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Abstract

Text embedding models play a cornerstone role001
in AI applications, such as retrieval-augmented002
generation (RAG). While general-purpose text003
embedding models demonstrate strong perfor-004
mance on generic retrieval benchmarks, their005
effectiveness diminishes when applied to pri-006
vate datasets (e.g., company-specific propri-007
etary data), which often contain specialized008
terminology and lingo. In this work, we in-009
troduce BMEmbed, a novel method for adapt-010
ing general-purpose text embedding models011
to private datasets. By leveraging the well-012
established keyword-based retrieval technique013
(BM25), we construct supervisory signals from014
the ranking of keyword-based retrieval results015
to facilitate model adaptation. We evaluate016
BMEmbed across a range of domains, datasets,017
and models, showing consistent improvements018
in retrieval performance. Moreover, we pro-019
vide empirical insights into how BM25-based020
signals contribute to improving embeddings021
by fostering alignment and uniformity, high-022
lighting the value of this approach in adapting023
models to domain-specific data. We release the024
source code1 for the research community.025

1 Introduction026

Text embeddings serve as a cornerstone for vari-027

ous AI applications, particularly in information re-028

trieval and retrieval-augmented generation (RAG)029

systems (Izacard et al., 2022; Gao et al., 2023).030

With the widespread adoption of AI, companies031

like OpenAI and Cohere now provide general-032

purpose text embedding APIs, enabling organiza-033

tions to quickly integrate AI into their RAG sys-034

tems. However, while these general-purpose em-035

bedding models show impressive performance on036

generic benchmarks, they often face significant037

challenges when applied to private datasets, such038

as domain-specific or company-specific proprietary039

1The code is available at: https://anonymous.4open.
science/r/BMEmbed-2031.
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Figure 1: An illustration of tailoring an embedding
model to a private domain.

data, which often contain specialized terminology 040

and jargon (Anderson et al., 2024; Tang and Yang, 041

2024a). 042

For instance, consider a pharmaceutical com- 043

pany that seeks to build a RAG system over its vast 044

internal dataset. The company’s employees may 045

query the system for information about an inter- 046

nal product code (e.g., Product Code: PHX-121). 047

However, general-purpose models, not trained on 048

this proprietary dataset, may fail to properly inter- 049

pret or retrieve relevant documents containing such 050

specific terms, leading to suboptimal answers. 051

Current practices in RAG systems often attempt 052

to address this issue by combining traditional 053

keyword-based retrieval with embedding-based re- 054

trieval. One popular hybrid approach is reciprocal 055

rank fusion (RRF), which reranks results based on 056

a mathematical formula without fine-tuning the un- 057

derlying embedding model (Cormack et al., 2009). 058

While simple and effective, RRF remains heuris- 059

tic, with its effectiveness potentially limited by the 060

lack of fine-tuning to the private dataset. This leads 061

us to the following question: Can we fine-tune 062

general-purpose embedding models to better align 063

with private datasets? 064

One of the key challenges in adapting embed- 065

ding models to domain-specific datasets is the lack 066

of available tuning signals. While general-purpose 067

embedding models are often trained on large, cu- 068

rated QA datasets using contrastive learning (Tan 069
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et al., 2022; Zhou et al., 2022; Moreira et al., 2024),070

private datasets, which often consist of free-text071

data without annotations, pose a particular chal-072

lenge. This leads to an important sub-question:073

How can we generate supervisory signals for adapt-074

ing general-purpose embedding models to private,075

unlabeled datasets?076

In this work, we introduce BMEmbed, an au-077

tomated framework designed to adapt general-078

purpose text embedding models to private datasets.079

Our method leverages BM25 (Robertson and080

Zaragoza, 2009), a well-established keyword-based081

retrieval function based on TF-IDF, to generate082

supervisory signals from the ranking of keyword-083

based retrieval results. The BMEmbed frame-084

work consists of three main components: (1) do-085

main query generation, where a large language086

model generates synthetic queries based on domain-087

specific events extracted from the private corpus;088

(2) relevant sampling, which uses BM25 to retrieve089

lexically related paragraphs and samples from dif-090

ferent intervals of the ranking list to ensure informa-091

tive signals; and (3) listwise fine-tuning, where the092

embedding model is optimized using a listwise loss093

function on the curated ranking lists, fully leverag-094

ing the ranking supervision. Unlike traditional in-095

batch negative contrastive learning (van den Oord096

et al., 2018; Chen et al., 2020), our approach uses097

ranked BM25 results to guide the fine-tuning pro-098

cess.099

We evaluate BMEmbed across multiple domains100

and datasets, using two general-purpose embedding101

models with varying scales. Compared to base em-102

bedding models, BMEmbed consistently achieves103

substantial improvements in retrieval accuracy. Our104

experiments further show that BMEmbed outper-105

forms or achieves competitive performance com-106

pared to two commonly used techniques in current107

RAG systems: (1) fine-tuning with in-batch nega-108

tive contrastive learning, and (2) the RRF hybrid109

approach. To better understand the inner workings110

of BMEmbed, we investigate the alignment and111

uniformity properties of the adapted embeddings112

(Wang and Isola, 2020). We find that BMEmbed113

successfully improves embedding uniformity while114

maintaining good alignment, leading to improved115

retrieval performance.116

In summary, this paper introduces a simple yet117

effective method for adapting general-purpose text118

embedding models to private datasets. Given the119

increasing adoption of RAG systems across indus-120

tries, we believe our method provides a practical121

solution to enhance domain specificity, leading to 122

more accurate and contextually relevant retrieval 123

results in real-world applications. 124

2 Background 125

2.1 Text Embedding Models 126

Text embedding refers to the numerical represen- 127

tation of a piece of text that captures its seman- 128

tic meaning, transforming texts of varying lengths 129

into fixed-size vectors. Previously, fine-tuning 130

models like BERT (Devlin et al., 2019) and T5 131

(Raffel et al., 2020) to adapt to embedding down- 132

stream tasks was the dominant approach (Reimers 133

and Gurevych, 2019; Ni et al., 2022). However, 134

with the development of LLMs, the landscape is 135

shifting. The focus has now moved toward build- 136

ing LLM-based, general-purpose embedding mod- 137

els, including Qwen (Li et al., 2023), LLM2Vec 138

(BehnamGhader et al., 2024), NV-Embed (Lee 139

et al., 2024), etc. These LLM-based embedding 140

models have demonstrated their superiority on mas- 141

sive text datasets, e.g., MTEB (Muennighoff et al., 142

2023). 143

Current embedding models (Izacard et al., 2022; 144

Wang et al., 2022; Li et al., 2023; Chen et al., 2024) 145

are primarily trained using contrastive learning, 146

with the widely adopted InfoNCE loss(van den 147

Oord et al., 2018) as the objective, which aims to 148

distinguish semantically relevant text pairs from 149

irrelevant ones. While effective, the performance 150

of contrastive learning heavily depends on the se- 151

lection of high-quality positive and negative sam- 152

ples (Tan et al., 2022; Zhou et al., 2022; Moreira 153

et al., 2024). When adapting the embedding model 154

to a specific domain, constructing relevant and ir- 155

relevant samples from a private corpus can be a 156

challenging task. In this work, we propose leverag- 157

ing BM25 to construct lexically relevant samples, 158

addressing the challenge of sample selection in an 159

unsupervised manner. 160

2.2 Keyword-based Retrieval: BM25 161

BM25 (Robertson and Zaragoza, 2009)is a well- 162

established retrieval method based on TF-IDF, 163

which ranks documents by considering the unique- 164

ness and significance of terms relevant to a given 165

query. The BM25 score for document d with re- 166

spect to query q is defined as: 167

BM25(d, q) =
∑
t∈q

IDF(t) · f(t, d) · (k1 + 1)

f(t, d) + k1 ·
(
1− b+ b · |d̂|

) 168
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Figure 2: An overview of the BMEmbed framework.

where f(t, d) is the term frequency of term t in169

document d, |d̂| is the normalization of document170

length,
∑

t∈q IDF(t) is the inverse document fre-171

quency of term t in the corpus, k1 and b are hy-172

per parameters that control the impact of term fre-173

quency and document length, respectively. Previ-174

ous works have demonstrated the effectiveness of175

using BM25 as a weak supervision signal for train-176

ing small models (Dehghani et al., 2017; Haddad177

and Ghosh, 2019; Karpukhin et al., 2020).178

Despite significant progress in dense retrieval179

(Karpukhin et al., 2020; Xin et al., 2022), BM25180

remains a robust retrieval algorithm. Its rule-based,181

keyword matching approach enables strong gener-182

alization, maintaining competitive performance in183

scenarios where keyword matching is more crucial184

than semantic matching. As a result, hybrid ap-185

proaches, such as Reciprocal Rank Fusion (RRF)186

(Cormack et al., 2009), have been used to combine187

and rerank results from both dense retrieval mod-188

els (embedding-based) and sparse retrieval models189

(BM25-based). However, RRF relies on heuristics190

to rank these hybrid results. In contrast, this paper191

aims to fine-tune general-purpose embedding mod-192

els to a specific dataset, enabling true adaptation193

rather than simply combining results from different194

retrieval methods.195

3 BMEmbed: Domain Adaptation for196

General-Purpose Embeddings197

In this section, we present BMEmbed, an au-198

tomated framework designed to tailor general-199

purpose embedding models to private datasets con-200

sisting of unannotated text. The method contains201

three steps, and the overall process is illustrated in 202

Figure 2. 203

3.1 Domain Query Generation 204

The first step is to prompt an LLM (e.g., GPT-4) 205

to generate synthetic queries focused on domain- 206

specific events in the private corpus, rather than on 207

general concepts. 208

Event Extraction We require the LLM to extract 209

all the events and their associated arguments from 210

the private corpus. In addition, the original context 211

from which the events are extracted is also gener- 212

ated, serving as the evidence for the queries used 213

in the baseline method in subsequent experiments. 214

Query Synthesis Then, we feed both the corpus 215

and the extracted events into the LLM, prompting it 216

to automatically generate queries Q for each event. 217

The detailed prompts are provided in Appendix A. 218

3.2 Relevant Sampling via BM25 219

The second step is to construct ranked retrieval 220

results using keyword retrieval method BM25. 221

BM25 Searching We divide the private corpus 222

into multiple chunks and calculate the BM25 score 223

between query q ∈ Q and each chunk. The top-k 224

scoring chunks, denoted as C = {c1, c2, . . . , ck}, 225

are selected, where each chunk ci is associated with 226

its respective BM25 score ri. 227

Ranking List Partition We further partition C 228

into m intervals, denoted as {P1,P2, . . . ,Pm}. 229

This approach allows positives and negatives to be 230

sampled from different intervals, which amplifies 231

3



the scope of sampling space across diverse rele-232

vance tiers, effectively mitigating noise in BM25233

pseudo labels. The partitioning can follow either234

a uniform or a fine-to-coarse strategy. Uniform235

intervals divide the range of BM25 scores into236

equally sized segments, ensuring a consistent dis-237

tribution of samples across all intervals. In con-238

trast, fine-to-coarse partitioning strategy intervals239

prioritize finer segmentation of higher-relevance240

scores, leading to more granular sampling for posi-241

tively ranked examples. For instance, given m = 4,242

the top-20 ranking list can be divided into inter-243

vals [0, 2), [2, 6), [6, 12), [12, 20) using the fine-to-244

coarse strategy, whereas the uniform strategy di-245

vides it into [0, 5), [5, 10), [10, 15), [15, 20).246

Ranking-Based Sampling For each interval Pj ,247

we randomly select one sample pj along with248

its retrieval score rj , forming a ranking list249

[q, p1, p2, . . . , pm, r1, r2, . . . , rm].250

3.3 Listwise Fine-Tuning251

Since BM25 retrieval results produce a ranked list,252

we hypothesize that this ranking contains valuable253

information that can be better utilized through a list-254

wise training objective, rather than the commonly255

used in-batch negative contrastive learning objec-256

tive, where ranking information is typically ignored.257

To this end, we employ a listwise training objective258

to fully leverage the ranking information obtained259

from BM25 retrieval.260

Given [q, p1, p2, . . . , pm, r1, r2, . . . , rm] and a261

base embedding model e(·), we first obtain the em-262

beddings of q and pj for j ∈ [1, . . . ,m], denoted263

as e(q) and e(pj), respectively. Then, we calculate264

the cosine similarity sj = sim(e(q), e(pj)). Fol-265

lowing the work of ListNet (Cao et al., 2007), the266

listwise loss is calculated as follows:267

L(s, r) = −
∑
q∈Q

m∑
j=1

prj log(p
s
j)268

where r={r1, r2, . . . , rm}, s={s1, s2, . . . , sm}, pr269

and ps are the distributions normalized by softmax270

over the r and s, respectively. We introduce a271

temperature scaling factor α on the target score list272

r, with:273

prj =
exp

( rj
α

)∑m
i=1 exp

(
ri
α

)274

Here, α controls the sharpness of the target dis-275

tribution, with smaller values leading to a more276

concentrated distribution, and larger values result-277

ing in a smoother distribution.278

Dataset Multihop Finance LegalBench

evaluation queries 2,255 498 1,676
corpus tokens 1,453k 840k 7,109k
synthesized queries 5,972 1,009 685
chunk size 256 1,024 1,024
k 1,000 1,000 4,000
m 9 6 6

Table 1: Statistics and implementation details of the
datasets.

4 How does BMEmbed Perform? 279

4.1 Experimental Setup 280

Base Embedding Models We use the follow- 281

ing two general-purpose embedding models: gte- 282

Qwen2-1.5B-instruct2, a small yet strong model, 283

and e5-mistral-7B-instruct3, a larger model based 284

on Mistral-7B. Both two models perform compet- 285

itively on the MTEB leaderboard (Muennighoff 286

et al., 2023). 287

Baselines We compare models fine-tuned by 288

BMEmbed with the following methods: 1) BM25, 289

with parameters k1=1.2 and b=0.75; 2) Base, the 290

base embedding model. 3) CL, the embedding 291

model fine-tuned using contrastive objective In- 292

foNCE loss (van den Oord et al., 2018), where 293

LLM-generated evidence is used as positives (as 294

detailed in Section 3.1), along with in-batch nega- 295

tives. 4) RRF, Reciprocal Rank Fusion (Cormack 296

et al., 2009), which is a hybrid search method com- 297

bining rankings from multiple sources into a unified 298

ranking: 299

RRF (d) =
∑
a∈A

1

u+ a(d)
300

where d is a document, A is the set of rankers (re- 301

trievers), a(d) is the rank of document d in ranker 302

a, and u is a constant set to 40. Here we combine 303

BM25 rankings with the base embedding model. 5) 304

RRF+BMEmbed, the combination of the BM25 305

and the BMEmbed-finetuned model. 306

“Private” Datasets In our experiments, we 307

choose three publicly available retrieval datasets as 308

evaluation benchmarks. However, these datasets 309

are released after the base embedding models, 310

meaning the models are unlikely to have been 311

trained on them. Therefore, while the datasets are 312

2
https://huggingface.co/Alibaba-NLP/gte-Qwen2-1.

5B-instruct
3
https://huggingface.co/intfloat/e5-mistral-7b-instruct
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Method
Multihop-RAG Finance-RAG LegalBench-RAG

Hit@10 Hit@4 MAP@10 Hit@10 Hit@4 MAP@10 Hit@10 Hit@4 MAP@10

BM25 79.02 65.01 25.93 57.43 46.18 37.46 14.62 7.58 1.62

Qwen2-1.5B
Base 76.50 59.69 22.22 53.82 41.37 32.84 23.09 16.65 6.34
CL 74.72 55.96 21.48 58.43 43.57 35.20 25.48 17.90 5.45
BMEmbed 83.06 68.34 26.54 57.03 45.38 36.21 28.52 20.64 7.47
RRF 82.04 66.30 25.80 63.45 49.80 40.97 24.76 18.32 6.45
RRF+BMEmbed 84.35 71.09 28.30 64.46 51.61 41.62 28.46 19.69 7.19

e5-mistral-7B
Base 75.39 54.99 20.33 48.80 36.55 28.10 23.75 17.42 6.48
CL 69.40 48.34 16.67 57.43 46.79 35.08 21.06 16.65 5.37
BMEmbed 85.63 71.49 27.60 62.25 48.39 38.40 27.27 19.03 7.08
RRF 82.13 67.58 27.04 61.85 47.39 39.55 24.34 19.09 7.23
RRF+BMEmbed 85.72 71.44 28.36 64.06 52.21 41.92 27.27 19.03 7.08

Table 2: Retrieval performance of different methods across three datasets. Best results are highlighted for each
embedding model on each dataset.

publicly available, they effectively simulate “pri-313

vate” datasets in our experiments, also ensuring fair314

comparison and reproducibility.315

Specifically, the three datasets are: Multihop-316

RAG (Tang and Yang, 2024b), a multi-hop question317

answering (QA) dataset from the financial news do-318

main; Finance-RAG4, a long-context QA dataset319

based on financial reports, released as part of the320

ACM-ICAIF’24 FinanceRAG competition; and321

LegalBench-RAG (Pipitone and Alami, 2024), a322

challenging long-context legal domain QA dataset.323

Each dataset contains questions, their correspond-324

ing relevant evidence, and the original corpus. We325

use the evidence as the label to evaluate the retrieval326

performance. Detailed statistics are provided in Ta-327

ble 1.328

Implementation and Training Details For do-329

main query generation, we use GPT-4o for accu-330

rate event extraction and GPT-4o-mini for query331

synthesis to minimize costs. We generate 5,972,332

1,009, and 685 queries for Multihop-RAG, Finance-333

Bench, and Legal-Bench, respectively, based on334

corpus size. A real case, including the input corpus,335

intermediate events, and the final generated query,336

is showcased in Appendix B. During relevant sam-337

pling, we set the chunk size of 256 for Multihop-338

RAG and 1,024 for the other two datasets with long339

context. The fine-to-coarse partitioning strategy340

is used by default. We adopt m=9 for Multihop-341

RAG and m=6 for the others, with k=1,000 for342

MultiHop-RAG and Finance-RAG, and k=4,000343

for LegalBench-RAG. The impact of different m344

4
https://www.kaggle.com/competitions/

icaif-24-finance-rag-challenge

and partitioning strategies is further discussed in 345

Section 5.2. The results under different k are shown 346

in Appendix C. For finetuning, we use a fixed batch 347

size of 16 for CL, while the batch size is equivalent 348

to m for BMEmbed. The temperature α is set to a 349

moderate value between 1.0 to 5.0, with further ad- 350

justments on different datasets and models, which 351

we provide a detailed discussion in Section 5.3. We 352

finetune the model using LoRA (Hu et al., 2022) 353

with a rank of 16 for 1,000 steps. Training Qwen on 354

4×3090 GPUs takes about 1.5 hours, while training 355

e5-mistral on 8×H800 GPUs takes approximately 356

one hour. 357

4.2 Results and Discussion 358

Table 2 presents the experimental results of BMEm- 359

bed and all baselines across two embedding models 360

and three datasets. It can be observed: 361

1) The vanilla embedding models perform sub- 362

optimally in specific domains. In most cases, base 363

models underperform BM25 on Multihop-RAG 364

and Finance-RAG, even with large model sizes. 365

This finding highlights the necessity of further 366

adaptation when applying general-purpose embed- 367

ding models to specific domains. 368

2) Contrastive learning does not consistently 369

lead to performance improvements for embedding 370

model adaptation. Surprisingly, we find that ap- 371

plying CL to base models do not always improve 372

performance. We hypothesize that noise in the posi- 373

tive evidence generated by the LLM might interfere 374

with model optimization. This indicates that con- 375

trastive learning is sensitive to the quality of pos- 376

itive and negative samples, and such an approach 377

does not always result in promising improvements 378
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for embedding adaptation.379

3) Our BMEmbed consistently delivers improve-380

ments, benefiting from the supervision signals pro-381

vided by BM25. Our framework boosts the base382

models across all embedding models and datasets,383

especially on the metrics Hit@4. Compared to RRF384

which combines BM25 ranking information with385

dense retrieval from embedding models, BMEm-386

bed achieves a remarkable improvement, which387

illustrates that our framework deeply deciphers the388

ranking confidence signals from BM25, achieving389

a better embedding model adaptation.390

4) Furthermore, BMEmbed can be combined391

with other hybrid retrieval methods to achieve fur-392

ther enhancement. This is demonstrated in experi-393

ments comparing RRF+BMEmbed with RRF alone.394

In most cases, RRF+BMEmbed shows clear per-395

formance gains, except in the case of LegalBench-396

RAG, where the BM25 baseline performs poorly397

and BMEmbed+RRF does not achieve further per-398

formance gains.399
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5 Why BMEmbed Enhances Embedding 400

Adaptation? An Investigation from 401

Uniformity and Alignment 402

In this section, we further investigate why BMEm- 403

bed leads to improvements. We conduct ablation 404

experiments to study how our samplers and tem- 405

perature interact with retrieval performance. More- 406

over, we introduce the Alignment and Uniformity 407

properties, which reflect the quality of the em- 408

bedding, to gain a deeper theoretical understand- 409

ing. The reported experiments are based on the 410

Multihop-RAG dataset and the Qwen2-1.5B model 411

by default. The complete ablation study setup and 412

results are presented in Appendix C. As observed 413

in the ablation study, our experiments empirically 414

reveal a strong agreement between embedding 415

properties and retrieval performance, suggest- 416

ing that the enhancement from BMEmbed re- 417

sults from the optimized embedding properties. 418

In this section, we discuss our key observations and 419

conclusions. 420
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Method
Multihop-RAG Finance-RAG LegalBench-RAG

Alignment↓ Uniformity↑ Alignment↓ Uniformity↑ Alignment↓ Uniformity↑

Qwen2-1.5B
Base 1.2422 2.7665 1.1562 1.6567 1.3203 1.1599
CL 1.3516 2.8022 1.2188 2.9437 2.0000 2.2382
BMEmbed 1.2031 3.3266 1.1484 2.6631 1.6691 2.1426

e5-mistral-7B
Base 1.1875 1.7430 1.1797 1.0353 1.2891 0.7317
CL 1.5156 2.7649 1.3281 3.0445 2.7969 1.7913
BMEmbed 1.1797 3.7768 1.0859 3.2144 1.6797 1.6182

Table 3: Alignment and Uniformity of Embedding Models. Lower alignment (↓) and higher uniformity (↑) are
preferred. Best results are highlighted for each embedding model on each dataset.

5.1 Alignment and Uniformity421

A good embedding should bring similar data points422

closer together while preserving as much useful in-423

formation as possible (Bachman et al., 2019; Hjelm424

et al., 2019) to distinguish different data points,425

leading to lower alignment and higher uniformity.426

Here, we adopt alignment and uniformity for eval-427

uating an embedding following the work of Wang428

and Isola (2020), with further details and discus-429

sion in Appendix D.430

5.2 Ablation Study of Different Partitions431

To explore the effect of different partitions during432

relevant sampling via BM25 in BMEmbed, we in-433

vestigate the impact of various partition factors,434

including the number of partitions and the parti-435

tioning strategies. Specifically, we conduct experi-436

ments with m ranging from 6 to 10, using both uni-437

form and fine-to-coarse sampling strategies, with438

the temperature α set to 1 and k set to 1,000.439

Figure 3 shows the relationship between retrieval440

metrics MAP@10 and fine-tuning with different m441

and sampling strategies, while Figure 4 presents442

a comparison of uniformity and alignment of the443

fine-tuning models shown in previous figure. We444

observe that the fine-to-coarse strategy achieves445

better retrieval performance and superior align-446

ment compared to the uniform strategy. In con-447

trast, the uniform strategy is suboptimal in retrieval448

performance due to its overly uniform embedding449

distribution, which leads to a loss of alignment.450

In addition, as m increases from 6 to 7 under451

the fine-to-coarse sampling strategy, we observe452

a measurable improvement in MAP@10 perfor-453

mance, suggesting that moderately expanding the454

sampling scope captures more relevant items. How-455

ever, further increasing m causes performance fluc-456

tuations and a gradual decline in overall effective- 457

ness. These findings highlight the importance of 458

carefully calibrating m to optimize retrieval perfor- 459

mance. 460

5.3 Ablation Study of Listwise Fine-Tuning 461

with Varying Temperatures 462

We examine the effect of varying temperatures α. 463

For convenience, we work with its reciprocal, 1/α, 464

with values of 0.1, 0.2, 0.5, 0.7, and 1.0. We set 465

k=500, m=10, and adopt the fine-to-coarse sam- 466

pling strategy. 467

Figure 5 shows the trend between MAP@10 468

and fine-tuning with different 1/α, with the corre- 469

sponding alignment and uniformity results shown 470

in Figure 6. Our analysis shows that smaller tem- 471

perature achieve better retrieval performance 472

by fostering good uniformity in the embedding 473

distribution. In contrast, as temperature increases, 474

uniformity decreases, even lowering it compared 475

to the base model. This is because the higher tem- 476

perature smooths the label distribution, which di- 477

minishes the distinction between learning samples 478

and causes the embeddings to become overly clus- 479

tered. Such clustering may hurt the performance of 480

downstream tasks which require clear distinction 481

between embeddings, as observed in our experi- 482

ments, where it led to a degradation in retrieval 483

performance. 484

5.4 BMEmbed Balances Alignment and 485

Uniformity Optimization 486

Our ablation experiment and analysis have demon- 487

strated that using the fine-to-coarse strategy with 488

a smaller temperature is an effective way to lever- 489

age BM25, supported by both theoretical reasoning 490

and practical results. Since main experiment we 491

conducted in Section 4.2 is based on this strategy, 492
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Original Query Query with Masked Keywords

Does “The New York Times” article attribute the
success of the Buffalo Bills’ defense to the contri-
butions of Jordan Poyer, while the “Sporting News”
article suggests that the Baltimore Ravens’ de-
fense needs to improve before their game against
the Cincinnati Bengals?

Does “The New York Times” article attribute the
success of the Buffalo Bills’ [MASK] to the contri-
butions of Jordan Poyer, while the “Sporting News”
article suggests that the Baltimore [MASK] ’ de-
fense needs to improve before their game against
the Cincinnati [MASK] ?

Table 4: An example of a comparison between original query and masked query example.

Model Mask Hit@4 Hit@10 MAP@10

Base
22.13 33.17 6.46

(↓37.56) (↓43.33) (↓15.76)

59.69 76.50 22.22

BMEmbed
23.41 34.41 7.02

(↓44.93) (↓48.65) (↓19.44)

68.34 83.06 26.54

Table 5: A comparative experiment involving query
masking between two models.

here we report the uniformity and alignment of cor-493

responding fine-tuned embedding models in Table494

3 for further analysis.495

Embedding models fine-tuned with BMEm-496

bed achieve better retrieval results due to in-497

creased uniformity compared to the base model,498

while maintaining relatively low alignment.499

Comparing with CL with in-batch negatives, we ob-500

serve that although uniformity has increased signif-501

icantly, it does not effectively maintain or improve502

the alignment of the base model. This imbalance503

leads to instability in retrieval performance, and in504

some cases, even performance degradation. Specif-505

ically, we identify the ideal optimization direction,506

as indicated by the red arrow in the in Figure 4.507

BMEmbed achieves this theoretical direction on508

both Multihop-RAG and Finance-RAG, demon-509

strating its potential to balance the optimization of510

both uniformity and alignment.511

6 How Does BM25 Boost Embedding? A512

Masked Keyword Analysis of Pattern513

Utilization514

To investigate how BM25-driven signals boost515

embedding adaptation, we conduct an interesting516

masked keyword study on queries. Specifically,517

we compare retrieval performance between the518

base Qwen2-1.5b model and its fine-tuned vari-519

ant (BMEmbed) under two conditions: 1) original520

queries and 2) keyword-masked queries. The ex-521

perimental pipeline involves three steps: First, we522

employ LLMs to extract domain-specific keywords523

from each query. The prompts are detailed in Ap- 524

pendix E. Next, we mask these identified keywords 525

(see Table 4 for examples) while preserving syn- 526

tactic structure. The number of query pairs con- 527

structed is 2,255. Finally, we evaluate both models’ 528

performance degradation when processing masked 529

versus original queries. 530

As shown in Table 5, we compare the retrieval 531

performance between BMEmbed and the base 532

model under keyword-masked conditions. The 533

experimental results reveal that masking critical 534

keywords eliminates BMEmbed’s performance ad- 535

vantage, reducing both models to comparable accu- 536

racy levels. This demonstrates that the fine-tuning 537

improvements primarily stem from the model’s en- 538

hanced focus on domain-specific keywords, con- 539

sistent with our hypothesis. Furthermore, these 540

findings prove that our list-wise fine-tuning strat- 541

egy successfully enables BMEmbed to internalize 542

private domain features through BM25-guided pat- 543

tern learning. 544

7 Conclusion 545

With the growing adoption of AI in real-world 546

applications, particularly RAG systems, adapting 547

general-purpose models to domain-specific data 548

remains a critical challenge. In this paper, we 549

present BMEmbed, a novel method for adapting 550

text embedding models to private datasets (e.g., 551

company-specific proprietary data). Since private 552

datasets often contain specialized terminology and 553

domain-specific language, we leverage keyword- 554

based retrieval as a supervisory signal to fine-tune 555

general-purpose embedding models. Experimen- 556

tal results demonstrate that BMEmbed effectively 557

enhances retrieval performance, producing more 558

accurate query results on private datasets. As AI 559

continues to transform industries, we hope that our 560

proposed method can further advance the adoption 561

and adaptation of AI in domain-specific applica- 562

tions, ensuring more effective and contextually rel- 563

evant retrieval. 564
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8 Limitations565

This study has several limitations that present op-566

portunities for future research. First, our current567

method primarily focuses on the retrieval task in568

embedding models. However, text embeddings are569

also widely used in domain-specific NLP tasks such570

as clustering and semantic textual similarity (STS).571

An interesting direction for future research is ex-572

ploring task-specific supervisory signals to better573

adapt general-purpose embedding models to private574

datasets for applications beyond retrieval, includ-575

ing clustering and STS. Second, while our method576

aims to develop embedding models tailored to pri-577

vate datasets (such as company-specific proprietary578

data), we evaluate it on public datasets. These579

datasets are chosen because they are released after580

the base embedding models we assess, ensuring581

fair comparison and public reproducibility. How-582

ever, applying this method to proprietary datasets583

in real-world RAG scenarios remains an important584

next step. We hope future research will explore585

these practical applications to further validate and586

refine our approach.587
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for Computational Linguistics (Volume 1: Long Pa-788
pers), ACL 2022, Dublin, Ireland, May 22-27, 2022,789
pages 6120–6130. Association for Computational790
Linguistics.791

A Prompts Used for Domain Query792

Generation793

The LLM prompts used in the domain query gener-794

ation stage are detailed as follows:795

Event Extraction Prompt:
Given a document, please extract all the events and their
associated topics and organization in the context.
Note: 1. The event should not contain ambiguous refer-
ences, such as ’he’,’ she,’ and ’it’, and should use complete
names.
2. You should give at least one passage in the original text
associated to the event you extract, DO NOT make up any
event.
3. If there are multiple paragraphs associated to the ex-
tracted event, please list and number all of them.
4. If the event does not contain some of the arguments
mentioned above, please leave it empty.
5. The type of Event involves fine-grained events and gen-
eral events, where fine-grained events focus on specific facts
and details while general events are summarizations of hap-
pened fine-grained events.
6. Please return the fine-grained events first, then return
general events.
The document is:
{doc}
Please return the extracted event in the following format
with following arguments:
[Event]:
[Topic]:
[Original context]: 1. ......
2. ......
...
[Type]:
Events you extract are:

796

Query Synthesis Prompt:
Given several events and their original source document,
please ask several questions according to the infomation
and give the original reference paragraph following this
format:
[Envent]:
[Question]:
Note: 1. Don’t need to mention all the arguments in your
question.
2. You can involve the original document information, but
make sure that your question is about the topic of the given
event.
3. You should ask questions separately to different events.
Document:
{doc}
Event:
{event}
Your question towards given event:

797

B Case Study of Query Generation798

In this section, we present a real query generation799
process, showcasing the input document, intermedi-800
ate extracted events, and the final generated query.801

Document Chunk from Multihop-RAG:
Table of Contents Table of Contents Echo, Fire TV,
and Kindle deals Apple deals TV deals Laptop deals
Headphone and earbud deals Tablet deals Gaming deals
Speaker deals Vacuum deals Kitchen deals Smart home
deals Fitness deals Beauty tech deals Drone deals Camera
deals Lego deals Gift card deals UPDATE: Nov. 27, 2023,
5:00 a.m. EST This post has been updated with all of the
latest Cyber Monday deals available at Amazon. Amazon
is dragging out the year’s biggest shopping holiday(s)
into 11 days of deals. The retail giant began its Black
Friday sale in the early morning of Friday, Nov. 17 (a
week ahead of schedule) and was on top of making the
switch to Cyber Monday language in the wee hours of
Saturday, Nov. 25. Official Cyber Monday mode, which is
currently on through Monday, Nov. 27, includes both a ton
of deals carried over from Black Friday plus some new ones.

GPT-4o Extracted Events:
## Fine-Grained Events
1. [Event]: Amazon began its Black Friday sale.
[Topic]: Black Friday sale
[Original context]: "The retail giant began its Black Friday
sale in the early morning of Friday, Nov. 17 (a week ahead
of schedule)..."
[Type]: Fine-grained
2. [Event]: Amazon switched to Cyber Monday language.
[Topic]: Cyber Monday sale
[Original context]: "...and was on top of making the switch
to Cyber Monday language in the wee hours of Saturday,
Nov. 25."
[Type]: Fine-grained
3. [Event]: Amazon’s Cyber Monday mode includes deals
carried over from Black Friday plus some new ones.
[Topic]: Cyber Monday sale
[Original context]: "Official Cyber Monday mode, which
is currently on through Monday, Nov. 27, includes both a
ton of deals carried over from Black Friday plus some new
ones."
[Type]: Fine-grained

GPT-4o-mini Generated Query:
1. [Event]: Amazon began its Black Friday sale. [Question]:
How did Amazon’s early start to the Black Friday sale
impact customer engagement compared to previous years?
2. [Event]: Amazon switched to Cyber Monday language.
[Question]: What strategies did Amazon employ to transi-
tion from Black Friday to Cyber Monday promotions?
3. [Event]: Amazon’s Cyber Monday mode includes deals
carried over from Black Friday plus some new ones. [Ques-
tion]: What types of new deals can customers expect dur-
ing Amazon’s Cyber Monday sale compared to those from
Black Friday?

802

C Ablation Study 803

We conduct three sets of experiments on Multihop- 804

RAG and Qwen model while controlling different 805

variables, investigating four key factors according 806

to our pipeline: 807

• selection of k, we explore values of k at 200, 808

500, and 1000; 809

• selection of m, we examine m values ranging 810

from 6 to 10; 811

11



• sampling strategy, compared fine-to-coarse812

and uniform approaches, fixing the first par-813

tition from 0 to 3 for an informative positive814

sample, while dividing the remaining parti-815

tions based on the chosen strategy. Specifi-816

cally, when using the fine-to-coarse strategy,817

for a given k and m, the length of the next818

interval is twice the length of the previous in-819

terval. This can be represented by the formula:820

L(Pi+1) = 2L(Pi);821

• hyperparameter α, for convenience, we work822

with its reciprocal, 1/α, with values of 0.1,823

0.2, 0.5, 0.7, and 1.0.824

Our experiments are structured as follows:825

1. We fix temperature = 1 and k=1000, and con-826

duct experiments with different values of m827

and sampling strategies.828

2. We fix temperature = 1, m=10, and the fine-829

to-coarse strategy, then investigate different830

values of k.831

3. We fix k=500, m=10, and the fine-to-coarse832

strategy, then examine the effect of varying833

temperature.834

Our ablation experiment results in Table 6835

demonstrate that, fine-tuned embedding model836

with lower alignment and higher uniformity837

tend to achieve better result on retrieval task.838

We observe a strong correlation between retrieval839

performance and these two properties. Specifically,840

embedding models with better alignment tend to841

achieve superior retrieval results. Moreover, when842

alignment is similar, models with larger unifor-843

mity exhibit better retrieval performance. This sug-844

gests that we can leverage our strategy to adjust845

alignment and uniformity, ultimately optimizing846

retrieval performance.847

D Alignment and Uniformity: Details and848

Discussion849

In the work of Wang and Isola (2020), Alignment,850

which measures how well similar data points are851

positioned in the embedding space, is quantified852

by the mean Euclidean distance between the em-853

beddings of all positive pairs. Uniformity, which854

reflects how well the data points are distributed855

across the embedding space, is quantified using the856

Gaussian potential kernel, capturing the pairwise857

similarity across all data points in the distribution, 858

they are denoted as follows: 859

Alignment = Ex,y∈pos[∥e(x)− e(y)∥22]
Uniformity = logEx,y∈pdata [exp(−2 ∥h(x)− h(y)∥22)]

860

where x, y ∈ pos represents the positive pairs in 861

the dataset, and pdata is the data distribution of 862

all data points, e(·) is the embedding model that 863

maps input data points to their corresponding em- 864

beddings in a high-dimensional space. In our ex- 865

periments, x, y ∈ pos refer to the question and its 866

corresponding evidence chunk, while we randomly 867

sample chunks from each document, forming a set 868

of pdata to compute uniformity. 869

Since fine-tuning can further amend the model’s 870

alignment (Gao et al., 2021), making it difficult to 871

compare across different models, we introduce a 872

scaling factor to address this. A model with high 873

alignment does not necessarily perform worse in 874

retrieval than one with low alignment. If a high- 875

alignment model also ensures that negative samples 876

are more dispersed relative to positive ones, it can 877

still achieve strong retrieval performance. Con- 878

sidering this, we define the distance between the 879

query and its nearest embedding in the database 880

as a scaling factor for alignment. In the follow- 881

ing experiments, we use the normalized version of 882

alignment, which denotes as follows: 883

Alignmentnorm = Ex,y∈pos[
∥e(x)− e(y)∥22

∥e(x)− e(ynearest)∥22
] 884

, where e(ynearest) refers to the closest embedding 885

in the database to the question embedding e(x). 886

Finally, the original uniformity is a negative value, 887

in our experiments, we report the absolute value of 888

uniformity. This makes comparison and analysis 889

easier, and a larger absolute value indicates that the 890

embedding model distribution is more uniform. 891

E Prompts Used for Keywords Masking 892

The LLM prompts used in the keywords masking 893

experiments are detailed as follows: 894
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Method Alignment Uniformity Hit@10 Hit@4 Hit@1 MAP@10

Base 1.2422 2.7624 76.50 59.69 33.97 22.22
m=6 k=1000 fine-to-coarse 1.2031 3.1258 82.44 67.45 38.94 25.94
m=7 k=1000 fine-to-coarse 1.1953 3.1907 83.99 69.00 41.02 26.76
m=8 k=1000 fine-to-coarse 1.1953 3.3276 83.33 68.91 39.38 26.29
m=9 k=1000 fine-to-coarse 1.2031 3.3266 83.06 68.34 40.58 26.54
m=10 k=1000 fine-to-coarse 1.2031 3.3267 83.55 68.43 40.04 26.43
m=6 k=1000 uniform 1.2734 3.6012 80.27 64.79 36.98 24.41
m=7 k=1000 uniform 1.2656 3.5860 81.37 65.19 36.76 24.79
m=8 k=1000 uniform 1.2578 3.6276 82.35 67.49 38.67 25.61
m=9 k=1000 uniform 1.2578 3.6222 81.46 65.90 38.18 25.24
m=10 k=1000 uniform 1.2734 3.6265 80.71 64.26 36.50 24.39

k=1000 unifom m=10 1.2734 3.6265 80.71 64.26 36.50 24.39
k=500 unifom m=10 1.2578 3.6303 81.46 65.45 36.76 24.72
k=200 unifom m=10 1.2422 3.6452 82.97 66.39 37.69 25.23
k=1000 fine-to-coarse m=10 1.2031 3.3267 83.55 68.43 40.04 26.43
k=500 fine-to-coarse m=10 1.1953 3.3675 83.50 68.74 40.71 26.67
k=200 fine-to-coarse m=10 1.1953 3.3896 83.10 68.65 38.85 26.11

1/α=0.1 k=1000 fine-to-coarse m=10 1.1953 2.1774 78.14 63.02 35.48 23.96
1/α=0.2 k=1000 fine-to-coarse m=10 1.1875 2.6560 81.46 66.43 37.83 25.47
1/α=0.5 k=1000 fine-to-coarse m=10 1.1875 3.2849 82.88 67.63 40.09 26.34
1/α=0.7 k=1000 fine-to-coarse m=10 1.1953 3.3411 83.10 68.29 39.96 26.45
1/α=1.0 k=1000 fine-to-coarse m=10 1.1953 3.3675 83.50 68.74 40.71 26.67

Table 6: Ablation study.

Masked Keyword Prompt:
Given a query and a paragraph including the answer of the
query, please extract all the common keywords that query
and paragraph both have:
Note:
1. The definition of keywords is: words in the query and
paragraph that are particularly distinctive and related to
the main topic. Less important pronouns or frequently
occurring words do not fall into this category.
2. The words you extract must appear in both the query and
the paragraph.
3. Do not output other format, just list all the words as
follows:
investigation, Eastwood, Filing
Query:
{query}
Paragraph:
{paragraph}
keywords:

895
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