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Abstract

Large language models often struggle with length
generalization and solving complex problem in-
stances beyond their training distribution. We
present a self-improvement approach where mod-
els iteratively generate and learn from their own
solutions, progressively tackling harder problems
while maintaining a standard transformer archi-
tecture. Across diverse tasks including arith-
metic, string manipulation, and maze solving,
our method enables models to solve problems far
beyond their initial training distribution—for in-
stance, generalizing from 10-digit to 100-digit
addition without apparent saturation. We ob-
serve that filtering for correct self-generated exam-
ples leads to exponential improvements in out-of-
distribution performance across training rounds.
Additionally, starting from pretrained models sig-
nificantly accelerates this self-improvement pro-
cess for several tasks. Our results demonstrate
how controlled weak-to-strong curricula can sys-
tematically expand model capabilities while pre-
serving architectural simplicity.

1. Introduction

Despite the remarkable success of transformer-based lan-
guage models (Vaswani et al., 2017) across a wide range
of tasks, these models exhibit significant limitations in
length generalization—the ability to extrapolate to longer
sequences than those seen during training. Even in simple
algorithmic tasks such as arithmetic, standard transformer
models trained with autoregressive objectives struggle to
generalize to longer problem instances (Anil et al., 2022).

To address this, prior work has explored various modifica-
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tions, including changes to positional embeddings (Ruoss
et al., 2023; McLeish et al., 2024; Kazemnejad et al., 2024;
Li et al., 2023; Sabbaghi et al., 2024; Cho et al., 2024; Zhou
et al., 2024), architectural modifications (Fan et al., 2024,
Duan et al., 2023), and data format changes such as index
hinting (Zhou et al., 2023; 2024). While effective in con-
trolled setups, these approaches are often incompatible with
large language models (LLMs) in practice, as they introduce
task-specific modifications that are difficult to scale across
diverse applications.

Instead of architectural modifications, we exploit transform-
ers’ tendency to exhibit some “transcendence” (Zhang et al.,
2024) beyond their training distribution - models trained on
simple task instances can sometimes solve slightly harder
ones. Specifically, models trained on simple instances of
a task can sometimes generate correct outputs for slightly
harder instances. We leverage this property by applying a
self-improvement framework, where the model iteratively
generates its own training data and progressively learns from
harder examples.

Self-improvement has been widely studied in various con-
texts (Singh et al., 2023; Gulcehre et al., 2023; Liang et al.,
2024), typically in settings where external verifiers, weak
supervision, or filtering mechanisms are used to ensure
data quality. We demonstrate that extreme length gener-
alization is possible under this framework, even without
architectural modifications. For tasks like reverse addition
and string copying, self-improvement succeeds with no ex-
plicit data filtering. However, for harder problems such as
multiplication and shortest path finding in mazes, naive self-
improvement fails due to error accumulation. We show that
simple data filtering techniques—such as length filtering
and majority voting—suffice to maintain data quality and
enable self-improvement to extend far beyond the initial
training distribution.

Our findings suggest that self-improvement is not limited to
length generalization but also enables easy-fo-hard general-
ization, where a model trained on simpler tasks successfully
learns harder tasks without additional supervision. Notably,
our approach does not introduce a new self-improvement
framework but instead demonstrates its effectiveness across
diverse algorithmic tasks.
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Figure 1. Overview of self-improvement results. Models trained with self-improvement can tackle increasingly complex tasks that extend

far beyond their initial training distributions, achieving significant g

Furthermore, we investigate the dynamics of self-
improvement and show that: (1) controlling the weak-to-
strong curriculum is crucial, as models require a struc-
tured difficulty schedule to avoid catastrophic failure, (2)
self-improvement accelerates over time, as models increas-
ingly benefit from harder examples, leading to exponen-
tial extrapolation, and (3) pretrained models are better
at self-improvement, generalizing further and faster than
models trained from scratch. These results position self-
improvement as a scalable solution for length generalization
and beyond. Our contributions can be summarized as:

1. We apply an iterative self-training framework to train
transformers on the arithmetic, maze and string ma-
nipulation tasks, and successfully tackle easy-to-hard
generalization to extreme out-of-distribution test data.

2. We motivate the importance of a carefully crafted self-
improvement schedule and label filtering based on
length and majority voting, which are central to consis-
tent self-improvement.

3. We show that the rate of self-improvement can be expo-
nential and pretrained models can achieve faster accel-
eration in easy-to-hard generalization.

4. We deep-dive into reverse addition and investigate error
avalanche caused by label noise, a key failure case of
the self-improvement process.

2. Related Works

Length and Easy-to-Hard Generalization. Length gen-
eralization is concerned with extrapolating to longer se-
quence lengths than those seen during training (Anil et al.,
2022). Previous approaches to improve length generaliza-
tion includes architectural modifications, including special-
ized positional embeddings (Li et al., 2023; Ruoss et al.,

eneralization without any additional supervision.

2023; McLeish et al., 2024; Kazemnejad et al., 2024; Sab-
baghi et al., 2024; Cho et al., 2024; Zhou et al., 2024), loop-
ing (Fan et al., 2024), novel attention mechanisms (Duan
et al., 2023), and input format augmentation (Zhou et al.,
2023; 2024). In contrast, our approach adheres to the stan-
dard transformer architecture without introducing signifi-
cant modifications to architecture, positional encoding, or
input structure. While prior approaches typically rely on one
fixed-length training dataset, we alternate between training
and generating training datasets.

More generally, easy-to-hard generalization is the paradigm
where human annotation is provided for easier tasks but
aiming to enable generalization to harder tasks with no addi-
tional supervision (Schwarzschild et al., 2021; Bansal et al.,
2022; Burns et al., 2023; Hase et al., 2024; Sun et al., 2024).
For instance, Zhang et al. (2024) study this transcendence
phenomenon in chess, showing that chess transformers can
sometimes outperform all players in the training dataset.
Similarly, Sun et al. (2024) finds that a reward model trained
on easier math problems can be effectively transferred to
harder problems, through reinforcement learning.

Self Improvement. When high-quality training labels are
unavailable or costly to obtain, training on self-generated
labels provides an efficient way to enhance model capabil-
ities. Typically, this involves generating candidate labels,
filtering or verifying them to prune errors, and retraining
on the refined self-generated data (Zelikman et al., 2022;
Wang et al., 2022b; Huang et al., 2022; Singh et al., 2023;
Chen et al., 2023; Gulcehre et al., 2023; Madaan et al., 2024;
Yuan et al., 2024; Liang et al., 2024). This approach has
been successfully applied across various domains, including
reasoning (Zelikman et al., 2022; Huang et al., 2022; Singh
et al., 2023), mathematics (Zhang & Parkes, 2023; Charton
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et al., 2024; Liang et al., 2024), coding (Chen et al., 2023),
and general instruction tuning (Wang et al., 2022b; Yuan
et al., 2024).

Extensive discussion of related works is in Appendix A.

3. Preliminaries and Experimental Setup

In this section, we describe the experimental setup, includ-
ing the model architecture, tasks, training methodology,
evaluation criteria, and the self-improvement framework.

Models We adopt the LLaMA architecture with six layers,
six attention heads, and an embedding dimension of 384
and 14m parameters. We modified the architecture to use
No Positional Encoding (NoPE) proposed in (Kazemnejad
et al., 2024). We use character-level tokenization across
all tasks except for the maze-solving task, where numbers
ranging from 0 to 99 are tokenized as individual tokens.

Tasks We evaluate our approach on a diverse set of tasks,
categorized into arithmetic operations, string manipulation,
and maze solving. All tasks we consider admit a straightfor-
ward notion of difficulty. We denote the difficulty level of a
problem instance x as an integer Difficulty(z). Table 1 pro-
vides examples, difficulty definitions, and relevant sections
of each task.

¢ Arithmetic operations:

1. Addition : We consider both reverse and forward ad-
dition of two numbers of equal length. In reverse
addition, both operands and the answers are reversed,
so they are written with the least significant digit first.
Forward addition, in contrast, follows the standard
format, with the most significant digit first.

2. Multiplication : Multiplication tasks are presented in
a chain-of-thought (CoT) data format (Deng et al.,
2024), which includes intermediate steps to guide the
computation.

* String manipulation:

1. Copy : Copying the input sequence.

2. Reverse : Reversing the input sequence.

* Maze solving: The task is to solve mazes represented as
tree graphs. Given a tree graph and a specified start node
and end node, the goal is to find the shortest path.

Data Generation and Sampling We generate an initial
supervised training dataset Dy of up to a fixed difficulty
level dj by uniformly sampling the difficulty level d < d,
followed by independent sampling of the data conditioned
on the difficulty. Denoting the input as x;, labels as y;,

Do = {(zi,y;)}°,, where Difficulty(z;) < do.

Train Dataset

X ] | S

Collect predictions on
00D data

X —
Filteroutputbasedon | [ f4Te| 0 ——~ | ¢ | | E 7?
majority vote & length =
Continue training on
expanded dataset

Figure 2. Illustration of our self-improvement procedure. At each

round, the training data is updated with the model’s predictions on
progressively harder problems.
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Details on data generation and sampling are provided in
Appendix C.2.

Self-Improvement Framework The self-improvement
framework begins by training a model using the labeled
training dataset Dy, which gives us our base model M.

For each subsequent round 7 (r = 1,2, 3, ...), we increase
the problem difficulty, such as the number of digits or string
length for arithmetic and string manipulation tasks, or the
number of hops for maze-solving tasks, to d,. Using the
previous model M, _;, we generate N, new self-improve
data samples D,. defined as:

D, = {(zs, My_1(2;))} Yy, dr_1 < Difficulty(z;) < d,

Instead of the true labels y;, we obtain the predicted labels
M, _1(z;) from the output of the model.

At each self-improvement round r, the model is trained
on the combined dataset Dy U Dy U --- U D,._1, which
includes the initial labeled dataset and all subsequent self-
improvement datasets. To ensure sufficient training on the
most recently generated data D,._;, we up-sample it with
a sampling probability of 50%. The remaining datasets
Dy, ..., D,_o are sampled uniformly at random. This iter-
ative process allows the model to gradually tackle harder
problems, leveraging its own predictions to expand the train-
ing data and improve generalization.

Data Filtering We employ two unsupervised data-
filtering methods to refine our self-improvement dataset:
1) length filtering and 2) majority voting. For a given
self-improved dataset D, = {(, M,_1(x;))}X7, at round
r, data is filtered based on specific criteria on the model-
generated outputs M,._1(z;), producing a smaller, refined
dataset D, = {(x, M,_1(z;))} X7, .We provide more de-
tails on the motivation and implementation in Section 5.
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Table 1. Examples of Tasks Considered

Task Type Input (Q: Prompt, A: label) Task Difficulty Sections
Reverse Addition | Q: 31558+91786=A: 232451 Max digit leneth of 4.1
Forward Addition | Q: 85513+68719= A: 154232 t}?;( t‘j;i‘:) e;i; ds 6.1

Multiplication | Q: 34895%148=  A: 348950+0273932(3653542)+00447874=36972305 P 6.2
Copy Q: 12345= A:12345 .
Reverse Q: 12345= A: 54321 Length of string 42
(@ [ xamplomame | Finding shortest path from node 2 to 19
.End (NEdes:Zl, Fmr’5=5) (+— example image for illustration) (1) Number of hOpS
between start & end
Q: 2>19#73:70,75-97:2,70-70:73,97,59
Maze Solving -75:73,30,19-2:97-30:75-59:70-19:75= (2) Number of nodes | 6.3
A: 2>97>70>73>75>19

Training and Evaluation Except for the experiments on
pretrained Llama 3.2 models, all models are trained from
scratch using the conventional next-token prediction objec-
tive. The loss is computed solely on the completion, mean-
ing that the input prompt is masked, and only the model’s
predictions are included in the loss computation. Detailed
settings, including hyperparameters and training schedules,
are provided in the Appendix C.3.

During inference, we use greedy decoding and exact-match
accuracy as the primary metric for evaluation. A prediction
is deemed correct if all tokens in the output sequence match
the ground truth; any discrepancy in the generated tokens is
classified as an incorrect prediction.

4. Length Generalization on Reverse Addition
and String Copying / Reversing

In this section, we apply our self-improvement framework
to reverse addition and string copying/reversing.

4.1. Reverse Addition

Reversed addition, where the operands and output are writ-
ten with the least significant digit first, has been shown
to enhance sample efficiency and performance (Lee et al.,
2023). Reversed addition has become a popular setting for
studying length generalization in arithmetic tasks (Lee et al.,
2023; Shen et al., 2023; Zhou et al., 2023; 2024; Cho et al.,
2024; McLeish et al., 2024).

Results Figure 3 demonstrates that, starting with a
model trained on 1 to 16-digit reverse addition, the self-
improvement framework enables near-perfect length gener-
alization up to 100 digits without any additional supervision
or modifications to positional encodings, input formats, or
the Transformer architecture.
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Figure 3. Reverse addition task. The self-improvement framework
enables a model initially trained on 1-16 digit examples to general-
ize perfectly to over 100-digit addition. Each shade of color is a
different self-improvement round.
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Figure 4. Error avalanche is a common failure case for self-
improvement. As inaccuracies in self-generated data accumulate,
they degrade future rounds of training, leading to eventual failure.

4.2. String Copy & String Reverse

Copying and reversing input string is another task that is
considered hard for vanilla transformers (Zhou et al., 2023).

Results. Similar to reverse addition task, Figure 31 demon-
strates that starting with strings of length 1 to 10, the self-
improvement framework enables the model to perfectly gen-
eralize to string lengths of over 120 after approximately 100
self-improvement rounds.

S. Unsupervised Data Filtering

Our framework leverages models’ ability to generalize
slightly beyond their training difficulty to sample increas-
ingly hard examples. A critical component for success is
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the quality of the self-generated data. Low-quality data
can negatively impact the model’s generalization perfor-
mance, leading to even lower-quality data in subsequent
rounds and ultimately causing a cascading degradation of
the self-improvement process as illustrated in Figure 4.

While cascading error effects are analyzed in greater detail
in Section 8 and Appendix 5, this section focuses on two
key data-filtering methods used in this work: length filtering
and majority voting (Figure 5). And in Section 6 we apply
the filtering methods to enable difficulty generalization in
forward addition, multiplication and mazes.

Relative Length Filtering. A common error in model-
generated data is that the generated labels are often shorter
than the correct answers (Figure 17). These observa-
tions motivate a filtering method based on the relative
lengths of model-generated predictions. Specifically, pre-
dictions shorter than a predefined threshold—calculated
relative to the maximum prediction length within their
batch—are filtered out. For a batch of model-predicted
outputs, we identify the maximum length of the output
L = max |M,_1(z;)| and filter out predictions M, _1 (z;)
with lengths shorter than a predefined threshold 7. This
method is unsupervised, as it relies solely on comparing
lengths within model-generated outputs rather than referenc-
ing ground-truth labels. While particularly suited to length
generalization tasks, where harder problems are expected to
yield longer answers, length-based filtering shows broader
potential for addressing similar challenges in other tasks.

Majority Voting Generating multiple candidate answers
to ensure self-consistency is a widely used approach for
enhancing data quality (Huang et al., 2022; Wang et al.,
2022a; Qu et al., 2024; Peng et al., 2024). However, unlike
the common practice of sampling multiple reasoning paths
by generating outputs with a non-zero temperature, our task
of interest requires a single correct answer for each instance.
To address this, we train k£ models (MT(.I_)l, cee Mf,li)l) using
different random seeds and self-improvement data, then
apply a majority-voting mechanism with a threshold 7.

Concretely, for each self-improved dataset D] =

{(xz,Mfs_)l(:cl))}fvgl where s is the seed index, we fil-

Forward Addition - vanilla Forward Addition - length filter
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Figure 6. Models trained on forward addition over 10 self-
improvement rounds. (Left) Without data filtering. (Right) With
length-based filtering using a threshold of 2. Data filtering signifi-
cantly enhances length generalization performance.

ter the data such that only pairs {(x;, Mfi)l(mz))} where

Mr(‘i)l(xz) matches at least [T X k] outputs among the k
models are retained. This ensures that only high-consensus
data are preserved for training in subsequent rounds, thereby
significantly improving overall data quality and model per-
formance. This approach is conceptually similar to an itera-
tive version of the bagging algorithm (Breiman, 1996).

6. Length and Difficulty Generalization on
Forward Addition, Multiplication, Maze

We extend our evaluation to a class of harder tasks, in-
cluding forward addition, multiplication, and maze-solving.
Our results demonstrate that the framework is not limited
to length generalization but extends to difficulty gener-
alization, where the model incrementally learns to solve
increasingly difficult problems. By employing controlled
sampling of problem difficulty and data filtering techniques
for each round, the model successfully adapts to harder
tasks, highlighting the versatility and robustness of the self-
improvement approach.

6.1. Forward Addition

Forward addition is a straightforward task, yet very chal-
lenging for transformer models to length generalize on. In
reverse addition, each step only requires processing a fixed-
size subset of the input. However, in the forward addition,
the size of the relevant input required to generate correct
tokens increases, making the problem more complex (Zhou
etal., 2023).

Results. Figure 6 shows the results of forward addition
experiments, where the model is initially trained on labeled
data of up to 10 digits and then undergoes 10 rounds of self-
improvement. Without any data filtering (Left), the model’s
performance begins to deteriorate after a few rounds of
training, leading to a collapse in generalization. However,
applying the length-based filtering approach with a threshold
length of 2 results in significant improvements in length
generalization performance (Right). By refining the self-
improvement dataset at each round, the self-improvement
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Figure 7. Performance on the forward addition task with length
filtering. The model is initially trained on labeled forward addition
data of lengths 1 to 10. With over 60 self-improvement rounds, the
model achieves strong generalization to lengths up to 75.
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Figure 8. Comparison of filtering methods at round 7. From left
to right: no filtering, length filtering, majority voting, and a com-
bination of majority voting and length filtering. Data filtering
significantly improves self-improvement performance, with the

combined approach achieving the best results.
framework remains robust across multiple rounds.

With continued training over 60 self-improvement rounds,
the model maintains performance exceeding 98% accuracy
for sequences up to length 70 (Figure 7). This demonstrates
the effectiveness of length-based filtering in sustaining the
self-improvement process and enabling models to generalize
to much longer sequences.

6.2. Multiplication

We also extend our approach on multiplication, which is
a challenging task even in-distribution (Dziri et al., 2024).
Fine-tuning large language models on datasets with chain-
of-thought(CoT) steps has shown limited success. We adopt
a data format similar to Deng et al. (2024), where multi-
plication is given a problem of multiplying two numbers,
the label expands the multiplication into steps that include
partial products of multiplying the first operand with each
digit of the second operand and the intermediate results.

The model is initially trained on n-by-n multiplication ex-
amples with n = 5. Directly introducing n + 1-by-n + 1
examples results in poor performance, hence, we adopt
a more fine-grained difficulty schedule where we sample
n + 1-by-m and m-by-n + 1 examples with m growing
from 1 to n + 1. This gradual progression allows the model
to adapt incrementally to larger operand sizes, making the
transition to harder examples more manageable.

Results. To improve the quality of self-generated training
data, we apply three data filtering methods: length filtering,
majority voting, and a combination of both (Appendix C.3).

Figure 8 compares the effectiveness of these filtering meth-

ods at round 7, where models are trained on self-generated
data for up to 6-by-6 multiplication. All three filtering meth-
ods enhance self-improvement, with majority voting outper-
forming length filtering. The combined approach—applying
both majority voting and length filtering—achieves near-
perfect generalization to 6-by-6 multiplication.

Training for additional rounds further extends this general-
ization. The combined filtering strategy continues to yield
near-perfect accuracy up to 9-by-9 multiplication at round
31 (Figure 36), with the potential for even further generaliza-
tion in subsequent rounds. We further demonstrate that we
can accelerate the process, achieving perfect performance
on 10-by-10 multiplication in just 19 rounds (Figure 23).

6.3. Maze

We extend our evaluation from arithmetic to a more com-
plex problem: finding the shortest path in a maze. Pathfind-
ing presents significant challenges for autoregressive mod-
els (Bachmann & Nagarajan, 2024). Our mazes can be
represented by a tree graph in a 2-dimensional space and
they do not have loops. Figure 30 provides a visualization of
this task and the corresponding input and output data format.
Details on maze generation are provided in Appendix C.2.3.

We evaluate two generalization settings: 1) increasing the
number of hops while keeping the number of nodes fixed,
and 2) increasing the number of nodes while keeping the
number of hops fixed. In the first setting, the input graph
description remains constant in size, but the output length
grows as the difficulty increases. In the second setting, the
input graph expands with more nodes, while the output
remains of fixed length.

6.3.1. INCREASING THE NUMBER OF HOPS

The difficulty of the maze-solving task increases with the
number of hops required from the start node to the end node.
We begin by training the model on a labeled dataset contain-
ing paths of up to h = 9 hops. In each self-improvement
round, we increase h by one, progressively introducing
longer paths, while fixing the number of nodes N = 30.

Results. As shown in Figure 9, without data refinement,
self-generated training data degrades over successive rounds,
leading to an eventual collapse in the self-improvement
process. In contrast, majority voting stabilizes data quality,
allowing near-perfect data quality and the model continues
to successfully generalize to paths up to 30 hops.

6.3.2. INCREASING THE NUMBER OF NODES

Another approach to increasing task difficulty is to expand
the number of nodes in the graph while keeping the number
of hops fixed at h = 9. We begin by training the model on
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Figure 9. Maze-solving with increasing hops (N = 30 nodes).
Models are trained on graphs with up to 9 hops and generalized
by incrementally increasing hops by 1 in each self-improvement
round. Results show mean accuracy across 3 seeds. (Left) No
filtering. (Middle) Majority voting. (Right) Self-improve data
accuracy per round. Filtering significantly enhances data accuracy
and improves generalization.
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Figure 10. Maze-solving with increasing nodes (h = 9 hops).
Models are trained on graphs with up to 30 nodes and generalized
by incrementally increasing the number of nodes by 3 per round.
Majority voting improves generalization to larger graphs.

a labeled dataset containing paths of fixed number of hops
h =9, and nodes N = 10 to 30. In each self-improvement
round, the number of nodes is increased by 3.

Results. As shown in Figure 10, training without filtering
leads to gradual performance degradation, whereas major-
ity voting preserves high-quality data, maintaining a self-
improvement accuracy above 99.7% and enabling general-
ization to larger graphs with 9 hops.

While these experiments focus on fixing one dimension
(number of hops or number of nodes) and increasing the
other, alternating between increasing the difficulty in both
dimensions is expected to generalize the maze-solving task
to handle larger graphs and longer paths simultaneously.

6.3.3. VERIFIERS.

Solving the shortest path problem can be computationally
expensive, but verifying the correctness of a given solution
is significantly simpler. A valid path can be verified by
traversing the sequence and ensuring three conditions: 1)
each move is valid, meaning the path follows adjacency
constraints; 2) the final destination matches the intended
goal; and 3) no nodes are repeated, confirming that the
solution is indeed the shortest path.

We show in Appendix B.3 that while filtering self-generated
data using oracle verifiers based on move and end validity
is effective, majority voting based filtering—without any
external verification—performs comparably, highlighting
its effectiveness.
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Figure 11. Number of extra OOD digit lengths achieving over 99%
accuracy when self-improving with one additional digit per round,
on (Left) copy and (Right) reverse addition tasks. The growing
OQOD capability suggests the potential to sample more digits per
round as self-improvement progresses.

7. Ablations

7.1. Increasing OOD generalization with more
self-improvement

Sampling instances that are too difficult for the current
model is detrimental to the quality of self-improvement
data, which causes downstream performance to break down.
However, in tasks like reverse addition and copy, we observe
that the out-of-distribution (OOD) extrapolation capabili-
ties improve progressively as the model undergoes more
rounds of self-improvement, which means we can sample
more and more difficulty levels every round. Figure 11 illus-
trates how the number of additional OOD lengths achieving
over 99% accuracy grow with each round when the model
is self-improved using only one additional digit per round.
The model’s OOD extrapolation capabilities expand as it is
trained on longer sequences.

7.2. Accelerating self-improvement

Since the amount of extra OOD generalization increases
roughly linearly with each additional round of self-
improvement (Figure 11), sampling as many difficulty levels
as possible per round could lead to exponential improve-
ments in performance. Therefore, we propose an acceler-
ated self-improvement schedule: At each round, the self-
improvement dataset is uniformly sampled from all difficulty
levels achieving over 99% evaluation accuracy, instead
of incrementally sampling by only one additional length.
As shown in Figure 12, this approach allows the model to
achieve 100 digit extrapolation with less than half of the
rounds. All other hyperparameters remain unchanged. We
also provide results in the multiplication setting in Figure 23.

7.3. Pretrained Models

We extend our self-improvement framework to pretrained
models, specifically Llama-1B and Llama-3B (AI@Meta,
2024), to explore scaling effects and the impact of finetuning
on larger models. For consistency in tokenization, we use
character-level tokenization instead of the default tokenizer
of the Llama models, and use LoRA (Hu et al., 2021).
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Figure 12. Maximum input length achieving over 99% accuracy at
different self-improvement rounds for (Left) Reverse addition and
(Right) Copy task. The dashed linear line represents the standard
schedule of sampling one additional length per round. Faster self-
improvement schedules allow the model to generalize to longer
inputs with fewer rounds. Furthermore, finetuning from pretrained
models enhances the acceleration.

Results. Larger models achieve better extrapolation per-
formance, which leads to faster acceleration with larger
models. Figure 12 compares self-improvement acceleration
between Llama-3B, Llama-1B, and a smaller 14M parame-
ter model trained from scratch. The results demonstrate that
larger pretrained models can generalize to longer sequences
with fewer rounds of self-improvement.

8. Error Avalanches in Self-Improvement

The success of self-improvement hinges on the accuracy
of self-generated data. Figure 4 highlights a key challenge
for out-of-distribution (OOD) generalization, specifically
in n + 1-digit performance. Inaccuracies in self-generated
n-digit data negatively affect generalization, leading to even
poorer performance in the subsequent round.

This cascading effect, or error avalanche, compounds over
successive self-improvement rounds, ultimately degrading
the model’s overall performance and risking a collapse of
the self-improvement process.

A natural question is: how much error is required to trigger
an avalanche? We investigate this question by first char-
acterizing the model mistakes, and then injecting synthetic
wrong examples into the self-improvement data.

Simulating Avalanche We identify that model mistakes
are mainly of two types: (1) incorrect digits by £1 and (2)
dropped digits (see section B.6). We simulate these errors
by constructing four kinds of noises:

* uniform: replacing the label with another random number
of the same length.

e perturb: perturbing last three digits of the label by £1.

e drop-digits: dropping 1-3 digits from the last 3 digits.

e drop-perturb: first applying "perturb” and then "drop-
digits", effectively combining the effect of both noises.

round 5 round 20
1.0 —e— uniform 1.0 =0t e
> o perturt > v\,ﬂ\\
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Figure 13. Simulating error avalanche. Errors are injected at the
end of rounds 5 and 20, and the self-improvement process contin-
ues for five additional rounds. The model tolerates errors up to a
threshold before performance collapses. This tolerance increases
with more rounds of self-improvement.

We inject these errors at rounds 5 and 20 of the reverse
addition task and track their effects after five subsequent
self-improvement rounds. As shown in Figure 13, inject-
ing enough of these errors into the training data causes
performance on the next difficulty to crash. In particular,
we find that 1) structured noise (perturb, drop-digits) are
more harmful than uniform noise and 2) more rounds of
self-improvement lead to robustness against label noise.

These findings emphasize the critical need for maintaining
high-quality self-generated data to sustain effective and per-
sistent self-improvement. We present more results on label
noise and robustness in Section B.7

9. Limitations

In our framework, we identify three core limitations: First,
our approach only generates solutions (labels) rather than
new input instances during self-improvement. It is a sep-
arate challenge to model input distributions based on task
difficulty. Second, defining and quantifying task difficulty
remains an open challenge in real-world domains, though
we find models show some robustness to imperfect dif-
ficulty scheduling, particularly with pretraining. Finally,
while our framework assumes models can handle slightly
harder tasks than their training data, this may not hold for
all problems—as demonstrated by raw multiplication tasks.
However, breaking problems into intermediate steps can
enable the necessary out-of-distribution generalization for
self-improvement.

10. Conclusion

In this work, we have shown self-improvement training
enables transformers to gradually generalize from easy to
hard problems without access to hard labels. One extension
is to incorporate more sophisticated verifiers as well as
problem classes that is easy to verify but hard to solve. We
expect self-improve to synergize with strong verification
to enable transformers to solve harder problems beyond
arithmetic or mazes.
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A. Detailed Discussion of Related Work

Length Generalization. While Transformers (Vaswani et al., 2017) have achieved remarkable success, they often
struggle with length generalization—where a model trained on problems of fixed length fails to extrapolate to longer
sequences (Dubois et al., 2019; Hupkes et al., 2020; Newman et al., 2020; Anil et al., 2022). Addressing this limitation is
crucial, as poor length generalization indicates that language models may not fully understand the underlying task. Zhou
et al. (2023) hypothesize that Transformers are more likely to length generalize on tasks with small RASP-L complexity.
They demonstrate that tasks such as reverse addition and copying have low RASP-L complexity, making them easier to
length generalize, whereas forward addition poses a greater challenge.

Several approaches have been proposed to improve length generalization, particularly in arithmetic tasks. These include
modifications to positional embeddings, such as Abacus embeddings (McLeish et al., 2024), NoPE (Kazemnejad et al.,
2024), FIRE (Li et al., 2023), and pairwise positional encodings (Sabbaghi et al., 2024; Cho et al., 2024), as well as
randomized positional encodings (Ruoss et al., 2023; Zhou et al., 2024). Other approaches focus on architectural changes,
such as introducing looping mechanisms (Fan et al., 2024) or incorporating hand-crafted bias corrections in attention score
matrices (Duan et al., 2023). Additionally, input modifications, such as index hinting, have been explored to enhance
generalization (Zhou et al., 2023; 2024).

Beyond arithmetic, length generalization has also been studied in broader contexts. For instance, size generalization in
graph-based tasks has been investigated (Yehudai et al., 2021), while Kim et al. (2024) leverage a cognitive map framework
for path planning to tackle the maze-solving problem.

In contrast, our approach adheres to the standard transformer architecture without introducing modifications to architecture,
positional encodings, or input structure. A key distinction lies in the training methodology. While prior approaches typically
rely on fixed-length training datasets without further updates to model weights, we iteratively update model weights on
self-generated datasets, enabling the model to progressively improve and extend its generalization capabilities.

Our self-improvement framework and results on forward addition (Section 6.1) are closely related to those of Zhang &
Parkes (2023), where self-training enables forward addition generalization from 6-digit examples to 24-digit addition. Like
their approach, we iteratively apply self-training on progressively harder problems. However, a key distinction is that their
method follows a two-step process in each round: first generating solutions using chain-of-thought (CoT) reasoning, then
fine-tuning the model to produce direct answers without CoT.

Our multiplication results in Section 6.2 have relevance with findings by Jelassi et al. (2023), who showed that dataset
priming (adding a small number of labeled long-sequence examples) can enable length generalization for multiplication
(although this is not strictly out-of-distribution). Our approach of incorporating accurate, self-generated out-of-distribution
data via filtering can be seen as an automated form of dataset priming. Furthermore, while our approach uses chain-of-
thought (CoT) data for multiplication, we believe it is possible to length generalize on non-COT multiplication as well, by
incorporating methods like Deng et al. (2024) to help the model iteratively internalize the CoT steps.

Easy-to-hard Generalization. Our self-improvement framework operates in a setting where human annotation is provided
for easier tasks, enabling generalization to harder tasks with no additional supervision. This paradigm, often referred to as
easy-to-hard generalization (Schwarzschild et al., 2021; Bansal et al., 2022; Burns et al., 2023; Hase et al., 2024; Sun et al.,
2024), leverages the transfer of learned policies or reward models from simpler problems to more challenging ones. For
instance, Zhang et al. (2024) study this phenomenon in chess, showing that chess transformers can sometimes outperform
all players in the training dataset. Similarly, Sun et al. (2024) finds that a reward model trained on easier mathematical
problems can be effectively transferred to harder problems, facilitating generalization through reinforcement learning. Shin
et al. (2024) identifies overlap data points—instances containing both easy and hard patterns—as a key mechanism for
weak-to-strong generalization, allowing weak models to pseudolabel easier patterns while stronger models use these labels
to learn harder patterns. Our work shows that a similar mechanism emerges naturally within self-improvement, where
progressively increasing difficulty enables models to generate useful supervision signals for harder tasks without explicit
human intervention.

Self Improvement. Self-training is a common approach in semi-supervised learning that leverages unlabeled data to
enhance model performance (Zhu, 2005; Pise & Kulkarni, 2008; Yang et al., 2022). When high quality training labels are
not available, training on self-generated labels is an efficient way to extract more capabilities from the model. Usually, this
involves generating candidate labels, pruning wrong labels through verification or filtering, and retraining with self-generated

13



Self-Improving Transformers Overcome Easy-to-Hard and Length Generalization Challenges

data. ReST (Gulcehre et al., 2023) and I-SHEEP (Liang et al., 2024) propose self-improvement as a general purpose
alternative to reinforcement learning from human feedback (RLHF), while Yuan et al. (2024) propose "self-rewarding"
model that generates its own instruction tuning set.

The self-improvement framework has been applied to a wide range of tasks. For example, Zhang et al. (2019) replaces an
expensive teacher distillation with self-distillation for image recognition tasks. In LLM reasoning domains, Huang et al.
(2022); Singh et al. (2023); Pang et al. (2024), and STaR (Zelikman et al., 2022) bootstrap complex reasoning capabilities by
asking models to generate rationales for unlabeled questions and training on self-generated rationals that yielded correct
answers. Similarly, Zhang & Parkes (2023) shows self-improving using chain-of-thought (COT) data sampled from the
model allows generalization of the integer addition task to more digits. For coding tasks, Chen et al. (2023) teaches
LLM:s to self-debug with feedback using self-generated code explanation and unit test execution results. In mathematics,
PatternBoost (Charton et al., 2024) shows that transformers can discover unsolved mathematical constructions of various
problems using an algorithm that alternates between sampling constructions from the model (local search) and training
on self-generated data (global learning). Similarly, Alfarano et al. (2024) generate synthetic training samples to train
transformers to discover new Lyapunov functions. Recent works also investigate theoretical and empirical aspects of
self-improvement. Bansal et al. (2024) highlight the effectiveness of smaller models in self-improvement, while Song
et al. (2024) identify the generation-verification gap as a key factor governing the self-improvement process. Huang et al.
(2024) introduce the "sharpening mechanism," where training on best-of-N responses from the model amortizes maximum
likelihood inference and improves output quality.

Our work is greatly inspired by ReST (Gulcehre et al., 2023) and STaR (Zelikman et al., 2022), in which models iteratively
generate predictions, filter high-quality responses, and fine-tune on the self-generated dataset.

Model Collapse Recent research has extensively investigated the phenomenon of model collapse, where repeated training
on a model’s own outputs leads to performance degeneration and a loss of the true underlying data distribution (Shumailov
et al., 2024; Hataya et al., 2023; de Arcaute et al., 2023; Shumailov et al., 2023; Alemohammad et al., 2023; Briesch et al.,
2023).

Shumailov et al. (2024) provide evidence that iterative training on model-generated data, without filtering, results in rapid
degeneration and forgetting of the true data distribution. They emphasize the importance of preserving original data sources
over time. Similarly, Shumailov et al. (2023) show that the tails of the original content distribution diminish after repeated
self-training, while Zhang & Parkes (2023) highlight the error avalanching effect, where errors compound as models are
trained on their own generated data.

Despite its apparent inevitability, several strategies have been proposed to mitigate model collapse. Research shows that the
risk of collapse diminishes when the initial model closely approximates the true data distribution (Bertrand et al., 2023), or
when real data is retained throughout training rather than being fully replaced (Gerstgrasser et al., 2024; Dohmatob et al.,
2024; Briesch et al., 2023). Additionally, Gillman et al. (2024); Feng et al. (2024) suggest using reliable verifiers during
self-training to ensure high-quality self-generated data, further reducing the likelihood of collapse.

Our approach addresses these challenges by maintaining a core labeled dataset throughout training, consisting of examples
of limited length or difficulty. Synthetic data, generated incrementally by the model, is added in a controlled manner.
By incorporating unsupervised filtering techniques such as length filtering and majority voting, we ensure the quality of
self-generated data. Our framework builds upon prior findings by preserving clean data and selectively incorporating
synthetic data.

Additionally, our results in Section 8 align with findings from Rolnick (2017), which demonstrate that deep neural networks
are robust to significant label noise in image classification tasks. Additionally, Bayat et al. (2024) recently emphasized that
memorization alone does not harm generalization; rather, the combination of memorization with spurious correlations is
what undermines learning. Our results suggest that despite memorizing past mistakes, the self-improvement framework
remains effective, provided that incorrect samples do not dominate the training distribution.
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B. Additional Results
B.1. Does the Model Truly Learn Addition?

When the two operands are sampled randomly, the probability of encountering an instance with a carry chain length of N
decays exponentially with N. Under this sampling strategy, the model may rarely, if ever, see “hard!” instances of addition,
as illustrated in Figure 14. To address this, we manually construct a test dataset to include at least 500 examples for each
maximum cascading carry length. This ensures that the evaluation captures the model’s ability to handle harder instances of
addition.

The results in Figure 15 show that the model is capable of performing additions with up to 20 cascading carries, even though
it has never encountered such cases during training. This demonstrates that the model can generalize to harder instances of
addition despite being trained predominantly on easier examples.
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Figure 14. Number of carries in the self-improve dataset of 20-digits. The models does not see examples of high numbers of carry during
training.
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Figure 15. Performance of the model at round 10 (trained with self-generated data up to 20 digits). (Left) Accuracy as a function of the
maximum cascading carries. (Right) Number of examples with each maximum cascading carry length in the self-improve training dataset.
Models can successfully perform hard - with a high number of cascading carries - addition tasks even without encountering such examples
in the training dataset.

B.2. Motivation for Data Filtering
B.2.1. IMPORTANCE OF DATA FILTERING

Figure 16 demonstrates this effect in the reverse addition task. The x-axis represents the accuracy of the self-improve dataset
D,., generated by model M,._; at round r, while the y-axis shows the resulting n + 1-digit performance of model M,.. The
prevalence of data points below the y = x line indicates that low-quality data diminishes performance, underscoring the
need for maintaining high-quality data throughout the self-improvement process.

!we define hard instance of addition to be cases with multiple numbers of cascading carries (Quirke & Barez, 2023)
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Figure 16. Effect of self-generated data accuracy on length generalization performance in the reverse addition task. Each data point
represents the accuracy of the self-improve data D, (on n digit addition) generated by model M, _1, and the resulting n + 1-digit
performance of the trained model M,. at round r. The prevalence of points below the y = =z line highlights the critical importance of
high-quality data for successful self-improvement.

B.2.2. OOD RESULTS ARE OFTEN SHORT
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Figure 17. (Left) Reverse addition task: the proportion of shorter answers among incorrect predictions increases with each round. (Mid
& Right) CoT-multiplication task with majority voting: (Mid) The majority of incorrect answers are short. (Right) The average length
discrepancy of short answers compared to the correct answer or the CoT reasoning part.

Figure 17 illustrates this phenomenon for both the reverse addition and CoT-multiplication tasks. In reverse addition (Left),
as the number of digits in the training data increases (or as self-improvement rounds progress), the proportion of incorrect
self-generated data where the answer is shorter than the correct label length also increases. Similarly, for CoT-multiplication
(Mid and Right), most incorrect answers are shorter than the correct ones. Furthermore, in cases where the answers are
shorter, the outputs often miss one or more reasoning steps in the chain-of-thought (CoT) reasoning process.

B.2.3. MAJORITY VOTING LEVERAGES LABEL DIVERSITY

Self-improvement relies on the model’s ability to generalize to slightly harder problems. However, this generalization is not
always robust and can vary significantly across different training instances (Zhou et al., 2024). Majority voting mitigates
this variability by aggregating predictions across multiple independently trained models, thereby improving the reliability of
self-generated labels.

To illustrate this variability, Figure 18 shows test accuracy across five models trained with different random seeds on the
initial training dataset containing up to 5-by-5 multiplication. Even when trained on identical training data, models exhibit
substantial performance differences in extrapolation. Similarly, Figure 19 demonstrates that this variability persists even
when models are trained from the same seed data.

Figure 20 demonstrates the effectiveness of majority voting in the multiplication task across five models trained with
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Figure 18. Test accuracy on 5 different seeds during the initial

training phase. Models exhibit high variance in performance.
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Figure 19. Test accuracy on models trained with the same seed data but different training seeds.

exhibit large variability.

Despite identical training data, models

different seeds during the initial training phase on data Dy, which consists of up to 5-by-5 multiplication problems. The
mean accuracy (Left) is relatively low, with a high standard deviation (Mid), indicating substantial variability among the
models. By applying majority voting with a consensus on at least 4 out of 5 model outputs, the generated dataset quality
improves significantly (Right). For example, while the 5-by-6 multiplication task achieves an average accuracy of 31%
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across models, the majority-voting strategy generates a dataset with 93.3% accuracy.

In practice, datasets for larger multiplications, such as 5-by-6 digits, are created after multiple rounds of self-improvement
training, gradually incorporating m-by-6 and 6-by-m data with incrementally increasing m at each round.
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Figure 20. (Left & Mid): Mean and standard deviation of accuracy among five models trained with different seeds on the initial training
round. (Right): Accuracy of majority-voted data points. Majority voting significantly boosts data quality, with 5-by-6 multiplication data
accuracy increasing from an average of 31% to 93.3%

B.2.4. ABLATIONS FOR MAJORITY VOTING

Our majority voting method requires training multiple models in parallel. In our primary setting, we train k¥ models with
different random seeds, allowing each to generate and train on its own independent self-improved dataset at every round.

To evaluate the necessity of training multiple independent models and generating separate self-improvement datasets, we
compare our approach against the following baselines:

1. No majority voting, but larger self-improve data: Instead of using multiple models, we train a single model while
sampling k times more self-improve data per round, ensuring that the total amount of generated data matches our main

setting.

2. Shared self-improve data: We train k£ models with different initial seeds but subsequently train all models on the same
self-improved dataset.

3. Shared initial training seed: All models are initialized from the same seed but then trained on separate self-improved
datasets.

4. Our main setting: Each model is initialized with a different seed and trained on its own independently generated

self-improve dataset.

Figure 21 presents the performance of these variations, highlighting the importance of training on independently generated
self-improve datasets rather than simply increasing dataset size or sharing training trajectories across models.

Table 2. Comparison of Data Cost Across Majority Voting Variants

Method

Initial Training Data Cost

Self-Improve Data Cost (Per Round)

No Majority Voting, Larger Data 1
Shared Self-Improve Data k
Shared Initial Training Seed 1
Full Majority Voting (Ours) k

k

1
k
k

We set k = 5 and report the average performance across five models. Figure 21 shows that simply increasing the amount of
self-improvement data without filtering leads to poor performance. Surprisingly, using 5x more self-improvement data per
round performs even worse than using less data (Figure 32), consistent with our findings in Section B.7.1.
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Figure 21. Ablations on majority voting. (Left) No majority voting, but larger self-improve data. (Left-Center) Majority voting with shared
self-improve data. (Right-Center) Majority voting with shared initial training seed. (Right) Our primary setting with fully independent
training and self-improve datasets.

Additionally, majority voting with shared self-improve data (second panel from the left) underperforms in OOD compared
to models trained on separate self-improve datasets. This suggests that model diversity—enabled by training on different
self-improve data—may be important for majority voting to be effective.

On the other hand, comparing the right two panels in Figure 21, where the difference lies in whether the base models were
trained on different labeled data Dy, we find minimal differences in OOD performance. This may be due to the large size of
the initial training set (SM examples), which provides sufficient diversity. Furthermore, as Figure 19 shows, models trained
on the same initial dataset but with different training seeds still exhibit substantial variability, suggesting that model diversity
can emerge from different training trajectories alone.

B.3. Verification Filters on Mazes

Solving the shortest path problem can be computationally expensive, but verifying the correctness of a given solution is
significantly simpler. A valid path can be verified by traversing the sequence and ensuring three conditions: 1) each move is
valid, meaning the path follows adjacency constraints; 2) the final destination matches the intended goal; and 3) no nodes
are repeated, confirming that the solution is indeed the shortest path.

Self-improvement frameworks commonly incorporate verifiers to filter self-generated data, often leveraging trained models
or reward models (Zelikman et al., 2022; Singh et al., 2023; Hosseini et al., 2024; Lightman et al., 2023). While our primary
focus is not on training or designing an additional verification mechanism, we investigate the effectiveness of using an
external verifier as a data-filtering method.

To this end, we evaluate an oracle verifier that enforces two essential constraints: 1) move validity, ensuring that every
transition in the generated solution adheres to the adjacency constraints of the maze, and 2) end validity, confirming that the
final node in the solution corresponds to the correct destination. We compare the effectiveness of this oracle-based filtering
against self-improvement without data filtering and majority-voting-based filtering to assess its impact on performance and
stability.

Results. Figure 22 shows results for mazes with increasing hops, increasing nodes, and three different verification
strategies: checking moves, checking end validity, and checking both. As expected, verification improves data quality and
serves as an effective filtering technique in self-improvement. Notably, verifying move validity proves to be significantly
more effective than verifying only the correctness of the end node. Interestingly, however, majority voting—a strategy that
does not rely on an external verifier—performs comparably to verification-based filtering. This suggests that self-consistency
mechanisms alone can be sufficient for maintaining high-quality training data.

Additional results, including finer-grained analysis of move validity and end validity beyond exact match accuracy, are
provided in Appendix D.0.3.
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Figure 22. (Top) Increasing hops. (Bottom) Increasing nodes. (Left) Verifier on both moves and ends. (Middle) Verifier on moves only.
(Right) Verifier on ends only. Verifier-based filtering improves self-improvement performance, with move validation proving more
effective than end validation alone. Interestingly, majority voting performs on par with oracle verification, suggesting that self-consistency
mechanisms can serve as effective alternatives to explicit verification.

B.4. Accelerated Self-Improvement for Multiplication

We validate the accelerated self-improvement (Section 7.2) setting to the task of multiplication. For the multiplication task,
we observe similar enhancement using an accelerated schedule, as depicted in Figure 23. Under the standard schedule,
reaching 10-by-10 multiplication from 5-by-5 requires 41 self-improvement rounds, incrementally increasing one operand
by 1 at a time. With the accelerated schedule, we progressively sample more operand pairs as self-improvement proceeds,
reducing the required rounds to 19 while achieving perfect test performance (see Figure 37 for full results). The settings for
multiplication follow the setting in Section 6.

1 41.000{1.000{1.000{1.000{1.000{1.000{1.000{1.000{1.000{1.000

2 1.000{1.000{1.000{1.000/1.000{1.000{1.000{1.000|1.000/1.000

Round |
(5x5) (ID) 7
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Figure 23. Accelerated self-improvement in multiplication. (Left) Accelerated schedule for multiplication. The rows and columns
represent the number of digits in the two operands of the multiplication task. The number within each cell indicates the self-improvement
round in which the corresponding digit pair is included for training. (Right) Results at round 19. Controlled scheduling progressively
incorporates more digit pairs in each round, accelerating the self-improvement process.
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B.5. Results on Pretrained Models

Figure 24 shows the self-improvement results for LoORA finetuning Llama-1B and Llama-3B on the reverse addition task.
Pretrained models show more extrapolation than from-scratch models.
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Figure 24. Reverse addition results for pretrained models. (Left) Llama-1B model. (Right) Llama-3B model. Larger models exhibit better
extrapolation performance across rounds of self-improvement.

B.6. Additional Error Analysis on Reverse Addition
B.6.1. PATTERNS IN MODEL MISTAKES

We can categorize all mistakes into two bins. At each digit position, either the model drop the digit, or that it outputs a
wrong digit. Since these two kinds of mistakes are entangled in practice, we use a string matching algorithm to compare the
model output and predictions and obtain the best guess. In figure 25, we find that digit drops by the model are concentrated
near the send of the sequence, and wrong digits are most often off by 1.

Error distribution

Error distribution
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Figure 25. Patterns in model errors. (Left) Most incorrect digits are off by 1. (Middle) Errors cluster near the end of the sequence. (Right)
Digit drop errors are strongly location-dependent.

Additionally, Figure 26 shows that when models generate incorrect answers, the first mismatch with the ground truth typically
occurs near the final digits of the sequence (i.e., near the most significant digit in reverse addition). These observations
inform our systematic error simulations, which are used to analyze the error avalanche phenomenon in Section 8.

B.7. Additional Experiments on Label Noise and Robustness

Models can Generalize Despite Memorizing Past Mistakes Since self-improvement involves recycling model predictions
into training data, an important question is whether the model continues making mistakes on previously incorrect examples.
To investigate this, we isolate incorrect self-generated samples and evaluate the model’s performance on them. As shown in
Figure 27, the model struggles to rectify these errors. Accuracy on incorrect training examples decreases over successive
rounds, suggesting that repeated exposure to errors reinforces them rather than correcting them.

However, memorizing past mistakes does not necessarily cause an error avalanche. The model under self-improvement often
generalize to higher difficulties while treating the incorrect samples as outliers. For example, Figure 13 shows that after 20
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Figure 26. he first incorrect digit in model outputs tends to occur near the most significant digit in reverse addition.

rounds of self improvement, the model can tolerate a surprisingly large amount of label noise, from both uniform noise and
structured noise. This suggests that while individual mistakes persist, they do not necessarily hinder overall generalization.
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Figure 27. Models memorize their mistakes. Accuracy on incorrect training examples (of Dg) decreases with additional self-improvement
rounds, indicating that repeated exposure reinforces memorization of errors instead of correcting them.

Robustness against Random Labels To further examine the model’s resilience to errors in data, we introduce randomiza-
tion into the labels during training. Correct labels are replaced with random numbers of the same length with probabilities 1,
0.8,0.5,0.2,0.1, and 0. A probability of 1 corresponds to entirely incorrect labels, while 0 indicates fully correct data.

The model is initially trained on 1-10 digit reverse addition and further trained across 8 self-improvement rounds, using
self-generated data of lengths 11-18 digits. We then construct a dataset of 19-digit data with randomized labels, denoted
as D, The model is fine-tuned on a combined dataset consisting of the original dataset Dy, self-improved datasets
Dy, ..., Dg, and DM,

Results in Figure 28 show that the models can tolerate substantial random label noise, maintaining robust performance even
when up to 80% of the training data is corrupted. This demonstrates the model’s resilience to random errors in the training
data and its ability to self-correct such mistakes during learning.

Model Bias vs. Random Labels. Interestingly, biases in self-generated data are more detrimental than uniformly random
label noise. As shown in Figure 28, models trained with self-improved data perform worse than random-labeled data
of comparable accuracy, given the same dataset size and fine-tuning steps. This suggests that the inherent biases in
self-generated data hinder generalization more than randomly introduced noise.

These observations align with findings from Bayat et al. (2024), which highlight that memorization alone does not harm
generalization; instead, the combination of spurious correlations undermines learning. Despite memorizing mistakes in
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Figure 28. Effect of training on randomized labels. The model is trained on 1-10 digit data, further fine-tuned on 11-18 digit self-generated
data over 8 self-improvement rounds, and additionally fine-tuned on 19-digit data with varying probabilities of random label replacement.
(Left) Accuracy on 19-digit data. (Right) Accuracy on 20-digit data. The results demonstrate that while the model can self-correct random
errors, biases from self-improved data can result in worse performance compared to models trained on random-labeled data of similar
accuracy.

self-generated data, the model’s overall performance at the same difficulty level often exceeds the quality of the training
data.

B.7.1. EFFECT OF SELF-GENERATED DATA QUANTITY ON PERFORMANCE

We investigate how the quantity of self-generated training data impacts model performance. We first train 10 base models
Més) (s =1,...,10) on a supervised 1-10 digit reverse addition dataset D, each using a different random seed. These
models are categorized based on their accuracy on 11-digit addition: low-performing models (less than 98% accuracy) are
represented with red colors, while high-performing models (more than 98% accuracy) are depicted with blue colors.

To study the effect of dataset size, we generate self-improvement datasets D5 = {(z;, Més) (2:))}2, of varying sizes
(N7 = 10,000, 50, 000, 100, 000, 500, 000, 1, 000, 000). Each model is then trained on the combined dataset D U D7. The
number of incorrect examples in each self-generated dataset is approximately N7 x (1 — 11-digit accuracy of Mp).

Results in Figure 29 show that for low-performing models, increasing the quantity of self-generated data (which is of lower
quality) degrades performance on both in-distribution (11-digit) and out-of-distribution (12-digit) addition. In contrast, for
high-performing models, the relationship between the number of self-generated examples and performance is less clear.
The total number of 11-digit examples seen during training remains constant across experiments, with smaller datasets
being repeated more often. This suggests that exposure to a greater diversity of incorrect examples can bias the model more
negatively.
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Figure 29. Effect of self-generated training data quantity and quality on model performance. Each model is trained on Dy (1-10 digit
addition) and self-generated D, (11-digit addition), then evaluated on 11-digit (in-distribution) and 12-digit (out-of-distribution) test
performance. For low-performing models, increasing the quantity of self-generated data leads to degraded performance. For high-
performing models, the impact of dataset size is less clear.

C. Experimental Setup
C.1. Model

For all experiments, we use a Decoder-only Transformer architecture. Specifically, for all experiments except for pretrained
models settings, we use the Llama architecture (Al@Meta, 2024), except we remove the rotary positional encoding. For
the inputs format, we have one example per line, and stack all example on the batch dimension. Since the examples can
have variable length, we pad each line on the right to the maximum length in the batch. We exclusively use a character
level tokenizer. For pretrained models, we replace the default tokenizer with our character tokenizer, while keeping the
embedding component of the pretrained model unchanged.

Table 3. Model Parameters
Model Self-Attn Layers Num Heads Embedding Dim

From-Scratch 6 6 384
Llama 3 1B 24 16 1024
Llama 3 3B 32 32 2048

C.2. Data Formats and Data Sampling
C.2.1. DATA GENERATION AND SAMPLING

We generate an initial supervised training dataset Dy of up to a fixed difficulty level dy by uniformly sampling the difficulty
level d < dy, followed by independent sampling of the data conditioned on the difficulty. Denoting the input as x;, labels as

Yis

Do = {(zi,y:)}°,, where Difficulty(z;) < do.

For arithmetic tasks such as addition or multiplication, each problem instance is represented as a tuple z; = (a;, b;), with Dy
containing problems of up to dy-digit numbers. The digit lengths (d,,, dp, ) are uniformly sampled from {1, ..., do}?, and
the numbers a; and b; are uniformly sampled from the ranges [10%: 1 10%: — 1] and [10%: ~% 10%: — 1], respectively.

For string manipulation tasks (e.g., copying or reversing), we uniformly sample string lengths up to dy and generate random
sequences. Similarly, for maze-solving tasks, we uniformly sample the number of hops or total nodes in the maze and
generate random graphs that satisfy these constraints. This strategy ensures balanced coverage across all difficulty levels up
to dp.
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Example Maze (N=30, Hops=4) Example Maze (N=30, Hops=13) Ex

. Start . Start Input:

2>524#55:78-49:1,10-1:2,49,21,95-3:83,59-84:65,81-68:65-
. End . End 21:1-4:90-34:6,10-2:1,69-54:64,40-64:54,90-83:3,88-59:3,
78-95:1-99:80,52-90:4,64,16-40:54-80:99,16,12,69-6:34-8
8:83,14,52-52:99,88-65:68,14,84-16:80,90-12:80-14:88,65-
81:84-69:80,2-10:49,34-78:55,59=
. Label:
2>69>80>99>52

ple 1 - ID (N=30, Hops=4)

Example 2 - OOD (N=30, Hops=13)

Input:

41>29#32:93-48:44,85-44:48,96,13-98:50,78,89-8:42,26-3

9:59,42-50:98-74:41-29:14,83-25:14,28-14:25,29-93:32,95

-96:44,42,37-28:25,37,3-3:28-95:93,49-49:78,95-42:8,96,3
9-59:39-22:89,85-37:96,28-83:29,6-41:78,74-78:41,49,98-

. 89:22,98-26:8,9-13:44-9:26-6:83-85:48,22=

Label:

41>78>98>89>22>85>48>44>96>37>28>25>14>29

Figure 30. Maze-solving task with N = 30 nodes. (Left & Middle) Visualization of the maze task with 4 hops (ID) and 13 hops (OOD).
(Right) Example of the data format: the input specifies the start and end nodes along with the graph structure, and the output lists the
shortest path as hops. The labeled training dataset includes paths of up to 9 hops, with difficulty increased by adding one hop in each
subsequent round.

C.2.2. MULTIPLICATION

We adopt a data format similar to Deng et al. (2024), where the input prompt is 9172+ 9431=, and the label expands
the multiplication into steps, such as: 17442+067801 (132331)+0075180(1398490)+00091720=13976630.
Each step includes the intermediate results (in parentheses) representing partial products formed by multiplying the first
operand with each digit of the second operand.

The data format is inherently asymmetrical. For example, an m-by-n multiplication requires n intermediate steps, where
each step corresponds to multiplying the m-digit number by one digit of the n-digit number. Conversely, an n-by-m
multiplication involves m intermediate steps of multiplying the n-digit number by each digit of the m-digit number.

C.2.3. MAZE
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Listing 1 Code for the maze format generation used

def create_tree_with_hops_wilson(total_nodes, num_hops) :

def

import networkx as nx

# Step 1: Create the main path with num_hops
graph = nx.path_graph (num_hops + 1)

# Step 2: Add extra nodes to the tree with random walk
current_nodes = list (graph.nodes())
new_nodes = list (range (num_hops + 1, total_nodes))

while new_nodes:
new_node = new_nodes.pop ()
# random walk to reach graph
walk = [new_node]
while walk[-1] not in current_nodes:
# choose random node from current & new nodes
random_node = random.choice (current_nodes + new_nodes)
walk.append (random_node)
if random_node in new_nodes:
new_nodes.remove (random_node)
# add edges
for i in range(len(walk) - 1):
graph.add_edge (walk([i], walk[i + 1])
current_nodes.append (new_node)

# Step 3: Set the start and end nodes for the main path
start_node = 0
end_node = num_hops

return graph, start_node, end_node

format_graph (graph, start_node, end_node):
# Assign random labels to nodes
node_labels = assign_labels (graph.nodes (), label_range=(1, 99)

# Get the shortest path (in terms of edge count) from start_node to end _node
shortest_path = nx.shortest_path(graph, source=start_node, target=end_node)

# Format the path as a string
path_labels = [node_labels[node] for node in shortest_path]
path_string = ">".Jjoin (map (str, path_labels))

# Format start and end nodes

start_label = node_labels[start_node]
end_label = node_labels[end_node]
start_end_str = f"{start_label}>{end_label}#"

# Build graph_str with end _node connections at the end

graph_str = ""
start_node_str = "" # Temporary storage for the start_node part
end_node_str = "" # Temporary storage for the end_node part

# randomize the order of nodes
random_nodes = list (graph.nodes())
random.shuffle (random_nodes)
for node in random_nodes:

node_label = node_labels[node]

# randomize the order of neighbors

random_neighbors = list (graph.adj[node])

random.shuffle (random_neighbors)

neighbor_labels = [node_labels[neighbor] for neighbor in random_neighbors]
graph_str += f"{node_label}:" + ",".join (map(str, neighbor_labels)) + "-"

# Combine everything, placing the end _node last
graph_str = start_node_str + graph_str + end_node_str

return start_end_str + graph_str([:-1] + "=", path_string, node_labels
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C.3. Experimental Settings
C.3.1. HYPERPARAMETER CONFIGURATIONS

In this section, we provide a detailed overview of the hyperparameter configuration used in our experiments in Table 4 and 5.
To enhance memory efficiency and training speed, we employ flash attention and tf32, bfloat16. Our experiments are run
using PyTorch 2.4 and CUDA 12.1. Detailed dependencies are provided in our github repository>. We use Warmup stable
decay (Wen et al., 2024) as the learning rate schedule. In table 4 and 5, the number of constant LR steps is equal to the total
training steps minus the sum of warmup and decay steps.

Table 4 shows the training hyperparameters for the initial training phase on labeled data Dg. Table 5 shows the hyperparam-
eters for each the self-improve training rounds on D1 g.

Table 4. Hyperparameters for initial training on labeled data

Task Batch Size Optimizer LR Betas Epsilon Iterations Warmup Iter Decay Iter Wt decay

Reverse Addition 1024 AdamW  Se-4 (0.9,0.99 le-12 10000 1000 2000 0.1
Reverse Addition (Llama 3 3B) 128 AdamW  le-4 EO 9,0.99 le-12 1200 120 600 0.1
Reverse Addition (Llama 3 1B) 128 AdamW le-4 (0.9,0.99) le-12 1200 120 600 0.1
Copy/Reverse 1024 AdamW  5e-4 (0.9,0.99) le-12 5000 500 1000 0.1
Forward Addition 1024 AdamW  Se-4 EO.9, 0.99) le-12 10000 1000 1000 0.1
Multiplication 1024 AdamW  5e-5 (0.9,0.99) le-12 10000 1000 2000 0.1

Maze (hops) 1024 AdamW  Se-4 EO 9,0.99) le-12 25000 2500 3500 0.1

Maze (nodes) 512 AdamW  Se-4 (0.9,0.99) le-12 12000 1200 2800 0.1

Table 5. Hyperparameters for self-improvement rounds

Input Format Batch Size Optimizer LR Betas Epsilon Iterations Warmup Iter Decay Iter Wt decay
Reverse Addition 1024 AdamW  5e-4 (0.9,0.99) le-12 1500 0 1500 0.1
Reverse Addition (Llama 3 3B) 128 AdamW 1le-4 (0.9,0.99 le-12 600 0 600 0.1
Reverse Addition (Llama 3 1B) 128 AdamW le-4 (0.9,0.99 le-12 600 0 600 0.1
Copy/Reverse 1024 AdamW  5e-4 (0.9,0.99) le-12 500 0 500 0.1
Forward Addition 1024 AdamW  Se-4 50.9, 0.99) le-12 3000 0 1000 0.1
Multiplication 1024 AdamW  5e-5 (0.9,0.99) le-12 3000 0 1000 0.1
Maze (hops) 1024 AdamW  2e-4 (0.9,0.99) le-12 5000 500 1000 0.1
Maze (nodes) 1024 AdamW  2e-4 (0.9,0.99) le-12 4000 400 1000 0.1

C.3.2. SELF-IMPROVEMENT SETTING FOR EACH TASK

Reverse Addition. The initial supervised dataset Dy contains 2 million examples of reverse addition, with operand lengths
ranging from 1 to 16 digits. This dataset is used to train the model for 10,000 steps. In subsequent self-improvement rounds,
we sample 50,000 additional training examples at each round, extending the operand length by one digit. Specifically, at
self-improvement round 7, the self-generated data D, consists of length-16 + r examples produced by the model M,.. The
model is fine-tuned on the combined dataset Dy U D; U - - - U D,. for 1,500 steps, resulting in an improved model M, .

String Copy & String Reverse. The initial training set D, consists of 2 million examples of strings of length 1 to 10. The
vocabulary of the string is the digits 0 to 9. For each subsequent round 7, we sample D,. consisting of 50, 000 examples of
length 10 + r from the model M,.. Then we continue training M, on the combined dataset D, U - - - U D,. for 500 steps to
obtain M, 1.

Forward Addition The models are initially trained on a dataset Dy containing 2 million labeled examples of forward
addition, with operand lengths ranging from 1 to 10 digits. This initial training phase spans 10,000 steps. In each subsequent
self-improvement round, we generate 50,000 additional training examples, incrementally extending the operand length
by one digit. Specifically, at self-improvement round 7, the self-generated dataset D, contains length-10 + r examples
produced by the model M,.. The model is then fine-tuned for 3,000 steps on the combined dataset Dy U D; U --- U D,.,
resulting in an updated model M, 1.

https://github.com/JackCail206/arithmetic-self-improve
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Multiplication The model is initially trained on 5 million n-by-n multiplication examples with n = 5. Directly introducing
n + 1-by-n + 1 examples results in poor performance, hence, we adopt a more fine-grained difficulty schedule. In each
self-improvement round, we incrementally increase one operand by one digit, sampling n + 1-by-m and m-by-n + 1
examples, where m grows from 1 to n + 1. This gradual progression allows the model to adapt incrementally to larger
operand sizes, making the transition to harder examples more manageable.

For data filtering, we use the following setting: for length filtering, we remove self-generated samples where the output
length is shorter than the longest output in the batch by more than 10 tokens. This helps eliminate incorrect solutions
that omit intermediate steps. For majority voting, we train five models in parallel using different random seeds and retain
only those data points where at least 4 out of the 5 models produce the same output. This strategy ensures that only
high-consensus, reliable data points are used for training.

Maze Solving - Increasing Hops. The model is first trained on a dataset D containing 5 million labeled maze-solving
examples, where the number of nodes is fixed at N = 30 and paths range from & = 1 to h = 9 hops. This initial training
phase spans 25,000 steps. In subsequent self-improvement rounds, we generate 50,000 additional training examples,
increasing h by 1, and fine-tune the model for 5,000 steps per round. We experiment with both unfiltered training data and
majority voting, where only outputs agreed upon by all 3 models are retained.

Maze Solving - Increasing Nodes. The model is first trained on a dataset Dy containing 5 million labeled maze-solving
examples, with a fixed hop count » = 9 and node counts ranging from N = 10 to N = 30. This initial training lasts 12,000
steps. In self-improvement rounds, the number of nodes NNV is increased by 3 per round, generating 50,000 additional training
examples at each step and fine-tuning for 4,000 steps. We compare training without filtering against majority voting, where
only outputs agreed upon by all 3 models are kept.

Ablation Task - Pretrained Models To maintain consistency in tokenization, we use character-level tokenization instead
of the default tokenizer of the Llama models. We use LoRA (Hu et al., 2021) with » = 64 and o = 128 for Llama-1B, and
r = 32 and o = 128 for Llama-3B. In the initial round, we train for 1200 steps with a learning rate schedule that includes
10% warm-up steps to a constant learning rate of le-4, followed by 20% cosine decay steps to a final learning rate of 1e-6.
For subsequent rounds, we train for 600 steps per round using a cosine decay learning rate schedule without warm-up,
starting at 1le-4 and decaying to le-6.
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D. Full Results

D.0.1. RESULTS ON STRING COPY & STRING REVERSE

1.0

0.8

Accuracy
o o
S o

0.2

0.0
0 20

Number of Digits

Reverse

1.0

0.8

Accuracy
o o
S o

0.2

0.0 ;
0 20
Number of Digits

Figure 31. Results on string manipulation tasks. (Top) Copying task. (Bottom) Reversing task. The model, initially trained on strings of
length 1 to 10, generalizes to strings of over 120 digits through self-improvement.

D.0.2. RESULTS ON MULTIPLICATION

Each figure represents the average over 5 different models.

D.0.3. RESULTS ON MAZES

We provide additional evaluation on mazes, based on the validity of moves and correctness of end nodes.
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Mean Accuracy for Round 1 Mean Accuracy for Round 2 Mean Accuracy for Round 3 Mean Accuracy for Round 4

1{1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.902 1{1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.909 1{1.000 | 1.000 | 1.000 | 1.000 | 1.000 141.000 | 1.000 | 1.000 | 1.000 | 1.000

2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.793 2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.814. 2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 2 1.000 | 1.000 | 1.000 | 1.000 | 1.000

311000 | 1.000 | 1.000 | 1.000 | 1.000 311000 | 1.000 | 1.000 | 1.000 | 1.000 3{1.000 | 1.000 | 1.000 | 1.000 341.000 | 1.000 | 1.000 | 1.000
-
1.000 | 1.000 [ 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 %, 4 1.000 | 1.000 [ 1.000 | 1.000 0.000 1.000 | 1.000 | 1.000 | 1.000 0.000
©
511000 | 1.000 | 1.000 | 1.000 | 1.000 511.000 | 1.000 | 1.000 | 1.000 | 1.000 510.999 | 0.999 | 1.000 | 1.000 [RPCRXNE 5 0.999 | 0.999 | 1.000 | 1.000
610918 0900 0875 0845 0.818 6109320876 0.870 0855 0.818 610929 | 0.895 | 0.891 0.878 610.930 | 0.896 | 0.912 | 0.903 0,000 0.000

7 7 0.116 0.014 0.002 0.000 0.000 0.000 0120 0,000 0.000 0.000

1 2 3 4 5 6 7 1 2 3 4 5 6 7 12 4 6 7 12 4
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 5 Mean Accuracy for Round 6 Mean Accuracy for Round 7
141.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.902 14 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.904 11.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.904
2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.821 2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.820
341.000 | 1.000 | 1.000 | 1.000 | 1.000 311.000 | 1.000 | 1.000 | 1.000 | 1.000 34 1.000 | 1.000 | 1.000 | 1.000

1.000 | 1.000 | 1.000 | 1.000 44 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000

50.999 | 0.999 | 1.000 | 1.000 540.999 | 1.000 | 0.999 | 1.000 54 0.999 | 1.000 | 0.999 | 1.000

0911 0.004 0.000 0912 0120 0.000 0.920 0137 0.000

0.004 0.000 0.095 0 0.000

3 4
digit 2

digit 2

Figure 32. Results for multiplication without filtering. Each cell represents the accuracy on n-digit by m-digit multiplication. Red boxes
indicate labeled in-distribution examples, while magenta boxes indicate evaluations after training on self-improved data. The model is
initially trained on up to 5-by-5 multiplication. Generalizing to larger multiplications is challenging without data filtering.

Mean Accuracy for Round 1 Mean Accuracy for Round 2 Mean Accuracy for Round 3 Mean Accuracy for Round 4
1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.907 1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.932 14 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.920 1{1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.920
241.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.911 241.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.914 24 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.916 21 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.916
311.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.832 311.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.769 31 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.853 311.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.863

1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.802

-
2 441000 | 1.000 | 1.000 | 1.000 | 1.000
g

541.000 | 1.000 | 1.000 | 1.000 | 1.000 5 1.000 | 1.000 | 1.000 | 1.000 | 1.000 540.999 | 0.999 | 1.000 | 1.000 | 1.000 511.000 | 1.000 | 1.000 | 0.999 | 0.999
610938 0.932 0.895 0.873 0.845 610963 |0.896 0.890 0.889 0.840 610964 |0.928 | 0.919 0.918 0.856 610.966 | 0.927 | 0.934 | 0.938 0.878
7 7 7 7
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 17 1 2 3 4 5 6 7
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 5 Mean Accuracy for Round 6 Mean Accuracy for Round 7 Mean Accuracy for Round 8
141.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.929 141.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.929 141.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.929

21.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.926 21,000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.917 2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.914

31.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.864 3 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.865 3 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.864

1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000

—
5,4 1.000 | 1.000 | 1.000 [ 1.000 | 1.000
2

digit 1
digit 1

5 1.000 | 1.000 [ 1.000 | 1.000 | 0.999 54 1.000 | 1.000 | 0.999 | 1.000 | 0.999 54 1.000 | 0.999 | 1.000 | 1.000 | 0.999

640964 | 0.927 | 0.936 | 0.950 | 0.931 [CXINS 60.963 | 0.926 | 0.935 | 0.952 | 0.943 6 0.964 | 0.927 | 0.936 | 0.951 | 0.940

7 0,034 0,000 0.000 7 7
1 2 3 4 5 6 17 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 9 Mean Accuracy for Round 10 Mean Accuracy for Round 12 Mean Accuracy for Round 14
1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.930 1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.930 1 1.000 | 1.000 | 1.000 | 1.000 | 1.000
241.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.913 241.000 | 1.000 | 1.000 | 1.000 | 1.000 241.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.913 241.000 | 1.000 | 1.000 | 0.999 | 1.000
3{1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.859 3{1.000 | 1.000 | 1.000 | 1.000 | 1.000 31.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.858 311.000 | 1.000 | 1.000 | 1.000 | 1.000
- -
“2,41.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.816 1.000 | 1.000 | 0.999 | 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 54 1.000 | 1.000 [ 1.000 | 1.000 [ 1.000
5 il
541.000 | 0.999 | 0.999 | 0.999 541.000 | 0.999 | 1.000 | 1.000 541.000 | 0.998 | 1.000 | 1.000 | 0.999 541.000 | 0.999 | 0.999 | 0.999 | 0.998
60962 | 0.922 | 0.935 | 0.954 60961 0.923 | 0.037 | 0.954 60962 | 0.921 | 0.935 | 0.955 | 0.939 60960 | 0.920 [ 0.933 | 0.950 | 0.939

0.104  0.000

4
digit 2

4 4 4
digit 2 digit 2 digit 2

Figure 33. Results for multiplication with length filtering with length threshold of 10.
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Mean Accuracy for Round 1 Mean Accuracy for Round 2 Mean Accuracy for Round 3 Mean Accuracy for Round 4
11.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.913 141.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 11 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.815 11.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 .
211.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.793 21 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.987 21 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 211.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.775
3 1.000 | 1.000 | 1.000 | 1.000 | 1.000 3 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.831 3 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.963 3 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
- “-
‘8,4 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.818 “5, 44 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.993
S 5
54 1.000 | 1.000 | 1.000 | 1.000 | 1.000 54 1.000 | 1.000 | 1.000 | 1.000 | 1.000 51 1.000 | 1.000 | 1.000 | 1.000 | 1.000 54 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.812
6100926 0913 0.883 0.853 0.825 611.000 | 0947 0.943 0918 0.834 611.000|0.999 | 0.998 0.998 0.977 611.000 | 0.998 | 0.999 | 1.000 0.989
7 7 7 7
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 5 Mean Accuracy for Round 6 Mean Accuracy for Round 7 Mean Accuracy for Round 8
14 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.823 1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 11 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.950
2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.860 2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.943
311.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 34 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.770 31 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 311.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.954
- - -
%4 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 ‘é' 441.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 Aé 411.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 | 0.866
© © S
5 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.976 54 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.981 51 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.980 54 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.980
6 1.000 | 0.999 | 1.000 | 1.000 | 0.997 0 61 1.000 | 0.999 | 1.000 | 1.000 | 1.000 | 0.918 611.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.932 611.000 | 0.999 | 1.000 | 1.000 | 0.998 | 0.931
7 7 0.764 0.782 0.764 7 0.787 0.864 0.892 0.887 710984 | 0.965 0.965 0.964 0.946
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 9 Mean Accuracy for Round 10 Mean Accuracy for Round 12 Mean Accuracy for Round 14

1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.950|  1{1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.946 | 1 {1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.949 | 1 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.948

2 1.000 [ 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.947 |  2{1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.944 |  2{1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.944 | 2 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.948

31,000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0,972 3{1.000 | 2.000 | 1.000 | 1.000 | 1.000 | 1.000 [ 0.974 |  3{1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.974 | 3 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.973

1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 | 0.938 %, 4 1.000 | 1.000 [ 1.000 | 1.000 | 1.000 | 0.994 | 0.945 £, 4 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 | 0.949 | Z 4 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 | 0.929

digit 1
S
digit 1
digit 1
digit 1

5 1.000 | 1.000 | 1.000 | 1.000 | 1.000  0.980 | 0.878 5 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.979 | 0.899 5 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.979 | 0.922 | 5 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.979 | 0.923

6{1.000 | 0.998 | 0.999 | 1.000 | 0.999 | 0.932 6 1.000 | 0.999 | 1.000 | 1.000 | 0.999 | 0.931 61.000 | 1.000 [ 1.000 | 1.000 | 0.998 | 0.929 6 1.000 | 0.998 | 1.000 | 1.000 [ 0.998 | 0.932
7{0.988 | 0.992 [0.993 0.996 0.977 0.822 740.988 | 0.993 | 0.997 | 0.996 0.979 0.837 74 0.983 | 0.992 | 0.997 | 0.997 | 0.975 | 0.891 [LXN 7 { 0.989 [ 0.994 | 0.996 | 0.998 [ 0.976 | 0.891
1 2 3 4 5 6 7 12 4 5 6 7 1 2 3 4 6 7 1 2 3 4 5 6 7
digit 2 digit 2 digit 2 digit 2

Figure 34. Multiplication with majority voting where filtering is based on agreement of at least 4 out of 5 models. Applying majority
voting enables effective generalization from n-by-n to (n + 1)-by-(n + 1) multiplication tasks.
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Mean Accuracy for Round 1

Mean Accuracy for Round 2

Mean Accuracy for Round 3

Mean Accuracy for Round 4

111.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.913 111.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 141.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.776 14 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
211.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.793 211.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.989 211.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 211.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998
31.000 | 1.000 | 1.000 | 1.000 | 1.000 31.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.824 31.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.995 31.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000
1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.936 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.993
51.000 | 1.000 | 1.000 | 1.000 | 1.000 5 1.000 | 1.000 | 1.000 | 1.000 | 1.000 5 1.000 | 1.000 | 1.000 | 1.000 | 1.000 5 1.000 | 1.000 | 1.000 | 1.000 | 1.000
60926 0913 0.883 0853 0.825 610999 | 0.962 0.961 0.957 0.934 611.000 | 1.000 | 0.997 0.995 0.950 61 1.000 | 1.000 | 1.000 | 1.000 0.966
7 7 7 7
102 4 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 5 Mean Accuracy for Round 6 Mean Accuracy for Round 7 Mean Accuracy for Round 8
24 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.798 24 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 24 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 24 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.842
31.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 3 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 3 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 3 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.794
-
44 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.995 | 5,44 1.000 | 1.000 [ 1.000 | 1.000 | 1.000 [ 0.994 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994
5
541.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.980 541.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.992 5 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.989 5 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.990
6 1.000 | 1.000 | 1.000 | 1.000 | 0.997 61 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.934 640.999 | 1.000 | 1.000 | 1.000 | 1.000 | 0.939 6 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.943
7 7 0.759 0.795 0.789 7 0.767 0.843 0.883 0.887 7408980872 0912 0.913 0.894
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 9 Mean Accuracy for Round 10 Mean Accuracy for Round 11 Mean Accuracy for Round 12
141.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.814 141.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.820 141.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.816 11 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.999 | 0.817
211.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.858 211.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.857 241.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.856 241.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.998 | 0.854
31{1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.893 31{1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.906 34{1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.906 311.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.903
-
1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 | 0.867 %;4 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 | 0.896 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.994 | 0.898 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.993 | 0.896
S
541.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.989 | 0.788 541.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.990 | 0.853 541.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.991 | 0.881 541.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.990 | 0.885
641.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.943 6 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 0.943 60999 | 1.000 | 1.000 | 1.000 | 1.000 | 0.942 60999 | 1.000 | 1.000 | 1.000 | 1.000 | 0.941
740914 0.951 | 0.962 0.978 0.954 0.812 740912 | 0.960 | 0.972 | 0.989 0.972 0.849 74 0.910 | 0.955 | 0.975 | 0.992 | 0.979 0.869 74 0.907 | 0.956 | 0.972 | 0.992 | 0.977 | 0.897
1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6 7 1 2 3 4 5 6
digit 2 digit 2 digit 2 digit 2

Figure 35. Multiplication task with majority voting with shared self-improve data (See Section B.2.4).
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Mean Accuracy for Round 1 Mean Accuracy for Round 3 Mean Accuracy for Round 5 Mean Accuracy for Round 7
1 Jr.000f1.000f1.000f1.000f1.000j0.917[ FTRS 0 11nn1nn1nn1nn1nn1nnnlna< 0 1 f1.000f1.000}1.000f1.000}1.000j1.000}0.936 00.00 1 {1.0002.000f1.000f1.000f1.000f1.000}0.758]
2 11.000/1.000{1.000{1.000{1.000/0.954| 00.00 2 11.000{1.000{1.0001.000{1.000{1.000f 0.00 2 {1.000{1.000/1.000{1.000{1.000/1.000{0.993 [tXv[¢] 0 2 1.0001.000{1.000/1.000{1.000{1.0000.915| 0
3 {1.000|1.000{1.000]1.000|1.000{0.894 [SKJIK 0 3 11.000{1.000|1.000J1.000/1.000{0.999) 0 3 {1.000/1.000/1.000|1.000|1.000/1.000{0.970) 00 3 1.000{1.000f1.000f1.000f1.000f1.000{0.920]
4 11.000/1.000/1.000{1.000|1.000/0.776 LYW 0.000 4 1.000{1.000/1.000[1.000J1.000/0.918} 0 4 {1.000/1.000/1.000|1.000|1.000/1.00 00 441.000/1.000[1.000[1.000{1.000]1.000{0.977 [JXed 0
' 511.00011.000(1.000(1.000]1.000 RLRIIBXEE — 5 11.0001.00011.000(1.000[1.000 0.0000.0 0 5 {1.000/1.000[1.000[1.000/1.000|1.000 [HTETXII I 5 11.00011.00011.000(1.000(1.000]1.000/0.983 0.0000.0
:.g‘ 6 40.925 0.932 0.897 0.882 0.863 [} 00.00 .g 6 1.000{1.000|1.000 0.999 0.983| 00.00 0 6 11.000/1.000/1.000|1.000/1.000 00.000 0.0 g 6 -{1.000|1.0001.000]1.000f1.0001.000f 0.000 0.0
7 00.0000.0 0.000 7 0.002 0.0 0 7 E 0.0000.0 00 7 10.747 0.800 0.839 0.858 0.849 0.801 [ 0.00 )
8 0 0 0.00 8 0 0.00 0 8 0.00 0 0 8 0 0
9 9 9 9
10 X 00 0.0000.0 0 10 00.0 00.000 0.0 00.0 10 00.00 0 00.00 10 {2 0.0000.0 00
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 9 Mean Accuracy for Round 11 Mean Accuracy for Round 13 Mean Accuracy for Round 15
1 {1.000f1.000}1.000f1.000f1.000]1.000/1.000]0.998 L 1 {1.000]1.000f1.000f1.000}1.000f1.000}1.000j0.98: 1 {1.000f1.000}1.000f1.000j1.00011.000]1.000]0.994 1|nn|nn1nn|nn|on1nn1nn|nnnlnn7
2 {1.000f1.000j1.000f1.000]1. 000}1.000]1.000]0.929 0 2 11.000f1.000}1.000]1.000}1.000]1.000]1.000/0.996 XS 2 1.000]1.000/1.000]1.000]1.000]1.000]1.000/0.990 FRT RN 2 11.000f1.000j1.000}1.000]1.000}1.000]1.000]1.000
3 {2.000f1.000]1.000f1.000]1.000]1.000f1.000 0 3 -}1.000}1.000]1.000/1.000}1.000]1..000]1.000/0.895 [ 3 11.000/1.000J1.0001..000/1.000}1.000]1..000/1.000) 0.00 3 {1.000[1.000[1.000/1.000|1.000/1.000/1.000]1.000 0
4 11.000]1.0001.000]1.0001.000]1.000[0.990 PR E LR 4 11.000[1.000}1.000f1.00011.000]1.0001.000) 0 4 11.000]1.000]1.000]1.000]1.000]1.000]1.000/0.998| 4 1.000]1.000]1.0001.000]1.000f1.000[1.000[1.000 [ 13
— 511.000[1.000f1.000|1.000[1.000f1.000/0.993 0 — 511.000]1.000[1.000f1.000/1.000{1.000[2.000 [ (Y — 5 41.000]1.000/1.000/1.000f2.000/1.000]1.000/0.984 [ 5 -}1.000|1.000]1..000}1.000f1.000f1.000]1..000|1.000] 0
5 ) 5
5 61.000[1.000[1.000]1.000[1.000[1.000/0.843(cK¥ X -5 6 -1.000/1.000{1.000[1.000[1.000{1.000(0.795 R 5 6 11.000[1.000f1.000]1.000[1.000f1.000]1.000| 0.0000.00 6 1-000{1.000f1.000f1.000{1.000f1.000f1.000{0.999 K3 0
7 11.000§0.993/0.994 1.000 0.998 0.994 (VBEL} 0 0.00 7 10.999/0.99440.9951.000/0.998 0.996[J 0.00 7 0.999/0.9930.994/1.0000.998/0.998/0.998 (Rl 7 +1.000/0.994/0.9941.000/0.998/0.9981.000/0.961 of
8{0.8150.724 0.105 0.0, 0.00 (] 0 8 10.8790.9000.875 0.793 (] 0l 0 00.000 8 {0.8880.9450.954 0,943 0.924 0.855 MEEELNVIY 0 8 10.9780.989 0.988 0.989 0.991 0.990 0.967| 0.0000.00
[§ 0.0 00.000 0.0 0 9 0.00 00.000 0.0 0.0000.0 9 0 0 0.0000.0 00 QE 0.198 00.00 0
10 X 00 0.000 0.0 0 10 00.0 00.000 0.0 00.0 10 0 0 00.00 10 {0 0.000 0.0 00
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 17 Mean Accuracy for Round 19 Mean Accuracy for Round 21 Mean Accuracy for Round 23
1 4{1.000{1.000/1.000]1.000{1.000|1.0001.000{1.000/0.987 (UBE] 1 41.000{1.000{1.000|1.0001.000{1.000{1.000/1.000/0.998| 6 1 {1.000{1.000/1.00¢ 99 9. 89 93 93 910[sXy} 1 41.000/1.000{1.000/1.000|1.000{1.000{1.000{1.000|1.000/0.984
2 {1.000f1.000[1..000f1.000f1.000]1.000/1.000|1.000/0.966 [EX 2 11.000[1.000]1.000/1.000/1.000]1.000]1.0001.000[1.000[ 2 11.000/1.000/1.0000.982]0.933f0.9030.933(0.928{0.878| 2 -}1.000f2.000]1.000/1.000f1.000]1.000/1.000|1.000]1.000 0.744
3{1.000|1.000[1.000]1.000|1.000f1.0001.000/1.000/0.734] 3 -{1.000]1.000f1.0001.000/1.000f1.000f1.000]1.000{0.999 ! 3 {1.000/1.000/0.999|0.9880.940/0.912|0.9420.930/0.876| 3 -{1.000|1.0001.000]1.000|1.000f1.0001.000]1.000|1.000 [HE}
4 {1.000/1.000/1.000]1.000/1.000/1.000/1.000/1.000 0.000 4 11.000{1.000|1.000|1.000/1.000{1.000|1.000/1.000{0.979| 4 {1.000/1.000[1.000/0.989/0.9470.928/0.954{0.943/0.876 1 4 41.000]1.000/1.000/1.000]1.000]1.000/1.000]1.000/1.000 [ FLE}
™ 5{1.000[1.00011.000]1.000]1.000[1.000}1.000(1.000 ™ 5-{1.0001.000]1.000]1.000[1.000(1.000(1.000(1.000/0.748 T 5 {1.000/1.0001.000]0.988]0.955/0.940/0.968(0.963(0.884 ™ 5-{1.000]1.000]1.000[1.000(1.000}1.0001.000]1.000]1.000 Y
:.g 6 {1.000[1.000f1.000{1.000f1.000f1.000f1.000f0.999| g 6 1.000{0.999|1.000[1.000J1.000f1.000f1.000[1.000 L g’ 6 10.99910.999/0.999(0.992/0.971/0.975/0.983/0.977/0.886 g 6 1.000/1.000f1.000/1.000{1.000|1.000f1.000{1.000/0.998)
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10 6 0.00. 0 o 00.00 10 0010.00 0 0.00! pXoR 0.001 0.0 6 0000.00 10 0 0.0830.0 o
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 25 Mean Accuracy for Round 27 Mean Accuracy for Round 29 Mean Accuracy for Round 31
1 {1.000f1.000}1.000f1.000j1.0001.000]1.0001.000]1.000f0.993 1 {1.000]2.000f1.000f1.000f1.000f1.000]1. 000f1.000]1.000jo0.999 1 f1.000f1.000f1.000f1.000}1.000f1.000]1. 0001.000]1.000]0.959 1 {1.000f1.000}1.000f1.000j1. 000}1.000]1.000]1.000]1.0001.000|
2 {1.000/1.000/1.000|1.000/1.000/1.000|1.000|1.000/1.000/0.988 2 1.000f1.000f1.000J1.000f1.000f1.000f1.000f1.000f1.000[1.000 2 1{1.000/1.000f1.000]1.000/1.000|1.0001.000]1.000/1.000f0.962 2 {1.000f1.000f1.000|1.000f1.000f1.000f1.000f1.000f1.000f0.99:
3 J1.000}1.000/1.000]1.000]1.000]1.000]1.000f1.000f1.000}0 988 3 J1.000f1.000}1.000j1.000}1.000]1.000]1.000]1.000/1.000/0.955 3 J1.000}1.000]1.000}1.000]1.000]1.000]z.000f1.000f1.000/0.980 3 J1.000f1.000f1.000f1.000}1.000j1.0001.000]1.0001.000]0.99:
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8 10.9790.988}0.990[0.992]0.992}0.9980.998]0.995/0.943] 8 40.979]0.985|0.990/0.992]0.992{0.998]0.992{0.996/0.915 X8 8 10.979]0.986|0.991/0.992]0.993[0.998/0.998]0.996}0. 008 Xy 8 10.979]0.985|0.991/0.992]0.992]0.098]0.99}0.906[0.998]0.93:
9 10.9710.966/0.9: 977 0.982 0.982 0.985 0.986| 0.00 9 10.971{0.966{0.988/0.975(0.982{0.984 0.984 0.993! 0 9 10.971/0.968{0.987/0.977/0.982{0.9: 986/0.996 0 9 10.973/0.966/0.988/0.9' 982/0.9840.9: 996/0.993/0.782|
10 10.7520.760 0.1830. 0.00 10 10.7800.832 0.864 0.854 0.790. 0 10 10.806 0.885 0.905 0.927 0.930 0.923 0.861 0.00 10 10.848 0.916 0.930 0.961 0.965 0.975 0.966 0.955 0.905
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
digit 2 digit 2 digit 2 digit 2

Figure 36. Combining majority voting with length filtering. This approach achieves near-perfect length generalization up to 9 x 9, and
potentially achieving further generalization.
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Self-Improving Transformers Overcome Easy-to-Hard and Length Generalization Challenges

Mean Accuracy for Round 1

Mean Accuracy for Round 2

Mean Accuracy for Round 3

Mean Accuracy for Round 4
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2 2 2 2
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3 3 3 3
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= = = =
° = =) =)
5 6109 932 0.897 0.882 0.863 (NvELJvli] S 611.0000.994/0.991/0.986 0.967| 0 ‘S 6 11.000{1.0001.000{1.000|1.000| 0 01 0 ‘S 6 1.000{1.000[1.000|1.000]1.000f1.000f
7 7 10.776 6 7 {0.9430.826 0.788 7 10.964 0.929 0.923 0.898 0.854
[:§0.0 0.0000.0 0 8 0 00.000 0.0 00.0 8 0.00 0.0000.0 00.00 8 08 0 0 00.00
[§ 0.0 00.000 0.0 0 9 00.00 00.000 0.0 0.0000.0 9 000.0 0.000 0.0 00.00 [R0.00 0.0000.0 00.00 0
10 000 0 0.000 0.000 0.00 0 10 0 0.00 0.00 0 000 10 U 00.00 0 0000 0 10 0 0 000 0 0.00
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
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Mean Accuracy for Round 5 Mean Accuracy for Round 6 Mean Accuracy for Round 7 Mean Accuracy for Round 8
1 {1.000f1.000]1.000{1.000f1.000]1..000]1.000feHY 0 1 {1.000]1.000f1.000]1.000f1.000f1.00 wnnnlnam 0 1 {1.000f1.000[1.000{1.000f1.000]1.000|1.000[1.000 FBELARN 1 1.00011.000f1.000/1.000]1.000f1.000/1.000/1.000} 0
2 11.000|1.000f1.000]1.000|1.000f1.000{0.99 2 1.000]1.000f1.000]1.000/1.000f1.000f1.000} 2 {1.000/1.000/1.0001.000]1.000/1.000f1.0001.000} 2 1.000]1.0001.000]1.000]1.000f1.0001.000}0.996
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= = = =
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8 0 0.00 0 0 840.752 0.116 0 0 00.0 8{0.9810.971 0.915 0.852 0.729 0 00.00¢ 8 {0.9980.997 0.988 0.975 0.958 0.913|
9 0.00 0 00.00 9 0 0 0.00 [R0.065 0.0 0 0.00 [*B0.148 0.089 0.06 0.00 0
10 X 0 0.00 0 10 0 0.00 0 10 0.00 0 0 10 1 0 0
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 9 Mean Accuracy for Round 10 Mean Accuracy for Round 11 Mean Accuracy for Round 12
1 {1.000f1.000}1.000f1.000}1.000f1. 000.000]o.998 18 1 {1.000]1.000f1.000f1.000}1.000f1.000j1. 0001 000]0.999 3 1 f1.000f1.000}1.000f1.000}1.000}1. 000}1.000]1.000]0.993 RS 1 }1.000]2.000f1.000f1.000f1.000f1.000}1.000f1.000}1.000)
2 11.000f1.000{1.000]1.000f1.000f1.000]1.000]1.000[8 13 0 2 {1.000]1.000f1.0001.000/1.000|1.000f1.0001.000{0.988| 2 {1.000/1.000/1.000f1.000]1.000/1.000{1.0001.000/1.000(8 2 {1.000]1.0001.0001.000]1.000|1.000f1.000]1.000|1.000
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1 {1.000|1.000[1.000]1.000|1.000f1.0001.000|1.000]0.986| 1 1.000{1.000]1.0001.0001.000]1.000]1.0001.000{1.000/0.998 1 {1.000f1.000f1.0001.000f1.000f1.000{1.000f1.000f1.000{0.994 1 1.000{1.000/1.0001.000]1.000/1.000]1.000]1.000/1.000/0.981
2 1{1.000{1.000/1.000]1.000{1.000|1.0001.000{1.000{1.000} 2 {1.000{1.000/1.000{1.000{1.000|1.000{1.000{1.000{1.000/0.999 2 {1.000{1.000|1.000{1.000|1.000/1.000{1.000|1.000{1.000{1.000 2 41.0001.000{1.000/1.000{1.000{1.000/1.000{1.000{1.000}1.00
3 11.000f1.000/1.000]1.000[1.000[1.000/1.000{1.000{0.999 [JX¥ 3 11.000{1.000f1.000J1.000J1.000f1.000f1.000f1.000{1.000[0.997 3 {1.000/1.000|1.000[1.000|1.000/1.000{1.000[1.000/1.0001.000 3 1.000{1.000f1.000J1.000f1.000f1.000f1.000{1.000f1.000f0.999|
4 11.000/1.000/1.000{1.0001.000/1.000|1.000{1.000]0.999) 4 1.000{1.000f1.0001.000/1.000f1.0001.000]1.000|1.000[0.991 4 11.000/1.000/1.000[1.000/1.000/1.000{1.0001.000/1.000f1.000 4 41.0001.000/1.000[1.000{1.000/1.000|1.000{1.000/1.000/0.99!
~ 5 11.000]1.000f1.000]1.000f1.000f1.000]1.000f1.000f0.997[§ — 5 41.000{1.000f1.000f1.000J1.000f1.000f1.000f1.000f1.000/0.816 — 5 {1.0001.0001.000]1.000]1.000[1.000]1.000[1.000[1.000/1.000 — 5 -{1.000|1.000]1.000/1.000|1.000|1.000/1.000|1.000|1.000/0.99:
= = = =
o = o =)
2 6 {1.000)1.0001.000}1.0001.000]1.000f1.0001.000]0.994| 2 6 1.000]1.000]1.000]1.000ft.000]1.000fr.000fr 0001000} 2 6 {1.000[1.000/1.000}1.000]1.000]1.000]1.0001.000j1.000/1.000 = 6 1.000f1.000]1.000j1.000]2.000]1.000}1.0002.000]1.000fo 90
7 {1.000f1.000f1.000f1.000f1.000j1.000}1.000]1.000]0.993 1S 7 41.000f1.000}1.000}1.0001.000]1.000]1.000]1.000J0.998 XY 7 {1.000f1.000f1.000f1.000j1.000}1.000]1.0001.000]1.0000.998 7 1.000f1.000j1.000}1.000]1.000]1.000]1.000]1.000]1.000f0.999
8 {1.000f1.000f1.000f1.000]1.000]1.000]1.000]1.000/0.850 XS 8 J1.000f1.000]1.000}1.000]1.000]1.000]1.000f1.000/0.75 8 11.000]1.000/1.000]1.000]1.0001.0001.000f1.000f1.000}0.833 8 J1.000f1.000f1.000j1.000}1.000]1.000]1.000]1.000]1.000]0.99
9 10.989]0.99300.992/0.991J0.9890.988 0.989 0.986 0 9 {1.000{1.000/1.0001.000J1.000|1.000]1.000f0.988[H 9 {1.000/1.000|1.000{1.000J1.000/1.000{1.000{1.000]1.000f 9 {1.000[1.000/1.000|1.000{1.000|1.000/1.000{1.000f1.000/0.946
10 0 0.10 0! 10 10.946 0.922 0.868 0.865 0.821 0.761 0.00! 10 10.986 0.994 0.990 0.988 0.981 0.979 0.976 0.942 10 10.978]0.984J0.979)0.992/0.996/0.992/0.989 0.985 0.985
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
digit 2 digit 2 digit 2 digit 2
Mean Accuracy for Round 17 Mean Accuracy for Round 18 Mean Accuracy for Round 19
1 41.000/1.000{1.000|1.000|1.000{1.000{1.000f1.000|1.000f1.00 1 41.000{1.000{1.000/1.000{1.000{1.000{1.000/1.000{1.000{1.000 1 {1.000/1.000{1.000{1.000{1.000{1.000/1.000{1.000{1.000/1.00!
2 {1.000]1.000f1.0001.000]1.000f1.000f1.000]1.000|1.0001.00¢ 2 {1.000/1.000f1.0002.000/1.000f1.000f1.0002.000/1.000f1 .00 2 11.000J1.000f1.000]1.000|1.000f1.000f1.000|1.000|1.000f1.00¢
3 -{1.000|1.0001.0001.000|1.000f1.0001.000]1.000|1.0001.00¢ 3 {1.000[1.000f1.0001.000]1.000f1.000f1.000]1.000/1.000f1.00f 3 {1.000|1.000{1.000]1.000|1.000f1.0001.000|1.000|1.000f1.00¢
4 41.0001.000/1.000|1.000{1.000/1.000|1.000{1.000/1.000|1.00! 4 11.000/1.000f1.000]1.000/1.000|1.0001.000]1.000/1.000f1.000 4 {1.000/1.000[1.000[1.000|1.000]1..000f1.000|1.000]1.000f1.00
— 5 41.000|1.000]1.000f1.000|1.000]1.000f1.000f1.000]1.000[1.000| — 5 1.000f1.000|1.000]1.000f1.000f1.000]1.000]1.000J1.000|1.00! 5 11.000f1.000/1.000]1.000[1.000|1.000|1.000[1.000f1.000/1.00
= =
(= o
5 6-1.000[1.000[1.000/1.000[1.000[1.000/1.000/1.000[1.000/1.000| =5 6 {1.000]1.000[1.000|1.000/1.000{1.000f1.000/1.0001.000f1.00 6 {1.000{1.000f1.000{1.0001.000f1.000f1.000[1.0001.000f1.00
7 {1.000}2.000/1.000]1.000f1.000|1.000]1..000f1.000]1.000]1..00 7 {1.000/1.000]1.000]1.000J1.000|1.000[1.000f1.000/1.000]1.000 7 11.000f2.000/1.000]1.000f1.000|1.000]1.000f1.000f1.000/1..00¢
g 11.000[1.000}1.000j1.000}1.000]1.000/1.000]1.000]1.000]1.00 8 11.000j1.000}1.000]1.000/1.000]1.000]1.000]1.0001.000]1.00 8 {1.000f1.000f1.000f1.000}1.000]1.0001.000]1.0001.000]1.00
9 1.000{1.000f1.000J1.000f1.000f1.000f1.000{1.000f1.000f0.951 9 {1.000/1.000{1.000|1.000|1.000|1.000|1.000J1.000|1.000f1.00 9 {1.000/1.000/1.000{1.000|1.000/1.000/1.000|1.000|1.000|1.00
10 1.000[1.000/1.000/1.000{1.000]1.000]1.000f1.00( 10 {1.000{1.000]1.000|1.000f1.000{1.000|1.000|1.000f1.000]1.00 10 {2.000]1.000/1.000f1.0001.000/1.000|1.000{1.000/1.000|1.00
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
digit 2 digit 2 digit 2

Figure 37. Accelerated multiplication. We can significantly reduce the self-improvement rounds by carefully sampling a wider range of
difficulties at every round. Perfect length generalization is achieved up to 10-by-10 multiplication with 19 self-improvement rounds.
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Self-Improving Transformers Overcome Easy-to-Hard and Length Generalization Challenges
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Figure 38. Maze solving task with increasing hops. (Top to bottom) Exact match accuracy, move validation accuracy, and end validation
accuracy. (Left to right) No data filtering, majority voting based filtering, verifier on both moves and ends, verifier on moves only, verifier
on ends only.
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Figure 39. Maze solving task with increasing nodes. (Top to bottom) Exact match accuracy, move validation accuracy, and end validation
accuracy. (Left to right) No data filtering, majority voting based filtering, verifier on both moves and ends, verifier on moves only, verifier
on ends only.
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