Large Language Bayes

Justin Domke
University of Massachusetts Amherst

Abstract

Many domain experts do not have the time or expertise to write formal Bayesian
models. This paper takes an informal problem description as input, and combines
a large language model and a probabilistic programming language to define a joint
distribution over formal models, latent variables, and data. A posterior over latent
variables follows by conditioning on observed data and integrating over formal
models. This presents a challenging inference problem. We suggest an inference
recipe that amounts to generating many formal models from the large language
model, performing approximate inference on each, and then doing a weighted aver-
age. This is justified and analyzed as a combination of self-normalized importance
sampling, MCMC, and importance-weighted variational inference. Experimen-
tally, this produces sensible predictions from only data and an informal problem
description, without the need to specify a formal model.

1 Introduction

Why isn’t Bayesian inference more popular? Arguably, a major reason is simply that creating
probabilistic models is hard. Most people interested in analyzing data are neither programmers nor
experts in statistics. Yet, writing a probabilistic model requires learning a probabilistic programming
language (PPL), fluency with a range of statistical distributions, and experience formalizing problem
intuitions. Even for experts, this is difficult and error-prone.

A natural idea is to ask the user to describe their problem in plain language and then use a Large
Language Model (LLM) to generate a formal probabilistic model. While LLMs can write serviceable
models, in practice they struggle in the same way as humans—sometimes the models they create are
good and sometimes they aren’t [27].

Yet LLMs have one major advantage over humans: they don’t mind being asked to create many
different candidate models for the same problem.

The central idea of this paper is to mathematically “glue” an LLM to a PPL. Given an informal
description of a problem, a joint distribution is defined over (1) formal probabilistic models, (2)
observed data, and (3) unobserved target variables. We then condition on data and marginalize out
the space of formal models to get a final posterior over target variables.

The main contributions of this paper are:

* A new problem definition, in which an informal description and a dataset define a posterior via an
LLM and a PPL. (Sec. 2)

* A broad algorithmic recipe for solving the resulting inference problem. (Sec. 3)

» Experiments illustrating that the final approximated posterior captures user intent and is typically
better than taking a naive average of formal models. (Sec. 4)

» Theory analyzing the expected accuracy of the suggested inference recipe. (Sec. 5)

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Informal user text Data Marginal likelihoods
{

PROBLEM "num_days": 31,

I've recorded the precipitation in pgectpt;a;;on@:% [g'% g’

Amherst, Massachusetts for each 0’01 m‘ ’ 0'43’ 0.34, 1’20

day in December 2024. Maybe il g It Bt Bk .

there's some kind of pattern? g’ 3’53 g’ ggg‘ gg‘;” — Welghted

Predict how much it will rain on g et S-S Average
0, 0, 0.02, 0, 0,

the next day, January 1, 2025. 0.01, 0.07, 0.57, 0.02]

Make sure to reflect that olfsp Walkfp Laslp Lo \

precipitation is never negative.

Posteriors Final posterior
DATA
int num_days \
array[num_days] real precipitation

// results in December

Inference
GOAL
int next // outcome for next day LLM
\ Qin lin 2in 0in 1in 2in
Formal models model {

mu ~ gamma(5, 0.1);
for (i1 in 1:num_days){

model { model { precipitation[i] ~ exponential(mu);
prec_mean ~ cauchy(0, 100); mu ~ normal(0, 10);
prec_stddev ~ cauchy(0, 10); phi ~ uniform(-1, 1); }
for (1 in 1:num_days){ sigma ~ cauchy(0, 2.5); generated quantities {
precipitation[i] ~ m!rvm.(prrm mean, DI’EClPl?atloﬂ[ﬁl ~ exponential(exp(mu)); real next = exponential_rng(mu);
prec_stddev) T[0,]; for (i in 2:num_days){ }
} precipitation[i] ~ exponential(
} exp(mu + phix(precipitation[i-1] - mu))); model {
generated quantities { } lambda ~ gamma(10,0.5);
real next = normal_rng(prec_mean, } for (i1 in 1:num_days){
prec_stddev); generated quantities { precipitation[i] ~ exponential(lambda);
next = fmax(0, next); real next = exponential_rng(
} exp(mu + phix(precipitation[num_days] - mu))); }

generated quantities {
real next = exponential_rng(lambda);

Figure 1: The basic idea. Given informal user text, an LLM generates a set of candidate formal
models. Inference is performed on each and the posteriors are combined with weight proportional
to the marginal likelihood. Here four (real) LLM-generated formal models in the Stan language are
shown in different colors, with corresponding colors for marginal likelihoods and posteriors.

2 The basic idea

The user provides a plain-language description of the problem, including anything they know about
the phenomena under study, the types and shapes of the input data, what assumptions should be used,
and what target variables should be predicted. For example, a user might write the informal text
shown at the top left of Fig. 1. Given such a string, and asked to create models in the Stan PPL [5],
an LLM could output any of the formal models shown at the bottom of Fig. 1.

Denote the informal user text as ¢ and a formal model as m. Since LLMs are stochastic, we can think
of one (along with a system prompt, hyperparameters, etc.) as defining a distribution
m t . 1
formal textual
model description
Meanwhile, we can think of a PPL as defining a distribution over target variables z and data x,
conditional on the formal model. That is, we may think of a PPL as defining a distribution
z T m).
p(2,z lun)
target observed formal
variables ~ data model
The core idea of this paper is to glue the above two distributions together to define the joint

p(z,z,mt) = p(mlt) p(z,z|m). 3)
—— ———
LLM PPL

Our hypothesis is that the distribution defined in Eq. (3) is a good one. We are interested in the
posterior over z, conditioning on x and ¢, but integrating out m. It is not hard to show that this is

2

p(Z|£L’,t) = Z p(m|l',t) p(z\x,m) . 4)
final posterior posterior posterior of

model weight model m (PPL)

Here, p(z|x, m) is the posterior for model m (as defined by the PPL in Eq. (2)) and

p(mlz,t) o< p(ml|t) — p(z[m) . (5)
—— —— ——
posterior prior model marginal likelihood

model weight weight (LLM) of model m (PPL)

Note that the final posterior in Eq. (4) can be seen as an instance of Bayesian model averaging
[16, 32], just with a prior over models that’s defined using an LLM.

2

Algorithm 1 Theoretical exact LLB algorithm (intractable)

1. Input textual description ¢ and data x.
2. For all possible model strings m:
(a) Compute model probability p(m|t). // using LLM
(b) Compute posterior p(z|z,m) and marginal likelihood p(z|m). // under PPL
3. Setw(™) o p(m|t)p(z|m), where 3, w(™ = 1.
4. Return final posterior p(z|z,t) = 3. w(™p(z|z,m).

m

2.1 Varying latent spaces

Note that the user is not expected to specify all latent variables, only the target variables to predict.
This is crucial since, as illustrated in Fig. 1, different formal models typically have different latent
spaces. This is fine. All that’s needed is that each model produced by the LLM contains the target
variables z specified in the user prompt ¢. Formally, suppose that model m defines some distribution

p(z, 2, ul™|m), (6)

where «(™) varies in meaning (and dimensionality) for different models m. Then Eqs. (1) to (5) are
all still correct. The final posterior remains as in Eq. (4), just with p(z, x|m) interpreted as Eq. (6)
after marginalizing out (™). The posterior weights in Eq. (5) make no reference to the latent space,
and so need no modification.

2.2 Comparison to flat averaging

It is useful to contrast the final posterior p(z|z, t) to the result of taking a “flat” average of of models
sampled from the LLM, i.e.

pralzla,t) =Y p(mlt) p(zlz,m) . (7
—~ e~ ——

prior model posterior of
weight (LLM) model m (PPL)

Clearly pga(z|x, t) is not equal to p(z|z, t) as defined by Eq. (4), but it can be seen as an “ensemble
of posteriors”. The difference is that pga;, gives model m weight equal to the prior p(m|t) whereas
p(z|z,t) gives weight that is also proportional to the marginal likelihood p(z|m) (See Eq. (5)). Thus,
the fundamental difference between the true posterior and “flat” posterior is that the former gives
more influence to models that are more consistent with the observed data.

3 Inference

While mathematically simple, the posterior p(z|z,t) in Eq. (4) is computationally difficult. In
principle, one might imagine computing it as in Alg. 1, but this will rarely be practical. One familiar
issue is that for a given model m, it’s usually difficult to compute the posterior p(z|z, m) or the
marginal likelihood p(z|m). In addition, the space of models m is very large or possibly infinite.

A more subtle issue is that while we assume one can sample from p(m|t), the probability p(m|t) is
often unavailable. Many commercial LLM providers decline to share this information. Further, it’s
often beneficial to ask LLMs to “think out loud” before producing a final answer. This too makes
p(m|t) intractable, since the same model could appear after many different “thinking” passages.

So, while the posterior in Eq. (4) can be seen as an instance of Bayesian model averaging, existing
algorithms for Bayesian model averaging (e.g. reversible jump MCMC [8, §11]) seem difficult to
apply, as they involve explicitly iterating over all models and/or using evaluations of p(m|t). For
these reasons, p(z|z, t) appears to represent a novel inference challenge.

To approximate the final posterior, this paper will use the recipe in Alg. 2. The simplest interpretation
of this recipe is as a heuristic approximation of Alg. 1 where the sum over all models is replaced by
random sampling, and p(z|z, m) and p(z|m) denote approximations of the posterior and marginal
likelihood for a given model m. Sec. 5 will give more a formal justification and analysis.

Algorithm 2 Suggested generic approximate LLB recipe.

1. Input textual description ¢ and data x.
2. Forn=1,2,--- ,N:
(a) Sample model (™) ~ p(mlt). // using LLM
(b) Approximate posterior p(z|z, m(™) and marginal likelihood 5(z|m(™). /[under PPL
3. Set w(™ o p(z|m™), where Zg:l w™ = 1.

4. Return final approximate posterior p(z|z, t) ~ ij:l w™p(z|z, m™).

3.1 Preliminary observations

We experimented with using various LLMs to generate formal Bayesian models in various PPLs,
including Stan [5], NumPyro [26] and PyMC [1]. LLMs seemed better at generating Stan code,
perhaps since more Stan code is available and included in LLM datasets. We also found it was helpful
to give LLMs a system prompt that instructed them to describe their modeling strategy in words
before producing a formal model. Finally, to aid in-context learning, we found it was helpful to
provide examples of user prompts along with “good” responses.

3.2 Generating models

These experiments used a system prompt (Appendix F.1) that told the LLM to first generate a
“thoughts” block that would describe the modeling strategy in words, and then create the formal Stan
model. A few additional instructions were used to avoid common mistakes and to encourage the
LLM to create well-normalized distributions.

For in-context learning, we provided the LLLM with six examples of ostensible user inputs, along
with high quality outputs (Appendix G). Each input followed the format illustrated in Fig. 1 with
PROBLEM block, describing the problem, a DATA block describing the data, and a GoAL block describing
the target variable(s). Each output followed the instructions in the system prompt, with a THOUGHTS
block describing the modeling strategy and a MobEL block with formal Stan code.

For the problems below, 1024 models were generated using Llama-3.3-70B [14, 21] with 4-bit AWQ
quantization [19]. Since many models were generated from the same prompt, continuous batching
(parallel inference) greatly increased inference speed. Using a single A100 GPU, generating 1024
models took 10-15 minutes, depending on the problem.

3.3 Inference

Outputs from the LLM were rejected if they did not contain GoAL and MoDEL blocks or if the code in
the model block did not compile. For models that compiled, 2 chains of Stan’s implementation of
NUTS [17] were run for 10,000 iterations each. These samples were then considered as representing
the approximate posterior p(z|z, m(™).

It remains only to estimate the marginal likelihood p(z|m (™). While methods exist to estimate the
marginal likelihood from a set of posterior samples [23], these are often considered unreliable [22].
Instead, we elected to use variational bounds. The typical approach is to create some variational
distribution ¢(z) (e.g. a Gaussian) and optimize it to maximize the lower-bound

p(z, z|m™)
q(z)

This bound will be loose if the true posterior p(z|z,m(™) is not in the variational family. For a
tighter-bound, we pursued importance—weighted bounds [3] of the form

ELBO(q) = E log < log p(z|m ™). 8)
z~q

B p(zF x\m (n)) (n)
L=, E lg Z) < log p(alm™). ©)
where z', - -,z are independent samples from .

Algorithm 3 The variant of Alg. 2 used in the experiments of this paper.

1. Input textual description ¢ and data x.

2. Forn=1,2,--- ,N:
(a) Sample model (™) ~ p(mlt). // using LLM
(b) Draw samples z(™1) ... 2(mK) « p(z|z, m(™) using MCMC. /[under PPL
(c) Compute a lower bound L™ on the marginal likelihood log p(z|m ™)) using Eq. (9).

3. Set w(™ o exp L™, where 25:1 w™ =L

4. Return the samples {2(™*)} where z("*) is given weight w(™).

It remains to choose the distribution q. The typical approach with importance-weighted bounds
[3,2, 10, 11] is to explicitly optimize ¢ to maximize Eq. (9). However, it is difficult to make stochastic
optimization fully automatic and reliable across thousands of heterogenous models. Instead, we
exploit the fact that we have already (approximately) sampled from p(z|x, m(™)) using MCMC and
simply set q to be a Gaussian distribution matching the empirical mean and variance of the MCMC
samples.

This seemingly-heuristic choice is justified by the fact that Eq. (9) is asymptotically tight (as K — oco)
with an asymptotic rate of 1/K and a constant determined by the x? divergence between ¢ and
p [20, 11]. From the perspective of alpha-divergences, maximizing ELBO(q) is equivalent to
minimizing KL(q||p) = Do(pl|q), an “exclusive” divergence. Eq. (9) would be (asymptotically)
tightest if we could minimize the “inclusive” divergence x?(pl||q) = D2 (p||q), but this is difficult
to optimize [13]. Matching the mean and covariance of the posterior is equivalent to minimizing
KL(q||p) = D1(pl|q), and so is a pragmatic compromise. Experimentally, this performed at least as
well as explicitly optimizing Eq. (9), but was faster and more reliable.

The full inference recipe is summarized as Alg. 3. More details are in Appendix F.

4 Experiments

It is likely that all standard models and datasets are included in LLM training data. To avoid the
risk that the LLM would simply “remember” human-written models, these experiments use all-new
problems and datasets.

Since this paper will presumably also be included in future LLM datasets, any future work in this
direction should not use these problems for evaluation with any LLM with a knowledge cutoff after
the date this paper was first made public, namely April 21, 2025.

PROBLEM {"num_days":22,

I've been recording if it rains "rain":[1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,11}

each day, with a 1 for rain and 0

for no rain. Maybe there’s some

kind of pattern? Predict if it will 10-
rain the next day.

— 0.8- °
DATA

int num_days 5
array[num_days] int rain // results | —04- . v
so far, in order

GOAL o ‘ ‘ ‘ ‘ ‘ ‘ ‘
-80 -60 -40 -20 0] 20 40 p(z|x, t) paaclz|x, t)

int next // outcome for next day |Og£ﬂxlnﬂn»

Figure 2: The rain problem. Left: Informal user text ¢. Top right: The given data z. Bottom center:
Estimated marginal likelihoods p(z|m ™)) and posterior means E[z|z, m(™)] for each generated

model m(™). Markers for the four models in Fig. 7 are colored. Bottom right: The final posterior
mean, compared to a flat average.

: I just got the coin from the US mint, so plz|x, t1)
t¢) I'm almost completely sure that it’s a

standard US penny.

i max likelihood

At first glance, it appears to be a
ﬂ“> standard US penny, although I haven’t
examined it closely.

.. I can see that the penny is quite bent,
t3) so I'm pretty sure the bias is different
from 0.5, though I can’t tell in what
direction.

p(z|x, t3)

03 04 05 06 07 08 09
bias z

Figure 3: The coin problem. Left: Snippets from three different user prompts. Right: Resulting final
posteriors, which appear to reflect user intent. Predictions from pg, are shown as faint dotted lines.

4.1 Rain

In this problem (Fig. 2), a user recorded if it rained on a sequence of days and wishes to predict if it
will rain on the following day. The data provides two contradictory signals. One the one hand, most
days did not have rain. However, adjacent days are correlated and it rained on the last three days.

Out of 1024 generated models, 960 (93.8%) compiled and allowed for inference. Four example
models are shown in Fig. 7 (supplement). Many models treat each day as independent and give
predictions near the base rate of 8/22 ~ 0.364. Others give predictions near the between-day
consistency rate of 14/21 ~ 0.667. (Both of these base rates are shown as dotted lines in Fig. 2.) A
flat average includes many models of both types and predicts 0.573. However, the final posterior is
dominated by a single model that models multi-day dependencies and predicts an even-higher value
of 0.793. Detailed results are in Appendix B.1.

4.2 Coin

This problem (Fig. 3) tests the impact of different assumptions stated in the user text. Three prompts
are given describing flipping a coin but with different assumptions about the true bias. In all cases, 20
flips were observed, out of which 14 were heads.

Out of 1024 generated models, between 848 (82.8%) and 989 (96.6%) compiled and allowed for
inference, depending on the prompt variant. For all three variants, many generated models had
marginal likelihoods high enough to contribute to the final estimated posterior. The final estimated
posteriors are compared in Fig. 3, where the different assumptions seem reflected in the final posteriors.
Detailed results are in Appendix B.2, Appendix B.3, and Appendix B.4.

4.3 Polling

In this problem (Fig. 4), a user describes a candidate with fluctuating popularity who is polled by
three different pollsters at various times throughout a year, and asks to predict the true popularity on
each day. See Appendix B.5 for the full prompt.

100

100 80

80 ?
2 o, e & 60
S 50 ¢ 4+ o+ o o oy S
- TERE . D S
Q 40 *xjg%ﬁn»&ﬁ Xxg, . a — plzlx, t)
8 e 2 — Priclzlx, B
o o pollster #1

20 : x pollster #2 0 —— true latent z

0 + pollster #3 0 100 200 300
0 100 200 300 day

Figure 4: The polling problem. Left: Observed data . Right: Final estimated posterior, compared to
a flat average.

Out of 1024 generated models, 568 (55.5%) compiled and allowed for inference. For this problem,
the estimated posterior shows little benefit over a flat average. A single model captured essentially all
posterior weight, which may indicate inaccurate inference. Detailed results are in Appendix B.5.

4.4 City Temperature

100 °F
In this problem (Fig. 5), the temperature is soep TTT T T T TR i Porop L Fer 7T
given for a set of random days in a handful 100°F . feb L, iob Gd bos ies 1 s dos
of random cities around the world, along 50 °F Tt - -
with the temperature on subsequent days. 100°F iy semi =% des bei de: et 1-% fe:
The user gives a set of test days and asks £ 50°F
to predict the temperature on the following ~ © 100°F L. L. sms s_. ios ios
days. 50 °F

100 °F
Out of 1024 generated models, 736 (71.9%) coep TR TR TR oAmRomen o oge g

compiled and allowed for inference. In this

problem, again the final estimated posterior

isn’t obviously better than a flat average. . . o

Detailed results are in Appendix B.6. F'1gure 5: Medians and 90% credible intervals for each
city and test day for the the city temperature problem.

Test days

- plz|x, t) - prat(z|x, t) - truez

45 Gold

In this problem (Fig. 6), the user describes a rod with a varying density of gold. Binary tests have

been done at different positions and the goal is to infer the true density. Inference is done with two
different datasets, one with 30 observations, and one with 150.

This problem proved quite challenging, with only 1-2% of generated models being syntactically valid
and allowing inference to proceed. Thus, 16,384 models were generated, out of which only 192
(1.2%) compiled and allowed for inference with 30 data and 71 (0.4%) with 150 data. The marginal
likelihoods result in almost all weight concentrating in just three models in the smaller dataset and
just one model with the larger dataset. Using these gives sensible results, and clearly better than a
“flat” average, at least with 150 data . Detailed results are in Appendix B.7 and Appendix B.8.

Finally, note that some of the above results may be impacted by the fact that if truncated distributions
are created through the use of constraints in Stan [5], densities are not re-normalized to reflect the
truncation. So, for example, if a model includes a standard half-normal, computed log-densities for
that model will be lower they should be by a factor of log % ~ 0.693 nats. Unfortunately, this seems
difficult to address automatically. This is “safe” in the sense that it can decrease but not increase

---- true density ‘\\]

gold density
o o
B3

old detected “_/ \ /N s “\ FaN
| Srqwot detected) \ /l \‘\ — Elz|x, tlunder p(Zx, t) \ /N
0.00 i o TRt A [z]x, tl under pat(z|x, t) - ..
0.0 05 1.0 . 15 2.0 25 0.0 05 1.0 o 1.5 20 25
position position

/
---- true density \\ ;

gold detected _/
| not detected

gold density
o
<]

o
N
&)

\

\

\

\

\ 1 \
\

\

\
\

\ N

\ A
/ \
/ \

—— Elz|x, t] under p(Z[x, t)

0.00 T L e e L [z|x, t] under prat(z|x, t) =27 .
0.0 0.5 1.0 . 15 20 2. 0.5 1.0 = 1.5 2.0 25
pOSItIOh pOSlthn

Figure 6: The Gold problem. Left column: Observed data. Right column: Final estimated posterior,
compared to a flat average. Top row: Results with 30 observations. Bottom row: 150 observations.

estimated marginal likelihoods, but it means that some “good” models may have lower weights then
they deserve in all the above experiments.

S Theory

This section seeks to understand how accurately Alg. 2 will approximate the true posterior, in
particular how the accuracy depends on the number of samples NV, and the quality of the posterior
and marginal likelihood approximations, and the LLM-defined prior over models p(m/|t).

5.1 Importance sampling in model space

Recall the final posterior p(z|z,t) = > p(m|z,t)p(z|z, m) from Eq. (4). To cope with the large
model space, one idea would be to perform importance sampling—to draw m ~ p(m|t) and reweight

(z|x, m) by the ratio p(m|x,t)/p(m|t). Unfortunately, this is infeasible, since the normalizing
constant for p(m/|z, t) in Eq. (5) is intractable and the probabilities p(m|t) are unavailable (Sec. 3).

An alternative is self-normalized importance sampling (SNIS)—to draw a set of models from p(m/|t)
and give each a weight proportional to p(m|z,t)/p(m|t), but normalized to sum to one. It can be
shown (Appendix C.1) that this estimator simplifies into

(n))
z|x, t) w zlz,m™), w® = p(zjm) (10)
| Z ‘) Zg/:lp(x|m(n/))

where m™) - .. m®) ~ p(m]t). This is equivalent to Alg. 4 (Appendix D).

This will rarely be practical, since the posteriors p(z|x, m(™) and marginal likelihoods p(z|m (™))
must be approximated. But it is useful to analyze it to isolate error due purely to SNIS. Suppose we are
interested in the expectation of some function f with respect to the posterior, i.e. pt = Ep(z(4.1) f(2)-
If p(z|z, t) is the approximation in (Eq. (10)) one can estimate u with

in = :;

[(z|z,m™)] . (11)
D(Z J

p(z|x, 'rn("))
Standard results (Appendix C.2) show that /i is asymptotically unbiased with asymptotic variance
p(m|z,t)

) -
Viin] = Vy = %P(EW [(M) (9(m) — #)2

Further, if |g(m) — p| < ¢ (as would be true, for example, if | f(z) — u| <), then,

Vi < % (132 (plmle,) p(ml)). (12

where x?(p||q) again denotes the chi-squared divergence. Eq. (12) suggests that for Alg. 4 to achieve
a given accuracy, N must be proportional to x2 (p(m|z,t)||p(m|t)). This is an “inclusive” divergence,
meaning that if p(m/|t) is small but p(m|z, t) is large for some model m, this greatly increases the
divergence, while the reverse situation only causes a modest increase.

This suggests that it is important that the LLM-defined prior p(m|t) be relatively broad: The
accuracy of the estimated posterior is harmed more by the prior being “overconfident” than being
“underconfident”. In particular, since p(m|x,t) only varies from p(m/|t) by a factor of p(x|m) (and
normalization), it is important that p(m|t) should not give vanishingly small probability to models m
where the marginal likelihood p(xz|m) is large.

5.2 Approximate inference

This section considers the impact of approximating the marginal likelihood and the posterior for a
given model. Suppose temporarily that for each m, some approximation ¢(z|x,m) = p(z|z,m) is
known. Define the joint approximation

q(z,m|z) = g(m|z)q(z|z, m), (13)

where ¢(m/|z) remains to be chosen. In principle, we would like to optimize g(m|z) to make
the marginal g(z|x) close to p(z|z,t), but this seems difficult, since even evaluating p(z|x,t) is
intractable (Eq. (4)). Instead we propose to choose g(m|z) to minimize the joint divergence

KL(q(z, m|z)|p(z, m|z, 1)), (14)

which (by the chain rule of KL-divergence [9, Thm 2.5.3]) is an upper bound on the divergence from
q(z|z) to p(z|z,t). The following result gives the the optimal g(m|x). (Proof in Appendix E.1)

Theorem 1. Suppose p(z,x, m|t) and q(z|x,m) are fixed. Then KL(q(z, m|x)|p(z, m|x,t)) is
minimized by

alml) ox p(mlt)p(elm) x exp((—xu(azle, m) [p(zlz,m)). (s)

with a resulting joint divergence of

Ku(g(z,mla) [p(z, ml, 1)) = ~log | B exp(—rla(elr,m)lp(elz,m)). (16)

Informally, the optimal ¢(m/|z) in Eq. (15) can be seen as taking p(m/|xz, t) o p(m|t)p(z|m) from
Eq. (5) and down-weighting models m where g(z|x,m) is a worse approximation of p(z|x, m).
Eq. (16) is less intuitive. As KL-divergence is non-negative, the inner expectation is between 0 and
1, with larger values giving a smaller joint divergence. Thus, inaccuracy in g(z|x, m) “hurts” more
when p(m/|x, t) is larger. This same intuition follows from noting that Eq. (16) can be upper-bounded
by Ep(m|z,t) KL(q(z|z, m)||p(z|2, m)) (See Thm. 4 in Appendix C.5).

Thm. 1 is not immediately useful, since the marginal likelihood p(z|m) and KL divergence for a
given m are typically intractable. However, recall the ELBO decomposition

log p(x|m) = ELBO(m) + kr(q(z|z,m)||p(z|z,m)) (17

where the (tractable) evidence lower-bound (ELBO) (now written as a function of the model m rather
than the distribution ¢ as in Eq. (8)) is

ELBO(m) = E log 2Z4Im)

. (18)
azlz,m) - q(z|z,m)

Variational inference (VI) algorithms maximize the ELBO which is equivalent (since log p(x|m)
is fixed) to minimizing the KL-divergence. Using this decomposition, Thm. 1 can be given in the
following alternate form. (Proof in Appendix E.2.)

Corollary 2. Under the same assumptions as Thm. 1, the optimal g(m|x) can also be written as
a(mlz) ox p(mt) exp (ELBO(m)). (19)

with a resulting joint divergence of

KL(q(z, m|z)||p(z, m|z, t)) = log p(z|t) — lng(En) exp (ELBO(m)). (20)

Note that Eq. (19) was previously shown by [18, Sec. 2.2] and Ohn & Lin [24, Thm 2.1].

Taken literally, Thm. 2 suggests that to find the joint approximation ¢(z, m|x) closest to p(z, m|x, t),
one should loop over all models m, independently do variational inference on each, and then
average the variational distributions using the weights from Eq. (19). Such an algorithm is shown as
Alg. 6 (Appendix D), but is not practical since again the space of models m is large and the LLM
probabilities p(m/|t) are unavailable.

However, one can also incorporate the SNIS ideas from Sec. 5.1. Suppose we would like to estimate
q(z]x) = Eq(m|z) q(2|7, m), where q(z|z, m) is an approximation of p(z|x,m) and g(m|xz) are the
weights from Eq. (19). If we use a proposal distribution p(m/|t), then it’s easy to show (Appendix C.3)
that the self-normalized weights are proportional to exp(ELBO(m)). This results in Alg. 5. This is
an instance of the recipe in Alg. 2, since ELBO(m) is a lower-bound on log p(x|m).

5.3 Algorithmic variants

It can be beneficial to use approximating distributions ¢(z|x, m) where only a lower-bound on the
ELBO is available. One example of this would be to take advantage of Monte Carlo VI methods like
importance-weighted VI [3, 12, 2, 10, 7]. Another example would be when one believes MCMC can
efficiently sample from p(z|x, m). If one thinks of those samples as representing an approximating
distribution ¢(z|x, m), one might believe it is essentially exact. But even if this is true, estimating the
marginal likelihood from samples is famously difficult [23, 22], so one might bound the marginal
likelihood using a different method (e.g. variational inference).

To justify this, imagine that one first finds a variational approximation ¢(z|x, m) for each model m,
and sets the model weights ¢(m/|z) using Eq. (19) Then, imagine replacing each distribution g(z|z, m)
with one with a higher ELBO (lower KL-divergence) while leaving g(m|x) fixed. By the chain rule of
KL-divergence, KL(q(z, m|a) p(z, m|, 1)) = xi(g(mle)||p(m|z,) + xi(g(z|m, 2) |p(zim, z)
Improving ¢(z|m, x) will decrease the second KL-divergence on the right while leaving the first
divergence unchanged, meaning the joint divergence can only decrease.

Appendix C.4 gives a generalized version of the above results when the model weights ¢(m|t) are com-
puted based on inexact ELBO values. A particularly interesting special case is when the distributions
p(z|z, m) can be computed exactly (e.g. using MCMC) but the weights ¢(z|m) are computed based
on some bound on the marginal likelihood. (See Alg. 3 in Appendix D.) Then the joint divergence
result from Appendix C.4 reduces to KL(q(z, m|z)||p(z, m|x,t)) = —log Ep(m|ab) exp(—6(™ +§),
where 60" is the gap between log p(x|m) and the lower bound used when computing ¢(m|z) and
§ = Eq(mlz) 5(M)_ This result has a somewhat similar intuition as Eq. (16): Constant errors have no
effect, and errors on models where p(m|z, t) very is small have little effect. What really matters is if
5(™) varies among models where p(m|z, t) is large.

6 Discussion and limitations

This paper proposed the LLB scheme for defining a posterior from natural language (Sec. 2), sug-
gested a broad approximate inference strategy for it (Sec. 3), tested it experimentally (Sec. 4) and
analyzed the error of the inference strategy theoretically (Sec. 5).

One direction for future work would be to investigate better ways of using LLMs to define distributions
over models—essentially better distributions p(m|t). There are many obvious options, such as
different system prompts, more/better examples, different formatting of user inputs, or training (or
fine-tuning) an LLM specifically for this task.

Another direction is better inference methods. The suggested recipe involves doing inference
independently on each sampled model. While fully parallelizable, this is expensive, and practical
only on relatively small problems. We intend no claim of optimality. When doing inference on many
models for the same task, many models are often quite similar, suggesting it might be possible to
share work between models. It might also be possible to use constrained generation to guarantee
that only valid models were created, eliminating the overhead of generating and then rejecting some
syntactically invalid models.

6.1 Related work

In terms of usage of LLMs for Bayesian modeling, Wong et al. [33] suggest a system where an LLM
translates natural language text into a PPL. This is related to our approach, but assumes that “facts”
as provided to the LLM as text, rather than being described in text and then provided to inference as
numerical data. Capstick et al. [4] consider using an LLM to take a natural language description and
predict the parameters of Gaussian priors (to be used in concert with known likelihood models). Selby
et al. [29] also consider a similar idea, and compare the results from several LLMs to priors elicited
from human experts Stefan et al. [30]. Requeima et al. [28] suggest a scheme to make probabilistic
prediction from natural language plus data. Other work considers the use of LLMs for time-series
predictions [15, 34] or as regressors [31]. Choi et al. [6] suggest a general framework for using
natural language information to inform learning procedures via an LLM.

10

Acknowledgement

This material is based upon work supported in part by the National Science Foundation under Grant
No. 2045900.

References

[1] Abril-Pla, O., Andreani, V., Carroll, C., Dong, L., Fonnesbeck, C. J., Kochurov, M., Kumar,
R., Lao, J., Luhmann, C. C., Martin, O. A., Osthege, M., Vieira, R., Wiecki, T., and Zinkov, R.
PyMC: A modern, and comprehensive probabilistic programming framework in Python. PeerJ
Computer Science, 9:¢1516, September 2023.

[2] Bachman, P. and Precup, D. Training Deep Generative Models: Variations on a Theme. In
NIPS Workshop: Advances in Approximate Bayesian Inference, 2015.

[3] Burda, Y., Grosse, R., and Salakhutdinov, R. Importance Weighted Autoencoders. In /ICLR,
2015.

[4] Capstick, A., Krishnan, R. G., and Barnaghi, P. Using Large Language Models for Expert Prior
Elicitation in Predictive Modelling, December 2024.

[5] Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M., Brubaker,
M., Guo, J., Li, P, and Riddell, A. Stan: A Probabilistic Programming Language. Journal of
Statistical Software, 76(1), 2017.

[6] Choi, K., Cundy, C., Srivastava, S., and Ermon, S. LMPriors: Pre-Trained Language Models
as Task-Specific Priors. In NeurlPS 2022 Foundation Models for Decision Making Workshop,
November 2022.

[7] Christian Andersson Naesseth. Machine Learning Using Approximate Inference: Variational
and Sequential Monte Carlo Methods. PhD thesis, Linképing University, 2018.

[8] Christian Robert. Monte Carlo Statistical Methods. 2004.

[9] Cover, T. M. and Thomas, J. A. Elements of Information Theory. Wiley-Interscience, Hoboken,
N.J, 2nd ed edition, 2006. ISBN 978-0-471-24195-9.

[10] Cremer, C., Morris, Q., and Duvenaud, D. Reinterpreting Importance-Weighted Autoencoders.
arXiv:1704.02916 [stat], April 2017.

[11] Domke, J. and Sheldon, D. Importance Weighting and Variational Inference. In NeurIPS, 2018.

[12] Domke, J. and Sheldon, D. Divide and Couple: Using Monte Carlo Variational Objectives for
Posterior Approximation. In NeurIPS, pp. 11, 2019.

[13] Geffner, T. and Domke, J. On the difficulty of unbiased alpha divergence minimization. In
ICML, pp. 3650-3659, July 2021.

[14] Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle, A., Letman, A.,
Mathur, A., Schelten, A., Vaughan, A., Fan, A., Goyal, A., Hartshorn, A., Yang, A., Mitra, A.,
Sravankumar, A., Korenev, A., Hinsvark, A., Rao, A., Zhang, A., Rodriguez, A., Gregerson,
A., Spataru, A., Roziere, B., Biron, B., Tang, B., Chern, B., Caucheteux, C., Nayak, C., Bi, C.,
Marra, C., McConnell, C., Keller, C., Touret, C., Wu, C., Wong, C., Ferrer, C. C., Nikolaidis, C.,
Allonsius, D., Song, D., Pintz, D., Livshits, D., Wyatt, D., Esiobu, D., Choudhary, D., Mahajan,
D., Garcia-Olano, D., Perino, D., Hupkes, D., Lakomkin, E., AlBadawy, E., Lobanova, E.,
Dinan, E., Smith, E. M., Radenovic, F., Guzman, F., Zhang, F., Synnaeve, G., Lee, G., Anderson,
G. L., Thattai, G., Nail, G., Mialon, G., Pang, G., Cucurell, G., Nguyen, H., Korevaar, H., Xu,
H., Touvron, H., Zarov, L., Ibarra, I. A., Kloumann, 1., Misra, L., Evtimov, 1., Zhang, J., Copet, J.,
Lee, J., Geffert, J., Vranes, J., Park, J., Mahadeokar, J., Shah, J., van der Linde, J., Billock, J.,
Hong, J., Lee, J., Fu, J., Chi, J., Huang, J., Liu, J., Wang, J., Yu, J., Bitton, J., Spisak, J., Park, J.,
Rocca, J., Johnstun, J., Saxe, J., Jia, J., Alwala, K. V., Prasad, K., Upasani, K., Plawiak, K., Li,
K., Heafield, K., Stone, K., El-Arini, K., Iyer, K., Malik, K., Chiu, K., Bhalla, K., Lakhotia,
K., Rantala-Yeary, L., van der Maaten, L., Chen, L., Tan, L., Jenkins, L., Martin, L., Madaan,

11

[15]

L., Malo, L., Blecher, L., Landzaat, L., de Oliveira, L., Muzzi, M., Pasupuleti, M., Singh, M.,
Paluri, M., Kardas, M., Tsimpoukelli, M., Oldham, M., Rita, M., Pavlova, M., Kambadur, M.,
Lewis, M., Si, M., Singh, M. K., Hassan, M., Goyal, N., Torabi, N., Bashlykov, N., Bogoycheyv,
N., Chatterji, N., Zhang, N., Duchenne, O., Celebi, O., Alrassy, P., Zhang, P., Li, P., Vasic, P,
Weng, P., Bhargava, P., Dubal, P., Krishnan, P., Koura, P. S., Xu, P., He, Q., Dong, Q., Srinivasan,
R., Ganapathy, R., Calderer, R., Cabral, R. S., Stojnic, R., Raileanu, R., Maheswari, R., Girdhar,
R., Patel, R., Sauvestre, R., Polidoro, R., Sumbaly, R., Taylor, R., Silva, R., Hou, R., Wang, R.,
Hosseini, S., Chennabasappa, S., Singh, S., Bell, S., Kim, S. S., Edunov, S., Nie, S., Narang, S.,
Raparthy, S., Shen, S., Wan, S., Bhosale, S., Zhang, S., Vandenhende, S., Batra, S., Whitman,
S., Sootla, S., Collot, S., Gururangan, S., Borodinsky, S., Herman, T., Fowler, T., Sheasha, T.,
Georgiou, T., Scialom, T., Speckbacher, T., Mihaylov, T., Xiao, T., Karn, U., Goswami, V.,
Gupta, V., Ramanathan, V., Kerkez, V., Gonguet, V., Do, V., Vogeti, V., Albiero, V., Petrovic,
V., Chu, W., Xiong, W., Fu, W., Meers, W., Martinet, X., Wang, X., Wang, X., Tan, X. E., Xia,
X., Xie, X., Jia, X., Wang, X., Goldschlag, Y., Gaur, Y., Babaei, Y., Wen, Y., Song, Y., Zhang,
Y., Li, Y., Mao, Y., Coudert, Z. D., Yan, Z., Chen, Z., Papakipos, Z., Singh, A., Srivastava,
A., Jain, A., Kelsey, A., Shajnfeld, A., Gangidi, A., Victoria, A., Goldstand, A., Menon, A.,
Sharma, A., Boesenberg, A., Baevski, A., Feinstein, A., Kallet, A., Sangani, A., Teo, A., Yunus,
A., Lupu, A., Alvarado, A., Caples, A., Gu, A., Ho, A., Poulton, A., Ryan, A., Ramchandani,
A., Dong, A., Franco, A., Goyal, A., Saraf, A., Chowdhury, A., Gabriel, A., Bharambe, A.,
Eisenman, A., Yazdan, A., James, B., Maurer, B., Leonhardi, B., Huang, B., Loyd, B., Paola,
B. D., Paranjape, B., Liu, B., Wu, B., Ni, B., Hancock, B., Wasti, B., Spence, B., Stojkovic,
B., Gamido, B., Montalvo, B., Parker, C., Burton, C., Mejia, C., Liu, C., Wang, C., Kim, C.,
Zhou, C., Hu, C., Chu, C.-H., Cai, C., Tindal, C., Feichtenhofer, C., Gao, C., Civin, D., Beaty,
D., Kreymer, D., Li, D., Adkins, D., Xu, D., Testuggine, D., David, D., Parikh, D., Liskovich,
D, Foss, D., Wang, D., Le, D., Holland, D., Dowling, E., Jamil, E., Montgomery, E., Presani,
E., Hahn, E., Wood, E., Le, E.-T., Brinkman, E., Arcaute, E., Dunbar, E., Smothers, E., Sun,
F., Kreuk, F., Tian, F., Kokkinos, F., Ozgenel, F., Caggioni, F., Kanayet, F., Seide, F., Florez,
G. M., Schwarz, G., Badeer, G., Swee, G., Halpern, G., Herman, G., Sizov, G., Guangyi, Zhang,
Lakshminarayanan, G., Inan, H., Shojanazeri, H., Zou, H., Wang, H., Zha, H., Habeeb, H.,
Rudolph, H., Suk, H., Aspegren, H., Goldman, H., Zhan, H., Damlaj, I., Molybog, 1., Tufanov,
I., Leontiadis, 1., Veliche, I.-E., Gat, 1., Weissman, J., Geboski, J., Kohli, J., Lam, J., Asher, J.,
Gaya, J.-B., Marcus, J., Tang, J., Chan, J., Zhen, J., Reizenstein, J., Teboul, J., Zhong, J., Jin,
J., Yang, J., Cummings, J., Carvill, J., Shepard, J., McPhie, J., Torres, J., Ginsburg, J., Wang,
J., Wu, K., U, K. H., Saxena, K., Khandelwal, K., Zand, K., Matosich, K., Veeraraghavan, K.,
Michelena, K., Li, K., Jagadeesh, K., Huang, K., Chawla, K., Huang, K., Chen, L., Garg, L.,
A, L., Silva, L., Bell, L., Zhang, L., Guo, L., Yu, L., Moshkovich, L., Wehrstedt, L., Khabsa,
M., Avalani, M., Bhatt, M., Mankus, M., Hasson, M., Lennie, M., Reso, M., Groshev, M.,
Naumov, M., Lathi, M., Keneally, M., Liu, M., Seltzer, M. L., Valko, M., Restrepo, M., Patel,
M., Vyatskov, M., Samvelyan, M., Clark, M., Macey, M., Wang, M., Hermoso, M. J., Metanat,
M., Rastegari, M., Bansal, M., Santhanam, N., Parks, N., White, N., Bawa, N., Singhal, N.,
Egebo, N., Usunier, N., Mehta, N., Laptev, N. P,, Dong, N., Cheng, N., Chernoguz, O., Hart, O.,
Salpekar, O., Kalinli, O., Kent, P., Parekh, P., Saab, P., Balaji, P., Rittner, P., Bontrager, P., Roux,
P, Dollar, P., Zvyagina, P., Ratanchandani, P., Yuvraj, P, Liang, Q., Alao, R., Rodriguez, R.,
Ayub, R., Murthy, R., Nayani, R., Mitra, R., Parthasarathy, R., Li, R., Hogan, R., Battey, R.,
Wang, R., Howes, R., Rinott, R., Mehta, S., Siby, S., Bondu, S. J., Datta, S., Chugh, S., Hunt,
S., Dhillon, S., Sidorov, S., Pan, S., Mahajan, S., Verma, S., Yamamoto, S., Ramaswamy, S.,
Lindsay, S., Lindsay, S., Feng, S., Lin, S., Zha, S. C., Patil, S., Shankar, S., Zhang, S., Zhang,
S., Wang, S., Agarwal, S., Sajuyigbe, S., Chintala, S., Max, S., Chen, S., Kehoe, S., Satterfield,
S., Govindaprasad, S., Gupta, S., Deng, S., Cho, S., Virk, S., Subramanian, S., Choudhury,
S., Goldman, S., Remez, T., Glaser, T., Best, T., Koehler, T., Robinson, T., Li, T., Zhang, T.,
Matthews, T., Chou, T., Shaked, T., Vontimitta, V., Ajayi, V., Montanez, V., Mohan, V., Kumar,
V. S., Mangla, V., Ionescu, V., Poenaru, V., Mihailescu, V. T., Ivanov, V., Li, W., Wang, W.,
Jiang, W., Bouaziz, W., Constable, W., Tang, X., Wu, X., Wang, X., Wu, X., Gao, X., Kleinman,
Y., Chen, Y., Hu, Y., Jia, Y, Qi, Y., Li, Y., Zhang, Y., Zhang, Y., Adi, Y., Nam, Y., Yu, Wang,
Zhao, Y., Hao, Y., Qian, Y., Li, Y., He, Y., Rait, Z., DeVito, Z., Rosnbrick, Z., Wen, Z., Yang, Z.,
Zhao, Z., Ma, Z., and and others. The Llama 3 Herd of Models, November 2024.

Gruver, N., Finzi, M., Qiu, S., and Wilson, A. G. Large Language Models Are Zero-Shot Time
Series Forecasters. In NeurIPS, 2023.

12

[16] Hoeting, J. A., Madigan, D., Raftery, A. E., and Volinsky, C. T. Bayesian Model Averaging: A
Tutorial. Statistical Science, 14(4):382-401, 1999.

[17] Hoffman, M. D. and Gelman, A. The No-U-turn sampler: Adaptively setting path lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15(1):1593-1623, 2014.

[18] Kejzlar, V., Bhattacharya, S., Son, M., and Maiti, T. Black Box Variational Bayesian Model
Averaging. The American Statistician, 77(1):85-96, January 2023.

[19] Lin, J., Tang, J., Tang, H., Yang, S., Chen, W.-M., Wang, W.-C., Xiao, G., Dang, X., Gan, C.,
and Han, S. AWQ: Activation-aware weight quantization for LLM compression and acceleration.
In MLSys, 2024.

[20] Maddison, C. J., Lawson, J., Tucker, G., Heess, N., Norouzi, M., Mnih, A., Doucet, A., and
Teh, Y. Filtering Variational Objectives. In Guyon, 1., Luxburg, U. V., Bengio, S., Wallach, H.,
Fergus, R., Vishwanathan, S., and Garnett, R. (eds.), NeurIPS, 2017.

[21] Meta. Llama 3.3 | Model Cards and Prompt formats. https://www.llama.com/docs/model-cards-
and-prompt-formats/llama3_3/, 2024.

[22] Neal, R. The Harmonic Mean of the Likelihood: Worst Monte Carlo Method
Ever. https://radfordneal.wordpress.com/2008/08/17/the-harmonic-mean-of-the-likelihood-
worst-monte-carlo-method-ever/, August 2008.

[23] Newton, M. A. and Raftery, A. E. Approximate Bayesian Inference with the Weighted Like-
lihood Bootstrap. Journal of the Royal Statistical Society: Series B (Methodological), 56(1):
3-26, January 1994.

[24] Ohn, I. and Lin, L. Adaptive variational Bayes: Optimality, computation and applications. The
Annals of Statistics, 52(1):335-363, February 2024.

[25] Owen, A. Monte Carlo Theory, Methods and Examples. 2013.

[26] Phan, D., Pradhan, N., and Jankowiak, M. Composable Effects for Flexible and Accelerated
Probabilistic Programming in NumPyro. arXiv:1912.11554 [cs, stat], December 2019.

[27] Price, P. ChatGPT4 writes Stan code so I don’t have to.
https://statmodeling.stat.columbia.edu/2023/04/18/chatgpt4-writes-stan-code-so-i-dont-
have-to/, April 2023.

[28] Requeima, J., Bronskill, J. F., Choi, D., Turner, R. E., and Duvenaud, D. LLM Processes:
Numerical Predictive Distributions Conditioned on Natural Language. In NeurIPS, November
2024.

[29] Selby, D. A., Spriestersbach, K., Iwashita, Y., Bappert, D., Warrier, A., Mukherjee, S., Asim,
M. N., Kise, K., and Vollmer, S. J. Had enough of experts? Elicitation and evaluation of Bayesian
priors from large language models. In NeurIPS 2024 Workshop on Bayesian Decision-making
and Uncertainty, October 2024.

[30] Stefan, A. M., Katsimpokis, D., Gronau, Q. F., and Wagenmakers, E.-J. Expert agreement in
prior elicitation and its effects on Bayesian inference. Psychonomic Bulletin & Review, 29(5):
1776-1794, October 2022.

[31] Vacareanu, R., Negru, V. A., Suciu, V., and Surdeanu, M. From Words to Numbers: Your Large
Language Model Is Secretly A Capable Regressor When Given In-Context Examples. In First
Conference on Language Modeling, August 2024.

[32] Wasserman, L. Bayesian Model Selection and Model Averaging. Journal of Mathematical
Psychology, 44(1):92—-107, March 2000.

[33] Wong, L., Grand, G., Lew, A. K., Goodman, N. D., Mansinghka, V. K., Andreas, J., and
Tenenbaum, J. B. From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought, June 2023.

[34] Xue, H. and Salim, F. D. PromptCast: A New Prompt-Based Learning Paradigm for Time Series
Forecasting. IEEE Transactions on Knowledge and Data Engineering, 36(11):6851-6864,
November 2024.

13

A Acronyms and notation

Acronyms

e LLM: Large Language Model
PPL: Probabilistic Programming Language

* BMA: Bayesian Model Averaging

SNIS: Self-normalized importance sampling

e VI: Variational inference
Notation

* t: Plain-language description of an inference problem.
¢ m: Formal model definition (in a PPL)

e z: Input data

* z: Query variables / latent variables

* n: Index for sampled model

« m(™ : nth sampled model

« w(™): weight given to nth sampled model
Terminology

* Single-model posterior: p(z|z, m)

p(m|t)p(x|m) — p(m[t)p(z|m)

* Posterior model weight: p(m|z,t) = S o [pElm) — plalt)

* Final posterior: p(z|z,t)

14

B Experimental details

This section gives detailed results for the experiments. For each problem, we describe the prompt
and data, show example generated models, attempt to visualize the posterior of each model, show
marginal likelihoods and weights, and the final estimated posterior, compared against a “flat” average
as in Eq. (7).

B.1 Rain

In this problem, the user describes recording if it rained on not on a series of days, and wishes to
predict if it will rain on the next day. Meanwhile, the given data = provides two contradictory signals:
On the one hand, most days did not have rain. However, adjacent days are correlated and it rained on
the final day.

PROBLEM {"num_days":22,
“rain":[1,1,0,0,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1]}

I've been recording if it rains each day, with a 1 for
rain and 0 for no rain. Maybe there’s some kind of pattern
? Predict if it will rain the next day.

DATA

int num_days
array[num_days] int rain // results so far, in order

GOAL

int next // outcome for next day

Out of 1024 models generated, 742 (72.5%) compiled and allowed for inference. Fig. 7 shows four
example models. Fig. 8 shows the estimated marginal likelihoods and posteriors for each of the valid
models. Finally, Fig. 9 shows the estimated marginal likelihoods and corresponding weights for the
top-scoring 50 valid models, as well as the final estimated posterior p(z|x,t) compared to a “flat”
average paas(z|x, t).

In this case, there are two common “clusters” of models. One consists of models similar to 7(%*7)

(Fig. 7¢) that treat each day as independent and give predictions near the base rate of % ~ .364. A
second consists of models similar to 77(“%*) (Fig. 7b) that model the probability that rain is followed
by no-rain or vice-versa and give predictions near the base rate of % ~ 0.667 for between-day
consistency. Models from the first cluster tend to have lower-marginal likelihoods than models from
the second cluster. However, the top-scoring model /7.(7*?) (Fig. 7a) has a still-higher marginal
likelihood, and so receives essentially all weight in the estimated final posterior p(z|x, t).

15

data {
int num_days;
array[num_days] int<lower=0, upper=1> rain;
}
parameters {
real<lower=-10, upper=10> logit_initial;
real autoregressive_coefficient;
array[num_days-1] real noise;
}
transformed parameters{
array[num_days] real logit_prob;
logit_prob[1l] = logit_initial;
for(i in 2:num_days){
logit_prob[i] = logit_prob[i-1] *
autoregressive_coefficient + noise[i-1];

}
model {
logit_initial ~ uniform(-10,10);
autoregressive_coefficient ~ normal(0,1);
noise ~ cauchy(0,10);
for (i in 1:num_days){
rain[i] ~ bernoulli_logit(logit_prob[i]);

}
generated quantities {

data {
int num_days;
array[num_days] int<lower=0, upper=1> rain;
}
parameters {
real<lower=0, upper=1> p_rain_given_rain;
real<lower=0, upper=1> p_rain_given_no_rain;
}
model {
p_rain_given_rain ~ beta(1,1);
p_rain_given_no_rain ~ beta(1,1)
rain[1] ~ bernoulli(0.5); // uniform prior for first day
for (i in 2:num_days){
if (rain[i-1]==1){
rain[i] ~ bernoulli(p_rain_given_rain);
} else {
rain[i] ~ bernoulli(p_rain_given_no_rain);

}

generated quantities {
int next;
if (rain[num_days]==1){

next = bernoulli_rng(p_rain_given_rain);
} else {
next = bernoulli_rng(p_rain_given_no_rain);

real logit_next = logit_prob[num_days] x* }
autoregressive_coefficient + cauchy_rng(0,10); }
int next = bernoulli_logit_rng(logit_next);
) (463) : « 2
(b)ym , typical of one “cluster” of models.
(@) m'™? | the top-scoring model.
data { data {

int num_days;

array[num_days] int<lower=0, upper=1> rain;
}
parameters {

real<lower=0, upper=1> p;
}
model {

p ~ uniform(0,1);

for (i in 1l:num_days){

rain[i] ~ bernoulli(p);

}
generated quantities {

int next = bernoulli_rng(p);
}

(¢) m®*7, typical of a second cluster.

int num_days;
array[num_days] int<lower=0, upper=1> rain; // results so
far
}
parameters {
real<lower=0, upper=1> pOl;
real<lower=0, upper=1> pll
}
model {
p0l ~ beta(20, 20);
pll ~ beta(20, 20);
rain[1] ~ bernoulli(0.5); // no information about the first
day
for (i in 2:num_days){
rain[i] ~ bernoulli(rain[i-1] ? pll : p0O1)

}
}
generated quantities {
int next;
if(rain[num_days]){
next = bernoulli_rng(pll);
} else {
next = bernoulli_rng(p01);
}
}

@ m'Y, alow scoring model.

Figure 7: Example models for the rain problem, sorted by estimated marginal likelihoods.

16

0.0- ! ! ! ! ! -] . | !
1 3 10 30

300- count
100~

)

c 30-

3

o 10-

?:l 11 IIL

-80 -60 -40 -20
log p(x|m™)

0 20

Figure 8: Top left: Estimated log marginal likelihoods log p(x|m (™)) and the estimated probability
of rain on the next day E[z|z,m(™)] for each of the valid models 7 for the rain problem. Markers
are colored for four example models from Fig. 7. Top right: Histogram for estimated probability of
rain. Bottom left: Histogram for estimated marginal likelihoods. The dotted lines at % ~ (0.364 and
;—‘11 /2 .667 show the base rates for rain and between-day consistency in rain, respectively.

17

100

— -1.00 =
= =
= 20-

g 075 E
> =
= -0.50 ©
o 0- + N
o el B 0]
= 0.25 =

-+
+++++++++++++++"‘““““"+"'++++++++++++++++++

o
(@)
o

700 710 720 730 740
model number n

O -
p(z|x, t) prac(z|x, t)

Figure 9: Left: Estimated log-marginal likelihoods log p(x|m(™)) (“4+”” symbols, left axis) and weights
w(m(”)) (bars, right axis) for the top 50 models n for the rain problem. Right: The final estimated
posterior, compared to a “flat” average. The dotted lines at % ~ (0.364 and % ~ .667 show the base

rates for rain and between-day consistency in rain, respectively.

18

B.2 Coin (standard)

In this problem, the user has flipped a coin several times and would like to predict the true bias. In this
first version, the user strongly implies that it is a “standard” coin with a bias near 0.5. The observed
data are 20 flips, out of which 14 were heads.

T
PROBLEM ‘{"num,flips": 20, "num_heads": 14}
L

I have a coin. I've flipped it a bunch of times. I'm
wondering what the true bias of the coin is.

I just got the coin from the US mint, so I'm almost
completely sure that it’s a standard US penny.

DATA

int num_flips; // number of times the coin was flipped
int num_heads; // number of times heads was observed in
the flips

GOAL

real bias; // true bias of the coin

Out of 1024 models generated, 989 (96.6%) compiled and allowed for inference. Fig. 10 shows
four models. Fig. 11 shows the estimated marginal likelihoods for each of the valid models. Fig. 12
compares the estimated posteriors for each valid models. Finally, Fig. 13 shows the estimated
marginal likelihoods and corresponding weights for the top-scoring 50 valid models, as well as the
final estimated posterior p(z|z,) compared to a “flat” average paa(z|z, t).

In this case, while there are two high-scoring models similar to 7.("°®) (Fig. 10a), they are essentially
“outvoted” in the posterior by lower-scoring but more numerous models similar to 1(%**) (Fig. 10b).
Thus, the final posterior in Fig. 13 is similar to the posterior from 7,(%%%).

data { data {
int num_flips; int num_flips;
int num_heads; int num_heads;
} }
parameters { parameters {
real logit_bias; real<lower=0, upper=1> bias;
} }
transformed parameters { model {
real bias = inv_logit(logit_bias); bias ~ normal(0.5, 0.01);
} num_heads ~ binomial(num_flips, bias)
model { }

logit_bias ~ normal(0, 0.1);
num_heads ~ binomial(num_flips, bias); .
} (b) m'?*®) a model from the most common “cluster”.
generated quantities {
// Nothing to generate here, just inference on the bias

parameter
}
968 . .
(@) m®%%) the highest-scoring model.
data {
int num_flips; int
int num_heads; int
}

parameters {
real<lower=0, upper=1> bias
}
model {
bias ~ beta(600, 400);
num_heads ~ binomial(num_flips, bias);

}

(c) m"¥*), a low-scoring model) , a very low-scoring model

Figure 10: Example models for the coin (standard) problem, sorted by estimated marginal likeli-
hoods.

19

300-

3007 'loo,
o 100- o
c € zo-
D 30-)
S 10- g 71o-
3- 3
| - [
-600000 -400000 -200000 0 -300 -275 -250 -225 -200 -175 -150
log p(x|m™) log p(x|m™)

Figure 11: Estimated marginal likelihoods p(z|m ™)) for each of the valid models 7 for the coin
(standard) problem. Because of the many order of magnitude, two different ranges are shown. Bars
are colored for four example models from Fig. 10. If multiple models map to the same bin, all colors
are shown stacked.

0.0 02 0.4 06 08 10
bias z

Figure 12: The estimated posteriors for each of the valid models n for the coin (standard) problem.
Posteriors are colored for the four example models from Fig. 10.

-15 .,-0.05
— — p(z|x, t)
= e 0.04% Priac(z|x, t)
€ £ 205 maxlikelihood
& -7 003y g
X 2 0
Q -18 0025 T
ol 2
L 19 oot 2
O,
IOV LTI LTI RO ; ‘ ; ; ; ;
540 950 960 970 980 0.0 02 OAb' 06 08 10
model number n 1as z

Figure 13: Left: Estimated log-marginal likelihoods log p(z|m(™) (“+” symbols, left axis) and
weights w(m (™)) (bars, right axis) for the top 50 models n for the coin (standard) problem. There
are two models similar to /2%, which each receive a weight of approximately 0.036, while there
are several hundred models similar to 772(°*%), which each receive a weight of approximately 0.0032.

Right: The final estimated posterior, compared to a “flat” average. The maximum-likelihood estimator
of 14/20 = 0.7 is also shown for reference.

20

B.3 Coin (looks)

In this second version of the coin problem, the user states that the coin “looks” like a standard coin,
but implies less confidence. As before, the observed data are 20 flips, out of which 14 were heads.

[]
PROBLEM | {"num_flips": 20, "num_heads": 14} \
L |

I have a coin. I've flipped it a bunch of times. I
wondering what the true bias of the coin is.

m
At first glance, it appears to be a standard US penny,

although I haven’t examined it closely.

DATA

int num_flips; // number of times the coin was flipped

int num_heads; // number of times heads was observed in
the flips

GOAL

real bias; // true bias of the coin

Out of 1024 models generated, 983 (96.0%) compiled and allowed for inference. Fig. 14 shows four
models, while the results of inference are shown in Fig. 15, Fig. 16, and Fig. 17.

In this case, there are seven models similar to the top-scoring model 77(?Y) (Fig. 14a) that each have
weight of around 0.1, and seven models similar to 7(?*?) (Fig. 14b) with a weight of around 0.03.
All of these have priors with a reasonable amount of uncertainty. There are many models similar to
m %91 that have prior with low variance, but these have a low marginal-likelihood and so get very
low weight. The final estimated posterior in Fig. 17 thus resembles a mixture of the posteriors of
m(960) and m (949)_

data { data {
int num_flips; int num_flips;
int num_heads; int num_heads;
} }
parameters { parameters {
real<lower=0, upper=1> bias; real<lower=0, upper=1> bias;
} }
model { model {
bias ~ uniform(0, 1); bias ~ normal(0.5, 0.1)
num_heads ~ binomial(num_flips, bias); num_heads ~ binomial(num_flips, bias)
} }
. (960) . . s (949) . .
(a) m , the highest-scoring model. (b) m , a slightly lower-scoring model.
data {
int num_flips; int
int num_heads; int
}
parameters {
real<lower=0, upper=1> bias;
}
model {
bias ~ beta(60,60);
num_heads ~ binomial(num_flips, bias);
}

(c) m'%°Y, from the most common “cluster” of mod- (d) , the lowest-scoring model
els.

Figure 14: Example models for the coin (looks) problem, sorted by estimated marginal likelihoods.

21

300

300- 100-
100-
30-
30-
10‘] h : | |

-800 -600 -400 -200 =22 -20 —'i8 -16 =14
log p(x|m™) log p(x|m™)

count
count

— W

— W
—
—

Figure 15: Estimated marginal likelihoods p(x|m ™)) for each of the valid models 7 for the coin
(looks) problem. Because of the many order of magnitude, two different ranges are shown. Bars are

colored for four example models from Fig. 14. If multiple models map to the same bin, all colors are
shown stacked.

00 02 04 06 08 10
bias z

Figure 16: The estimated posteriors for each of the valid models n for the coin (looks) problem.
Posteriors are colored for the four example models from Fig. 14.

sarsass 015

-15- H+++++++H++ — — p(ZlX, t)
S P < 6— Prat(z]x, t)
T 010 E e max likelihood
;_20 v, = @ 4-
X - e
Q c =
o -25- -0.05 o 2-
o [}

++++tttt et
Gt NN
940 950 960 970 980 : : “bi - - :
model number n las z

Figure 17: Left: Estimated log-marginal likelihoods log p(z|m(™) (“+” symbols, left axis) and

weights w(m(")) (bars, right axis) for the top 50 models n for the coin (looks) problem. Right:

The final estimated posterior, compared to a “flat” average. The maximum-likelihood estimator of
14/20 = 0.7 is also shown for reference.

22

B.4 Coin (bent)

In this third version of the coin problem, the user states that the coin looks “bent”, implying great
uncertainty about the true bias. As before, the observed data are 20 flips, out of which 14 were heads.

PROBLEM

I have a coin. I've flipped it a bunch of times. I'm
wondering what the true bias of the coin is.

I can see that the penny is quite bent, so I'm pretty sure
the bias is different from 0.5, though I can’t tell in

what direction.

DATA

int num_flips; // number of times the coin was flipped

int num_heads; // number of times heads was observed in

the flips

GOAL

real bias; // true bias of the coin

T
‘{"num,flips": 20, "num_heads": 14}
L

Out of 1024 models generated, 848 (82.8%) compiled and allowed for inference. Fig. 18 shows four
models, while the results of inference are shown in Fig. 19, Fig. 20, and Fig. 21.

In this case, many models contribute substantially to the posterior. While 77'*'") has a slightly lower
estimated marginal likelihood than the highest scoring model (112%%?)), models similar to it were
generated many times, and so it wields the most influence in the posterior.

data {
int num_flips;
int num_heads;
}
parameters {
real bias_logit;
}
transformed parameters {

real<lower=0, upper=1> bias = inv_logit(bias_logit);

data {
int num_flips;
int num_heads;
}
parameters {
real<lower=0, upper=1> bias;
}
model {
bias ~ beta(0.5, 0.5); // a broad prior, but with more mass

} near 0 and 1
model { num_heads ~ binomial(num_flips, bias);
bias_logit ~ uniform(-10, 10); // diffuse prior that }
distributes mass fairly evenly over [0,1] after
logistic transform
num_heads ~ binomial(num_flips, bias); (b) 771,(811), a typical model
}
generated quantities {
// nothing
}
_(830) : -
(a)y m , the highest-scoring model
data { data {

int num_flips;
int num_heads;
}
parameters {
real<lower=0, upper=1> bias

}
model {
bias ~ beta(2,2); // symmetric around 0.5, low density
at 0.5
num_heads ~ binomial(num_flips, bias);
}

(c) m'™*Y, from the most common “cluster” of mod-
els

int num_flips;
int num_heads;
}
parameters {
real<lower=0, upper=1> bias;
}
model {
bias ~ beta(20,30);
num_heads ~ binomial(num_flips, bias)

q
i

(d) m'", the lowest-scoring model

Figure 18: Example models for the coin (bent) problem, sorted by estimated marginal likelihoods.

23

count
count

300- 300-
100 - 100 -
30- 30-
10- 10-
3- 3-
I I j 1.| .|I|i.

-50 -40 -30 -20 -20 —18 -6
log p(x|m™) log p(x|m™)

Figure 19: Estimated marginal likelihoods p(z|m (™) for each of the valid models n for the coin
(bent) problem. Because of the many order of magnitude, two different ranges are shown. Bars are

colored for four example models from Fig. 18. If multiple models map to the same bin, all colors are
shown stacked.

plbias]
e N H o @

00 02 0.4 06 08 10
bias z

Figure 20: The estimated posteriors for each of the valid models n for the coin (looks) problem.
Posteriors are colored for the four example models from Fig. 18.

-0.03

-12- -~ 4—— p(z|x, t)
£ a < — Priat(2|X, t)
s -0.02 § 3 maxlikelihood
x = o
E ++++++++HH+++ -l E %

o
s I||||“ P
0-; ‘ : o ‘
_15]"“““!!!!)“ 820 830 840 0.0 02 04 06 08 1.0
model number n bias z

Figure 21: Left: Estimated log-marginal likelihoods log p(z|m(™) (“+” symbols, left axis) and

weights w(m(”)) (bars, right axis) for the top 50 models n for the coin (bent) problem. Right:
The final estimated posteriors, compared to a “flat” average. The maximum-likelihood estimator of
14/20 = 0.7 is also shown for reference.

24

B.5 Polling

In this problem, the user describes a politician with fluctuating levels of popularity and different
pollsters who take polls at different times. The goal is to predict the true popularity on each day.

PROBLEM

There is a politician. They have some true approval rating (between © and 100) that changes over time. There are some
pollsters that measure the popularity of the politician. Each pollster does polls on some different subset of days. Each
pollster does polls with some differing level of noise.

I have no idea what their popularity might be at the beginning of the year. Make sure to model the variability in the true
popularity, and make sure to model a distribution over the noise levels of different pollsters.
DATA

int num_days; // number of days over which popularity is modeled

int num_pollsters; // number of pollsters

int max_polls; // maximum number of polls performed by any pollster

array[num_pollsters] int num_polls; // number of polls done by each pollster

array[num_pollsters, max_polls] int day; // on what day was each poll done? (day[i,j] is only meaningful when j <=
num_polls[i])

array[num_pollsters, max_polls] real polls; // actual polling data (polls[i,j] is only meaningful when j <= num_polls[i])

GOAL

array[num_days] popularity; // true popularity of the politician on each day

A sample of the observed data is shown below, while the full data is plotted in Fig. 22.

{
"num_days": 365,
"num_pollsters": 3,
"max_polls": 100,
"num_polls": [5, 20, 100],
“day": [[291, 16, ..., 1],
[365, 151, ..., 1],
[314, 66, ..., 5711,
"polls": [[51.385352595786244, 49.741758128722864, ..., 0.0],
[58.24149596144896, 40.82574746044599%, ..., 0.0],
[46.236574610204, 34.54862941696214, ..., 32.98157260195043]]
}
100
>, 80
= + 4 e
— + + +
© 60 Fx - + + X 9+f++&< +++T++++x
— N N X+ +H4HX 4o Ty +
o) +, + + 4+t #*)z;?@# . +
8- 40 BT L e
X +
Q 20 ++* N pollster #1
pollster #2
0 + pollster #3
0 100 200 300
day

Figure 22: Observed data for the polling problem.

Out of 1024 models generated, 568 (55.5%) compiled and allowed for inference. Fig. 23 shows
three models. Fig. 24 shows the estimated marginal likelihoods for each of the valid models. Fig. 25
compares the estimated posteriors for each valid models. Finally, Fig. 26 shows the estimated
marginal likelihoods and corresponding weights for the top-scoring 50 valid models, as well as the
final estimated posterior p(z|x,t) compared to a “flat” average pgat (2|, t).

In this case, the highest-scoring model 7:(°%%) (Fig. 23a) is very “simple” yet has a high enough
marginal likelihood to take almost all weight in the final posterior in Fig. 26. The LLM did attempt to
create many more sophisticated models, e.g. hierarchical models. But these often failed to compile

or, as with 1%, simply had a lower marginal-likelihood.

25

data { data { ... }
int num_days; parameters {
int num_pollsters; array[num_days] real popularity;
int max_polls; array[num_pollsters] real<lower=0> pollster_noise;
array[num_pollsters] int num_polls; }
array[num_pollsters, max_polls] int day; model {
array[num_pollsters, max_polls] real polls; // popularity changes over time according to a simple
} random walk
transformed data { popularity[1] ~ normal(50,20); // we have no idea what
vector[num_days] zeros = rep_vector(0, num_days); the initial popularity is
} for (i in 2:num_days){
parameters { popularity[i] ~ normal(popularity[i-1], 5); // not
vector[num_days] popularity; too much change from one day to the next
array[num_pollsters] real<lower=0> sigma; }
} // observed polls are noisy versions of the true
model { popularity
//_polls are modeled by a distribution with some for (i in 1:num_pollsters){
underlying mean and noise sigma for (j in l:num_polls[i]){
//which is pollster-dependent polls[i,j] ~ normal(popularity[day[i,jl],
popularity[1] ~ uniform(@, 100); pollster_noise[i])
for (i in 2:num_days){ +
popularity[i] ~ normal(popularity[i-1], 10); }
} // prior over the noise levels of the pollsters
for (i in 1l:num_pollsters){ for (i in 1:num_pollsters){
sigma[i] ~ inv_gamma(5, 20); pollster_noise[i] ~ cauchy(0, 5);
for (j in l:num_polls[i]){ }
polls[i,j] ~ normal(popularity[day[i,j]1], sigmalil); }
} generated quantities {
} array[num_days] real popularity_sample = popularity;
} }
(a) m %) the highest-scoring model. (b) m©%) lower-scoring model.
data { ... }

parameters {
real initial_popularity;
real<lower=0> step_size;
array[num_days-1] real steps;
vector<lower=0>[num_pollsters] pollster_noise;
real<lower=0> pollster_noise_mean;
real<lower=0> pollster_noise_sigma;
¥
transformed parameters{
array[num_days] real popularity;
popularity[1] = initial_popularity;
for (i in 2:num_days){
popularity[i] = popularity[i-1] + steps[i-1];
}
}
model {

step_size ~ normal(0,5);
for (i in 1:(num_days-1)){

}

for (i in 1l:num_pollsters){
for (j in l:num_polls[i]){

}

initial_popularity ~ normal(56,20); // very vague prior over initial popularity

steps[i] ~ normal(0,step_size); // random walk for the popularity
pollster_noise_mean ~ normal(5,10); // very vague prior over the mean of the noise

pollster_noise_sigma ~ cauchy(0,2); // very vague prior over the sigma of the noise
pollster_noise ~ normal(pollster_noise_mean, pollster_noise_sigma); // hierarchical prior for the noise of each pollster

polls[i,j] ~ normal(popularity[day[i,j]], pollster_noise[i]);

(¢) m®?), a lower-scoring (hierarchical) model.

Figure 23: Example models for the polling problem, sorted by estimated marginal likelihoods. The

data block was always identical, so is truncated for space for some models.

26

300-
100-
30-
10-

v I
- I i I
, I , II , , I

-400 -200 0] 200 400 600 8(50
log p(x]m™)

count

Figure 24: Estimated marginal likelihoods p(x|m (™)) for each of the valid models 7 for the polling
problem. Bars are colored for four example models from Fig. 23.

100

popularity
N o ®
o o o

N
o

0 100 200 300
day

Figure 25: The estimated posteriors for each of the valid models 7 for the polling problem. Posteriors
are colored for the four example models from Fig. 23.

800- . 100

— -1.00 =

£ 600- " | SE > 80

§ 0.75 \g % 60

X 400 = 5

Q o 050 O 40

g 200 2 8_

o) o

B 022 2 20 — Prat(z|x, t)
* —— true latent z

0-. ‘ ‘ : ‘ -0.00 0
520 530 540 550 560 0 100 200 300
model number n day

Figure 26: Left: Estimated log-marginal likelihoods log p(z|m(™)) (“+” symbols, left axis) and
weights w(m(™)) (bars, right axis) for the top 50 models 7 for the polling problem. Right: The final
estimated posteriors, compared to a “flat” average.

27

B.6 City temperature

In this problem the user describes observing temperatures on neighboring pairs of days for a set of
different cities. Then, after observing temperatures on a set of “test” days for each city, they wish to
predict the temperature on the following days.

PROBLEM

There is training data for a bunch of different cities on random days, along with the temperature for the following data.
Then, there is test data for a bunch of different days in those same cities. Predict the temperature on the following days.

Assume that different cities tend to have different weather. And assume that the weather tends to be similar in neighboring
days. So when guessing the weather in the next day, both the typical temperature in the city and the weather on the
previous day will matter.

All temperatures are in Fahrenheit.

Be sure to use informative priors for all quantities.

DATA

int num_cities; // number of cities included

int num_days_train; // number of training days in each city

int num_days_test; // number of training days in each city

array[num_cities, num_days_train] real dayl temp_train; // temperature on the first day, training set
array[num_cities, num_days_train] real day2_temp_train; // temperature on the following day, training set
array[num_cities, num_days_test] real dayl temp_test; // temperature on the first day, test set

GOAL

array[num_cities, num_days_test] real day2 temp_test; // temperature on the following day, test set

In the given data, there are 5 cities, with 10 training day pairs, and 10 test days.

{

"num_cities": 5,

“num_days_train": 10,

"num_days_test": 10,

"dayl_temp_train":

[[61.0, 74.9, 61.5, 73.2, 78.1, 69.8, 55.2, 74.2, 53.9, 75.0],
[73.0, 78.5, 80.2, 78.9, 82.0, 84.2, 79.0, 81.3, 77.3, 76.0],
[79.3, 82.1, 82.2, 76.0, 81.2, 84.9, 79.0, 79.0, 81.1, 85.7],
[81.0, 76.5, 82.0, 78.8, 77.6, 77.1, 76.9, 82.2, 83.7, 78.5],
[79.8, 78.8, 77.8, 79.6, 76.8, 75.4, 80.4, 75.6, 81.0, 76.2]],

"dayl_temp_test":

[[69.3, 77.5, 74.8, 65.3, 58.5, 87.0, 54.9, 48.5, 59.4, 72.9],
[76.5, 48.2, 84.1, 66.6, 85.1, 81.9, 81.0, 77.4, 71.9, 77.7],
[80.6, 78.9, 79.4, 84.3, 80.5, 81.7, 80.6, 82.7, 82.2, 79.7],
[82.7, 74.7, 82.1, 77.9, 82.5, 76.2, 81.8, 76.5, 79.1, 82.1],
[78.4, 75.1, 81.0, 75.0, 74.5, 74.2, 80.5, 76.5, 79.0, 77.8]],

"day2_temp_train"

[[61.5, 69.9, 62.0, 73.4, 78.8, 68.8, 53.1, 74.5, 49.4, 76.2],
[76.4, 78.0, 82.4, 78.9, 80.2, 82.8, 79.4, 79.1, 78.3, 80.0],
[79.5, 83.8, 77.9, 76.8, 78.5, 85.2, 79.8, 81.6, 80.0, 85.5],
[80.5, 77.1, 86.2, 78.2, 75.5, 79.1, 78.9, 81.8, 84.2, 82.7],
[80.8, 78.5, 75.7, 76.1, 74.0, 80.3, 81.6, 77.8, 79.5, 72.8]]

}

Out of 1024 models generated, 736 (71.9%) compiled and allowed for inference. Four example
models are shown in (Fig. 27) and (Fig. 28). A histogram of estimated marginal likelihoods is in
(Fig. 29), while Fig. 30 shows the estimated marginal likelihoods and corresponding weights for the
top-scoring 50 valid models. Finally, Fig. 31compares the final estimated posterior p(z|z, t) to a “flat”
average paas (2|, t).

In this case, the top scoring model 71(7%%) Fig. 27a models per-city mean temperatures and shared
regression coefficients to predict test temperatures. Many generated models used more shared
parameters. For example, 11'9%%) (Fig. 28a) has global parameters for the distribution of temperatures
and (Fig. 28b) also has a shared autocorrelation parameter. However, these more complex

models had lower marginal likelihoods. Thus the final posterior is essentially the same as that of
(736)
m .

28

data {
int num_cities;
int num_days_train;
int num_days_test;
array[num_cities, num_days_train] real dayl temp_train;
array[num_cities, num_days_train] real day2_ temp_train;
array[num_cities, num_days test] real dayl temp_test;
}
parameters {
array[num_cities] real city_mean;
array[num_cities, num_days_train] real dayl temp_adj;
real beta;
real alpha;
}
model {
beta ~ normal(0.8, 0.2);
alpha ~ normal(0, 5);
for (i in l:num_cities){
city_mean[i] ~ normal(50, 20);
for (j in 1l:num_days_train){
dayl temp_adj[i, j] ~ normal(6, 10);
day2_temp_train[i, j] ~ normal(city_mean[i] + alpha + beta * (dayl_temp_train[i, j] - city_mean[i] + dayl_ temp_adj[i
, 31, 5);

}
generated quantities {
array[num_cities, num_days_test] real day2_temp_test;
for (i in 1l:num_cities){
for (j in 1l:num_days_test){
day2_temp_test[i, j] = normal_rng(city_mean[i] + alpha + beta * (dayl temp_test[i, j] - city_mean[i]), 5);
}

(@) m ™% the highest-scoring model.

data {
int num_cities;
int num_days_train;
int num_days_test;
array[num_cities, num_days_train] real dayl temp_train;
array[num_cities, num_days_train] real day2 temp_train;
array[num_cities, num_days_test] real dayl temp_test;
}
parameters {
array[num_cities] real city_mean;
array[num_cities, num_days_train] real day effect;
real<lower=-1, upper=1> temp_change;
real<lower=0> temp_sd;
}
model {
for(i in l:num_cities){
city_mean[i] ~ normal(50,20);
for(j in 1l:num_days_train){
day_effect[i,j] ~ normal(0,10);
}
}
temp_change ~ uniform(-1, 1);
temp_sd ~ cauchy(0, 5);
for(i in 1:num_cities){
for(j in 1l:num_days_train){
day2_temp_train[i,j] ~ normal(city_mean[i] + day_effect[i,j] + temp_change * (dayl_temp_train[i,j] - city_mean[i] -
day_effect[i,j]), temp_sd);

}
generated quantities {
array[num_cities, num_days_test] real day2_ temp_test;
for(i in l:num_cities){
for(j in 1:num_days_test){
day2_temp_test[i,j] = normal_rng(city_mean[i] + temp_change * (dayl_ temp_test[i,j] - city_mean[i]), temp_sd);
}

(b) m 7% the second-highest scoring model

Figure 27: Example models for the city temperature problem.

29

data {
int num_cities;
int num_days_train;
int num_days_test;
array[num_cities, num_days_train] real dayl temp_train;
array[num_cities, num_days_train] real day2_ temp_train;
array[num_cities, num_days_test] real dayl temp_test;

}
parameters {
real mu;
real<lower=0> sigma;
array[num_cities] real city_mu;
array[num_cities] real<lower=-1, upper=1> city_ar;
}
model {

mu ~ normal(50, 20);
sigma ~ normal(0, 20);
for (c in 1l:num_cities){
city_mu[c] ~ normal(mu, sigma);
city_ar[c] ~ uniform(-1, 1);
for (d in 1:num_days_train){
day2_temp_train[c, d] ~ normal(city_mu[c] + city_ar[c] * (dayl_temp_train[c, d] - city_mu[cl), 5);
}

}
generated quantities {
array[num_cities, num_days_test] real day2_ temp_test;
for (c in 1l:num_cities){
for (d in 1:num_days_test){
day2_temp_test[c, d] = normal_rng(city_mu[c] + city_ar[c] * (dayl temp_test[c, d] - city_mu[c]), 5);
}

(688)

(a)ym , a lower-scoring model.

data {
int num_cities;
int num_days_train;
int num_days_test;
array[num_cities, num_days_train] real dayl_temp_train;
array[num_cities, num_days_train] real day2_ temp_train;
array[num_cities, num_days_test] real dayl temp_test;
}
parameters {
vector[num_cities] city_mean;
vector<lower=0, upper=1>[num_cities] city_autocorrelation;
real global_mean;
real<lower=0, upper=1> global_autocorrelation;
real<lower=0> sigma;
¥
model {
global_mean ~ normal(60, 10);
global_autocorrelation ~ uniform(0, 1);
for (i in 1l:num_cities){
city_mean[i] ~ normal(global_mean, 10);
city_autocorrelation[i] ~ uniform(®, 1);
for (j in 1l:num_days_train){
day2_temp_train[i, j] ~ normal(dayl_temp_train[i, j] * city_autocorrelation[i] + city_mean[i] * (1 -
city_autocorrelation[i]), sigma);

}

sigma ~ cauchy(0, 5);
}
generated quantities {

array[num_cities, num_days_test] real day2_ temp_test;

for (i in 1l:num_cities){

for (j in 1l:num_days_test){
day2_temp_test[i, j] = normal_rng(dayl temp_test[i, j] * city_autocorrelation[i] + city_mean[i] * (1 -
city_autocorrelation[i]), sigma);

() 1“7, a typical but lower-scoring model.

Figure 28: Example models for the city temperature problem.

30

31

300-

100-
€ 30-
>
8 10-
37 J
- N i
I 1 | W [
-600 -400 -200 0]
log p(x]m™)

Figure 29: Estimated marginal likelihoods p(z|m ™)) for each of the valid models 7 for the city
temperature problem. Bars are colored for four example models from (Fig. 27) and (Fig. 28).

150~)
3 -1.00 f
<] z
E - ++"‘+ -0.75 §
z + S
g =
> 5 e 050 €
(@] . £
) o -025
O’+++++++++H+++++++HH+++++++H * ;
-0.00

690 700 70 720 730
model number n
Figure 30: Estimated log-marginal likelihoods p(|m (™)) and weights w(m (™) for the top 50 models

n for the city temperature problem. markers are colored for four example models from Fig. 27 and
Fig. 28.

Cities

Test days
- pl(z|x,t) - Prat(z]|x, t) - truez

Figure 31: Medians and 90% credible intervals computed for each city on each test day for the city
temperature problem. In this case, both LLB and pg,¢ have coverage of 44/50=88% of the true
values, indicating reasonable calibration, though the posteriors under LLB are slightly more narrow.

32

B.7 Gold (small)

In this problem, the user describes a “rod” of some length, with a varying density of gold atoms.
Samples were taken at various positions and tested to be gold or not. Finally, a set of future test

locations are given. The user “forgot” to give types for some variables.
PROBLEM

I have a metal rod. I've gone to various positions along the rod and sampled single atoms and tested if they were gold.

density of gold changes smoothly, but the actual density could be quite complicated.

DATA

real rod_length; // length of rod in meters
int num_train; // number of times rod was sampled
array[num_train] train_locs; // where samples taken in training data

array[num_train] gold_train; // was gold detected at each location (0 if no, 1 if yes)
int num_test; // hypothetical test locations

array[num_test] test_locs; // possible future locations for sampling

GOAL

array[num_test] gold_test; // would gold be detected at future locations

(
Yes or no.) I'd like to predict if gold would be detected if I tried measurements at various test locations. I assume the

Synthetic data was generated by taking training locations x uniformly from O to 2.5. The true density

of gold was o (1 + sin(9z) — 1o

the full data is plotted in Fig. 32.

sx2) where o(s) = 1/(1 + e~*) denotes a sigmoid function. The test
locations were 100 points equally spaced from O to 2.5. A sample of the data is shown below, while

{
"rod_length": 2.5,
"num_train": 30,
"train_locs": [2.000547344419736, 0.9166378396087462, 0.16507930158778522, ..., 1.5834750504530812],
"gold_train": [0, 1, 1, ..., 1],
"num_test": 100,
"test_locs": [0.0, 0.025252525252525252, 0.050505050505050504, ..., 2.5],
}
1.00 N o
N / \

~ / \\ /, \ N

= 0.75 \ / “\ l/ \\\

@ [A S

(0] \ / \ / \

© 050 Voo

1 ! 1
e ---- truedensity % [\
830‘25 gold detected _/ \ AN
I not detected \ SN
0.00 ! R meTn -
0.0 0.5 1.0 15 2.0 25
position

Figure 32: Observed data for the gold (small) problem.

In preliminary testing, it was difficult for the LLM to generate valid models for this problem. Thus,

instead of 1000, 214 = 16384 candidate models were generated. Of these, 192 (1.2%) compiled and
allowed for inference. The top three models and a low scoring model are shown in Fig. 33, Fig. 34,
Fig. 35, and Fig. 36. Histograms of estimated marginal likelihoods are in Fig. 37, while Fig. 38 shows

the estimated posterior for each model, and Fig. 39 shows the weights for the top 50 models and the
final estimated posterior.

In this case, essentially all posterior weight is given to the top-three scoring models, 1(1%) Fig. 33,
m 191 Fig. 34, and m %) Fig. 35. The final posterior appears a bit better than a flat average.

33

data {
real rod_length;
int num_train;
array[num_train] real train_locs;
array[num_train] int<lower=0, upper=1> gold_train;
int num_test;
array[num_test] real test_locs;
I
transformed data {
int<lower=1> N = num_train + num_test;
array[N] real all_locs = append_array(train_locs, test_locs);
}
parameters {
vector[N] eta;
real<lower=0> rho;
}
transformed parameters {
vector[N] f;
{
matrix[N, N] K;
for (i in 1:N) {
K[i, 1] = 1 + 0.01; // diagonal element
for (j in 1:(i-1)) {
real dist = sqrt(square(all_locs[i] - all_locs[j]));
K[i, j1 = sqrt(5)/sqrt(3*rho)x*pow(1l+sqrt(5xdist/rho), -1.5 - 1/2)*exp(-sqrt(5+dist/rho/3)*1.2);
K[j, il = K[i, j1; // fill in lower triangle

}
}
f = K x eta;
}
}
model {
eta ~ normal(0, 1);
rho ~ normal(@, rod_length); // use rod length to specify the input scale of the function
for (i in 1l:num_train) {
gold_train[i] ~ bernoulli_logit(f[i]);
}
}

generated quantities {
array[num_test] int<lower=0, upper=1> gold_test;
for (i in 1:num_test) {
gold_test[i] = bernoulli_logit_rng(f[num_train + i]);

}

Figure 33: 71(19%), the highest-scoring model for the gold(small) problem.

34

data {
real rod_length;
int num_train;
array[num_train] real train_locs;
array[num_train] int<lower=0, upper=1> gold_train;
int num_test;
array[num_test] real test_locs;
}
transformed data {
// creating a grid of locations to compute covariance matrix
int num_latent = num_train + num_test;
array[num_latent] real all_locs;
for(i in 1:num_train){
all_locs[i] = train_locs[i];
}
for(i in 1:num_test){
all_locs[i+num_train] = test_locs[i];
}
}
parameters {
vector[num_latent] z;
I
transformed parameters {
vector[num_latent] f;
{
matrix[num_latent, num_latent] K;
for (i in 1l:num_latent) {
for (j in 1l:num_latent) {
real dist = sqrt((all_locs[i] - all_locs[j])"2);
K[i, j]1 = (1 + sqrt(3 * dist)) * exp(-sqrt(3 * dist));

f = rep_vector(0.5, num_latent) + cholesky_decompose(K) * z;

}
model {
z ~ std_normal();
for(i in l:num_train){
gold_train[i] ~ bernoulli(inv_logit(f[i]));
}
}
generated quantities {
array[num_test] int<lower=0, upper=1> gold_test;
for(i in 1l:num_test){
real true_gold_density = inv_logit(f[i+num_train]);
gold_test[i] = bernoulli_rng(true_gold_density);
}

Figure 34: m'9") the second-highest-scoring model for the gold(small) problem.

35

data {
real rod_length;
int num_train;
array[num_train] real train_locs
array[num_train] int<lower=0, upper=1> gold_train;
int num_test;
array[num_test] real test_locs;
}
transformed data {
int num_locs = num_train + num_test;
array[num_locs] real all_locs;
for(i in 1:num_train){
all_locs[i] = train_locs[i];
}
for(i in 1:num_test){
all_locs[i+num_train] = test_locs[i];

}
parameters {
real<lower=0> length;
vector[num_locs] z;
}
transformed parameters {
vector[num_locs] p;
{
matrix[num_locs, num_locs] K;
for (i in 1:num_locs){
for (j in 1:num_locs){
K[i,j] = exp(-((all_locs[i]-all_locs[j])/length)"2);
}

model {
z ~ normal(@,1);
length ~ normal(0.1,0.1);
for (i in 1:num_train){
gold_train[i] ~ bernoulli(1/(1l+exp(-p[i])));
}
}
generated quantities {
array[num_test] int<lower=0, upper=1> gold_test;
vector[num_locs] p_smooth;
p_smooth = inv_logit(p);
for (i in 1:num_test){
gold_test[i] = bernoulli_rng(p_smooth[i+num_train]);

}

Figure 35: 71"%%), the third-highest-scoring model for the gold(small) problem.

36

data {
real rod_length;
int num_train;
array[num_train] real train_locs
array[num_train] int<lower=0, upper=1> gold_train;
int num_test;
array[num_test] real test_locs;
}
parameters {
real<lower=0> rho; // length scale for the kernel
real<lower=0> alpha; // scale for the kernel
vector[num_train] eta; // latent variables
}
transformed parameters {
vector[num_train] mu;
{
matrix[num_train, num_train] K;
for (i in 1l:num_train) {
K[i, i] = 1 + alpha;
for (j in 1l:num_train) {

K[i, j] = alpha * exp(-((train_locs[i] - train_locs[j1)"2) / (2 * rho™2));
}
}
mu = K x eta;
}
}
model {

rho ~ cauchy(0, 5);
alpha ~ cauchy(0, 5);
eta ~ normal(0, 1);
gold_train ~ bernoulli_logit(mu);
}
generated quantities {

vector[num_test] test_mu;
{

matrix[num_test, num_train] K_test_train;

for (i in 1l:num_test) {

for (j in l:num_train) {
K_test_train[i, j] = alpha * exp(-((test_locs[i] - train_locs[j]1)"2) / (2 * rho™2));
}

}

test_mu = (K_test_train * eta);
}
array[num_test] int<lower=0, upper=1> gold_test;
for (i in 1l:num_test) {

gold_test[i] = bernoulli_logit_rng(test_mu[i]);
}

Figure 36: /""", a low-scoring model for the gold(small) problem.

37

300- 300-

100- 100-

£ z0- £ z0-
))

8 10- 8 10-
37 3,
" il

11 | n A Il ‘ || ‘

-200 -100 0 100 80 85 90 95 100 105

log p(x|m™) log p(x|m™)

Figure 37: Estimated marginal likelihoods p(z|m ™)) for each of the valid models n for the gold
(small) problem. Because of the many order of magnitude, two different ranges are shown. Bars are
colored for four example models from Fig. 33, Fig. 34, Fig. 35, and Fig. 36. If multiple models map
to the same bin, all colors are shown stacked.

gold density
o o
S

I
N
0

0.00 :
0.0 05 10 15 20 25

position

Figure 38: The estimated posteriors E[z|m ™), z] for each of the valid models for the gold (small)
problem. Lines are colored for four example models from Fig. 33, Fig. 34, Fig. 35, and Fig. 36.

100- a 06 100 -
- — / \ ! \
g 75 : S 2ors ~,
S + fosE @
= = 0] h
5 50 - o 0.50 ‘\\
= 025 2 \
S 25- T §oas \ \ -
- = 2 —— Flz|x, t] under p(Z[x, t) \ VAR
0-) . . . -0.0 0.00 E[z|x, t] under pgat(z]X, t) N N
50 160 170 180 190 0.0 0.5 1.0 15 2.0 25

model number n position

Figure 39: Left: The log-marginal likelihoods and weights for the top 50 models for the gold (small)
problem. Right: The final estimated posteriors, compared to a “flat” average. The true density is
shown for reference.

38

B.8 Gold (large)

This problem concerns the same gold problem, except with a larger dataset with more observations

Synthetic data was generated by taking 150 training locations x uniformly from O to 2.5. The true
density of gold was o (1 + sin(9z) — 22%) where o(s) = 1/(1 + e~*) denotes a sigmoid function.
The test locations were 100 points equally spaced from 0 to 2.5. A sample of the data is shown below,

while the full data is plotted in Fig. 40.

{
"rod_length": 2.5,
"num_train®: 150,
"train_locs": [0.6563454972396541, 0.4490753033133052, ..., 1.3381547009467185]
"gold_train": [1, O, ..., O],
"num_test": 100,
"test_locs": [0.0, 0.025252525252525252, ..., 2.5],
}

;
----' true density ‘\\ /

gold density
o
3

\
1
\
\
\
] 1
1
1
\
1
\

0.25 gold detected _/l \ I/\\
| not detected \ SN
0.00 T T L T v e T T,
0.0 0.5
position

Figure 40: Observed data for the gold (large) problem.

The same 2'* = 16384 candidate models were considered as in the previous problem. Of these, only
71 (0.4%) compiled and allowed for inference with this larger dataset. The top three models and
a low scoring model are shown in Fig. 41, Fig. 42, Fig. 43, and Fig. 44. Histograms of estimated
marginal likelihoods are in Fig. 45, while Fig. 46 shows the estimated posterior for each model, and
Fig. 47 shows the weights for the top 50 models and the final estimated posterior.

In this case, essentially all posterior weight is given to the top-three scoring models, 1(™") Fig. 41.
This produces a final posterior quite close to the true density, and much better than a flat average.

39

data {
real rod_length;
int num_train;
array[num_train] real train_locs;
array[num_train] int<lower=0, upper=1> gold_train;
int num_test;
array[num_test] real test_locs;
I
transformed data {
int<lower=1> N = num_train + num_test;
array[N] real all_locs = append_array(train_locs, test_locs);
}
parameters {
vector[N] eta;
real<lower=0> rho;
}
transformed parameters {
vector[N] f;
{
matrix[N, N] K;
for (i in 1:N) {
K[i, 1] = 1 + 0.01; // diagonal element
for (j in 1:(i-1)) {
real dist = sqrt(square(all_locs[i] - all_locs[j]));
K[i, j1 = sqrt(5)/sqrt(3*rho)x*pow(1l+sqrt(5xdist/rho), -1.5 - 1/2)*exp(-sqrt(5+dist/rho/3)*1.2);
K[j, il = K[i, j1; // fill in lower triangle

}
}
f = K x eta;
}
}
model {
eta ~ normal(0, 1);
rho ~ normal(@, rod_length); // use rod length to specify the input scale of the function
for (i in 1l:num_train) {
gold_train[i] ~ bernoulli_logit(f[i]);
}
}

generated quantities {
array[num_test] int<lower=0, upper=1> gold_test;
for (i in 1:num_test) {
gold_test[i] = bernoulli_logit_rng(f[num_train + i]);

}

Figure 41: 71", the highest-scoring model for the gold(large) problem.

40

data {
real rod_length;
int num_train;
array[num_train] real train_locs;
array[num_train] int<lower=0, upper=1> gold_train;
int num_test;
array[num_test] real test_locs;
}
transformed data {
int<lower=1> N = num_train + num_test;
array[N] real all_locs = append_array(train_locs, test_locs);
}
parameters {
real<lower=0> rho; // length scale for Matern covariance
real<lower=0> alpha; // scale for Matern covariance
vector[N] eta; // latent GP value at each location

}
model {
rho ~ cauchy(0, 2); // prior for length scale
alpha ~ cauchy(0, 2); // prior for scale
eta ~ multi_normal(rep_vector(®, N),
gp_matern32_cov(all_locs, alpha, rho)); // sample from GP prior
for (i in 1l:num_train){
gold_train[i] ~ bernoulli_logit(eta[i]);
}
}

generated quantities {
array[num_test] int<lower=0, upper=1> gold_test;
for (i in 1:num_test){
gold_test[i] = bernoulli_logit_rng(etal[i + num_train]);
}

Figure 42: 17", the second-highest-scoring model for the gold(large) problem.

41

data {
real rod_length;
int num_train;
array[num_train] real train_locs;
array[num_train] int<lower=0, upper=1> gold_train;
int num_test;
array[num_test] real test_locs;
}
parameters {
vector[num_train] latent;
real<lower=0> sigma;
real<lower=0> rho;
}
model {
sigma ~ cauchy(0, 2);
rho ~ cauchy(0, 2);
{
matrix[num_train, num_train] K;
for (i in 1l:num_train) {
K[i, i] = 1 + sigma™2;
for (j in 1:(i - 1)) {
K[i, j] = sigma”™2 * exp(-((train_locs[i] - train_locs[j])"2) / (2 * rho"2));
K[, il = K[i, jl;

}
latent ~ multi_normal(rep_vector(®, num_train), K);
}
gold_train ~ bernoulli_logit(latent);
}
generated quantities {
vector[num_test] test_latent;
{
matrix[num_test, num_train] K_test;
matrix[num_train, num_train] K_train;
for (i in 1l:num_train) {
K_train[i, i] = 1 + sigma”2;
for (j in 1:(i - 1)) {
K_train[i, j] = sigma™2 * exp(-((train_locs[i] - train_locs[j]1)"2) / (2 * rho™2));
K- train[j, i] = K_train[i, jI;
}
}
for (i in 1l:num_test) {
for (j in l:num_train) {
K_test[i, j] = sigma”2 * exp(-((test_locs[i] - train_locs[j])"2) / (2 * rho™2));
}
}
test_latent = (K_test * inverse(K_train)) = latent;
}
array[num_test] int<lower=0, upper=1> gold_test;
for (i in 1:num_test) {
gold_test[i] = bernoulli_logit_rng(test_latent[i]);
}

(69)

Figure 43: m'"”)| the third-highest-scoring model for the gold(large) problem.

42

data {

}

real rod_length;

int num_train;

array[num_train] real train_locs

array[num_train] int<lower=0, upper=1> gold_train;
int num_test;

array[num_test] real test_locs;

parameters {

}

real<lower=0> gp_sigma;
real<lower=0> gp_rho;
vector[num_train] gp_z;

transformed parameters {

}

vector[num_train] eta;
eta = gp_z;
for (i in 1l:num_train) {
real sum = 0;
for (j in 1l:num_train) {
sum += gp_sigma * exp(-((train_locs[i] - train_ locs[j]) / gp_rho)”~2) * gp_z[jl;
}
eta[i] = sum;

}

model {

}

gp_sigma ~ inv_gamma(1,1);

gp_rho ~ inv_gamma(1,1);

gp_z ~ normal(o,1);

gold_train ~ bernoulli_logit(eta);

generated quantities {

vector[num_test] eta_test;
for (i in 1l:num_test) {

real sum = 0;

for (j in 1l:num_train) {

sum += gp_sigma * exp(-((test_locs[i] - train_locs[j]) / gp_rho)~2) * gp_z[jl;

}

eta_test[i] = sum;
}
array[num_test] int<lower=0, upper=1> gold_test;
for (i in 1:num_test) {

gold_test[i] = bernoulli_logit_ rng(eta_test[i]);
}

Figure 44: 11", a low-scoring model for the gold(large) problem.

43

gold density

0.0 0.5 1.0 1.5 20 25
position

Figure 46: The estimated posteriors E[z|m ™), z] for each of the valid models 7 for the gold (small)
problem. Lines are colored for four example models from Fig. 41, Fig. 42, Fig. 43, and Fig. 44.

v 100 -
100~ -1.00 =
g N SE 2075
S Lo7s S 2
>~ 50- PR S o
< e o O 0.50
] +* 0.50 5 ‘
2 o) .% S 05 /
* .
= ++++¢.+1- -0.25 ; (@)} o E[Z|X, t] under P(ZrX, t)
++ \
—— E[z|x, t] under pgat(z|x, t) — .
had 2 0.00 a
50 0.00 0.0 05 1.0 1.5 20 25

30 40 50 60 70
model number n

Figure 47: Left: The log-marginal likelihoods and weights for the top 50 models for the gold (small)

problem. Right: The final estimated posteriors, compared to a “flat” average. The true density is

shown for reference.

position

300- 300-
100- 100-
€ 30- 2 30
3 3
S 10- S 10-
3- d | 3-
1- 1-
1 i el 'S T T |
-400 -300 -200 -100 (0] 100 40 60 80 100 120 140
log p(x|m™) log p(x|m™)

Figure 45: Estimated marginal likelihoods p(z|m ™)) for each of the valid models n for the gold
(large) problem. Because of the many order of magnitude, two different ranges are shown. Bars are
colored for four example models from Fig. 41, Fig. 42, Fig. 43, and Fig. 44. If multiple models map
to the same bin, all colors are shown stacked.

44

C Additional analysis

C.1 Form of the self-normalized importance sampling weights

Consider self-normalized importance sampling with a target distribution of p(m|z, t) and a proposal
distribution of p(m/|t). The naive importance weights would thus be

p(m ™ |z,t)
m(n) |t
w™ = p(|)/)
ZN p(m")]z,t)
n'=1 p(m®"|t)

However, we know from Eq. (5) that p(m/|z,t) o p(m|t)p(z|m) or, more precisely

p(mft)p(zlm) _ p(m|t)p(z|m)
> P([E)p(|m) p(xlt)

p(mlz,)

From this, we obtain that
p(mlz,t) p(xlm)

p(mlt) — p(alt)

Substituting this into the above form for w(™, we obtain that

o
(n) - p(x|t
w
N pant)
Zn’:l p(z|t)
p(zm™)

S plalm))

C.2 Variance of the self-normalized importance sampling estimator

Consider the importance sampling estimator from Eq. (11), i.e.

N
=3 wg(m).
n=1

Standard theory [e.g. 25, Eq. 9.8] says that the variance of /i is asymptotically

Ep(mity [w(m)? (g(m) — p)°]

lim NV[a] = ,
oo Ep(mjt) [w(m)]”
where w(m) = 202 This simplifies into
m|z, 2
: A Ep(mit [p:!(?(nlw\tQ (g(m) — H)Q}
1\}E>noo NV[HJ} - p(mlz,t) 2
Ep(mlt) [p(m\i)’}

p(m|z, t)? o))2
p(ml) { p(mlt)? (glm) = &) }

Now, if we assume that |g(m) — u| < 0 then this can be bounded by

p(m|x,t)?
p(mlt) { p(m(t)?]
5% (14 x? (p(mlz, t)[[p(mlt)))

2

IN

Nim NV

45

C.3 Form of the self-normalized importance sampling weights with variational inference

Consider trying to estimate
q(zlz) = E q(z]lz, m),
q(m|z)
where ¢(z|z,m) is some distribution and g(m|z) is as defined in Thm. 2. We are interested in
estimating this expectation using SNIS with the proposal distribution p(m|t). It follows that we
should use an estimator
Z w™q(z]z, m™),

where m™) - .- m) ~ p(m]t), and the self-normalized weights are
Q(m(("))lw)
(m) _ p(m(™]t)
’ SN alnC)

/=1 p(mC]e)

Now, observe from Eq. (19) that
p(mlt) exp(ELBO(q(zle, m) [p(z. mz.1)))
5 ([1) exp (ELBO (q(zl, m)|p(z,m'|,1)))

where the denominator does not depend on m. It follows that the weights are

q(m|z) =

exp(ELBO(g(zl, m") [p(z, m"z, 1)))

(m)
w .
5001 exp (BLBO(a(zl, m) [p(e,)]z, 1))

C.4 Analysis with inexact ELBO estimates

Theorem 3. Suppose that p(z,x, m|t) and q(z|x, m) are fixed and we choose
a(mlz) o plmlz) x exp (ELBO(g(zle. m) [p(z. zlm)) — ™)

where 6™ > 0 represents the “slack” in between the true ELBO for model m and the bound used
Sfor computing q(m|x). Then the resulting joint divergence is

KL(q(z, m|z)||p(z, m|x,)
_log E exp(—KL<m)—5<’">+5) @1)

p(m|z,t)

=logp(z|t) —log E exp (ELBO(m) —om 4 5) (22)
p(mlt)

where § = Ey(m|a) 5 and KL™ and ELBO™ represent the KL-divergence and ELBO from
Egq. (17).

(Proof in Appendix E.3.)

To interpret this result, first note that if all ELBOs are exact, meaning § (m) = 0, then Eq. 21) is
equivalent to Eq. (16) while Eq. (22) is equivalent to Eq. (20). This also shows that using “improved”
distributions and tolerating “slack” in the ELBO can only help, compared to using distributions where
the exact ELBO has the same value. That is, no matter the value of the slack variables §("), Eq. (21)
is never worse than Eq. (16) and Eq. (22) is never worse than Eq. (20).

The obvious implementation of Thm. 3 would be be an algorithm that loops over all models. This is
given explicitly as Alg. 7 in Appendix D. Again, such an algorithm is intractable, but can be made
practical by combining it with SNIS. This is given as Alg. 8.

An interesting special case is when MCMC is used to approximate each posterior p(z|z, m) and we
assume that these samples in fact come from p(z|x,m). (See Alg. 3 in Appendix D.) If this case, the

46

best strategy is simply to use the best possible lower-bound on the marginal likelihood, computed by
any method. It’s see in this case that the joint divergence reduces to

—log Zp(m\x, t) exp(fé(m) + 5) .

From this, we can see that if all errors §™) are equal, then 6™ = § and the joint KL-divergence
remains zero. Also, if there are errors on models where p(m|z,t) is negligible, these also have
negligible impact on the joint divergence. However, if there are different levels of error on models
where p(m|x, t) is large, this could impact the joint divergence.

C.5 Relaxed bound
Corollary 4. Under the assumptions of Thm. 1,

K1(g(zmle) [p(z.mle.) € B alg(zlr.m) (el m))).

Proof. We have that
caa(ele,m) (el m)))

> —log B exp(—kilg(zlr,m)p(zlr,m))))

p(m|z,t

E KL(q(z|x,m)||p(z|:c,m))) = —logexp(—p E

p(mlz,t) (m|x,t)

= Ku(q(z,m|z)||p(z, m|x,1)).

The first line is obvious. The second line follows from using Jensen’s inequality to see that

exp(—i(a(zle,m)[p(:la,m)) = exp(= E wilg(zla,m)llp(=le,m))).

p(m|z,t) p(m|z,t)

The third line is the form of kL(q(z, m|z)||p(z, m|x,t)) from Thm. 1. O

47

Algorithm 4 LLB with exact inference and SNIS.
1. Input textual description ¢ and data z.
2. Forn=1,2,--- ,N:
(a) Sample m(™ ~ p(mlt). // using LLM
(b) Compute marginal evidence p(x|m (™)) and posterior p(z|x, m(™). // under PPL
3. Set w™ o p(z|m(™), where Z 4 w™ = 1.
4. Use final posterior approximation

(z]z,t) Zw(") (z|lz, m(™).

Algorithm 5 LLB with variational inference and SNIS.

1. Input textual description ¢ and data x.
2. Forn=1,2,--- /N

(a) Sample m™ ~ p(m|t). // using LLM
(b) Maximize ELBO(m (™)) over some variational family ¢(z|z, m(). 1
under PPL

3. Set w(™ o exp ELBO(m(™), where 22[21 w™ =1,
4. Use final posterior approximation

(z|z, 1) Zw(") z|lz, m™).

D Other example algorithms

Algorithm 6 Variational LLB with exact enumeration of models (theoretical)

1. Input textual description ¢ and data z.
2. For all possible model strings m:
(a) Compute model probability p(m/|t) (using LLM)
(b) Maximize ELBO(q(z|z, m(™)||p(z, z|m (™)) over some variational family g.

3. Set w(™ o p(m]t) exp(ELBO((2|2, m™)||p(z, z|m™))).

4. Use final posterior approximation

(z|z,t) Zw (z|z, m™).

48

Algorithm 7 LLB with variational inference with inexact ELBOs (theoretical)

1. Input textual description ¢ and data z.

2. For all possible model strings m:
(a) Compute model probability p(m/|t) (using LLM)
(b) Compute some approximation to the posterior ¢(z|x, m) ~ p(z|x, m).
(c) Compute some bound on the ELBO

L('rn) S E 10g p(z"r‘m)
azlem) q(z|lz,m)

< log p(x|m).
3. Setw™ o p(mlt) exp (L(™).
4. Use final posterior approximation

(z|x,t) Zw(m) (z|x,m).

m

Algorithm 8 LLB with ELBO bounds and SNIS.

1. Input textual description ¢ and data x.
2. Forn=1,2,--- ,N:
(a) Sample m(™ ~ p(mlt) (using an LLM).

)

(b) Compute some approximation to the posterior q(z|x, m(™) ~ p(z|z, m(™).
(c) Compute some bound on the ELBO

< R p(z, xlm™)

log < log p(z|m™).
a(zlz,m) " g2z, mM) e

3. Set w™ o exp L(™).

4. Use final posterior approximation

(z|x,t) Zw(") (z|z, m™).

49

E Proofs

E.1 Proof of Thm. 1
Proof. First, notice that minimizing

KiL(q(z,mlz)|p(z, m|z, 1))
is equivalent to maximizing

p(zvm7m7 |t)
ELBO z,m|z zZ,x,mlt)) = _
(q(2z, m|z)||p(It)) a(elmm) a(z|z, m)

We will therefore attempt to minimize the latter. Set up Lagrangian to find optimal ¢(m|x).

_ p(z,x,mlt)
L = Z/ (mlt)q(z|m, z)log ——————— dmDaldm o) A(;q(mﬁ)l)
e m)log PGB g lm) — 0 og g(mlt)da
dg(mlt) / (2]m)log m|t)(|m,x)d /q([t)q(2| ,)dq(m|t)1gq(t)d

/ z|lm) logwdz—l—)\

q(mlt)q(z|m, x)

plmltyplelm)p(ele,m) .
] ateimos” g(mlDg(elme) A

— Ki(g(z[z, m)|[p(z|z,m)) =1 = A

p(m[t)p(z|m)
q(mlt)

Solving for % = 0 we obtain that
q(mlt) o< p(m|t)p(z|m) exp (=xr(q(z]z, m)||p(z]z,m))).

Now, for simplicity, define kL.(q(z|z, m)||p(z|x, m)) = A,,. Then, we can write

p(mlt)p(alm) exp(—An)

q(mlz) = ,
3 e P |)p(alm) exp (= Apn)
o pmlpim)
S ST rE)
Now, note that
g(mlz) p(mlt)p(wlm)eXp(—Am) S, p(m!|)p(z|m’)
plmlz,t) 5 p [p(alm) exp(~An) - PRIOPEIM)

exp(—Am) X, p|t)p(alm’)

5 ([)p(a) exp(— A)
exp(~An)

5 e P2,) exp (A

Thus we have that

50

g(m|z) q(z|m, x)
KL(q(z, m|z z,ml|z,t = E log——— E log——=
(e mlz)p(z,mlz £) atmle)© p(mlz,t) " ateanle) p(zlm, 2)
exp(_Am)
= E log + E A,
q(mlz) Zm/ p(m/|z,t) exp<fAm/) q(m|x)
1
= log

Yo P(M |2, 1) exp(—Am/)
= —log E exp(—An)
P

(mla,t)

O

Note that since A,,, > 0, it follows that exp(—A,,) < 1 and thus E, |, +) exp(—A,,) < 1 and so
log Epy(m|a,t) €xp(—Ay,) < 0. Thus kL(q(z, m|x)|[p(z, m|x,t)) is non-negative, as required.

E.2 Proof of Thm. 2
Proof. Recall that the Thm. 1 found that the optimal g(m/|z) is
almle) o< plmlt)p(elm) x exp(—xuazle, m) [p(zlz, m)). 23)
And recall the “ELBO decomposition”, i.e. the fact that
log p(x|m) = ELBO(q(z|x, m)||p(z, x|m)) + x1(q(z|x, m)||p(z]z, m)) . (24)

From which it follows that

p(x|m) x exp (—kL(q(z|z, m)||p(z]z, m))) = ELBO(q(z|z, m)|p(z, x|m))
Substituting into Eq. (23) gives that

a(ml) o< p(m]t) exp(ELBO(g(zl, m) [z, ml, 1)).

Recall also that Thm. 1 found the joint divergence resulting from using the optimal g(m|x) is

kilgmie)lpmle.t) = —log B exp(~kig(zle,m) [p(zlr.m))

p(mlz,t

= flogp 1 t)exp(ELBO(q(Z\x,m)Hp(z,:vlm))*logp(wlm))

(mlz,

= —tog 5 P xp (ELBO(a(al, m)l (2. afm))

tog 3 B exp (BLBO(el m) e fm)

= logp(eft) —log E exp(ELBO(g(z|z, m)[p(z m)))

Where we have used that (mlt)p(zlm)
p(m|t)p(x|m
p(m|r,t) = ———————=
mle 1) = ==)
and so
p(mlz,t) p(mit)

plxlm) — p(alt)”

51

To understand this, suppose each g was exact so that

ELBO(q(z|z, m)||p(z, z|m)) = log p(z[m).

Then
K1z miz)llp(z,mlz,1)) = logp(eft) —log E p(z|m)
log p(z[t) — log p(zt)
0.
E.3 Proof with inexact ELBOS (Thm. 3)
Proof. O

Theorem 5. Suppose that p(z, x, m|t) is fixed and q(z|x,m) = p(z|z, m) is exact but g(m|z) x
p(m|t)p(x|t) exp(—8™) is not exact (e.g. because it is chosen based on ELBOs rather than true
marginal likelihoods). Then,

KL(q(z|z)llp(z|z, 1) < xi(g(mlz)llp(mlz, t))
= —log E exp(—é(m))— E &

p(m|z,t) q(m|z)
Proof.
- gmlz)
kulglmle)lp(mie. 1) = Elog §15
~ pmtplalm)exp(=0) L S, plmlt)p(alm)
= T T B S el exp {5
B o] sy S Pmlp(zlm)
(B, [0 o S p(mlt)p(alm) exp(—00™)
= og S p(mitp(alm)

> P(mlt)p(z|m) exp(6 — 60™))
. plal)

>, p(mlt)p(z|m) exp(d — 6(™)
= —log E exp(d—dm™)

p(m|z,t)

= —log E exp(—6"™)—-4

p(mlz,t)

Jensen’s inequality (— log is convex) gives us the easy upper bound

KL(q(m|z)||p(m|z,t)) = —log (I[*‘I exp(g—é(m))
p(m|z,t
< — E logexp(d — o)
p(mlz,t)
= E ™—- E §m™
p(m|z,t) g(m|z)

To understand this, note that the difference ofp(m|x, t) and q(m|z) is precisely that g(m|z) is smaller
when 6™ is larger.

52

F Experimental details

Models were generated using Llama-3.3-70B [14, 21] with 4-bit AWQ quantization [19]. In testing,
LLMs seemed much better at writing Stan code [5] than other PPLs like NumPyro [26] or PyMC
[1], possibly due to more code being available. We thus used Stan, though the possibility of creating
unnormalized distributions in Stan poses some difficulties (Appendix F.2).

The LLM system prompt (Appendix F.1) explains the PROBLEM / DATA / GOAL format illustrated
in the experiments and asks the LLM to first write a THOUGHTS block explaining how it plans to
model the problem, followed by a MODEL block of Stan code. For in-context learning, we provided
six example inputs along with high quality outputs (Appendix G). We rejected any models that
did not compile or that used certain language constructs that might lead to unnormalized models
(Appendix F.2).

Models were generated using a single A100. With continuous batching (parallel inference), model
generation was reasonably fast—for example, it took around 14 minutes to generate 1000 models for
the city temperature problem and around 11 minutes for the polling problem.

For inference, it is necessary to reliably and automatically approximate posteriors and marginal likeli-
hoods for thousands of models. To approximate the posterior, we simply used Stan’s default NUTS
[17] sampler with 10,000 iterations. To approximate the marginal likelihood, we used importance-
weighted variational bounds [3], with a Gaussian proposal distribution. In general, it is known that
such bounds are improved when the proposal distribution would minimize the x? divergence to the
target. However, given the difficulty of minimizing such divergences Geffner & Domke [13] we
elected instead to use a proposal distribution ¢(z|xz, m) minimizing KL(p(z|z, m)||¢(z|x,m)) , which,
given samples from p, amounts to moment matching, i.e. matching the empirical mean and variance
of the samples from MCMC. The full inference strategy is given explicitly as Alg. 9 .

Algorithm 9 The hybrid MCMC / VI / SNIS algorithm used in the experiments.
1. Input textual description ¢ and data x.
2. Forn=1,2,--- ,N:

(a) Sample m(™ ~ p(ml|t) using an LLM.

(b) Draw samples z(™1) ... 2("K) (2|2, m™)) using MCMC.

(¢) Set q(z|z,m(™) to be a Gaussian with mean and covariance matching the sample
A1) LK),

. (gl () .
(d) Estimate the importance-weighted ELBO L(™) = ElogR %, where the inner ex-

pectation is estimated using 25 samples z ~ ¢ and the outer approximate expectation uses
10,000 repetitions.

3. Set w(™*) o exp L™,

4. Return the set of samples {2("*)} where 2(™*) is given weight w (™).

Measuring the amount of compute used for inference is difficult since it was run on a heterogeneous
cluster. However, running MCMC inference on 1000 models is of course quite expensive and required
tens of hours of CPU time for each model. Simply compiling 1000 Stan models (on CPU) is more
time consuming than generating 1000 models using an LLM, though of course both of these steps are
embarrassingly parallel.

53

F.1 System prompt

The following system prompt was used when generating all models:

You are StanWriter. Given a description of a problem, you write Stan code.

You always first write THOUGHTS and then describe your model in words. Then you write MODEL and
write the Stan code.

Be creative when coming up with your model!

When you declare arrays, ALWAYS use the syntax "array[2,5] int x" NEVER the old syntax "int x[2,5]

In the generated quantities block ALWAYS use the _rng syntax like "x ~ normal_rng(mu,sigma)" NEVER
"X ~ normal(mu,sigma)".

NEVER write ‘‘‘stan before your code.

ALWAYS give priors for all variables. NEVER use implicit/improper priors.

NEVER use "target += ..." syntax.

F.2 Validating models

We rejected any model that did not contain the string MODEL, or where the text after model failed to
compile.

Using Stan for the purpose of this algorithm, has one significant disadvantage: It is easy in Stan to
create models that are not normalized. This of course poses no issue when doing MCMC sampling,
but is significant here since it can affect the marginal likelihood. Unnormalized models can be created
in several ways:

1. By default, Stan uses flat / unnormalized / improper priors.

2. One can use the same variable in a sampling statement more than once, e.g. one may write “x
~ normal(@,10)” and then later write “x ~ normal(3,5)”. Both of these statement increment the
density, meaning the result is no longer normalized.

3. One can directly manipulate the target using the “target += " construct, essentially leading to
arbitrary changes with no probabilistic interpretation.

4. One can transform variables on the “left-hand side” e.g. write “log(x) ~ normal(e,1)”. This
again leads to an unnormalized density.

5. If variables are constrained in Stan, this constraint is not reflected in the normalization.

Except for the #5, none of these are too critical, and one can use a system prompt (and in-context
examples) that discourages use. This works quite well, but (probably due to frequent use in example
models) #3 remains common. We thus reject all models that contain the string “target +=", as if
they did not compile. Checking usage of #1, #2, and #4 is not trivial to do programmatically, and thus
we relied instead on spot checks in models given high weight. Only a handful of cases were found.

This leaves issue #5, which unfortunately is difficult to avoid due to frequent usage of constraints in
practice, e.g. to sample from truncated normal distributions. We simply accept this bias in practice,
though note the bias is always downwards, e.g. towards a lower marginal likelihood.

54

G Examples

This section provides the example inputs and outputs given to the LLM to aid in-context learning.

G.1 Weight
INPUT

PROBLEM

Given the weight of a bunch of students, infer true mean of all students. Use reasonably informative priors.

DATA

int num_students; // number of students
array[num_students] real student_weight; // weight of each student in kilograms

GOAL

real weight_mean; // true mean weight for all students

OUTPUT

THOUGHTS

I will model this problem by creating two latent variables. ‘weight_mean’ will reflect the true mean weight of all students,
and ‘weight_sigma‘ will reflect the standard deviation. Since I was instructed to use reasonably informative priors, I'1ll
assume a normal prior for ‘weight_mean’ with a mean of 80kg and a standard deviation of 20kg. For the ‘weight_sigma‘, I’'ll
choose a lognormal prior with mu=log(10) and sigma=log(20). This reflects that my best guess for the standard deviation is
around 10 kg, but could be significantly larger or smaller.

MODEL
data {

int num_students;

array[num_students] real student_weight;
}

parameters {
real weight_mean;
real<lower=0> weight_sigma;

}
model {
weight_mean ~ normal(80,20);
weight_sigma ~ lognormal(log(10),log(20));
for (i in 1l:num_students){
student_weight[i] ~ normal(weight_mean, weight_sigma);
}
}

55

G.2 Future weight

PROBLEM

Given the weight of a bunch of students, infer weight of a new student drawn from the same distribution. Use reasonably
informative priors.

DATA

int num_students; // number of students
array[num_students] real student_weight; // weight of each student in kilograms

GOAL

real new_student_weight; // weight for a future student, sampled from the same distribution

OUTPUT

data {

int num_students;

array[num_students] real student_weight;
}
parameters {

real weight_mean;

real<lower=0> weight_sigma;

}
model {
weight_mean ~ normal(70,30);
weight_sigma ~ student_t(2.5,0,5); // heavy tails
for (i in 1:num_students){
student_weight[i] ~ normal(weight_mean, weight_sigma);
}
}

generated quantities {
real new_student_weight = normal_rng(weight_mean, weight_sigma);

56

G.3 Movies

PROBLEM

Given a bunch of binary features of a movie, predict if a user will like it or not.
DATA

int num_train; // number of movies to train on

int num_test; // number of movies to test on

int num_features; // number of binary features for each movie

array[num_train, num_features] int train_features; // binary features
array[num_train] int train_like; // did the user like the movie

array[num_train, num_features] int test_features; // binary features

GOAL

array[num_test] int test_like; // does the user like each movie in the test set?

OUTPUT

THOUGHTS

I will model this problem by creating a vector ‘beta‘’ of size ‘num_features’. When the inner-product of this vector is taken
with the features of a movie, it gives the logit for how likely the user is to like that movie. I’ll sample each entry of that
vector from a standard normal, which seems like a reasonable scale when being combined with binary features. I’ll then sample
both ‘train_like‘ and ‘test_like’ by taking the inner-product of ‘beta‘’ with each row of ‘train_features’ and ‘test_features
, respectively.

MODEL

data {
int num_train;
int num_test;
int num_features;
array[num_train, num_features] int<lower=0, upper=1> train_features;
array[num_train] int<lower=0, upper=1> train_like;
array[num_test, num_features] int<lower=0, upper=1> test_features;
}
parameters {
vector[num_features] beta;

}
model {
beta ~ normal(0,1);
for (n in 1l:num_train){
train_like[n] ~ bernoulli_logit(to_row_vector(train_features[n]) * beta);
}
}

generated quantities {
array[num_test] int<lower=0, upper=1> test_like;
for (n in 1:num_test){
test_like[n] = bernoulli_logit_rng(to_row_vector(test_features[n]) * beta);

57

G.4 Collaborative filtering

PROBLEM

Given a bunch of like ratings of various users of various movies, predict if users will like future movies. Do this by
inferring underlying features of users and movies.

DATA

int num_users; // number of users

int num_movies; // number of movies

int num_ratings; // number of observed ratings

array[num_ratings] int user; // what user did rating

array[num_ratings] int movie; // what movie was rated

array[num_train, num_features] int like; // did user like the movie (1 if yes, 0 if no)

GOAL

int array[num_users, num_movies] all_ratings; // would each user like each movie?

OUTPUT

THOUGHTS

I will model this problem by assuming that both users and movies can be described in terms of ‘num_features‘=10 features. I'1l1l
create a latent variable ‘user_features’ that describes the features for each user and a latent variable ‘movie_features’
that describes the features for each movie. I will assume standard cauchy priors for all these features, indicating that most
features are small, but some might be quite large. Finally, I assume that the probability of a given user liking a given movie
is given by a bernoulli_logit distribution with a score consisting of the inner-product of the user and movie features. To
create the desired output ‘all_ratings‘, I will create a generating quantities block in which I loop over all pairs of users
and movies.

MODEL
data {

int num_users; // number of users

int num_movies; // number of movies

int num_ratings; // number of observed ratings

array[num_ratings] int user; // what user did rating

array[num_ratings] int movie; // what movie was rated

array[num_ratings] int like; // did user like the movie (1 if yes, © if no)
}

transformed data{
int num_features = 10;

}

parameters {
array[num_users, num_features] real user_features;
array[num_movies, num_features] real movie_features;

}
model {
for(k in 1l:num_features){
for(i in l:num_users){
user_features[i, k] ~ cauchy(0,1);
}
for(j in 1l:num_movies){
movie_features[j,k] ~ cauchy(0,1);
}
}
for (n in 1:num_ratings){
array[num_features] real x = user_features[user[n]];
array[num_features] real y = movie_features[movie[n]];
real score = dot_product(x,y);
like[n] ~ bernoulli_logit(score);
}
}

generated quantities {
array[num_users, num_movies] int all_ratings;
for(i in l:num_users){
for(j in 1l:num_movies){

array[num_features] real x = user_features[i]
array[num_features] real y = movie_features[j];
real score = dot_product(x,y);
all_ratings[i,j] = bernoulli_logit_rng(score);

58

G.5 Vaccines

PROBLEM

There is data for a bunch of different vaccine trials. There are different types of vaccines. Given this data, infer the mean
response rate for each trial type. Assume that different vaccines of the same type tend to have similar response rates and
that different types of vaccines also usually have response rates that aren’t that different.

DATA

int num_types; // number of different types of vaccines

int num_trials; // number of trials

array[num_trials] int type; // what type of vaccine tested in each trial
array[num_trials] int num_subjects; // number of subjects in each trial
array[num_trials] int responders; // number of subjects in each trial that responded

GOAL

array[num_types] response_rate; // mean response rate for a new vaccine of each type

OUTPUT

THOUGHTS

I'll create a hierarchical model. The idea is that each trial has some response rate that is drawn from a per-trial-type
distribution. Then the parameters for the per-trial-type distributions are all drawn from some global distribution. By
sampling the three levels at once (individual trial response rates, per-trial-type response rates, and global rates) all
information can be optimally shared.

.

In more detail, I’'ll first create parameters ‘a‘ and ‘b‘ for each trial type. These determine the distribution over true
response rates for different trials of each type. The true response rate for trial ‘i‘, ‘per_trial_response_rate[i]‘, is drawn
from a beta distribution with parameters ‘a[type[i]]‘ and ‘b[type[i]]‘. Then the (observed) number of responders in each
trial will be drawn from a binomial distribution with ‘num_subjects[i]‘ repeats and a ‘per_trial_response_rate[i]’ success
rate. To create a prior over ‘a‘ and ‘b‘, I will draw a 2-dimensional vector ‘z[n]‘ for each trial type from some multi normal
distribution parameterized by ‘mu‘ and ‘L‘. This will be mapped to ‘a‘ and ‘b‘ in the transformed parameters block through an
inverse logit transformation. I’'1ll sample ‘mu‘ from a broad multivariate normal distribution and ‘L‘ from the distribution

that results from sampling from a broad inverse Wishart distribution and then computing the Cholesky factorization.

‘

MODEL

data {
int num_types;
int num_trials;
array[num_trials] int type;
array[num_trials] int num_subjects;
array[num_trials] int responders;

}

parameters {
cholesky_factor_cov[2] L;
vector[2] mu;
array[num_types] vector[2] z; // parameters for response rate dist for each type
array[num_trials] real<lower=0, upper=1> per_trial_response_rate;
}
transformed parameters{
// map unconstrained parameters for each dist type to pair on 0-1 interval
array[num_types] real a;
array[num_types] real b;
array[num_types] real response_rate;
for(n in 1l:num_types){
a[n] = inv_logit(z[n,1]1);
b[n] = inv_logit(z[n,2]);
response_rate[n] = a[n]/(aln]l+b[n]); // mean of beta distribution is a/(a+b)

}
}
model {
mu ~ multi_normal([0,0],[[5,0],[0,5]11);
L ~ inv_wishart_cholesky(3.0, [[1,0],[0,1]1)
for(n in 1l:num_types){
z[n] ~ multi_normal_cholesky(mu, L);
}
for(i in l:num_trials){
per_trial_response_rate[i] ~ beta(a[type[il], b[type[il]);
responders[i] ~ binomial(num_subjects[i], per_trial_response_rate[i]);
}
}

59

G.6 Water

PROBLEM

I start with 1 kg of water. Every day, some fraction of the water (between 0 and 1) evaporates, and I measure how much is
remaining. My measurements have a noise of something around 10 g. Predict how much water evaporates every day. It could be
anything between 0 and 1, but I suspect it’s something around 0.25. The first day with 1kg isn’t measured.

DATA

int num_days;
array[num_days] measurements; // measurements in kg

GOAL

real evaporation; // what fraction evaporates each day?

OUTPUT

THOUGHTS

I will model this problem by creating a latent variable ‘evaporation‘ which measures what fraction of the water disappears
each day. I will sample this from a beta distribution with alpha=1 and beta=3 meaning a mean of around 0.25. Given the
evaporation, I will use a for loop to define an array ‘current_water’ which is the true (unobserved) amount of water remaining
after each day. Finally, I will sample ‘measurements[i]‘ for each day i from a normal distribution with a mean of water[i]
and a standard deviation of 0.01, chosen because 0.01 kg = 10g.

MODEL
data {

int num_days;

array[num_days] real measurements;
}

parameters {
real<lower=0, upper=1> evaporation;
}
transformed parameters{
array[num_days] real<lower=0, upper=1> water;
real current_water = 1.0;
for(i in 1:num_days){
current_water = current_water * (l-evaporation);
water[i] = current_water;

}
}
model {
evaporation ~ beta(1,3);
for(i in 1l:num_days){
measurements[i] ~ normal(water[i], 0.01)
}
}

60

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction reflect the contribution and scope of the paper, and do not
include aspirational goals.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification:

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?

Answer: [NA]|
Justification: Yes, typically in appendix.
4 Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental
results of the paper to the extent that it affects the main claims and/or conclusions of the paper
(regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: All details disclosed.
5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?

Answer:

Justification: It is difficult to provide code runnable by a third party given the usage of a local cluster
and many non-portable modifications. Every effort has been made to make the results reproducible
from the given description.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]
Justification:
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification:
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer re-
sources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

61

Justification:
9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics?

Answer: [Yes]
Justification:
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: This paper does not appear to present significant social impacts beyond the core goal
(which is discussed) of making probabilistic models easier to write.

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]
Justification:
12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]
Justification:
13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]
Justification:
14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]
Justification:
15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]
Justification:
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,

62

editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required

Answer: [Yes]

Justification: It was used only for generating probabilistic models as described clearly in the text.
LLMs were not used in any other fashion, e.g. for generating code or writing.

63

	1 Introduction
	2 The basic idea
	2.1 Varying latent spaces
	2.2 Comparison to flat averaging

	3 Inference
	3.1 Preliminary observations
	3.2 Generating models
	3.3 Inference

	4 Experiments
	4.1 Rain
	4.2 Coin
	4.3 Polling
	4.4 City Temperature
	4.5 Gold

	5 Theory
	5.1 Importance sampling in model space
	5.2 Approximate inference
	5.3 Algorithmic variants

	6 Discussion and limitations
	6.1 Related work

	A Acronyms and notation
	B Experimental details
	B.1 Rain
	B.2 Coin (standard)
	B.3 Coin (looks)
	B.4 Coin (bent)
	B.5 Polling
	B.6 City temperature
	B.7 Gold (small)
	B.8 Gold (large)

	C Additional analysis
	C.1 Form of the self-normalized importance sampling weights
	C.2 Variance of the self-normalized importance sampling estimator
	C.3 Form of the self-normalized importance sampling weights with variational inference
	C.4 Analysis with inexact ELBO estimates
	C.5 Relaxed bound

	D Other example algorithms
	E Proofs
	E.1 Proof of 1
	E.2 Proof of 2
	E.3 Proof with inexact ELBOS (3)

	F Experimental details
	F.1 System prompt
	F.2 Validating models

	G Examples
	G.1 Weight
	G.2 Future weight
	G.3 Movies
	G.4 Collaborative filtering
	G.5 Vaccines
	G.6 Water

