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Abstract

The available labeled data to support molecular property prediction are limited in
size due to experimental time and cost requirements. However, unsupervised
learning techniques can leverage vast databases of molecular structures, thus
significantly expanding the scope of training data. We compare the effectiveness of
pre-training data and modeling choices to support the downstream task of molecular
aqueous solubility prediction. We also compare the global and local structure of the
learned latent spaces to probe the properties of effective pre-training approaches.
We find that the pre-training modeling choices affect predictive performance and
the latent space structure much more than the data choices.

1 Introduction

The unsupervised and self-supervised pre-training of large-scale foundation models has led to dramatic
progress across a range of fields, especially in domains relying on natural language processing Devlin
et al. (2019); Brown et al. (2020) and computer vision Radford et al. (2021). Such training approaches
have a natural application in molecular property prediction due to the challenges of collecting large
datasets of measured target properties and the availability of massive unlabeled molecular structure
datasets Kim et al. (2018); Irwin & Shoichet (2005). Moreover, AI-guided design stands to benefit
from improved predictive models as errors in property prediction will propagate to the use of these
models for molecular design. There have been many recent efforts to develop effective pre-training
approaches for molecular structure Morris et al. (2020); Gómez-Bombarelli et al. (2018); Colby et al.
(2019); Jin et al. (2020); Chithrananda et al. (2020); Rong et al. (2020). We aim to study the impacts
of data and modeling choices on the effectiveness of pre-training strategies for the task of molecular
aqueous solubility prediction. We analyze the impact of data properties including size, diversity,
and similarity to the target property data across a range of recent pre-training methods for learning
from molecular structure including SMILES-based versus graph-based methods trained on masking,
autoencoder, and translation objectives. We find that pre-training methods are a much stronger driver
of the ultimate performance than data choices, with the best performing pre-training approaches
being relatively insensitive to the choice of pre-training dataset.

2 Data

We leverage the solubility dataset from Panapitiya et al. (2022), which consists of the measured
aqueous solubility of ∼17k molecules, in units of mol/L. We aim to predict log S, the base 10
logarithm value of solubility. The log S values range from -17.46 mol/L to 1.66 mol/L with a median
value of -2.74 mol/L and a standard deviation of 2.24 mol/L.

To probe the important pretraining dataset properties, we develop four pre-training molecular training
datasets from the PubChem Compound database Kim et al. (2018) that vary along in size, diversity,
and similarity to the target property data. The similar-small (SimS) and similar-large (SimL) datasets
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Table 1: Summary of the size, diversity, and similarity metrics for different pre-training datasets.
Dataset Size Diversity Distance from Solubility

Solubility 17k 5.82 0.00

SimS 400k 6.92 1.76
SimL 1M 6.98 2.17
OOD 1M 7.20 9.56
Rand 1M 7.07 7.85

USPTO 479k 6.90 4.90
QMugs 665k 6.86 13.57

were generated by sampling PubChem molecules that are similar to the molecules contained within our
target solubility dataset, as measured by the fingerprint similarity function in RDKit RDKit, online.
The OOD dataset was generated by sampling PubChem molecules that are out of the distribution
(OOD) relative to the target solubility dataset. We have used the cosine similarity between molecular
embeddings obtained from a trained model to determine which molecules are OOD rather than
the fingerprint similarity because experimentally, this method sampled a wider range of molecular
structures. Lastly, the random (Rand) dataset is a random sample of PubChem molecules. Full details
of the sampling procedures used to construct each of these datasets are available in Appendix A.1.

In addition to pre-training on these constructed datasets, we utilize publicly available pre-trained
models trained on the USPTO dataset Wang et al. (2021), which contains data from chemical
reactions, and the QMugs (Quantum-Mechanical Properties of Druglike Molecules) dataset Isert
et al. (2022), which contains 3D molecular geometry data.

Table 1 contains metrics summarizing the diversity of each dataset and its similarity to the target
property dataset. To quantify the internal diversity of each pre-training dataset, we use the entropy
estimator described in Leguy et al. (2021). To quantify the similarity between each pre-training
dataset and the target solubility dataset, we calculate the Fréchet ChemNet Distance (FCD) Brown
et al. (2019).

3 Pre-training Modeling Approaches

To compare the effectiveness of both data and modeling choices, we pre-train the models described
below on our constructed molecular datasets. From each of these pre-trained models, we can extract
a latent embedding of any input molecule. We use these representations in fine-tuning and in our
analysis. Further details are available in Appendix A.2.

We utilize five general pre-training approaches: variational autoencoders (VAEs), representational
translation, structural masking, reaction aware learning, and 3D learning. VAEs are tasked to
reconstruct the molecular structure based on a learned compressed latent representation of the
molecule. Specifically, we leverage two different VAE architectures - a RNN and a CNN Gómez-
Bombarelli et al. (2018); Colby et al. (2019). We also consider a Hierarchical VAE (HVAE) which
takes in a graph representation of each molecule at multiple resolutions Jin et al. (2020). However, the
computational cost of this model limits our use of it. Representational translation utilizes a transformer
model with the pre-training task of translating SMILES strings to IUPAC strings Morris et al. (2020).
With structural masking models, certain segments of inputs are masked and the pretraining task is
to predict these masked segments. We use ChemBERTa Chithrananda et al. (2020), which uses
tokenized SMILES strings as inputs, and GROVER Rong et al. (2020) which uses molecular graphs
as inputs. Reaction-aware learning as implemented in the MolR model Wang et al. (2021) is a GNN
model where the pretraining task is to train a model that preserves the sum of molecular embeddings
of the product molecules and the reactant molecules. Finally, the 3DInfomax model Stärk et al. (2021)
compares embeddings of a model whose input is 3D molecules and a GNN, whose input is the 2D
graph representation of molecules. Due to data availability and computational constraints, we do not
pretrain MolR or 3DInfomax on all our datasets but use the publicly available pretrained models.
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Figure 1: (Left) Finetuning the predictor only. (Right) Finetuning the full model. Results are also
available in Table 6

4 Fine-tuning Results

After pre-training, we add a two-layer feed-forward neural network to each model. We have two
fine-tuning methods for solubility prediction. In (FT - Pred Only), we freeze the entire pre-trained
model and only train the predictor network. The learned latent embeddings are frozen in this method,
which allows us to explore how much chemical knowledge is encoded into the embedding using the
pre-training objectives alone. In (FT - Full Model), we allow the weights in the pre-trained model to
update along with the predictor network, which allows the model to extract new chemical knowledge
from the molecular structure based on the supervised objective. We report the average root mean
squared error (RMSE) ± its standard deviation over five runs in Figure 1 and in Table 6. To separate
the benefits of pre-training from the model versus the strengths of the individual model architectures,
we also train each model from scratch (FS) on the target solubility dataset.

4.1 Fine-tuning Performance

As seen in Table 6, fine-tuning the entire model and predictor network always outperformed fine-
tuning only the predictor network. This suggests that after pre-training, the learned embeddings
do not have enough information to predict solubility and must adapt the learned representations
during fine-tuning to incorporate the necessary information. Overall, GROVER was the best model
with a RMSE ranging from 1.02 to 1.03 log S, depending on the pre-training dataset, about 0.12
lower compared to GROVER trained from scratch. HVAE trained from scratch was also competitive,
with a RMSE of 1.06. Both GROVER and HVAE rely on a graph representation of the molecule in
contrast to the SMILES representation used by the other models, which all had an RMSE of at least
1.11, regardless of the pre-training dataset. Pre-training was ultimately not helpful for either of the
VAE models. For the VAE-RNN the effect of pre-training was negligible while for the VAE-CNN
pre-training was surprisingly harmful to the fine-tuned performance. Pre-training was also harmful
with the HVAE. Compared to training from scratch, pre-training significantly helped the remaining
transformer based models, Translation and ChemBERTa. However, the fine-tuned RMSE for these
models was much larger than the RMSE of the best models.

3



Figure 2: (Left) Percentage of 10-nearest neighbors overlap, averaged over all molecules. (Right)
Pairwise distance Spearman correlations. FT = fine-tuned, PT = pre-trained, FS = from scratch.

4.2 Impact of Data Properties

To analyze the impact of pre-training dataset size on downstream performance, we perform a pairwise
comparison of the models pre-trained on the SimS and SimL datasets, which have comparable
diversity and similarity metrics as shown in Table 1. When we fine-tuned only the predictor network,
the latent embeddings trained on SimL outperformed the embeddings trained on SimS on all models.
However, the improvement on SimL was small on the better performing models, GROVER and
Translation. When we fine-tuned the full model, pre-training on a larger dataset helped only the
SMILES-based transformer models, Translation and ChemBERTa. While pre-training was not helpful
for the VAE models and we therefore do not expect to observe much sensitivity to the pre-training
dataset, GROVER was also insensitive to the pre-training dataset.

We use the SimL (more similar) and Rand (less similar) datasets to compare the impact of pre-
training on a dataset that is similar to the target solubility dataset holding dataset size and dataset
diversity approximately constant. When we fine-tuned the predictor only, on all but the VAE-RNN,
the embeddings trained on SimL outperform the embeddings trained on Rand. These effects are
diminished when we fine-tune the entire model, where pre-training on a similar dataset helped only
the SMILES-based transformer models.

Finally, we look at the OOD (more diverse) and Rand (less diverse) datasets to measure the role
of pre-training dataset diversity. While these datasets do have different similarity scores, they are
the best dataset pairing we could find that have different diversity scores and similarity scores that
are close together. We find that all models are generally unaffected by the differences in these two
pre-training datasets with both fine-tuning methods.

5 Latent Space Analysis

Using the learned molecular embeddings, we analyze the differences in information encoded in the
latent space that results from different modeling approaches and pre-training datasets to understand
how latent space properties are related to fine-tuning performance. For this analysis, we use the
embeddings of the molecules from the target solubility dataset.

To compare the global structures of two latent spaces, we look at the Spearman correlation of their
pairwise molecular cosine similarities. The results are summarized in the right plot of Figure 2. We
find a hierarchical clustering behavior, with the latent spaces first clustering by training method and
then by modeling approach. However, compared to the rest of the models, the GROVER model learns
a different global structure and shows the unique behavior of having high alignment of its pre-trained
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and fine-tuned spaces, indicating the initially learned embedding is not strongly adjusted during the
fine-tuning process.

To compare the local structures of two latent spaces, we compare the nearest neighbors of a given
molecule in each latent space. Specifically, let Ai be the set of the k nearest neighbors of molecule i
in one latent space, and let Bi be the set of k nearest neighbors of molecule i in another latent space.
To obtain a single metric for the latent space pairing, we find the percentage of nearest neighbors that
overlap averaged over all molecules,

∑
i
|Ai∩Bi|
|Ai∪Bi| .

Using k = 10 and embedding cosine similarity as the distance metric, the left plot of Figure 2 shows
the results. Similar to the global structure, we find that the local structure of the GROVER latent
spaces is also relatively stable between the pre-trained and fine-tuned versions. Consistent with
the predictive performance, we find that local structure is relatively stable to different pre-training
datasets but is strongly affected by different modeling choices.

6 Conclusions

We find that pre-training methods are a much stronger driver of pre-training effectiveness for solubility
prediction than pre-training dataset choices. Of the models explored, the string-based transformers are
most sensitive to data properties. We also find that the best performing model, GROVER, performs
the least adjustment of its latent space during fine-tuning, indicating that it has successfully encoded
most of the relevant chemical knowledge into the local and global structure of the latent space during
pre-training.

One limitation of this work is that the failure to identify strong impacts of data properties may be
because the range of data properties that we explored was too limited and that significantly larger or
more diverse data would be needed to see a strong impact on performance. Additionally, we have
demonstrated the relative performance of these data and modeling choices for only an individual
target property. Future work to validate these patterns across a broader array of target properties will
be needed.
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A Appendix

A.1 Datasets

Here we provide a more detailed outline of the procedures used to generate each of the datasets from
the PubChem database (310 files with 500k molecules each) Kim et al. (2018).

SimS and SimL For each file in the PubChem database, we randomly sample 60k molecules. We
additionally sample 3k molecules from our property database. For every molecule in our property
sample, we find its nearest neighbor (NN) in the 60k subset and add it to the SimS dataset. The
molecule’s three NNs are added to the SimL dataset. Distance is measured using RDKit’s fingerprint
similarity. Because of repeat NNs, the SimS dataset contains approximately 400k molecules and the
SimL dataset contains approximately 1M molecules.

OOD For each file in the PubChem database, we randomly sample a 60k subset of molecules. We
find the similarity score between each sampled PubChem molecule and the target solubility database
and we add the 3225 PubChem molecules with the smallest similarity scores to the OOD dataset.
We define the similarity score between a PubChem molecule m and the target solubility database
D as max{s(zm, zx)|x ∈ D} where s is the cosine similarity and zm is the latent embedding of a
molecule obtained using the GROVER model pre-trained on the SimL dataset. Repeating this over
all files results in a dataset of approximately 1M molecules.

Rand The random (Rand) dataset is a 1M molecule random sample from the PubChem-10M
pre-training dataset used to pre-train the ChemBERTa model Chithrananda et al. (2020).

A.2 Pre-training Models

A summary of the models and the time required for pre-training is summarized in Table 2. All
training was done on a single GPU except for VAE-CNN and Translation, which trained on two
GPUs. We have attempted follow the pre-training procedure and hyperparameters used in the original
implementations of these methods as closely as possible, but list the full hyperparameters we used in
Table 3.

Table 2: Overview of the pre-training models.

Method Architecture Data Representation Parameters Time to Pre-train Latent Dimension

VAE-RNN RNN SMILES 4.6M < 1 day 32
VAE-CNN CNN SMILES 8.8M < 1 day 128

HVAE GNN Graph 20M ∼ 1 month 32
Translation Transformer SMILES 44M ∼ 1 day 512

ChemBERTa Transformer SMILES 83M ∼ 1 day 768
GROVER Transformer Graph 2.2M ∼ 2 weeks 370

MoLR GNN Graph 2.2M NA 1024
3DInfomax GNN Graph 5M NA 256

Table 3: Summary of the pre-training hyperparameters.

Method Epochs Batch Size Initial Learning Rate Weight Decay

VAE-RNN 50 256 1e-3 -
VAE-CNN 500 256 1e-3 1e-6

HVAE 20 8 1e-3 -
Translation 100 24 1e-4 -

ChemBERTa 10 8 5e-5 -
GROVER 350 512 1.5e-4 1e-7
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A.3 Fine-tuning

Fine-tuning hyperparameters for both fine-tuning methods are listed in Tables 4 and 5. Learning rate
and weight decay for the Adam optimizer Kingma & Ba (2015) were determined using random grid
search. For fine-tuning on the predictor only, we fine-tune with a batch size of 256 for 5k epochs with
early stopping. For fine-tuning on the full model, we fine-tune with the batch size and number of
epochs indicated in the table, with early stopping. We repeat fine-tuning five times on each model to
capture a sense of the variability of the model.

For fine-tuning on the full model, we included the pre-training task loss in the fine-tuning loss for
some models. These models that were jointly trained on both the pre-training and solubility prediction
task are identified by the ’Joint’ column in Table 5. We used joint training on models it was helpful
for and otherwise did not use joint training.

Table 4: Summary of the fine-tuning hyperparameters used in fine-tuning the predictor only.

Method Dataset Learning Rate Weight Decay

VAE-RNN SimS 9.72e-5 4.72e-6
SimL 7.66e-2 4.94e-7
OOD 6.89e-4 8.04e-8
Rand 8.99e-4 3.91e-8

VAE-CNN SimS 9.66e-4 9.16e-8
SimL 4.98e-4 3.94e-8
OOD 8.61e-4 4.97e-7
Rand 2.85e-3 5.02e-7

HVAE SimL 1.94e-5 2.28e-7
Translation SimS 4.04e-3 3.30e-8

SimL 8.25e-3 8.75e-6
OOD 7.57e-3 2.70e-8
Rand 2.04e-3 2.17e-6

ChemBERTa SimS 2.57e-4 8.42e-8
SimL 7.53-4 1.57e-9
OOD 7.88e-4 2.45e-7
Rand 1.79e-4 3.04e-7

GROVER SimS 3.18e-4 3.77e-9
SimL 5.30e-4 3.99e-9
OOD 5.98e-4 6.15e-8
Rand 9.60e-4 4.09e-8

MolR USPTO 6.80e-5 5.18e-8
3DInfomax QMugs 6.40e-3 9.39e-9
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Table 5: Summary of the fine-tuning hyperparameters used in fine-tuning the full model. Note that
the hyperparameters for the HVAE model were inadvertently not saved and could not be reproduced
due to the high computational requirements of this model.

Method Epochs Batch Size Joint Dataset Learning Rate Weight Decay

VAE-RNN 200 256 Yes SimS 2.50e-3 1.00e-6
SimL 3.00e-3 1.00e-6
OOD 7.25e-3 8.04e-8
Rand 4.78e-3 5.77e-6

Scratch 2.50e-3 1.00e-6
VAE-CNN 50 256 No SimS 2.79e-4 8.72e-7

SimL 1.00e-3 1.00e-8
OOD 2.73e-4 9.78e-9
Rand 8.59e-4 5.03e-8

Scratch 1.00e-3 1.00e-8
HVAE 50 - No SimL - -

Scratch
Translation 50 16 Yes SimS 8.59e-4 5.76e-6

SimL 2.00e-4 1.00e-6
OOD 2.56e-4 3.78e-7
Rand 6.52e-4 8.83e-9

Scratch 3.88e-4 7.80e-7
ChemBERTa 10 64 No SimS 6.71e-5 3.78e-9

SimL 8.12e-5 5.47e-8
OOD 8.81e-5 8.84e-6
Rand 9.13e-5 8.96e-7

Scratch 2.84e-5 9.66e-8
GROVER 200 32 No SimS 2.10e-4 1.20e-7

SimL 2.27e-5 1.96e-6
OOD 3.74e-4 3.08e-9
Rand 3.13e-5 4.36e-7

Scratch 3.29e-5 9.33e-9
MolR 200 512 No USPTO 6.67e-6 9.86e-10

Scratch 9.60e-5 7.93e-8
3DInfomax 1000 8 No QMugs 7.97e-4 5.23e-9

Scratch 9.96e-4 3.86e-7
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A.4 Full Results

Table 6: Summary of the transfer learning results on each model and dataset. We report the RMSE
when the model is trained from scratch (FS) as well as the RMSE after pre-training on the indicated
dataset. The FT-Pred Only column refers to fine-tuning (FT) only the predictor network while the
FT-Full Model column refers to fine-tuning the complete model.

Method Data FS FT-Pred Only FT-Full Model

VAE - RNN SimS

1.127 ± 0.009

1.446 ± 0.007 1.122 ± 0.013
VAE - RNN SimL 1.371 ± 0.011 1.118 ± 0.004
VAE - RNN OOD 1.435 ± 0.010 1.118 ± 0.009
VAE - RNN Rand 1.315 ± 0.011 1.114 ± 0.009

VAE - CNN SimS

1.131 ± 0.013

1.609 ± 0.006 1.171 ± 0.003
VAE - CNN SimL 1.575 ± 0.010 1.170 ± 0.009
VAE - CNN OOD 1.597 ± 0.013 1.175 ± 0.004
VAE - CNN Rand 1.646 ± 0.006 1.179 ± 0.008

HVAE SimL 1.063 ± 0.005 2.251 ± 0.001 1.122 ± 0.022

Translation SimS

1.342 ± 0.007

1.237 ± 0.008 1.158 ± 0.004
Translation SimL 1.217 ± 0.001 1.114 ± 0.009
Translation OOD 1.243 ± 0.003 1.136 ± 0.009
Translation Rand 1.229 ± 0.004 1.131 ± 0.009

ChemBERTa SimS

1.378 ± 0.036

1.470 ± 0.003 1.265 ± 0.016
ChemBERTa SimL 1.396 ± 0.011 1.233 ± 0.024
ChemBERTa OOD 1.428 ± 0.007 1.257 ± 0.016
ChemBERTa Rand 1.446 ± 0.003 1.269 ± 0.024

GROVER SimS

1.155 ± 0.004

1.118 ± 0.009 1.025 ± 0.005
GROVER SimL 1.091 ± 0.005 1.030 ± 0.010
GROVER OOD 1.149 ± 0.004 1.034 ± 0.005
GROVER Rand 1.150 ± 0.001 1.030 ± 0.005

MolR USPTO 1.083 ± 0.003 1.127 ± 0.004 1.122 ± 0.004

3DInfomax QMugs 1.105 ± 0.009 1.400 ± 0.011 1.077 ± 0.014
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