adversarial examples were discarded when the search continued to
1000 iterations. To confirm our hypothesis, we run the same experiment with a 10 times larger search
population, such that more solutions are preserved at each iteration. We observe that in this setting,
MOEVA converges slower (due to less selection pressure) but the success rate strictly increases with
the number of generations. Increasing the population size also increases the execution time (by 3.4x
in this case), due to the selection operator overhead.

Our approach CAA aims at minimizing the memory and computation overheads while maximizing
the success rate, and CAA can be tuned to lead to lower robust accuracy with more iterations if the
search space is expanded (for example with larger populations).
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Figure 5: Robust accuracy with CAA with varying maximum perturbation ϵ budget.

Table 9: Robust accuracy with CAA with varying maximum perturbation ϵ budget. The lowest robust
accuracy is in bold.

Maximum perturbation ϵ
Dataset Model 0.25 0.5 1.0 5.0

URL

TabTr. 31.5±0.1 8.9±0.2 0.6±0.1 0.0±0.0

RLN 36.5±0.4 10.8±0.2 2.7±0.2 2.3±0.0

VIME 69.7±0.2 49.5±0.5 15.9±0.1 0.4±0.3

STG 81.4±0.2 58.0±0.8 16.1±3.1 0.0±0.0

TabNet 21.9±0.7 11.0±0.5 2.3±0.4 1.6±0.3

LCLD

TabTr. 23.8±0.7 7.9±0.6 2.2±0.3 7.1±0.9

RLN 0.0±0.0 0.0±0.0 0.0±0.0 0.1±0.0

VIME 17.0±0.2 2.4±0.1 0.3±0.1 2.2±0.2

STG 59.5±0.3 53.6±0.1 38.5±0.2 48.9±0.6

TabNet 0.7±0.2 0.4±0.1 0.4±0.1 0.3±0.1

CTU

TabTr. 95.3±0.0 95.3±0.0 95.1±0.2 86.5±1.9

RLN 95.2±0.3 94.0±0.2 94.0±0.2 94.0±0.2

VIME 56.1±3.4 40.8±4.7 34.0±4.0 34.0±4.0

STG 95.3±0.0 95.3±0.0 95.3±0.0 95.3±0.0

TabNet 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

WIDS

TabTr. 61.9±0.3 45.9±0.3 22.6±0.7 2.6±0.5

RLN 69.8±0.2 60.9±0.2 41.5±0.8 2.2±0.4

VIME 61.4±0.1 50.3±0.2 27.8±0.5 8.4±0.5

STG 70.3±0.1 63.8±0.2 50.2±0.1 7.8±1.0

TabNet 29.4±0.2 5.3±0.4 1.9±0.4 5.2±0.5
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Figure 6: Robust accuracy with CAA with varying gradient attack iterations in CAPGD.

Table 10: Robust accuracy with CAA with varying gradient attack iterations in CAPGD. The lowest
robust accuracy is in bold.

# iterations CAPGD
Dataset Model 5 10 20 100

URL

TabTr. 11.4±0.5 8.9±0.2 8.4±0.1 8.3±0.1

RLN 12.2±0.4 10.8±0.2 7.7±0.1 7.9±0.2

VIME 52.3±0.6 49.5±0.5 47.0±0.2 46.3±0.3

STG 58.0±0.8 58.0±0.8 58.0±0.8 58.0±0.8

TabNet 13.8±0.4 11.0±0.5 9.3±0.3 10.5±0.3

LCLD

TabTr. 9.0±0.5 7.9±0.6 6.5±0.4 6.9±0.5

RLN 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

VIME 3.2±0.3 2.4±0.1 1.2±0.1 1.1±0.0

STG 54.5±0.1 53.6±0.1 53.4±0.2 53.6±0.2

TabNet 0.5±0.2 0.4±0.1 0.3±0.1 0.1±0.1

CTU

TabTr. 95.3±0.0 95.3±0.0 95.3±0.0 95.3±0.0

RLN 94.0±0.2 94.0±0.2 94.0±0.2 94.0±0.2

VIME 40.8±4.7 40.8±4.7 40.8±4.7 40.8±4.7

STG 95.3±0.0 95.3±0.0 95.3±0.0 95.3±0.0

TabNet 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

WIDS

TabTr. 49.6±0.2 45.9±0.3 42.8±0.3 42.4±0.2

RLN 64.1±0.2 60.9±0.2 58.8±0.0 57.8±0.2

VIME 52.9±0.3 50.3±0.2 48.3±0.2 47.7±0.1

STG 67.1±0.1 63.8±0.2 62.5±0.2 61.8±0.1

TabNet 8.9±0.4 5.3±0.4 3.3±0.5 1.6±0.2
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Figure 7: MOEVA success rate (LCLD - TabTransformer).
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Figure 8: Robust accuracy with CAA with varying search attack iterations in MOEVA.
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Table 11: Robust accuracy with CAA with varying search attack iterations in MOEVA. The lowest
robust accuracy is in bold.

# iterations MOEVA
Dataset Model 50 100 200 1000

URL

TabTr. 9.3±0.0 8.9±0.2 7.0±0.2 3.8±0.1

RLN 11.3±0.2 10.8±0.2 9.9±0.1 9.1±0.4

VIME 53.8±0.2 49.5±0.5 34.7±0.4 28.5±0.2

STG 64.5±1.7 58.0±0.8 48.2±1.0 43.7±0.8

TabNet 14.0±0.2 11.0±0.5 5.9±0.6 0.3±0.1

LCLD

TabTr. 10.6±0.6 7.9±0.6 8.3±0.5 10.5±1.1

RLN 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

VIME 2.3±0.1 2.4±0.1 2.5±0.1 2.6±0.1

STG 53.7±0.1 53.6±0.1 53.5±0.2 53.6±0.4

TabNet 0.8±0.2 0.4±0.1 0.3±0.1 0.7±0.3

CTU

TabTr. 95.3±0.0 95.3±0.0 95.3±0.0 95.1±0.2

RLN 95.8±0.4 94.0±0.2 24.1±6.1 0.0±0.1

VIME 76.0±2.7 40.8±4.7 6.0±1.5 0.2±0.0

STG 95.3±0.0 95.3±0.0 95.3±0.0 95.3±0.0

TabNet 0.1±0.1 0.0±0.0 0.0±0.1 0.0±0.0

WIDS

TabTr. 46.5±0.5 45.9±0.3 44.8±0.2 41.2±0.5

RLN 61.7±0.2 60.9±0.2 60.2±0.3 56.7±0.4

VIME 50.5±0.2 50.3±0.2 49.9±0.2 48.7±0.4

STG 63.9±0.2 63.8±0.2 63.2±0.3 61.6±0.3

TabNet 6.9±0.4 5.3±0.4 2.5±0.4 0.9±0.1

B.3 Constraints complexity

In this section, we study the impact of the constraints’ complexity on CAA’s effectiveness.

CAPGD and MOEVA fail to generate adversarial examples on CTU for 2 out of 5 models. CTU
dataset has a large number of constraints compared to the other datasets, and some are particularly
challenging. We argue that some of these constraints hinder gradient attacks and are harder to
optimize. To confirm our hypothesis and provide additional insights, we split the constraints of
CTU based on their complexity. We consider two aspects of constraint complexity: the number of
constraints to satisfy and the number of features involved in a single constraint.

We split the constraints of CTU as follows:

• CG0 One constraint involving 90 features in the form of
∑
Fi =

∑
Fj where both sums

represent the total number of sent packets.
• CG1 One constraint involving 90 features in the form of

∑
Fi =

∑
Fj where both sums

represent the total number of received packets.
• CG2 34 constraints in the form of BY TE/PACKETS ≤ 1500, to model the fact that

each packet contains at most 1500 bytes.
• CG3 324 constraints in the form of A ≤ B where A and B are statistical properties (min,

max, sum) for each port, and direction.

First, we ran an ablation study, where we ignored one bucket of constraint at a time. Next, we studied
the success rate when we considered each bucket separately. Finally, we reported the impact of the
number of constraints to optimize from CG3, the largest bucket.

The results in Table 12 show that for gradient attacks, removing one type of constraint is not enough
to improve the success rate. Constraints across multiple remaining categories are not satisfied. The
individual bucket study confirms that only when considering constraints of type CG2 alone, CAPGD
improves its success rate (in VIME and TabNet). When only considering CG3 constraints, reducing
the number of constraints improves the success rate (by reducing robust accuracy from 95.3% when
considering 100% of CG3 constraints to 84.5% and 43.0% respectively when considering 50% and
10% of the constraints).
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Table 12: Robust accuracy with subset of constraints. Ω is the complete set of constraints. CGX
denotes the constraint group X. For CG2 and CG3, we evaluate with the entire group and on 10%,
25%, 50% selected randomly and averaged on 5 seeds.

CAPGD CAA

Group RLN STG TabNet TabTr. VIME RLN STG TabNet TabTr. VIME

Ω 97.8 95.3 96.1 95.3 95.1 94.0 95.3 0.0 95.3 40.8

Ablation

Ω \ CG0 97.8 95.3 96.1 95.3 95.1 93.9 95.3 0.0 95.3 21.0
Ω \ CG1 97.8 95.3 96.1 95.3 95.1 94.1 95.3 0.0 95.3 37.1
Ω \ CG2 97.8 95.3 96.1 95.3 95.1 93.9 95.3 0.1 95.3 40.8
Ω \ CG3 97.8 95.3 96.1 95.3 95.1 89.3 95.3 0.0 95.3 2.4

Components

CG0 97.8 95.3 96.1 95.3 95.1 91.6 95.3 0.0 95.2 2.8
CG1 97.8 95.3 96.1 95.3 95.1 91.1 95.3 0.0 95.2 1.9
CG2 75.3 95.3 31.4 94.3 0.0 72.0 95.3 0.0 94.3 0.0
CG3 97.2 95.3 95.3 95.3 95.1 92.7 95.3 0.0 95.3 19.0

Percentage CG3
10% 85.2 95.3 43.0 95.1 11.3 80.8 95.3 0.0 94.9 0.6
25% 93.4 95.3 59.9 95.3 37.8 87.1 95.3 0.0 95.3 2.5
50% 94.9 95.3 84.5 95.3 93.2 88.6 95.3 0.0 95.3 8.3

B.4 Additional defenses

Table 13: CAA performances against Madry Adversarially Trained model, Adversarial Training +
Cutmix and Adversarial Training + CT-GAN.

Architecture

Dataset Training RLN STG TabNet TabTr VIME

URL
Adversarial Training 56.2 90.0 91.8 56.7 69.8
Adv. Tr. + Cutmix 60.8 42.7 89.7 40.3 68.6
Adv. Tr. + CT-GAN 62.5 79.8 89.9 66.0 66.9

LCLD
Adversarial Training 63.0 12.1 0.0 70.3 10.4
Adv. Tr. + Cutmix 47.0 36.2 0.0 71.0 52.9
Adv. Tr. + CT-GAN 54.3 81.2 0.0 78.5 76.8

CTU
Adversarial Training 97.1 95.1 0.2 95.3 94.0
Adv. Tr. + Cutmix 95.3 94.5 0.0 95.3 94.3
Adv. Tr. + CT-GAN 96.7 96.0 100.0 94.4 100.0

WIDS
Adversarial Training 66.6 45.2 58.4 65.1 52.1
Adv. Tr. + Cutmix 59.9 41.2 37.4 50.8 43.5
Adv. Tr. + CT-GAN 100.0 73.8 100.0 68.1 100.0

In addition to the application of adversarial training alone, we evaluate the robustness of the models
when training with data augmentation. [32] showed that combining data augmentation with adver-
sarial training can increase the robustness of models. We also observe in RobustBench [12], that
top-performing models are trained with data augmentation. We consider two data augmentation
techniques: Cutmix [44] and CT-GAN [41]. To train our model, at each batch, we use an equal
proportion of clean, adversarial examples, data augmentation examples, and adversarial examples
generated on top of data augmentation examples.

We evaluated CAA on these two defenses and report in Table 13 the robust accuracy of these defenses,
compared to the robustness of the vanilla Madry AT on all our datasets and models. The results are the
average over 5 seeds run to ensure reliable evaluation. Our experiments show that these new defenses
can significantly improve the robustness of the models to CAA, but that our new attack remains
effective for URL and LCLD datasets across all architectures, and for WIDS on TabTransformer and
STG architectures.
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Table 14: Tree-based model robust accuracy in direct and transferability scenario (minimum robust
accuracy over 5 neural networks).

Dataset Model Clean Direct Transferability

URL Random Forest 96.2 52.7 72.4
XGBoost 97.4 27.3 46.7

LCLD Random Forest 64.3 22.3 5.3
XGBoost 68.3 9.1 9.4

CTU Random Forest 95.6 92.2 95.0
XGBoost 97.3 76.3 97.1

WIDS Random Forest 52.2 5.2 14.1
XGBoost 80.4 38.0 60.7

B.5 Generalization to shallow models

Shallow models and in particular tree-based models such as Random Forest (RF) XGBoost remain
among the best models for tabular data on average [5]. We evaluate the robustness of these models
against CAA in two settings: (1) direct attack where CAA (using its search component MOEVA)
attacks directly the RF and XGBOOST models, and (2) transfer attacks, where we craft the examples
on our deep learning (DL) models and evaluate them in the RF and XGBOOST models. Table ??
shows that (1) DL models of our study achieve comparable clean performance to the shallow models,
(2) both RF and XGBOOST models are vulnerable to direct CAA attacks (down to 9.1% of robust
accuracy on LCLD XGBoost), and (3) CAA attacks on DNN transfer to RF (down to 5.3% robust
accuracy) and XGBoost (down to 9.4% robust accuracy) models.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper’s contributions are two-folds: two new attacks (CAPGD and CAA)
and an extensive study of five architectures and four datasets. These contributions match the
structure of our paper and the figures and claims reported in the abstract and introduction
match the figures of the experimental study.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of CAPGD in Section 4.2, and the limitations of
CAA against adversarial training in Section 5.4. Overall, we provided ablations studies for
our new algorithms and analysis of the impact budget and computation ressources of our
approaches.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.
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3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA] .
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We dedicate Section 3.2 and the Appendix A to present the experimental
protocol and disclose all the information needed to reproduce all the experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We submitted the source code, data and pre-trained models to reproduce the
experiments in supplementary. As mentioned in Section A.8, the source code and pre-trained
models will be publicly available upon acceptance under open-source licenses.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, the parameters used for our experiments are summarized in Section 3.2,
detailed in Appendix A.6, and provided in source code. Furthermore, in Section 5.3 and
Appendix B.2, we study the impact of the main attack parameters.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the 95% CI in all tables and figures when average results over
random runs are needed in experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the exact hardware used for our experiment in Appendix A.7. The
execution time is included in the main paper as part of our experiments in Table 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We read and conform to the code of ethics and all laws and regulations in our
jurisdiction.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We have provided a "Broader Impact" section to explain the negative impacts
of our new approach, and how by studying countermeasures in our work, we expect our
research to bring more benefits to the defense community than the attackers.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Appendix A.4 cites the original creators of the datasets and provides their
licences.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide the algorithms of the attack in the Appendix to help understand
our implementation. The reproduction package contains the code of all algorithms and
experiments and is documented to guide all users.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
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Justification: The paper does not involve crowdsourcing nor research with human subjects,
nor any element that requires an Institutional Review Board (IRB) approval.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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