Adapting General-Purpose Embedding Models to Private Datasets
Using Keyword-based Retrieval

Anonymous ACL submission

Abstract

Text embedding models play a cornerstone role
in Al applications, such as retrieval-augmented
generation (RAG). While general-purpose text
embedding models demonstrate strong perfor-
mance on generic retrieval benchmarks, their
effectiveness diminishes when applied to pri-
vate datasets (e.g., company-specific propri-
etary data), which often contain specialized
terminology and lingo. In this work, we in-
troduce BMEmbed, a novel method for adapt-
ing general-purpose text embedding models
to private datasets. By leveraging the well-
established keyword-based retrieval technique
(BM25), we construct supervisory signals from
the ranking of keyword-based retrieval results
to facilitate model adaptation. We evaluate
BMEmbed across a range of domains, datasets,
and models, showing consistent improvements
in retrieval performance. Moreover, we pro-
vide empirical insights into how BM25-based
signals contribute to improving embeddings
by fostering alignment and uniformity, high-
lighting the value of this approach in adapting
models to domain-specific data. We release the
source code' for the research community.

1 Introduction

Text embeddings serve as a cornerstone for vari-
ous Al applications, particularly in information re-
trieval and retrieval-augmented generation (RAG)
systems (Izacard et al., 2022; Gao et al., 2023).
With the widespread adoption of Al, companies
like OpenAl and Cohere now provide general-
purpose text embedding APIs, enabling organiza-
tions to quickly integrate Al into their RAG sys-
tems. However, while these general-purpose em-
bedding models show impressive performance on
generic benchmarks, they often face significant
challenges when applied to private datasets, such
as domain-specific or company-specific proprietary

The code is available at: https://anonymous.4open.
science/r/BMEmbed-2031.
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Figure 1: An illustration of tailoring an embedding
model to a private domain.

data, which often contain specialized terminology
and jargon (Anderson et al., 2024; Tang and Yang,
2024a).

For instance, consider a pharmaceutical com-
pany that seeks to build a RAG system over its vast
internal dataset. The company’s employees may
query the system for information about an inter-
nal product code (e.g., Product Code: PHX-121).
However, general-purpose models, not trained on
this proprietary dataset, may fail to properly inter-
pret or retrieve relevant documents containing such
specific terms, leading to suboptimal answers.

Current practices in RAG systems often attempt
to address this issue by combining traditional
keyword-based retrieval with embedding-based re-
trieval. One popular hybrid approach is reciprocal
rank fusion (RRF), which reranks results based on
a mathematical formula without fine-tuning the un-
derlying embedding model (Cormack et al., 2009).
While simple and effective, RRF remains heuris-
tic, with its effectiveness potentially limited by the
lack of fine-tuning to the private dataset. This leads
us to the following question: Can we fine-tune
general-purpose embedding models to better align
with private datasets?

One of the key challenges in adapting embed-
ding models to domain-specific datasets is the lack
of available tuning signals. While general-purpose
embedding models are often trained on large, cu-
rated QA datasets using contrastive learning (Tan
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et al., 2022; Zhou et al., 2022; Moreira et al., 2024),
private datasets, which often consist of free-text
data without annotations, pose a particular chal-
lenge. This leads to an important sub-question:
How can we generate supervisory signals for adapt-
ing general-purpose embedding models to private,
unlabeled datasets?

In this work, we introduce BMEmbed, an au-
tomated framework designed to adapt general-
purpose text embedding models to private datasets.
Our method leverages BM25 (Robertson and
Zaragoza, 2009), a well-established keyword-based
retrieval function based on TF-IDF, to generate
supervisory signals from the ranking of keyword-
based retrieval results. The BMEmbed frame-
work consists of three main components: (1) do-
main query generation, where a large language
model generates synthetic queries based on domain-
specific events extracted from the private corpus;
(2) relevant sampling, which uses BM25 to retrieve
lexically related paragraphs and samples from dif-
ferent intervals of the ranking list to ensure informa-
tive signals; and (3) listwise fine-tuning, where the
embedding model is optimized using a listwise loss
function on the curated ranking lists, fully leverag-
ing the ranking supervision. Unlike traditional in-
batch negative contrastive learning (van den Oord
et al., 2018; Chen et al., 2020), our approach uses
ranked BM25 results to guide the fine-tuning pro-
cess.

We evaluate BMEmbed across multiple domains
and datasets, using two general-purpose embedding
models with varying scales. Compared to base em-
bedding models, BMEmbed consistently achieves
substantial improvements in retrieval accuracy. Our
experiments further show that BMEmbed outper-
forms or achieves competitive performance com-
pared to two commonly used techniques in current
RAG systems: (1) fine-tuning with in-batch nega-
tive contrastive learning, and (2) the RRF hybrid
approach. To better understand the inner workings
of BMEmbed, we investigate the alignment and
uniformity properties of the adapted embeddings
(Wang and Isola, 2020). We find that BMEmbed
successfully improves embedding uniformity while
maintaining good alignment, leading to improved
retrieval performance.

In summary, this paper introduces a simple yet
effective method for adapting general-purpose text
embedding models to private datasets. Given the
increasing adoption of RAG systems across indus-
tries, we believe our method provides a practical

solution to enhance domain specificity, leading to
more accurate and contextually relevant retrieval
results in real-world applications.

2 Background

2.1 Text Embedding Models

Text embedding refers to the numerical represen-
tation of a piece of text that captures its seman-
tic meaning, transforming texts of varying lengths
into fixed-size vectors. Previously, fine-tuning
models like BERT (Devlin et al., 2019) and T5
(Raffel et al., 2020) to adapt to embedding down-
stream tasks was the dominant approach (Reimers
and Gurevych, 2019; Ni et al., 2022). However,
with the development of LLMs, the landscape is
shifting. The focus has now moved toward build-
ing LLM-based, general-purpose embedding mod-
els, including Qwen (Li et al., 2023), LLM2Vec
(BehnamGhader et al., 2024), NV-Embed (Lee
et al., 2024), etc. These LLM-based embedding
models have demonstrated their superiority on mas-
sive text datasets, e.g., MTEB (Muennighoff et al.,
2023).

Current embedding models (Izacard et al., 2022;
Wang et al., 2022; Li et al., 2023; Chen et al., 2024)
are primarily trained using contrastive learning,
with the widely adopted InfoNCE loss(van den
Oord et al., 2018) as the objective, which aims to
distinguish semantically relevant text pairs from
irrelevant ones. While effective, the performance
of contrastive learning heavily depends on the se-
lection of high-quality positive and negative sam-
ples (Tan et al., 2022; Zhou et al., 2022; Moreira
et al., 2024). When adapting the embedding model
to a specific domain, constructing relevant and ir-
relevant samples from a private corpus can be a
challenging task. In this work, we propose leverag-
ing BM25 to construct lexically relevant samples,
addressing the challenge of sample selection in an
unsupervised manner.

2.2 Keyword-based Retrieval: BM25

BM25 (Robertson and Zaragoza, 2009)is a well-
established retrieval method based on TF-IDF,
which ranks documents by considering the unique-
ness and significance of terms relevant to a given
query. The BM25 score for document d with re-
spect to query g is defined as:

- ‘ ft,d)- (ki +1)
BM25(d, q) = ;IDF@) Fltd)+ k- (1—b+b-d])
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Figure 2: An overview of the BMEmbed framework.

where f(t,d) is the term frequency of term ¢ in
document d, |d| is the normalization of document
length, 3, IDF(t) is the inverse document fre-
quency of term ¢ in the corpus, £ and b are hy-
per parameters that control the impact of term fre-
quency and document length, respectively. Previ-
ous works have demonstrated the effectiveness of
using BM25 as a weak supervision signal for train-
ing small models (Dehghani et al., 2017; Haddad
and Ghosh, 2019; Karpukhin et al., 2020).

Despite significant progress in dense retrieval
(Karpukhin et al., 2020; Xin et al., 2022), BM25
remains a robust retrieval algorithm. Its rule-based,
keyword matching approach enables strong gener-
alization, maintaining competitive performance in
scenarios where keyword matching is more crucial
than semantic matching. As a result, hybrid ap-
proaches, such as Reciprocal Rank Fusion (RRF)
(Cormack et al., 2009), have been used to combine
and rerank results from both dense retrieval mod-
els (embedding-based) and sparse retrieval models
(BM25-based). However, RRF relies on heuristics
to rank these hybrid results. In contrast, this paper
aims to fine-tune general-purpose embedding mod-
els to a specific dataset, enabling true adaptation
rather than simply combining results from different
retrieval methods.

3 BMEmbed: Domain Adaptation for
General-Purpose Embeddings

In this section, we present BMEmbed, an au-
tomated framework designed to tailor general-
purpose embedding models to private datasets con-
sisting of unannotated text. The method contains

three steps, and the overall process is illustrated in
Figure 2.

3.1 Domain Query Generation

The first step is to prompt an LLM (e.g., GPT-4)
to generate synthetic queries focused on domain-
specific events in the private corpus, rather than on
general concepts.

Event Extraction We require the LLM to extract
all the events and their associated arguments from
the private corpus. In addition, the original context
from which the events are extracted is also gener-
ated, serving as the evidence for the queries used
in the baseline method in subsequent experiments.

Query Synthesis Then, we feed both the corpus
and the extracted events into the LLM, prompting it
to automatically generate queries () for each event.
The detailed prompts are provided in Appendix A.

3.2 Relevant Sampling via BM25

The second step is to construct ranked retrieval
results using keyword retrieval method BM25.

BM25 Searching We divide the private corpus
into multiple chunks and calculate the BM25 score
between query ¢ € () and each chunk. The top-k
scoring chunks, denoted as C' = {c1,ca,...,ck}s
are selected, where each chunk c; is associated with
its respective BM25 score ;.

Ranking List Partition We further partition C
into m intervals, denoted as {P1,Pa,...,Pm}.
This approach allows positives and negatives to be
sampled from different intervals, which amplifies



the scope of sampling space across diverse rele-
vance tiers, effectively mitigating noise in BM25
pseudo labels. The partitioning can follow either
a uniform or a fine-to-coarse strategy. Uniform
intervals divide the range of BM25 scores into
equally sized segments, ensuring a consistent dis-
tribution of samples across all intervals. In con-
trast, fine-to-coarse partitioning strategy intervals
prioritize finer segmentation of higher-relevance
scores, leading to more granular sampling for posi-
tively ranked examples. For instance, given m = 4,
the top-20 ranking list can be divided into inter-
vals [0, 2), [2,6), [6,12), [12, 20) using the fine-to-
coarse strategy, whereas the uniform strategy di-
vides it into [0, 5), [5, 10), [10, 15), [15, 20).

Ranking-Based Sampling For each interval P;,
we randomly select one sample p; along with
its retrieval score rj, forming a ranking list

[Q7p1>p27"'11%narlar27'"aTWJ'

3.3 Listwise Fine-Tuning

Since BM25 retrieval results produce a ranked list,
we hypothesize that this ranking contains valuable
information that can be better utilized through a list-
wise training objective, rather than the commonly
used in-batch negative contrastive learning objec-
tive, where ranking information is typically ignored.
To this end, we employ a listwise training objective
to fully leverage the ranking information obtained
from BM2S5 retrieval.

Given [q,p1,P2,- -+, Pm,T1,72,--,Tm] and a
base embedding model e(-), we first obtain the em-
beddings of ¢ and p; for j € [1,...,m], denoted
as e(q) and e(p;), respectively. Then, we calculate
the cosine similarity s; = sim(e(q), e(p;)). Fol-
lowing the work of ListNet (Cao et al., 2007), the
listwise loss is calculated as follows:

L(s,r) ==Y p}log(p})

qeq j=1

where r={ry,72,...,Tm}, s={s1,52, ..., Sm ), D"
and p® are the distributions normalized by softmax
over the r and s, respectively. We introduce a
temperature scaling factor « on the target score list
r, with:
oo e (3)
T Xe (3)

Here, o controls the sharpness of the target dis-
tribution, with smaller values leading to a more
concentrated distribution, and larger values result-
ing in a smoother distribution.

Dataset Multihop Finance LegalBench
evaluation queries 2,255 498 1,676
corpus tokens 1,453k 840k 7,109k
synthesized queries 5,972 1,009 685
chunk size 256 1,024 1,024

k 1,000 1,000 4,000

m 9 6 6

Table 1: Statistics and implementation details of the
datasets.

4 How does BMEmbed Perform?

4.1 Experimental Setup

Base Embedding Models We use the follow-
ing two general-purpose embedding models: gte-
Qwen2-1.5B-instruct?, a small yet strong model,
and e5-mistral-7B-instruct’, a larger model based
on Mistral-7B. Both two models perform compet-
itively on the MTEB leaderboard (Muennighoff
et al., 2023).

Baselines We compare models fine-tuned by
BMEmbed with the following methods: 1) BM25,
with parameters k1=1.2 and b=0.75; 2) Base, the
base embedding model. 3) CL, the embedding
model fine-tuned using contrastive objective In-
foNCE loss (van den Oord et al., 2018), where
LLM-generated evidence is used as positives (as
detailed in Section 3.1), along with in-batch nega-
tives. 4) RRF, Reciprocal Rank Fusion (Cormack
et al., 2009), which is a hybrid search method com-
bining rankings from multiple sources into a unified
ranking:

1

RRF(d) =) T

a€A

where d is a document, A is the set of rankers (re-
trievers), a(d) is the rank of document d in ranker
a, and u is a constant set to 40. Here we combine
BM25 rankings with the base embedding model. 5)
RRF+BMEmbed, the combination of the BM25
and the BMEmbed-finetuned model.

“Private” Datasets In our experiments, we
choose three publicly available retrieval datasets as
evaluation benchmarks. However, these datasets
are released after the base embedding models,
meaning the models are unlikely to have been
trained on them. Therefore, while the datasets are

2https://huggingface.co/Alibaba—NLP/gte—QwenZ—1.
5B-instruct

3https://huggingface.co/intfloat/eS—mistra1—7b—instruct
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Multihop-RAG

Finance-RAG

LegalBench-RAG

Method Hit@10 Hit@4 MAP@I10 | Hit@10 Hit@4 MAP@I0 | Hit@10 Hit@4 MAP@10
BM25 | 79.02 65.01 2593 | 5743 46.18 3746 | 1462  7.58 1.62
Qwen2-1.5B
Base 7650  59.69  22.22 53.82 4137  32.84 23.09  16.65 6.34
CL 7472 5596 21.48 58.43 4357  35.20 2548  17.90 545
BMEmbed 83.06  68.34  26.54 57.03 4538  36.21 2852 2064 747
RRF 82.04 6630  25.80 63.45 49.80  40.97 2476 18.32 6.45
RRF+BMEmbed | 8435 71.09  28.30 6446 5161  41.62 2846  19.69  7.19
e5-mistral-7B
Base 7539 5499  20.33 4880 3655  28.10 93.75 1742 6.48
CL 69.40 4834  16.67 | 57.43  46.79  35.08 21.06  16.65 5.37
BMEmbed 85.63 7149  27.60 62.25 4839  38.40 2727 19.03  7.08
RRF 8213  67.58  27.04 61.85 47.39  39.55 2434 19.09  7.23
RRF+BMEmbed | 8572 7144 2836 64.06 5221  41.92 2727 19.03  7.08

Table 2: Retrieval performance of different methods across three datasets. Best results are highlighted for each

embedding model on each dataset.

publicly available, they effectively simulate “pri-
vate” datasets in our experiments, also ensuring fair
comparison and reproducibility.

Specifically, the three datasets are: Multihop-
RAG (Tang and Yang, 2024b), a multi-hop question
answering (QA) dataset from the financial news do-
main; Finance-RAG?, a long-context QA dataset
based on financial reports, released as part of the
ACM-ICAIF’24 FinanceRAG competition; and
LegalBench-RAG (Pipitone and Alami, 2024), a
challenging long-context legal domain QA dataset.
Each dataset contains questions, their correspond-
ing relevant evidence, and the original corpus. We
use the evidence as the label to evaluate the retrieval
performance. Detailed statistics are provided in Ta-
ble 1.

Implementation and Training Details For do-
main query generation, we use GPT-4o for accu-
rate event extraction and GPT-40-mini for query
synthesis to minimize costs. We generate 5,972,
1,009, and 685 queries for Multihop-RAG, Finance-
Bench, and Legal-Bench, respectively, based on
corpus size. A real case, including the input corpus,
intermediate events, and the final generated query,
is showcased in Appendix B. During relevant sam-
pling, we set the chunk size of 256 for Multihop-
RAG and 1,024 for the other two datasets with long
context. The fine-to-coarse partitioning strategy
is used by default. We adopt m=9 for Multihop-
RAG and m=6 for the others, with k=1,000 for
MultiHop-RAG and Finance-RAG, and £=4,000
for LegalBench-RAG. The impact of different m

4h’ctps ://www.kaggle.com/competitions/
icaif-24-finance-rag-challenge

and partitioning strategies is further discussed in
Section 5.2. The results under different &k are shown
in Appendix C. For finetuning, we use a fixed batch
size of 16 for CL, while the batch size is equivalent
to m for BMEmbed. The temperature « is set to a
moderate value between 1.0 to 5.0, with further ad-
justments on different datasets and models, which
we provide a detailed discussion in Section 5.3. We
finetune the model using LoRA (Hu et al., 2022)
with a rank of 16 for 1,000 steps. Training Qwen on
4x%3090 GPUs takes about 1.5 hours, while training
eS-mistral on 8 xH800 GPUs takes approximately
one hour.

4.2 Results and Discussion

Table 2 presents the experimental results of BMEm-
bed and all baselines across two embedding models
and three datasets. It can be observed:

1) The vanilla embedding models perform sub-
optimally in specific domains. In most cases, base
models underperform BM25 on Multihop-RAG
and Finance-RAG, even with large model sizes.
This finding highlights the necessity of further
adaptation when applying general-purpose embed-
ding models to specific domains.

2) Contrastive learning does not consistently
lead to performance improvements for embedding
model adaptation. Surprisingly, we find that ap-
plying CL to base models do not always improve
performance. We hypothesize that noise in the posi-
tive evidence generated by the LLM might interfere
with model optimization. This indicates that con-
trastive learning is sensitive to the quality of pos-
itive and negative samples, and such an approach
does not always result in promising improvements
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for embedding adaptation.

3) Our BMEmbed consistently delivers improve-
ments, benefiting from the supervision signals pro-
vided by BM25. Our framework boosts the base
models across all embedding models and datasets,
especially on the metrics Hit@4. Compared to RRF
which combines BM25 ranking information with
dense retrieval from embedding models, BMEm-
bed achieves a remarkable improvement, which
illustrates that our framework deeply deciphers the
ranking confidence signals from BM25, achieving
a better embedding model adaptation.

4) Furthermore, BMEmbed can be combined
with other hybrid retrieval methods to achieve fur-
ther enhancement. This is demonstrated in experi-
ments comparing RRF+BMEmbed with RRF alone.
In most cases, RRF+BMEmbed shows clear per-
formance gains, except in the case of LegalBench-
RAG, where the BM25 baseline performs poorly
and BMEmbed+RRF does not achieve further per-
formance gains.
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S Why BMEmbed Enhances Embedding
Adaptation? An Investigation from
Uniformity and Alignment

In this section, we further investigate why BMEm-
bed leads to improvements. We conduct ablation
experiments to study how our samplers and tem-
perature interact with retrieval performance. More-
over, we introduce the Alignment and Uniformity
properties, which reflect the quality of the em-
bedding, to gain a deeper theoretical understand-
ing. The reported experiments are based on the
Multihop-RAG dataset and the Qwen2-1.5B model
by default. The complete ablation study setup and
results are presented in Appendix C. As observed
in the ablation study, our experiments empirically
reveal a strong agreement between embedding
properties and retrieval performance, suggest-
ing that the enhancement from BMEmbed re-
sults from the optimized embedding properties.
In this section, we discuss our key observations and
conclusions.



Method Multihop-RAG Finance-RAG LegalBench-RAG
Alignment]  Uniformity? | Alignment| Uniformityf | Alignment| Uniformity{

Qwen2-1.5B

Base 1.2422 2.7665 1.1562 1.6567 1.3203 1.1599

CL 1.3516 2.8022 1.2188 2.9437 2.0000 2.2382

BMEmbed 1.2031 3.3266 1.1484 2.6631 1.6691 2.1426
eS-mistral-7B

Base 1.1875 1.7430 1.1797 1.0353 1.2891 0.7317

CL 1.5156 2.7649 1.3281 3.0445 2.7969 1.7913

BMEmbed 1.1797 3.7768 1.0859 3.2144 1.6797 1.6182

Table 3: Alignment and Uniformity of Embedding Models. Lower alignment () and higher uniformity (1) are
preferred. Best results are highlighted for each embedding model on each dataset.

5.1 Alignment and Uniformity

A good embedding should bring similar data points
closer together while preserving as much useful in-
formation as possible (Bachman et al., 2019; Hjelm
et al., 2019) to distinguish different data points,
leading to lower alignment and higher uniformity.
Here, we adopt alignment and uniformity for eval-
uating an embedding following the work of Wang
and Isola (2020), with further details and discus-
sion in Appendix D.

5.2 Ablation Study of Different Partitions

To explore the effect of different partitions during
relevant sampling via BM25 in BMEmbed, we in-
vestigate the impact of various partition factors,
including the number of partitions and the parti-
tioning strategies. Specifically, we conduct experi-
ments with m ranging from 6 to 10, using both uni-
form and fine-to-coarse sampling strategies, with
the temperature « set to 1 and & set to 1,000.
Figure 3 shows the relationship between retrieval
metrics MAP@10 and fine-tuning with different m
and sampling strategies, while Figure 4 presents
a comparison of uniformity and alignment of the
fine-tuning models shown in previous figure. We
observe that the fine-to-coarse strategy achieves
better retrieval performance and superior align-
ment compared to the uniform strategy. In con-
trast, the uniform strategy is suboptimal in retrieval
performance due to its overly uniform embedding
distribution, which leads to a loss of alignment.
In addition, as m increases from 6 to 7 under
the fine-to-coarse sampling strategy, we observe
a measurable improvement in MAP@ 10 perfor-
mance, suggesting that moderately expanding the
sampling scope captures more relevant items. How-
ever, further increasing m causes performance fluc-

tuations and a gradual decline in overall effective-
ness. These findings highlight the importance of
carefully calibrating m to optimize retrieval perfor-
mance.

5.3 Ablation Study of Listwise Fine-Tuning
with Varying Temperatures

We examine the effect of varying temperatures a.
For convenience, we work with its reciprocal, 1/,
with values of 0.1, 0.2, 0.5, 0.7, and 1.0. We set
k=500, m=10, and adopt the fine-to-coarse sam-
pling strategy.

Figure 5 shows the trend between MAP@10
and fine-tuning with different 1/, with the corre-
sponding alignment and uniformity results shown
in Figure 6. Our analysis shows that smaller tem-
perature achieve better retrieval performance
by fostering good uniformity in the embedding
distribution. In contrast, as temperature increases,
uniformity decreases, even lowering it compared
to the base model. This is because the higher tem-
perature smooths the label distribution, which di-
minishes the distinction between learning samples
and causes the embeddings to become overly clus-
tered. Such clustering may hurt the performance of
downstream tasks which require clear distinction
between embeddings, as observed in our experi-
ments, where it led to a degradation in retrieval
performance.

5.4 BMEmbed Balances Alignment and
Uniformity Optimization

Our ablation experiment and analysis have demon-
strated that using the fine-to-coarse strategy with
a smaller temperature is an effective way to lever-
age BM25, supported by both theoretical reasoning
and practical results. Since main experiment we
conducted in Section 4.2 is based on this strategy,



Original Query

‘ Query with Masked Keywords

Does “The New York Times” article attribute the
success of the Buffalo Bills’ defense to the contri-

butions of Jordan Poyer, while the “Sporting News”

article suggests that the Baltimore Ravens’ de-
fense needs to improve before their game against
the Cincinnati Bengals?

Does “The New York Times” article attribute the
success of the Buffalo Bills’ [MASK] to the contri-
butions of Jordan Poyer, while the “Sporting News”
article suggests that the Baltimore [MASK] ’ de-
fense needs to improve before their game against
the Cincinnati [MASK] ?

Table 4: An example of a comparison between original query and masked query example.

Model Mask Hit@4 Hit@10 MAP@10
v 22.13 33.17 6.46
Base
(137.56)  (]43.33) (15.76)
X 59.69 76.50 2222
BMEmbed v 23.41 34.41 7.02
(144.93)  (/48.65) (119.44)
X 68.34 83.06 26.54

Table 5: A comparative experiment involving query
masking between two models.

here we report the uniformity and alignment of cor-
responding fine-tuned embedding models in Table
3 for further analysis.

Embedding models fine-tuned with BMEm-
bed achieve better retrieval results due to in-
creased uniformity compared to the base model,
while maintaining relatively low alignment.
Comparing with CL with in-batch negatives, we ob-
serve that although uniformity has increased signif-
icantly, it does not effectively maintain or improve
the alignment of the base model. This imbalance
leads to instability in retrieval performance, and in
some cases, even performance degradation. Specif-
ically, we identify the ideal optimization direction,
as indicated by the red arrow in the in Figure 4.
BMEmbed achieves this theoretical direction on
both Multihop-RAG and Finance-RAG, demon-
strating its potential to balance the optimization of
both uniformity and alignment.

6 How Does BM25 Boost Embedding? A
Masked Keyword Analysis of Pattern
Utilization

To investigate how BM25-driven signals boost
embedding adaptation, we conduct an interesting
masked keyword study on queries. Specifically,
we compare retrieval performance between the
base Qwen2-1.5b model and its fine-tuned vari-
ant (BMEmbed) under two conditions: 1) original
queries and 2) keyword-masked queries. The ex-
perimental pipeline involves three steps: First, we
employ LLMs to extract domain-specific keywords

from each query. The prompts are detailed in Ap-
pendix E. Next, we mask these identified keywords
(see Table 4 for examples) while preserving syn-
tactic structure. The number of query pairs con-
structed is 2,255. Finally, we evaluate both models’
performance degradation when processing masked
versus original queries.

As shown in Table 5, we compare the retrieval
performance between BMEmbed and the base
model under keyword-masked conditions. The
experimental results reveal that masking critical
keywords eliminates BMEmbed’s performance ad-
vantage, reducing both models to comparable accu-
racy levels. This demonstrates that the fine-tuning
improvements primarily stem from the model’s en-
hanced focus on domain-specific keywords, con-
sistent with our hypothesis. Furthermore, these
findings prove that our list-wise fine-tuning strat-
egy successfully enables BMEmbed to internalize
private domain features through BM25-guided pat-
tern learning.

7 Conclusion

With the growing adoption of Al in real-world
applications, particularly RAG systems, adapting
general-purpose models to domain-specific data
remains a critical challenge. In this paper, we
present BMEmbed, a novel method for adapting
text embedding models to private datasets (e.g.,
company-specific proprietary data). Since private
datasets often contain specialized terminology and
domain-specific language, we leverage keyword-
based retrieval as a supervisory signal to fine-tune
general-purpose embedding models. Experimen-
tal results demonstrate that BMEmbed effectively
enhances retrieval performance, producing more
accurate query results on private datasets. As Al
continues to transform industries, we hope that our
proposed method can further advance the adoption
and adaptation of Al in domain-specific applica-
tions, ensuring more effective and contextually rel-
evant retrieval.



8 Limitations

This study has several limitations that present op-
portunities for future research. First, our current
method primarily focuses on the retrieval task in
embedding models. However, text embeddings are
also widely used in domain-specific NLP tasks such
as clustering and semantic textual similarity (STS).
An interesting direction for future research is ex-
ploring task-specific supervisory signals to better
adapt general-purpose embedding models to private
datasets for applications beyond retrieval, includ-
ing clustering and STS. Second, while our method
aims to develop embedding models tailored to pri-
vate datasets (such as company-specific proprietary
data), we evaluate it on public datasets. These
datasets are chosen because they are released after
the base embedding models we assess, ensuring
fair comparison and public reproducibility. How-
ever, applying this method to proprietary datasets
in real-world RAG scenarios remains an important
next step. We hope future research will explore
these practical applications to further validate and
refine our approach.
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A Prompts Used for Domain Query
Generation

The LLM prompts used in the domain query gener-
ation stage are detailed as follows:

Event Extraction Prompt:

Given a document, please extract all the events and their
associated topics and organization in the context.

Note: 1. The event should not contain ambiguous refer-
ences, such as "he’,” she,” and ’it’, and should use complete
names.

2. You should give at least one passage in the original text
associated to the event you extract, DO NOT make up any
event.

3. If there are multiple paragraphs associated to the ex-
tracted event, please list and number all of them.

4. If the event does not contain some of the arguments
mentioned above, please leave it empty.

5. The type of Event involves fine-grained events and gen-
eral events, where fine-grained events focus on specific facts
and details while general events are summarizations of hap-
pened fine-grained events.

6. Please return the fine-grained events first, then return
general events.

The document is:

{doc}

Please return the extracted event in the following format
with following arguments:

[Event]:

[Topic]:

[Original context]: 1. ......

2oy cocoon

[Typel:
Events you extract are:

Query Synthesis Prompt:

Given several events and their original source document,
please ask several questions according to the infomation
and give the original reference paragraph following this
format:

[Envent]:

[Question]:

Note: 1. Don’t need to mention all the arguments in your
question.

2. You can involve the original document information, but
make sure that your question is about the topic of the given
event.

3. You should ask questions separately to different events.
Document:

{doc}

Event:

{event}

Your question towards given event:

B Case Study of Query Generation

In this section, we present a real query generation
process, showcasing the input document, intermedi-
ate extracted events, and the final generated query.
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Document Chunk from Multihop-RAG:

Table of Contents Table of Contents Echo, Fire TV,
and Kindle deals Apple deals TV deals Laptop deals
Headphone and earbud deals Tablet deals Gaming deals
Speaker deals Vacuum deals Kitchen deals Smart home
deals Fitness deals Beauty tech deals Drone deals Camera
deals Lego deals Gift card deals UPDATE: Nov. 27, 2023,
5:00 a.m. EST This post has been updated with all of the
latest Cyber Monday deals available at Amazon. Amazon
is dragging out the year’s biggest shopping holiday(s)
into 11 days of deals. The retail giant began its Black
Friday sale in the early morning of Friday, Nov. 17 (a
week ahead of schedule) and was on top of making the
switch to Cyber Monday language in the wee hours of
Saturday, Nov. 25. Official Cyber Monday mode, which is
currently on through Monday, Nov. 27, includes both a ton
of deals carried over from Black Friday plus some new ones.

GPT-40 Extracted Events:

## Fine-Grained Events

1. [Event]: Amazon began its Black Friday sale.

[Topic]: Black Friday sale

[Original context]: "The retail giant began its Black Friday
sale in the early morning of Friday, Nov. 17 (a week ahead
of schedule)..."

[Type]: Fine-grained

2. [Event]: Amazon switched to Cyber Monday language.
[Topic]: Cyber Monday sale

[Original context]: "...and was on top of making the switch
to Cyber Monday language in the wee hours of Saturday,
Nov. 25."

[Type]: Fine-grained

3. [Event]: Amazon’s Cyber Monday mode includes deals
carried over from Black Friday plus some new ones.
[Topic]: Cyber Monday sale

[Original context]: "Official Cyber Monday mode, which
is currently on through Monday, Nov. 27, includes both a
ton of deals carried over from Black Friday plus some new
ones."

[Type]: Fine-grained

GPT-40-mini Generated Query:

1. [Event]: Amazon began its Black Friday sale. [Question]:
How did Amazon’s early start to the Black Friday sale
impact customer engagement compared to previous years?
2. [Event]: Amazon switched to Cyber Monday language.
[Question]: What strategies did Amazon employ to transi-
tion from Black Friday to Cyber Monday promotions?

3. [Event]: Amazon’s Cyber Monday mode includes deals
carried over from Black Friday plus some new ones. [Ques-
tion]: What types of new deals can customers expect dur-
ing Amazon’s Cyber Monday sale compared to those from
Black Friday?

C Ablation Study

We conduct three sets of experiments on Multihop-
RAG and Qwen model while controlling different
variables, investigating four key factors according
to our pipeline:

* selection of k, we explore values of k at 200,
500, and 1000;

* selection of m, we examine m values ranging
from 6 to 10;



* sampling strategy, compared fine-to-coarse
and uniform approaches, fixing the first par-
tition from O to 3 for an informative positive
sample, while dividing the remaining parti-
tions based on the chosen strategy. Specifi-
cally, when using the fine-to-coarse strategy,
for a given k and m, the length of the next
interval is twice the length of the previous in-
terval. This can be represented by the formula:
L(Piv1) = 2L(Ps);

hyperparameter «, for convenience, we work
with its reciprocal, 1/« with values of 0.1,
0.2,0.5,0.7, and 1.0.

Our experiments are structured as follows:

1. We fix temperature = 1 and £=1000, and con-
duct experiments with different values of m
and sampling strategies.

. We fix temperature = 1, m=10, and the fine-
to-coarse strategy, then investigate different
values of .

. We fix k=500, m=10, and the fine-to-coarse
strategy, then examine the effect of varying
temperature.

Our ablation experiment results in Table 6
demonstrate that, fine-tuned embedding model
with lower alignment and higher uniformity
tend to achieve better result on retrieval task.
We observe a strong correlation between retrieval
performance and these two properties. Specifically,
embedding models with better alignment tend to
achieve superior retrieval results. Moreover, when
alignment is similar, models with larger unifor-
mity exhibit better retrieval performance. This sug-
gests that we can leverage our strategy to adjust
alignment and uniformity, ultimately optimizing
retrieval performance.

D Alignment and Uniformity: Details and
Discussion

In the work of Wang and Isola (2020), Alignment,
which measures how well similar data points are
positioned in the embedding space, is quantified
by the mean Euclidean distance between the em-
beddings of all positive pairs. Uniformity, which
reflects how well the data points are distributed
across the embedding space, is quantified using the
Gaussian potential kernel, capturing the pairwise
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similarity across all data points in the distribution,
they are denoted as follows:

Alignment = E, , cpos[|le(x) — e(y)[3]
Uniformity = logEa yep,, ., [exp(—2 [|h(z) — h(y)|3)]

where x,y € pos represents the positive pairs in
the dataset, and pg.:, 1S the data distribution of
all data points, e(-) is the embedding model that
maps input data points to their corresponding em-
beddings in a high-dimensional space. In our ex-
periments, =,y € pos refer to the question and its
corresponding evidence chunk, while we randomly
sample chunks from each document, forming a set
of Pgatq to compute uniformity.

Since fine-tuning can further amend the model’s
alignment (Gao et al., 2021), making it difficult to
compare across different models, we introduce a
scaling factor to address this. A model with high
alignment does not necessarily perform worse in
retrieval than one with low alignment. If a high-
alignment model also ensures that negative samples
are more dispersed relative to positive ones, it can
still achieve strong retrieval performance. Con-
sidering this, we define the distance between the
query and its nearest embedding in the database
as a scaling factor for alignment. In the follow-
ing experiments, we use the normalized version of
alignment, which denotes as follows:

lle(z) — e()ll3

He(x) - e(ynearest) Hg

Alignment = Ez,yepos|

norm

, where €(Ynearest) refers to the closest embedding
in the database to the question embedding e(z).
Finally, the original uniformity is a negative value,
in our experiments, we report the absolute value of
uniformity. This makes comparison and analysis
easier, and a larger absolute value indicates that the
embedding model distribution is more uniform.

E Prompts Used for Keywords Masking

The LLM prompts used in the keywords masking
experiments are detailed as follows:



Method Alignment Uniformity Hit@10 Hit@4 Hit@l MAP@I10
Base 1.2422 2.7624 76.50 59.69  33.97 22.22
m=6 k=1000 fine-to-coarse 1.2031 3.1258 82.44 67.45 38.94 25.94
m=7 k=1000 fine-to-coarse 1.1953 3.1907 83.99 69.00 41.02 26.76
m=8 k=1000 fine-to-coarse 1.1953 3.3276 83.33 68.91  39.38 26.29
m=9 k=1000 fine-to-coarse 1.2031 3.3266 83.06 68.34  40.58 26.54
m=10 k=1000 fine-to-coarse 1.2031 3.3267 83.55 68.43  40.04 26.43
m=6 k=1000 uniform 1.2734 3.6012 80.27 64.79  36.98 24.41
m=7 k=1000 uniform 1.2656 3.5860 81.37 65.19  36.76 24.79
m=8 k=1000 uniform 1.2578 3.6276 82.35 67.49  38.67 25.61
m=9 k=1000 uniform 1.2578 3.6222 81.46 65.90 38.18 25.24
m=10 k=1000 uniform 1.2734 3.6265 80.71 64.26  36.50 24.39
k=1000 unifom m=10 1.2734 3.6265 80.71 64.26  36.50 24.39
k=500 unifom m=10 1.2578 3.6303 81.46 65.45 36.76 24.72
k=200 unifom m=10 1.2422 3.6452 82.97 66.39  37.69 25.23
k=1000 fine-to-coarse m=10 1.2031 3.3267 83.55 68.43  40.04 26.43
k=500 fine-to-coarse m=10 1.1953 3.3675 83.50 68.74  40.71 26.67
k=200 fine-to-coarse m=10 1.1953 3.3896 83.10 68.65  38.85 26.11
1/a=0.1 k=1000 fine-to-coarse m=10 1.1953 2.1774 78.14 63.02  35.48 23.96
1/a=0.2 k=1000 fine-to-coarse m=10 1.1875 2.6560 81.46  66.43 37.83 25.47
1/a=0.5 k=1000 fine-to-coarse m=10 1.1875 3.2849 82.88 67.63  40.09 26.34
1/a=0.7 k=1000 fine-to-coarse m=10 1.1953 3.3411 83.10  68.29  39.96 26.45
1/a=1.0 k=1000 fine-to-coarse m=10 1.1953 3.3675 83.50 68.74  40.71 26.67

Table 6: Ablation study.

Masked Keyword Prompt:

Given a query and a paragraph including the answer of the
query, please extract all the common keywords that query
and paragraph both have:

Note:

1. The definition of keywords is: words in the query and
paragraph that are particularly distinctive and related to
the main topic. Less important pronouns or frequently
occurring words do not fall into this category.

2. The words you extract must appear in both the query and
the paragraph.

3. Do not output other format, just list all the words as
follows:

investigation, Eastwood, Filing

Query:

{query}

Paragraph:

{paragraph}

keywords:
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