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ABSTRACT

Neural operators extend conventional neural networks by expanding their func-
tional mapping capabilities across various function spaces, thereby promoting the
solving of partial differential equations (PDEs). A particularly notable method
within this framework is the Fourier Neural Operator (FNO), which draws inspira-
tion from Green’s function method to directly approximate operator kernels in the
frequency domain. However, after empirical observation and theoretical valida-
tion, we demonstrate that the FNO predominantly approximates operator kernels
within the low-frequency domain. This limitation results in a restricted capabil-
ity to solve complex PDEs, particularly those characterized by rapidly changing
coefficients and highly oscillatory solution spaces. To address this challenge, in-
spired by the attentive equivariant convolution, we propose a novel Translational
Equivariant Fourier Neural Operator (TE-FNO) which utilizes equivariant atten-
tion to enhance the ability of FNO to capture high-frequency features. We perform
experiments on forward and reverse problems of multiscale elliptic equations,
Navier-Stokes equations, and other physical scenarios. The results demonstrate
that the proposed approach achieves superior performance across these bench-
marks, particularly for equations characterized by rapid coefficient variations.

1 INTRODUCTION

Partial differential equations (PDEs) serve as a fundamental theory in scientific research, describing
a wide range of physical, chemical, and biological phenomena (Sommerfeld, 1949). From turbulent
fluid dynamics to atmospheric circulation and material stress analysis, many real-world phenomena
are governed by PDEs. Consequently, solving PDEs is essential for tackling core challenges in the
natural sciences.

Traditional numerical methods like the finite element method (FEM) and finite difference method
(FDM) face significant challenges in handling noisy data, generating complex meshes, solving high-
dimensional problems, and addressing inverse problems. In recent years, neural networks have
emerged as powerful methods to overcome these limitations. Innovative approaches such as physics-
informed neural networks (PINNs) (Karniadakis et al., 2021) and Galerkin transformers (GTs) (Cao,
2021) are specifically designed to simulate PDEs by learning mappings between inputs and outputs.
Furthermore, operator-learning methods like the deep operator network (DeepONet) (Lu et al., 2019)
and the Fourier Neural Operator (FNO) (Li et al., 2020; 2022) focus on learning transformations
between function spaces, significantly advancing PDE-solving capabilities. Beyond solving PDEs,
these neural operator-based methods have demonstrated exceptional promise in addressing complex
dynamics, such as modeling climate change and predicting natural disasters (Pathak et al., 2022),
highlighting their versatility and impact in real-world applications.

We focus on addressing more complex PDEs, such as multiscale PDEs, which play a pivotal role in
physics, engineering, and related disciplines by enabling the analysis of intricate practical problems,
including ocean circulation and high-frequency scattering (Quarteroni & Veneziani, 2003). These
PDEs are characterized by rapidly varying coefficients and oscillatory solution spaces, making it
essential to effectively capture information across multiple scales and frequency ranges. However,
existing evidence indicates that FNO and similar methods predominantly emphasize learning low-
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frequency components when solving PDEs (Liu et al., 2022; Xu et al., 2024; Liu-Schiaffini et al.,
2024). This observation highlights a critical challenge: how to effectively capture high-frequency
features and integrate them with low-frequency information to enhance the performance of FNO in
tackling complex, multiscale PDEs.

In this paper, we propose a novel Translational Equivariant Fourier Neural Operator (TE-FNO) de-
signed to capture and integrate low-frequency and high-frequency features across multiple scales.
Drawing inspiration from attentive equivariant convolution, we theoretically demonstrate that a com-
bined attention mechanism, comprising channel and spatial attention, can be integrated before the
Fourier layer in a translationally equivariant manner. Moreover, leveraging the locally computed
convolution kernel enables the efficient capture of high-frequency local details. Additionally, in-
spired by recent works (Xu et al., 2024; Liu-Schiaffini et al., 2024), we incorporate a Fourier
kernel with a convolutional-residual layer, enhancing the model capability to effectively capture
high-frequency information and address the challenges of complex multiscale PDEs. Our main
contributions can be summarized as follows:

• We propose a novel TE-FNO method to address the issue where FNO-related approaches
struggle to capture high-frequency features effectively. Specifically, our method integrates
high-frequency and low-frequency components simultaneously with equivariant attentions
and convolutional-residual Fourier layers in a hierarchical structure at various scales.

• The proposed method surpasses previous state-of-the-art approaches in existing PDE
benchmarks, including Navier-Stokes equations, multiscale elliptic equations with rapidly
changing coefficients, and significant solution variations.

• Furthermore, our method demonstrates effectiveness and robustness in solving inverse PDE
problems, particularly when dealing with noisy input data.

2 RELATED WORKS

We briefly cover the background and related works in this section. More related works are listed in
the Appendix A.5.

2.1 NEURAL PDE SOLVER

Many excellent algorithms have been proposed previously for solving PDEs using neural networks
(Long et al., 2018; Hao et al., 2022). Physics-informed neural network (PINN) (Karniadakis et al.,
2021) incorporates PDEs into the network by giving additional constraints with PDEs into loss func-
tion, which guide the synaptic modifications towards tuned parameters that satisfy data distribution,
physical PDE laws, and other necessary boundary conditions. GT (Cao, 2021) utilizes the attention
mechanism to build operator learners to solve PDEs and designs Fourier-type and Galerkin-type at-
tention with linear complexity to reduce the computation cost. Neural operators leverage the concept
that the operator denotes the mapping between infinite input and output function spaces. DeepONet
(Lu et al., 2019) leverages the universal approximation theorem to derive a branch-trunk structure
to form the operator in a polynomial regression way. Some other methods incorporate trained neu-
ral networks into conventional numerical solvers, to minimize numerical errors when dealing with
coarse grids (Cuomo et al., 2022; Meng et al., 2020).

2.2 FOURIER NEURAL OPERATOR

Fourier neural operator (FNO) (Li et al., 2020; 2022) draws inspiration from the conventional
Green’s function method and directly optimizes the kernel within the Fourier frequency domain
by utilizing the Fourier Transform. This approach has been demonstrated to be an efficient means of
reducing computational cost and performing global convolution. A notable advancement is that the
operator kernel is directly trained in the frequency domain, whereby the network is theoretically in-
dependent of the training data resolution. Therefore, FNO can deal with super-resolution problems
and be trained on multiple PDEs.

The FNO has established a foundational framework for operator learning, inspiring several subse-
quent works in the field. Geo-FNO (Li et al., 2022) deforms the irregular grid into a latent space
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Figure 1: Examples of various tasks. These datasets solve equations according to coefficients, pre-
vious solutions, and structures by approximating mappings between input and output in coordinate
spaces. All these tasks are covered in experimental verification.

with a uniform grid to solve the limitation of Fourier Transform could only be applied to rectangular
domains. F-FNO (Tran et al., 2021) learns the kernel weights in a factorized way with separable
spectral layers. G-FNO (Helwig et al., 2023) utilizes the symmetry groups in the Fourier kernel to
learn equivalent representations and improve accuracy even under imperfect symmetries. However,
after empirical observation followed by theoretical validation, we found that FNO ignores high-
frequency components by default to learn a smooth representation of the input space results in poor
performance when solving PDEs with rapidly changing coefficients. (Liu-Schiaffini et al., 2024)
also addressed the over-smoothing issue in FNOs, proposing localized integral and differential ker-
nels to capture fine-grained features. In contrast to these approaches, our work focuses on designing
a network architecture inspired by convolution operations and translational equivariance, specifi-
cally addressing the challenges of solving complex multiscale PDEs, rather than solely enhancing
local feature extraction.

3 METHODS

3.1 PROBLEM FORMULATION

For a PDE problem, the observed samples are (ai, ui)
N
i=1. Assuming the coordinates in a bounded

open set D ⊂ Rd, the input and output can be expressed as functions to these coordinates. These
functions belong to the Banach spaces X = X (D;Rda) and Y = Y(D;Rdu) respectively. Here,
Rda and Rdu denotes the range of input and output functions. D consists of a finite set of grid points
within a rectangular area in R2. The function values are represented by position x ⊂ D, which could
be denoted as a(x) and u(x). The overall solving process could be viewed as using a neural network
fθ to approximate the mapping X → Y to predict the output û(x), where û(x) = fθ(a)(x).

The Fourier neural operator (Li et al., 2020) is a powerful and efficient architecture for modeling
PDEs that learn operators for mapping input and output function spaces. The FNO is inspired by
Green’s function method by learning the kernel integral operator defined below,

[K(ϕ)a](x) :=

∫
kϕ(x, y)a(y)dy, ∀x ∈ D, (1)

where Green’s function kernel kϕ is learned from data and parameterized by neural networks with
parameter ϕ. FNO assumes that Green’s function is periodic and only dependent on the relative
distance, which means that kϕ(x, y) = kϕ(x− y). Then the operation in Eq. 1 could be regarded as
convolution and efficiently implemented as element-wise multiplication in the frequency domain by
using the convolution theorem:

[K(ϕ)a](x) :=

∫
kϕ(x− y)a(y)dy

=F−1 (F(kϕ) · F(a)) (x)

=F−1 (Rϕ · F(a)) (x),

(2)

where F and F−1 are the Fourier transform and the inverse Fourier transform, respectively. Instead
of learning the kernel kϕ, FNO directly learns the kernel Rϕ in the Fourier domain.
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3.2 FNO DRAWBACKS

Nevertheless, we take a one-dimensional case as an example to show that high-frequency features
are not well represented in FNO and related methods, posing a challenge in dealing with multiscale
PDEs. During the Fourier transformation process of the FNO, only the low-frequency components
(ω ≤ Tω) are reserved for multiplication, and high-frequency components (ω > Tω) are ignored by
default. The size of the kernel is the same as the size of the reserved low-frequency components.
Thus the elementwise multiplication process could be expressed as:

(Rϕ · F(a))(ω) =

{
(Rϕ · F(a))(ω), ω ≤ Tω,

0, ω > Tω.

Therefore, after inverse Fourier transformation,

F−1(Rϕ · F(a))(x) =
∑
ω≤Tω

(Rϕ · F(a))(ω)eiωx,

only the low-frequency components are represented. For notational convenience, we only use the
one-dimensional case for illustration, which still stands for 2D and 3D cases. Additionally, previous
works (Liu et al., 2022) also inform that FNO and GT have shown their tendency to prioritize
learning low-frequency components before high-frequency components when applied to multiscale
PDEs. Other recent works such as (Liu-Schiaffini et al., 2024) also found global operators are
prone to over-smoothing and utilize local integral kernels to capture fine-grained features. The
experimental result in Figure 3 (i) corroborates the high-frequency error in FNO.

3.3 ATTENTIVE EQUIVARIANT CONVOLUTION

In the FNO (Li et al., 2020), the kernel of Green’s function is imposed as the convolution kernel,
which is a natural choice from the perspective of fundamental solutions. A fundamental property of
the convolution is that it commutes with translations,

Ly [f ⋆ ϕ] (x) = [Ly[f ] ⋆ ϕ] (x) (3)

where Ly is the translation operator1. In other words, convolving a y-translated signal Ly[f ] with
a filter is equivalent to first convolving the original signal f with the filter ϕ and y-translating the
obtained response next. This property is referred to as translation equivariance.

Previous works have defined attentive group convolution (Romero et al., 2020) and proved its equiv-
ariant property. We simplify them into attentive convolution defined on Rd,

[f ⋆α ϕ] (x) =

∫
Rd

α(x, x̃)f(x̃)Lx [ϕ] (x̃)dx̃ (4)

where α(x, x̃) is the attention map between the input and output positions.

Theorem 1. The attentive convolution is an equivariant operator if and only if the attention oper-
ator A satisfies:

∀x̄,x,x̃∈Rd : A [Lx̄f ] (x, x̃) = A[f ]
(
x̄−1x, x̄−1x̃

)
(5)

If, moreover, the maps generated by A are invariant to one of its arguments, and, hence, exclusively
attend to either the input or the output domain, then A satisfies Equation (5) if it is equivariant and
thus, based on convolutions.

Since convolutions and pooling operations are translation equivariant, mostly visual attention mech-
anisms are translation equivariant as well (Romero et al., 2020). One special case is channel attention
based on fully connected layers (a non-translation equivariant map) in SE-Nets (Hu et al., 2018b).
However, the input of the fully connected layers is obtained via global average pooling, which has
shown that it is equivalent to a pointwise convolution (Romero et al., 2020). Therefore, attention in
SE-Nets is translational equivariant as well (Cohen et al., 2018).

1It follows that Lg[f ](x) = f
(
g−1x

)
= f(x − y), where g−1 = −y is the inverse of g in the translation

group
(
Rd,+

)
for g = y.
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Figure 2: The overall network architecture. The input is downsampled and processed at each scale
using equivariant attention and convolutional-residual Fourier layers. The final output is obtained
by upsampling the outputs of various hierarchical layers.

Furthermore, previous works broadly assumed that the maps in visual attention do not depend on the
filters ϕ and could be equivariantly factorized into spatial αX and channel αC components. Hence,
the attention coefficient α is the sole function of the input signal and becomes only dependent on x.

[f ⋆α ϕ] = [fα ⋆ ϕ] = [(αf) ⋆ ϕ] =
[(
αXαCf

)
⋆ ϕ
]

(6)

In this way, the attention maps α can be shifted to the input feature map f . Resultantly, the attentive
convolution is reduced to a sequence of conventional convolutions and point-wise non-linearities
(Theorem 1), further decreasing attention computational cost. Furthermore, inspired by GFNO
(Helwig et al., 2023), we further utilize the following theorem to establish the connection between
equivariant convolution and Fourier transformation.

Theorem 2. Given the orthogonal group O(d) acting on functions defined on Rd by the map
(g, f) 7→ Lgf where (Lgf) (x) := f

(
g−1x

)
, the group action commutes with the Fourier-

transform, i.e. F ◦ Lq = Lq ◦ F .

This theorem describes the equivariance of the Fourier transformation, which means applying a
transformation from O(d) to a function in physical space equally applies the transformation to the
Fourier transform of the function. Therefore, by converting Equation (6) to the frequency domain
via Fourier transformation, our model could be generally built as:

û(x) := σ
(
F−1(Rϕ · F(αXαCa))(x)

)
, ∀x ∈ D. (7)

We further modify Equation (7) structure to learn the high-frequency feature better.

3.4 MODEL ARCHITECTURE

We propose a method called Translational Equivariant Fourier Neural Operator (TE-FNO) which
combines equivariant attention mechanisms and convolutional-residual layers to learn the function
mapping at various resolutions.

Equivariant Attention: The attention mechanism can be conceptualized as a dynamic selection
process that emphasizes significant features while suppressing irrelevant parts of the input. This
mechanism has proven effective in learning dependencies among pixels in computer vision tasks
(Yuan et al., 2020; Geng et al., 2021). In our context, the grid data closely resembles pixel-based
image data, making attention mechanisms a natural fit for capturing dependencies within the Rd

domain. Previous studies have extensively explored optimal configurations for combining channel
and spatial attention maps in similar scenarios. Following the findings of (Woo et al., 2018), we
adopt a serial approach that prioritizes channel attention before applying spatial attention, as this
setup has demonstrated superior performance in prior works.

ãk
c = AC(ãk)⊙ ãk, ãk

xc = AX (ãk
c )⊙ ãk

c , vk = ãk
xc + ãk. (8)
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To prevent confusion, we simplify the coordinates x and denote ãk as the input of the attention
layers at the k-th layer, which also denotes the downsampled feature of model input a. vk represents
the output of the attention layers. ⊙ denotes the Hadamard product (also known as element-wise
multiplication). The AC and AX denote the channel and spatial attention respectively and have been
proved to be the equivariant operator before.

Convolutional-Residual Fourier layers: We propose the convolution-residual Fourier layers com-
posed of two main components, the Fourier layer and the convolutional-residual layer. In the first
component, the input feature is transformed into the frequency domain by the Fast Fourier Trans-
form (FFT) and learning an element-wise weight kernel in the frequency domain. We follow the
FNO setting, only reserving lower-frequency components and training the kernel weights on them.
This setting aims to learn a smooth mapping to avoid jagged curves in solution spaces. However,
this setting may ignore some details about the solution space, especially in solving multiscale PDEs.
Since convolution utilizes a much smaller kernel size than the Fourier transform that allows the ker-
nel to capture locally detailed information, we replaced the fully connected residual layers with a
convolution layer. The input and output of the convolutional-residual Fourier layer at the k-th scale
are denoted as vk and ṽk respectively. Thus, the Fourier layers could be modulated as:

ṽk = σ
(
Conv(vk) + F−1(Rϕ · F(vk)

)
, (9)

where σ denotes the GELU activation, Rϕ represents the kernel weights in the Fourier domain that
should be trained. After the convolutional-residual Fourier layer, we utilize a multilayer perceptron
(MLP) to integrate the feature further and obtain k-th layer output ũk.

Hierarchical architecture: We attempt to design our model hierarchically, with various scales
as inputs. As in multiscale PDEs, multiple scales and regions represent different physical laws
(Karniadakis et al., 2021). The final prediction output is obtained by successively upsampling the
outputs in various scales from coarse to fine. Specifically, for the k-scale, ũk is concatenated with
the interpolation-upsampled ũk+1 and further projected with a linear layer. More details are denoted
in Appendix A.3.3.

As the weight matrix is directly parameterized in the Fourier domain, we follow the FNO (Li et al.,
2020) to limit the Fourier series by terminating it at a predefined number of modes. We use different
truncation values at each hierarchical layer to help the model learn diverse information at various
scales. However, large truncation modes would cause computing resources to increase hugely. To
balance the computation cost and performance, we set the truncation mode to decrease with the
feature scale, as we reckon that large-scale features need more Fourier modes to represent. Concrete
hyperparameters are presented in the Table 6.

3.5 EVALUATION METRICS

Previous works (Liu et al., 2022) proposed H1 loss to solve multiscale PDEs which calculates the
loss in the Fourier domain. However, we only use the normalized mean squared error (N-MSE) as
the loss function and evaluation metrics, which is defined as

N-MSE =
1

B

B∑
i=1

∥ûi − ui∥2
∥ûi∥2

, (10)

where ∥ · ∥2 is the 2-norm, u, and û are the ground truth and output prediction respectively.

4 EXPERIMENTS

Benchmarks. We evaluate our method on various PDE benchmarks, including multiscale elliptic
equations with various resolutions, Navier-Stokes equations with different viscosity coefficients, and
other physics scenarios governed by PDEs. Also, we conduct experiments on the inverse problem
of multiscale elliptic equations with noise input data.

Baselines. We compare our method with recent and advanced methods. FNO (Li et al., 2020), U-
NO (Rahman et al., 2022), and F-FNO (Tran et al., 2021) are FNO-relevant methods that use Fourier
transformation to learn the operators directly in the frequency domain. WMT (Gupta et al., 2021)
learns the kernel projection onto fixed multiwavelet polynomial bases. GT (Cao, 2021) modify the
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Table 1: Experiment results on various elliptic equations with various resolutions. → denotes the
resolution mapping between input and output. For example, 256 → 256 denotes the resolution of
the input and the output are both 256 × 256. The time per epoch is measured for a batch size of
10. Performance is measured with normalized mean squared error (N-MSE with ×10−2). All the
results of TE-FNO are averaged on 5 runs. For clarity, the best result is in bold and the second best
is underlined. All the following tables retain this setting.

Methods Time per epoch Trigonometric Darcy Rough Darcy Smooth
(s) 256 → 256 512 → 512 128 → 128 256 → 256 64 → 64

FNO 7.42 1.936 1.932 2.160 2.098 0.83
WMT 20.03 1.043 1.087 1.573 1.621 0.82
U-NO 15.42 1.256 1.245 1.368 1.332 1.13
GT 36.32 1.143 1.264 2.231 2.423 1.70
F-FNO 10.42 1.429 1.424 1.435 1.513 0.77
HANO 29.13 0.893 0.948 1.172 1.241 0.79
LSM 14.26 0.962 1.093 1.543 2.368 0.65
DCNO 11.73 1.056 1.209 1.276 0.948 0.72

TE-FNO 10.81 0.724 0.699 1.087 0.963 0.60

self-attention to Galerkin-type attentions with linear complexities to solve the PDEs. HANO (Liu
et al., 2022) utilizes hierarchical attention to solve multiscale PDEs. LSM (Wu et al., 2023) solves
the PDEs in the latent spectrum domain by decomposing latent features into basic operators. DCNO
(Xu et al., 2024) improves the structure of FNO by combining Fourier and Convolution layers.

4.1 MULTISCALE ELLIPTIC EQUATIONS

The elliptic equation describes the flow of fluid through a porous medium, which is formulated by a
second-order linear elliptic equation,{−∇ · (a(x)∇u(x)) = f(x), x ∈ D,

u(x) = 0, x ∈ ∂D,
(11)

with rough coefficients and Dirichlet boundary. In contrast to previous works, the coefficient func-
tions show a significant degree of smoothness, leading to correspondingly smooth solutions. We
follow the setting in DCNO (Xu et al., 2024) to change the conventional elliptic equations into mul-
tiscale cases by modifying coefficients to two-phrase rough ones (Darcy-Rough) or high-contrast
trigonometric coefficients (Trigonometric). The original experiments of multiscale PDEs in (Xu
et al., 2024) using coefficients with resolution 1023× 1023 to approximate the solution with resolu-
tion 256×256 or 512×512, which reduce the difficulties as larger inputs might contain more specific
information. To enhance the difficulty, we modify the resolution of coefficients to the same as that
of the output solution. We also follow the setting in (Li et al., 2020) and perform the original elliptic
equation dataset (Darcy-Smooth) for comparison. More details are denoted in the Appendix A.2.1.

The experimental results, presented in Table 1, demonstrate that our model consistently achieves
the lowest error across various scenarios compared to other operator baselines. This is particu-
larly evident in the case of elliptic equations with trigonometric coefficients, where the performance
gap is more pronounced. Our findings suggest that cascade architecture models, such as FNO and
DCNO, struggle to perform effectively in this setting. In contrast, hierarchical structures, such as
U-NO and HANO, tend to deliver better results due to their inherent ability to capture multiscale
dependencies. To further illustrate our model improvements in capturing high-frequency features,
we provide a visualization of the predicted solutions and errors in Figure 3. Compared to FNO,
our model demonstrates a significant reduction in prediction error, particularly for high-frequency
components, underscoring its robustness and accuracy in challenging scenarios.

4.2 NAVIER-STOKES EQUATION

We consider the 2D Navier-Stokes equation, a standard benchmark proposed in FNO (Li et al.,
2020), in which the vorticity forms on the two-dimensional torus T2. Specifically, the operator pre-
dicts the vorticity after T0 by the input vorticity before T0, the values of T0 and T vary according to
the dataset. Our experiments consider viscosities with ν ∈ {10−3, 10−4, 10−5}, with smaller vis-
cosities denoting more chaotic flow which are much harder to predict. To ensure fair comparisons,

7
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Figure 3: Showcase of results on Darcy-Rough, where the high-frequency components are moved
to the center The results show TE-FNO can capture more accurate high-frequency features.

Table 2: Experiments on various Navier-Stokes equations and other physical scenarios including
Elasticity, and Pipe. In the Navier-Stokes dataset, the values denote the ν, T0, and T respectively.
For example, {10−3, 10s, 50s} denotes ν = 10−3, T0 = 10s, and T = 50s.

Methods Navier-Stokes Elasticity Pipe{10−3, 10s, 50s} {10−4, 10s, 30s} {10−5, 10s, 20s}
FNO 0.88 6.60 19.82 5.08 0.67
WMT 1.01 11.35 15.41 5.20 0.77
U-NO 0.89 5.72 17.53 4.69 1.00
GT 1.12 10.31 26.84 6.81 0.98
F-FNO 0.92 6.02 17.98 4.72 0.59
HANO 0.98 6.18 18.47 4.75 0.70
LSM 0.82 6.12 15.35 4.08 0.50
TE-FNO 0.73 5.87 15.05 3.91 0.51

we follow the setting in FNO, using the ‘rollout’ strategy to predict vorticity. The final operator
could be regarded as approximated by various neural operators. More details are listed in the Ap-
pendix A.2.4.

4.3 OTHER PHYSICAL SCENARIOS

Pipe: The Pipe dataset focuses on predicting the incompressible flow through a pipe. The input is
the pipe structure, while the output is the horizontal fluid velocity within the pipe. In this dataset,
geometrically structured meshes with resolution 129× 129 are generated. The input and output are
the mesh structure and fluid velocity within the pipe.

Figure 4: Showcase of results on Navier-
Stokes Equation.

Elasticity: The Elasticity dataset is designed to predict
the internal stress within an incompressible material
containing an arbitrary void at its center and an exter-
nal tensile force is exerted on the material. Originally,
the Elasticity data are presented by the point clouds, we
follow (Wu et al., 2023) to modify the data into regu-
lar grids. The input consists of the material’s structural
characteristics, while the output represents the internal
stress. More details are listed in the Appendix.

We evaluate our model on these datasets to demon-
strate its effectiveness in solving general PDE prob-
lems. Table 2 summarizes experimental results on
Navier-Stokes equations with various coefficients and
other physical scenarios. Our model performs better in
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Table 3: Experiments on inverse coefficient identification tasks. In this experiment, the input solu-
tion space and output coefficient space are both 256× 256.

methods Trigonometric Darcy Rough
ϵ = 0 ϵ = 0.01 ϵ = 0.1 ϵ = 0 ϵ = 0.01 ϵ = 0.1

FNO 44.74 46.34 48.43 28.41 28.98 30.65
WMT 11.14 12.43 20.43 12.32 17.54 28.43
U-NO 12.97 18.54 25.87 15.64 20.54 25.34
GT 27.87 30.98 43.54 23.12 28.87 35.43
F-FNO 21.46 26.98 36.34 18.73 25.23 37.54
HANO 9.87 13.67 20.98 8.45 10.43 20.43
DCNO 8.87 17.64 34.76 6.32 11.83 23.54

TE-FNO 8.10 10.01 19.61 6.59 9.89 20.10

almost all settings. Learning high-frequency features may help capture detailed flow changes as
flows with smaller viscosities are more chaotic. We further visualize the results of Navier-Stokes in
Figure 4.

4.4 INVERSE PROBLEMS SOLVING

In various scientific disciplines such as geological sciences and mathematical derivation, inverse
problems are of significant importance. Nonetheless, these problems frequently demonstrate re-
duced stability compared to their associated forward issues, even when advanced regularization
techniques are employed. Following (Xu et al., 2024), we evaluate our method for inverse identifi-
cation problems on multiscale elliptic PDEs. In this experiment, we aim to learn an inverse operator,
which maps the solution function space to the corresponding coefficient space û = u+ ϵN(u) 7→ a.
Here, ϵ indicates the intensity of Gaussian noise introduced into the training and evaluation data.
The noise term N(u) accounts for the sampling distribution and data-related noise.

The experiments about inverse coefficients inference problems on the multiscale elliptic PDEs
dataset are presented in Table 3. In our experiments, we modify the input and output resolutions
to both 256 × 256 in the Trigonometric and Darcy Rough elliptic equations. Since the coefficient
function space changes faster than the solution space, this task is more challenging than the forward-
solving problem. The result shows that our model performs well in the inverse coefficient identifica-
tion problem, which illustrates our model’s ability to address the challenges posed by this ill-posed
inverse problem with data. Methods such as FNO and F-FNO that learn kernel functions directly in
the low-frequency domain have trouble recovering targets with high-frequency components.

4.5 ABLATION STUDY

To verify the effectiveness of each component in our model, we perform ablation studies in various
settings, including removing components (w/o), replacing them with other components (rep), and
adding some other components (add).

• In the w/o part, we consider removing the equivariant attention (w/o Att) and the Fourier
layer (w/o Fourier).

• In the rep part, we consider replacing the convolutional-residual layer and attention mech-
anism with other components and keeping the number of parameters the same. For
convolutional-residual layers, we replace them with simple residual layers (rep Conv→Res)
or fully connected layers (rep Conv→Fc). For the attention mechanism, we replace them
with dilation convolution (rep Att→d-Conv), multi-layer perceptrons (rep rep Att→MLP),
self-attention (Att→SA) and adaptive token mixing (rep Att→ATM)

• In the add part, we add one hierarchical layer with corresponding attention and Fourier
layer (add Hier).

Our ablation studies highlight the critical role of all components in our model for solving multiscale
PDEs. The removal experiments show that excluding the translational-equivariant attention mecha-
nism or the Fourier layer significantly reduces performance, demonstrating their importance. Simi-
larly, the replacement experiments reveal that while some alternatives, like MLP, perform adequately
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Table 4: Abation studies on our proposed model, including removing components (w/o), replacing
them with other components (rep), and adding some other components (add).

Designs MSE
Trigonometric Darcy-Rough Navier-Stokes

w/o Attention 1.021 1.110 18.52
FNO 1.181 1.192 20.08

rep

Conv→Res 1.131 1.162 16.46
Conv→Fc 1.176 1.245 15.72
Att→d-Conv 0.894 0.993 16.12
Att→MLP 0.985 1.034 15.53
Att→SA 0.804 0.970 15.21
Att→ATM 0.858 1.012 15.43

add Hier 0.779 0.960 15.20

TE-FNO 0.724 0.963 15.05

in simpler scenarios, they generally fail to match the effectiveness of translational-equivariant atten-
tion, especially in tasks with rapidly varying coefficients. Adding hierarchical layers may further
improve the model’s ability to capture multiscale features, particularly in complex scenarios, though
at the cost of increased computational complexity. To balance efficiency and accuracy, we care-
fully limit the number of hierarchical layers in the final design. Overall, our model consistently
outperforms cascade-based architectures like FNO and DCNO across benchmarks, underscoring the
advantages of a translational-equivariant and hierarchical approach for capturing multiscale features
and improving accuracy.

5 LIMITATIONS

Although TE-FNO has shown remarkable effectiveness in solving a wide range of complex PDE
tasks. However, it comes with certain limitations. Firstly, TE-FNO is designed to be particularly
suited to scenarios where the input and output resolutions are identical, a constraint commonly as-
sociated with U-shaped network architectures. For tasks such as input coefficient resolutions are
larger than the solution resolution, TE-FNO performs suboptimal. Furthermore, TE-FNO depends
on convolution-based local attention mechanisms in translational equivariant attention, while ad-
vantageous for capturing localized features, limits its ability to effectively capture global features,
which can reduce its efficacy in tasks requiring a broader contextual understanding.

6 CONCLUSION

We propose a novel Translational Equivariant Fourier Neural Operator (TE-FNO) that combines
equivariant attentions and convolutional-residual Fourier layers for solving complex PDEs. Our
model utilizes equivariant attention mechanisms and convolutional residual layers to capture high-
frequency features and complement the low-frequency features captured by the Fourier layer. Ben-
efits from the above components, our model could capture both local and global features simultane-
ously, and at the same time, achieve superior performances in many PDE benchmarks, especially in
solving forward and inverse problems of multiscale elliptic PDEs.
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A APPENDIX

A.1 BACKGROUNDS AND PROOFS

A.1.1 PROOFS OF EQUIVARIANT OF ATTENTIVE CONVOLUTION

We follow the definition of (Cohen & Welling, 2016) to define the attentive convolution and reduce
the visual self-attention into

foutc (g) =

Nc̃∑
c̃

∫
G

αc,c̃(g, g̃)ϕc,c̃
(
g−1g̃

)
f inc̃ (g̃)dg̃. (12)

In this work, we only consider group act on O(d), thus the definition could be further reduced into

foutc (x) =

Nc̃∑
c̃

∫
Rd

αc,c̃(x, x̃)ϕc,c̃
(
x−1x̃

)
f inc̃ (x̃)dx̃. (13)

Without loss of generality, let A : L2(Rd) → L2(Rd) denote the attentive group convolution defined
by Equation (13), with Nc̃ = Nc̃ = 1, and some ϕ which in the following we omit to simplify our
derivation. Equivariance of A implies that ∀f∈L2(Rd),∀x̄,x∈Rd :

A [Lx̄[f ]] (x) = Lx̄[d[f ]](x)

⇔
A [Lx̄[f ]] (x) = A[f ]

(
x̄−1x

)
⇔∫

Rd

A [Lx̄[f ]] (x, x̃)Lx̄[f ](x̃)dx̃ =

∫
Rd

A[f ]
(
x̄−1x, x̃

)
f(x̃)dx̃

⇔∫
Rd

A [Lx̄[f ]] (x, x̃)f
(
x̄−1x̃

)
dx̃ =

∫
Rd

A[f ]
(
x̄−1x, x̄−1x̃

)
f
(
x̄−1x̃

)
dx̃,

(14)

where we once again perform the variable substitution x̃ → x̄−1x̃ at the right hand side of the last
step. This must hold for all f ∈ L2(Rd) and hence:

∀x̄∈Rd : A [Lx̄f ] (x, x̃) = A[f ]
(
x̄−1x, x̄−1x̃

)
(15)

A.1.2 PROOF OF SYMMETRY OF FOURIER TRANSFORM TO O(d)

Let A ∈ Rd×d be an invertible matrix, f : Rd → R Lebesgue-integrable and b ∈ Rd. Consider the
function fA,b : Rd → R given by fA,b(x) = f(Ax+ b). Then

F(f(A,b))(ξ) =
e−2πi ⟨A−T ξ,b⟩

|detA|
F(f)(A−T ξ)

In particular, if A is an orthogonal matrix, then |detA| = 1 and A−T = A, so for all O ∈ O(n):

F(f(O,b))(ξ) = e−2πi ⟨Oξ,b⟩ F(f)(Oξ)

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

We will use the multi-dimensional change of variables formula with the substitution z = Ax+ b, as
well as the identity ⟨ξ, Az⟩ = ⟨AT ξ, z⟩.

F(f(A,b))(ξ)

=
1

(2π)n/2

∫
Rd

e−2πi ⟨ξ,x⟩f(A,b)(x) dx

=
1

(2π)n/2 |detA|

∫
Rd

e−2πi ⟨ξ,A−1(Ax+b)⟩+2πi ⟨ξ,A−1b⟩

f(Ax+ b) |detA|dx

= e2πi⟨ξ,A
−1b⟩ 1

(2π)n/2 |detA|

∫
Rd

e−2πi ⟨ξ,A−1z⟩f(z) dz

=
e2πi ⟨ξ,A

−1b⟩

|detA|
1

(2π)n/2

∫
Rd

e−2πi ⟨A−T ξ,z⟩ f(z) dz

=
e2πi ⟨A

−T ξ,b⟩

|detA|
F(f)(A−T ξ).

(16)

A.2 BENCHMARK DETAILS

We introduce the underlying PDEs of each benchmark and the number of corresponding training
and testing samples.

A.2.1 MULTISCALE ELLIPTIC PDES

Multiscale elliptic equations are given by second-order linear elliptic equations,{−∇ · (a(x)∇u(x)) = f(x) x ∈ D

u(x) = 0 x ∈ ∂D
(17)

where the coefficient a(x) ∈ [amin, amax] ,∀x ∈ D and amin > 0. The coefficient a(x), enables
rapid oscillation (for example, with a(x) = a(x/ε) where ε ≪ 1), a significant contrast ratio
characterized by amax/amin ≫ 1, and even a continuum of non-separable scales.

A.2.2 MULTISCALE TRIGONOMETRIC COEFFICIENT

We follow the setting in HANO (Liu et al., 2022), which considers eq. (17) with multiscale
trigonometric coefficients. The domain D is [−1, 1]2, and the coefficient a(x) is defined as

a(x) =
6∏

k=1

(1 + 1
2 cos(akπ(x1 + x2)))(1 + 1

2 sin(akπ(x2 − 3x1))), where ak is uniformly dis-

tributed between 2k−1 and 1.5× 2k−1, and the forcing term is fixed as f(x) ≡ 1. The resolution of
the dataset is 1023 × 1023 and lower resolutions are created by downsampling with linear interpo-
lation.

A.2.3 TWO-PHASE COEFFICIENT

The two-phase coefficients and solutions are generated according to FNO (Li et al., 2020). The
coefficients a(x) are generated according to a ∼ µ := ψ#N

(
0, (−∆+ cI)−2

)
with zero Neumann

boundary conditions on the Laplacian. The mapping ψ : R → R assigns the value amax to the
positive segment of the real line and amin to the negative segment. The push-forward is explicitly
defined on a pointwise basis. The forcing term is fixed as f(x) ≡ 1. The solutions u are derived
through the application of a second-order finite difference approach on a well-suited grid. The
parameters amax and amin have the ability to manage the contrast of the coefficient. Additionally,
the parameter c regulates the roughness or oscillation of the coefficient; an increased value of c leads
to a coefficient featuring rougher two-phase interfaces.

A.2.4 NAVIER-STOKES EQUATIONS

We follow the Navier-Stokes equation in FNO (Li et al., 2020). This dataset simulates incompress-
ible and viscous flow on the unit torus, where fluid density is unchangeable. In this situation, energy
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Table 5: More details about PDEs benchmarks, including the number of training and testing samples
with their resolutions. NS is short for Navier-Stokes.

Benchmarks Ntraining Ntesting Resolution

Trigonometric 1000 100 512× 512,256× 256
Darcy-Rough 1000 100 256× 256,128× 128
Darcy-Smooth 1000 200 64× 64

NS(ν = 10−3) 1000 200 64× 64
NS(ν = 10−4) 10000 2000 64× 64
NS(ν = 10−5) 1000 200 64× 64

Elasticity 1000 200 41× 41
Pipe 1000 200 129× 129

conservation is independent of mass and momentum conservation.

∇ · u = 0

∂w

∂t
+ u · ∇w = ν∇2w + f

w|t=0 = w0,

(18)

where u and w are abbreviated versions of u(x, t) and w(x, t), respectively. u ∈ R2 is a velocity
vector in 2D field, w = ∇×u is the vorticity, w0 ∈ R is the initial vorticity at t = 0. In this dataset,
viscosity is set as ν ∈ {10−3, 10−4, 10−5, 10−6} and the resolution of the 2D field is 64× 64. The
number of training and prediction frames is varied in different settings.

A.2.5 ELASTICITY

The governing equation of Elasticity materials is:

ρs
∂2u

∂t2
+∇ · σ = 0, (19)

where ρs ∈ R denotes the solid density, ∇ and σ denote the nabla operator and the stress tensor
respectively. Function u represents the displacement vector of material over time t. These bench-
marks estimate the inner stress of incompressible materials with an arbitrary void in the center of the
material. In addition, external tension is applied to the material. This benchmark’s input and output
are the material’s structure and inner stress.

A.2.6 PIPE

This dataset focuses on the incompressible flow through a pipe. The governing equations are similar
to Navier-Stokes equations:

∇ ·U = 0

∂U

∂t
+U · ∇U = f − 1

ρ
∇p+ ν∇2U .

(20)

In this dataset, geometrically structured meshes with resolution 129× 129 are generated. The input
and output are the mesh structure and fluid velocity within the pipe.

We provide details of our benchmarks including the number of training and testing samples and their
input solutions in Table 5.

A.3 MODEL DETAILS

A.3.1 IMPLEMENTATION DETAILS.

Our model is implemented in PyTorch and conducted on a single NVIDIA A100 40GB GPU. Here
are the implementation details of our model.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 6: Model configurations.
MODEL DESIGNS HYPERPARAMETERS VALUES

FOURIER LOW-FREQUENCY {24, 12, 6, 3}
LAYERS MODES {d1low , · · · , dKlow}

CHANNELS OF EACH {32, 64, 128, 128}
HIERARCHICAL SCALE {d1C , · · · , dKC }

LAYERS NUMBER OF SCALES K 4

DOWNSMAPLE RATIO r 2

TRAINING LEARNING RATE 0.0005
SETTING BATCHSIZE 10

A.3.2 MODEL CONFIGURATIONS.

Here we present the detailed model configurations of our model in Table 6. In the beginning, the in-
put data will be padded with zeros properly to resolve the division problem in model configurations.

A.3.3 DOWNSAMPLE AND UPSAMPLE ARCHITECTURE

In this section, we illustrate the downsampling and upsampling operations in our hierarchical archi-
tectures. Our method is similar to that of LSM (Wu et al., 2023).

Downsampling. Given deep features {ãk(x)}x∈Dk at the k-th scale, The downsampling operation
is to aggregate deep features in a local region through maximum pooling and convolution operations,
which can be formalized as:

{ãk+1(x)}x∈Dk+1 = Conv
(
MaxPool

(
{ãk(x)}x∈Dk

))
,

k from 1 to (K − 1).
(21)

Upsampling. Given the features ũk+1(x)x∈Dk+1 and ũk(x)x∈Dk corresponding to the (k + 1)-
th and k-th scales, respectively, the upsampling procedure involves fusing the interpolated features
from the (k + 1)-th scale and the features from the k-th scale using local convolution. This process
can be expressed as follows:

{ûk(x)}x∈Dk = Conv

(
Concat

([
Interp

(
{ũk+1(x)}x∈Dk+1

)
,{ũk(x)}x∈Dk

]))
,

k from (K − 1) to 1,

(22)

where we adopt the bilinear Interpolation Inter(·) for 2D data.

A.4 MORE VISUALIZATION RESULTS

We visualize more results compared to FNO on the Trigonometric dataset in Figure 5.

A.5 MORE RELATED WORK

A.5.1 OPERATOR LEARNING

Suppose A and U denote the infinite input and output function spaces. The objective of the operator
is to learn a mapping from A to U using a finite collection of input and output pairs in the supervised
learning way. For any vector function a ∈ A, a : DA → RdA with DA ⊂ Rd and for any vector
function u ∈ U , u : DU → RdU , with DU ⊂ Rd. Given =the training data {(ai, ui)}Ni=1, our
objective is to train an operator Gθ : A → U which is parameterized by θ, to learn the mapping
between input and output function spaces by extracting relationships from a and u.
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Figure 5: Showcase of Trigonometric Elliptic PDEs, where the high-frequency components are
moved to the center.

A.5.2 MULTISCALE PDES

Multiscale PDEs have many applications, including forecasting atmospheric convection and ocean
circulation, modeling the subsurface of flow pressures (Furman, 2008; Huyakorn, 2012), the defor-
mation of elastic materials (Rivlin, 1948; Merodio & Ogden, 2003), and the electric potential of
conductive materials (Sundnes et al., 2005). Multiscale elliptic PDEs are classic examples of mul-
tiscale PDEs. Solving elliptic PDEs with smooth coefficients is a conventional problem that can be
effectively addressed using FNO. However, when the coefficients become non-smooth and exhibit
rapidly changing features, the values in the solution spaces can exhibit oscillations and high contrast
ratios (Xu et al., 2024). Another example is turbulent flow, which is modeled by the Navier-Stokes
equation. This equation describes fluid dynamics and exhibits turbulent behavior at high Reynolds
numbers. In turbulent flow, unsteady vortices interact, leading to complex dynamics. To solve these
multiscale PDEs effectively, models must account for both global and local dynamics.

A.5.3 NUMERICAL SOLVERS FOR MULTISCALE PDES

In addressing multiscale PDEs, a variety of numerical approaches are available. Numerical homog-
enization methods (Engquist & Souganidis, 2008) aim to create a finite-dimensional approximation
space for solution exploration. Fast solvers like multilevel and multigrid methods (Hackbusch, 2013;
Xu & Zikatanov, 2017) can be considered as an extension of numerical homogenization. Recently,
operator-adapted wavelet methods, such as Gamblets (Owhadi, 2017), have been developed to solve
linear PDEs with rough coefficients, representing a progression beyond numerical homogenization.
Nevertheless, handling multiscale PDEs poses inherent challenges for numerical methods, given that
the computational cost tends to scale inversely proportional to the finest scale ϵ of the problem. In
recent years, there has been increasing exploration of neural network methods for solving multiscale
PDEs (Liu et al., 2022).

A.5.4 MORE FNO RELATED WORK

Networks inspired by FNO have been verified in various domains, including computer vision and
time series forecasting (Ovadia et al., 2023a;b). AFNO (Guibas et al., 2021) leverages kernel in
the Fourier domain as a token mixer within the transformer, aiming at reducing computational com-
plexity and enhancing performance in segmentation tasks. FEDformer (Zhou et al., 2022) harnesses
sparse basic elements in the Fourier frequency domain to create a frequency-enhanced transformer.
Meanwhile, GFNet (Rao et al., 2021) employs the element-wise multiplication of learnable global
filters with features in the frequency domain to improve the performance in classification and trans-
fer learning tasks.
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A.5.5 VISUAL ATTENTION METHODS

The attention mechanism can be regarded as a process of adaptive selection based on input features.
It has yielded advantages in numerous visual tasks, including image classification (Woo et al., 2018),
object detection (Dai et al., 2017; Hu et al., 2018a), and semantic segmentation (Yuan et al., 2020;
Geng et al., 2021). In computer vision, the attention mechanism is usually be divided into three
main categories: channel attention, spatial attention, and temporal attention. For instance, SENet
(Hu et al., 2018b) utilizes global average pooling on the channel dimension to modulate the corre-
sponding channel attention. Complementary channel attention akin to that of CBAM (Woo et al.,
2018) and BAM (Park et al., 2018) utilize similar strategies for spatial attention and combine spatial
and channel attention in series and parallel respectively. Recent research in visual attention aims to
integrate the strengths of various attention mechanisms to create more holistic attention (Hu et al.,
2018b; Guo et al., 2022).
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