
Under review as a conference paper at ICLR 2024

DECOUPLE QUANTIZATION STEP AND
OUTLIER-MIGRATED RECONSTRUCTION FOR PTQ

Anonymous authors
Paper under double-blind review

ABSTRACT

Post-training quantization (PTQ) is a popular technique for compressing deep
learning models due to its low cost and high efficiency. However, in some ex-
tremely low-bit settings, PTQ still suffers from significant performance degrada-
tion. In this work, we reveal two related obstacles: (1) the setting of weight’s
quantization step has not been fully explored, and (2) the outlier activation be-
yond clipping range are ignored in most methods, which is especially important
for lightweight models and low-bit settings. To overcome these two obstacles,
we propose DOMR, to (1) fully explore the setting of weight’s quantization step
into five cases through Decoupling, based on the ignored fact that integer weight
(different from integer activation) can be obtained early before actual inference de-
ployment, (2) save outliers into the safe clipping range under predefined bitwidth
with Outlier-Migrated Reconstruction, based on the nature of CNN structure and
PTQ’s clipping operation. More outliers saved equals to breaking the bitwidth
shackle of a predefined hardware thus brings better performance. Extensive ex-
periments on various networks demonstrate that DOMR establishes a new SOTA
in PTQ. Specifically, DOMR outperforms the current best method by 12.93% in
Top-1 accuracy for W2A2 on MobileNet-v2. The code will be released.

1 INTRODUCTION

Deep neural networks’ huge computational cost has posed a challenge to their deployment in real-
world applications. To solve this problem, various model compression techniques (Han et al., 2015;
Hinton et al., 2015) have been studied. Low-bit model quantization is one of the commonly used
methods, which generally consists of Quantization-Aware Training (QAT) and Post-Training Quan-
tization (PTQ). PTQ only needs a tiny amount of unlabeled data and does not demand the full train-
ing pipeline. Therefore, PTQ is always the first choice for fast model quantization. It is a common
PTQ method (Krishnamoorthi, 2018) to search the quantization step based on the MSE error between
FP32 and quantizied values. However, in lower bits like 4 bits or 2 bits, traditional PTQs suffer sig-
nificant accuracy degradation. Some recent algorithms proposed to reconstruct quantized output fea-
tures from two aspects: (a) Reconstruction granularity: AdaRound (Nagel et al., 2020b) proposed
a layer-by-layer reconstruction method, and introduce adaptive rounding parameters for weights.
BRECQ (Li et al., 2021b) found out reconstructing block-by-block performs better. NWQ (Wang
et al., 2022) further proposed a network-wise PTQ. (b) Reconstruction smoothness: QDROP (Wei
et al., 2022) proposed to randomly quantize a part of a tensor like dropout. MRECG (Ma et al., 2023)
and Bit-Shrink (Lin et al., 2023) solve the oscillation and sharpness problems in PTQ respectively.

These techniques boost PTQ performance. However, on one hand, during PTQ feature reconstruc-
tion above, the quantizer’s step (quant-step) of weight in these methods are frozen after initializa-
tion. What will we gain if weight’s quant-step is cooperately optimized with other parameters like
weight’s adaptive rounding parameter and activation’s quant-step? On the other hand, current PTQ
methods inherited treat weight’s quant-step sw and activation’s quant-step sa equally while ignoring
the fact integer weight can be obtained early before inference while integer activation has to be com-
puted during inference, as described in section 3.1. This means after computing the integer weight
using sw during fake quantization simulation, the sw used to convert integer weight into the FP32
counterpart can be different. As shown in formula 4. what will we gain if we decouple the original
single quant-step of weight sw into a quant-step sw and a de-quantizer’s step (dequant-step) s′w ac-
cording to their different function? As far as we know, these two problems above has not been fully

1

Under review as a conference paper at ICLR 2024

Round Clip

OMR

input output

input output

q(y) OMR

q(y)

63.57%
Top-1 Acc

65.89%

Top-1 Acc

Act 3bit
Act 4bit

Act 3bit

(b) Outlier-Migrated Reconstruction(OMR)
(a-2) Case 4

Quantized Model

X W XMSE

(a-1) Case 1

W WMSE W MSE

X W XMSE

W WMSE W MSE

Quantized Model

FP32 Model FP32 Model

X W XMSE

W WMSE W MSE

X W XMSE

W WMSE W MSE

D

W X W XMSEW X W XMSEW X W XMSEW X W XMSE

D

�

� � � �

W
�

InitializationInitialization

: Forward

: Backward

(a) DJOS

XXXW

2xclip
xclip

2xclip

Figure 1: (a): Fully explore weight’s quant-step into five cases with DJOS, details in Sec 3.1. Case
1 represents traditional PTQ’s quant-step: single and not learnable. Case 4 represents DJOS: quant-
step Sw is decoupled into a frozen quant-step Sw and learnable dequant-step S′

w. (b): Break
Bitwidth Shackle with Outlier-Migrated Reconstruction (OMR), details in Figure 3. The top of
(b) describes a classic PTQ process in W3A3, denoted by q(·). With OMR equipped after q(·) as the
bottom of (b), more outliers in (Xclip, 2Xclip] can be saved under predefined bitwidth. Thus 3-bit
activation in OMR-solvable structures can be expanded to 4 bits equally.

explored yet. According to whether the initialized quant-step of weight is decoupled and learnable
or not during quantized feature reconstruction, we can present them into five cases as described in
Sec 3.1, where Case (1) is the current setting of PTQ. We experimentally find out Case (4), where
we Decouple quant-step, then Jointly Optimize dequant-Step only (DJOS), consistently provides
the best performance. DJOS outperforms current SOTA without any other extra computation or
parameters during inference. It can also be an orthogonal plugin for other classic PTQ methods.

Figure 2: left: Acc@1 on ImageNet for fp32 and
clipping-only quantized networks. right: The ratio
and importance (L2 value) of outliers.

Besides, in current PTQs, the outlier activation
beyond clipping range will be truncated due to
PTQ’s clipping operation. However, these out-
liers are important, especially for lightweight
models and extremely low bit settings as de-
scribed in Figure 2. The simplest way to
cover more outliers is to enlarge quantization
bitwidth, however, which is impossible under a
predefined bitwidth accelerator. Therefore, we
try to preserve these important outliers which
should have been clipped under a predefined
bitwidth. Based on the nature of CNN struc-
ture and the clipping operation, we propose to migrate the outliers down into the clipping range and
store them in some newly-built channels, so they can get through the clipping gate safely. Then, with
a mathematically equivalent transformation, we make some special modifications on corresponding
weights. Thus a functionally-identical network is caused without retraining except for more out-
lier activation being preserved. In such a way, namely Outlier-Migrated Reconstruction(OMR), we
successfully achieve the target that more outliers can be reconstructed under predefined bitwidth. It
is equal to breaking bitwidth shackle of hardware, since the outliers in (Xclip, 2Xclip] should have
been preserved by designing one more bit on hardware as shown on the right (b) of Figure 1. The
fair comparison with the same FLOPs between OMR-quantized network and channels-increased
NWQ-quantized network demonstrates the effectiveness of our OMR. Therefore, though our OMR
bring extra FLOPs, it is still worthy under a predefined bitwidth hardware. Our main contributions
on PTQ are summarized as follows:

• For weight PTQ, we propose DJOS. As far as we know, we are the first to fully investigate different
settings of weight’s quant-step into five cases. We find Case (4), where we Decouple the single
quant-step of weight into a quant-step and a dequant-step, then Jointly Optimize dequant-Step
only (DJOS), consistently provides the best performance. DJOS outperforms other PTQ methods
and is orthogonal to other PTQs, without any other extra computation or params in deployment.

2

Under review as a conference paper at ICLR 2024

• For activation PTQ, we propose OMR, based on the nature of CNN structure and PTQ’s clipping
operation. OMR saves the outlier activation beyond clipping range while preserves the precision
of inner values. It is equal to breaking the bitwidth shackle of hardware, thus b-bit activation in
OMR-solvable structures can be expanded to (b+ 1) bits equally. OMR can be easily inserted as
a plug-and-play module into current PTQ libraries to further improve performance orthogonally.
• We evaluate DJOS+OMR⇒DOMR on classic computer vision tasks across various CNN models

and ViTs. Experimental results prove that our DOMR sets up a new SOTA for PTQ.

2 RELATED WORK

PTQ takes in a well-trained 32 bit floating-point (FP32) model then covert it into a low-bit fixed-
point counterpart directly. For weight quantization, Adaround (Nagel et al., 2020a) found that the
commonly used rounding-to-nearest operation will be sub-optimal. Thus it proposed an adaptive
rounding for weight. BRECQ (Li et al., 2021a) found out block-by-block reconstruction behaves
better than the former layer-by-layer ones. NWQ (Wang et al., 2022) further proposed a network-
wise PTQ by fully leveraging inter-layer dependency. QDROP (Wei et al., 2022) proposed to jointly
optimize quantization error of both weight and activation. Meanwhile, it proposed to randomly
quantize only a part of a tensor like dropout. MRECG (Ma et al., 2023) tried to Solve Oscillation
problem in PTQ through a theoretical perspective. PD-Quant (Liu et al., 2023) proposed to consider
global information based on prediction difference metric. Bit-Shrink (Lin et al., 2023) proposed to
limit instantaneous sharpness for improving PTQ. PTQ4ViT (Yuan et al., 2022) and APQ-ViT (Ding
et al., 2022) are proposed to solve the PTQ for Vision Transformer(ViT).

Different from all methods above ignoring the impact of weight’s quant-step, we fully explore the
different settings of weight’s quant-step into five cases, and find the best case for PTQ.

In addition, the existing clipping operation permanently truncates the outlier activation beyond
the threshold. However, these outliers might be crucial to the final task loss, especially for some
lightweight networks. To alleviate this problem, OCS (Zhao et al., 2019) proposed ”outlier channel
splitting” to duplicate channels containing outliers then halve the channel values, which caused a
functionally identical network and the affected outliers are moved to the center of distribution. Nev-
ertheless, they mentioned that OCS was good at weight quantization but failed to quantize activation.

Different from OCS, in this paper, we aim at activation quantization. Instead of OCS’s halving oper-
ation, we propose to migrate outliers, thus the outlier activation beyond the threshold can get through
the clipping gate safely, meanwhile the original information in the range will not be squeezed nar-
rower like OCS either. So it does a much better job on activation quantization than OCS. Such
a functionally-identical modified network achieves one-bit higher representation in theory without
modification on predefined hardware. It conveniently brings better quantized-feature reconstruction.

3 PROPOSED METHOD

Preliminaries of PTQ: A classic weight PTQ is shown as formula 1. sw is the quant-step of weights
w. wl/wu are the lower/upper bound of quantization levels. ⌊·⌉ indicates rounding operation.

ŵ = clip(⌊w
sw
⌉;wl, wu) · sw, min

ŵ
||ŵ −w||2F (1)

Recent works aimed to improve the performance of PTQ by reconstructing quantized feature per
layer/block/network. However, almost all these methods ignore the difference of how integer weight
and integer activation are produced during practical inference. In addition, due to the clipping oper-
ation in quantization, the methods above failed to reconstruct the outlier activation beyond clipping
threshold. Considering the two problems above, we propose DJOS and OMR as followed.

3.1 DECOUPLE AND JOINTLY OPTIMIZE QUANT-STEPS

The current SOTA of PTQ. MRECG (Ma et al., 2023)/NWQ (Wang et al., 2022) quantizes weight
w and activation x as equation 2, where h(α) is the AdaRound (Nagel et al., 2020a) parameter
of weight, sw(sx) is the quant-step of weight(activation), wl(xl)/wu(xu) is the lower/upper bound

3

Under review as a conference paper at ICLR 2024

of weight(activation). The initialized sw is obtained by minimizing the MSE between FP32 and
quantized weight. Then sw is frozen when optimizing AdaRound h(α) and activation quantization.

ŵ = clip(⌊w
sw
⌋+ h(α);wl, wu) · sw, x̂ = clip(⌊ x

sx
⌉;xl, xu) · sx (2)

Fake and Real Quantization. As shown in formula 3, in order to better optimize PTQ on GPU, the
quantization function has to be simulated with FP32, denoted as the left ’Fake Quantize’ bracket.
For practical inference acceleration, the FP32 simulated computation is transformed to be integer-
arithmetic-only (Jacob et al., 2018), denoted as the middle ’Real Quantize’ bracket.

y =
∑

wx︸ ︷︷ ︸
FP32

≈
∑

ŵx̂︸ ︷︷ ︸
Fake Quantize

= swsx ·
∑

wint

[
x

sx

]
︸ ︷︷ ︸

Real Quantize

,wint = clip(⌊w
sw
⌋+ h(α);wl, wu) (3)

where [·] denotes rounding and clipping operations. wint denotes integer weight, which can be
obtained early before practical inference deployment as the right part of formula 3.

Decouple quant-step of weight. As shown in formula 3, for real quantization, the integer weight
wint and sw are determined prior to deployment, and they can be treated as independent parameters.
Given this property, for fake quantization, we propose to decouple the quant-step of weight into
quant-step sw, which quantize FP32 weight to integer value, and dequant-step s′w, which de-quantize
integer weight back to FP32 value. Thus formula 2 can be transformed to formula 4:

ŵ = clip(⌊w
sw
⌋+ h(α);wl, wu)·sw ⇒ ŵ = clip(⌊w

sw
⌋+ h(α);wl, wu) · s′w (4)

Correspondingly, the real quantization process is transformed as the following formulas:

y = s′wsx ·
∑

wint

[
x

sx

]
, wint = clip(⌊w

sw
⌋+ h(α);wl, wu) (5)

Jointly Optimize Quant-Steps. Under the condition where the quant-step of weight can be de-
coupled, for the first time, we fully explore different settings of weight’s quant-step into five cases,
based on whether quant-step sw and de-quant step s′w are learnable or not after initialization.

Table 1: Acc@1 on ImageNet among differ-
ent quant-step settings across various nets.

Methods W/A Mobile-v2 Res-18 Mnas2.0

Case 1

(current PTQ)
3/2 38.92 60.82 52.17

Case 2 3/2 39.65 60.26 49.78

Case 3 3/2 38.77 59.90 48.40

Case 4 3/2 42.60 61.06 54.19
Case 5 3/2 41.42 60.86 49.33

Case 1: the original single quant-step sw is not
decoupled as convention, and do not participate
joint optimization during feature reconstruction af-
ter initialization, which is what current PTQ meth-
ods adopt, as shown on the left (a-1) of Figure 1.

Case 2: the original single quant-step sw is not de-
coupled as convention, and participates joint opti-
mization during feature reconstruction.

Case 3: the original single quant-step sw is decou-
pled as sw and s′w. Only quant-step sw participates joint optimization during feature reconstruction.

Case 4: the original single quant-step sw is decoupled as sw and s′w, and only dequant-step s′w
participates joint optimization during feature reconstruction, as the left (a-2) of Figure 1.

Case 5: the original single quant-step sw is decoupled as sw and s′w, and both participate joint
optimization during feature reconstruction.

To evaluate their efficiency, we conduct experiments on MobileNet-v2, ResNet-18, and MnasNet2.0.
The results are shown in Table 1.

We find out that Case 4, where we decouple the original quant-step sw as sw and s′w then make only
dequant-step s′w participates joint optimization during feature reconstruction, as shown on the left (a-
2) of Figure 1, consistently provides the best performance, which even does a better job than Case 5.
We attribute the reason to the non-differentiable floor operation followed by quant-step sw. To fluent
gradient flow, we have to adopt Straight-Through Estimator(STE) (Bengio et al., 2013). However,
PTQ’s shortage of labeled training set and STE’s mismatched gradient, whose approximation is
indeed a little far way from the floor operation, make the optimization of sw extremely difficult.
Therefore, it will achieve better performance to make the dequant-step s′w learnable only.

4

Under review as a conference paper at ICLR 2024

Through full exploration of these five cases, we propose to decouple the quant-step and dequant-
step of weight into sw and s′w, then freeze quant-step sw after initialization and embrace a learnable
dequant-step s′w for joint optimization. The adopted joint optimization can be expressed as:

min
s′w,α,sx

||Ŵ x̂−Wx||2F (6)

3.2 BREAK BIT SHACKLE WITH OUTLIER-MIGRATED RECONSTRUCTION

Among current PTQ methods, the activation beyond the clipping range will be truncated due to the
clipping operation in quantization, which causes permanent information loss. As shown on the left
of Figure 2, we use clipping operation only (no rounding operation) during quantization to analyze
how much loss is caused when we directly clip outlier activation. As bitwidth goes lower, the lost
clipped outliers make model performance drop sharply. Although the outliers account for only a
small proportion in quantity, as shown on the right of Figure 2, they account for a large proportion
in quality (denoted by L2 value: ||xij ||2).

We argue that if these high-quality outlier activation are saved properly, the PTQ performance will be
improved greatly. However, we can not save more outliers while keep the same fine-grained quant-
step simultaneously under a predefined bitwidth accelerator. Instead of ignoring this contradiction as
before, we propose OMR to preserve more outlier activation. The cascade [Conv+ReLU +Conv]
is one of the most common structure in CNN, as shown at (a) of Figure 3. Since BN layer is
generally merged into its last Conv layer in PTQ, cascade [Conv+BN +ReLU +Conv] can also
be regarded as [Conv +ReLU + Conv]. Such a cascade can be denoted as follows:

yl = W lxl + bl, xl+1 = f(yl), yl+1 = W l+1xl+1 + bl+1 (7)

The intermediate output xl+1 can be quantized into x̂l+1 using the left of formula 8. Specifically,
when f(·)=ReLU , the left quantization formula is equivalent to the right of formula 8.

x̂l+1 = clip(⌊f(y
l)

sx
⌉;xl, xu) · sx, x̂l+1 = clip(⌊y

l

sx
⌉; 0, xu) · sx (8)

Owing to the clipping operation, the outlier features, greater than xclip = xu · sx, in xl+1, are
clipped to xclip, which will cause this outlier part of features unable to be reconstructed or adjusted
during PTQ process. Consequently, the final quantized model suffers huge performance drop.

The upper bound of quantized results xu = sx·(2b−1) is determined by quant-step sx and predefined
bitwidth b. If we want to enlarge xu and cover more outliers, one way is to enlarge quant-step. How-
ever, a larger, or coarse-grained, quant-step will lead to larger discretization error for a converged
quantized model. The other way is to enlarge bitwidth, which is impossible for a predefined-bitwidth
accelerator. Is there a solution covering more outliers, while requiring the same bit?

Based on the commonly used structure as shown at (a) of Figure 3, called as OMR-solvable struc-
tures, if we can afford a little more calculation, the quantization level can be enlarged safely, mean-
while, the quantization bit can be kept as the same. Given that we want to enlarge the upper bound
from xclip to βxclip, β ≥ 1, the activation quantization is correspondingly transformed to:

x̂l+1
[0,βxclip]

= clip(⌊y
l

sx
⌉; 0, xu) · sx + ...+ clip(⌊y

l − (β − 1) · xclip

sx
⌉; 0, xu) · sx (9)

From the formula above, we can see the outlier activation is migrated back to the original quanti-
zation range successfully. Such a migration on feature can be compensated through some number
(related to β) of channels added and some simple modification on weight and bias parameters. To
simplify denotation, here we set β = 2. Thus the formula equation 9 can be simplified as:

x̂l+1
[0,2xclip]

=clip(⌊y
l

sx
⌉; 0, xu) · sx + clip(⌊y

l − xclip

sx
⌉; 0, xu) · sx (10)

From the formula above, we first need to duplicate activation yl, translate the copied one down by
xclip and concatenate them together as follows:

yl′
j =

{
yl
j if 0 ≤ j < cout

yl
j−cout

− xclip if cout ≤ j < 2cout
(11)

5

Under review as a conference paper at ICLR 2024

Conv7

Original quantized output of Xclip Quantized output of our OMR Ideal quantized output of 2Xclip

Z

[

]

^

When the input of Conv7 in a and b is subgraph ` and _ separately, the outputs of Conv7 in a and b are equal

´aµ ´bµ

_\`

Z

ReLU

[

q(y)

\

k ku

Conv6

Conv6
Conv7

ReLU

q(y)

]

^

_

Conv6 Conv6

Cin

OMR

Cout 2Cout

2Cin

Figure 3: (a) is a typical [Conv+ReLU+Conv] structure used in MobileNet-v2. q(·) denotes quanti-
zation. Intermediate features of (a) are shown in subgraphs 1⃝ 2⃝ 3⃝, whose distributions are shown
in the middle. With OMR equipped, structure (a) can be transformed to (b), whose intermediate fea-
ture distributions are drawn in 4⃝ 5⃝ 6⃝. The orange channels are copied from the blue ones. When
the input of Conv7 in a and b is subgraph 7⃝ and 6⃝ separately, the outputs of Conv7 in a and b are
equal. The detailed proof can be seen in the supplementary. Thus N-bit activation in OMR-solvable
structures can be expanded to (N+1)-bit equally.

where cout is the original number of output channels for activation yl. To achieve this operation, we
can transform the original weight W l and bias bl to new ones, i.e. W l′ and bl′ as denoted by:

W l′
i,j =

{
W l

i,j if 0 ≤ j < cout
W l

i,j−cout
if cout ≤ j < 2cout

, bl′j =

{
blj if 0 ≤ j < cout
blj−cout

− xclip if cout ≤ j < 2cout
(12)

With the modified weight W l′ and bias b′, we can get the results of the formula equation 11 by
yl′ = W l′xl + bl′, To ensure the final output is intact as original except for more outliers saved,
W l+1 needs to be transformed as W l+1′:

W l+1′
i,j =

{
W l+1

i,j if 0 ≤ i < cout
W l+1

i−cout,j
if cout ≤ i < 2cout

(13)

Such modifications on weights make an almost functionally identical network except that more out-
lier activation in range (Xclip, 2Xclip] is preserved. Therefore, our OMR enlarges the quantization
level and keep the same fine-grained quant-step under the same quantization bit. This is very bene-
ficial to some lightweight models and low-bit settings.

Besides, not all channels present the same importance. Therefore, if we can apply our OMR merely
to the channels whose outliers are most sensitive to final task loss, a more balanced FLOPs V.s.
accuracy trade off can be obtained. Here we assume the proportion of selected channels in each
layer as k ∈ [0, 1], thus the number of selected channels is cout · k. With a given channel sensitivity
criterion, all channels can be sorted in order and the top k percentage of sensitive channels are
selected to apply our OMR. For simplification, we directly adopt the sum of the activation in range
[Xclip, 2Xclip] as each channel’s sensitivity criterion. Detailed exploration can be seen in section 4.
The overall optimization process of our DOMR is shown in Algorithm 1.

6

Under review as a conference paper at ICLR 2024

4 EXPERIMENTS

We evaluate our DOMR’s efficiency on ImageNet (Deng et al., 2009) classification task and MS
COCO (Lin et al., 2014) object detection task across various networks and bitwidth settings. All
experiments are implemented using Pytorch (Paszke et al., 2019) in one NVIDIA Tesla V100. The
calibration set consists of 1024 (256) unlabeled images randomly selected from the training set of
ImageNet (MS COCO). For fair comparison, we adopt Adam optimizer and the same learning rate
as as (Wei et al., 2022; Ma et al., 2023). 20k iterations is consumed for reconstruction process. By
convention, the first and last layer are both quantized into 8 bits. Per-channel quantization is adopted
for weight.

4.1 CLASSIFICATION ON IMAGENET AND OBJECT DETECTION ON MS COCO

Table 2: Acc@1 on ImageNet among current PTQ methods on various networks.

Methods W/A Mobile-v2 Res-18 Reg-600 Mnas2.0

Full Prec. 32/32 72.49 71.08 73.71 76.68

LAPQ(Nahshan et al., 2021) 4/4 49.70 60.30 57.71 65.32

AdaRound(Nagel et al., 2020b) 4/4 64.33 69.36 - -

AdaQuant(Hubara et al., 2021) 4/4 47.16 69.60 - -

BRECQ(Li et al., 2021b) 4/4 66.57 69.60 68.33 73.56

QDROP(Wei et al., 2022) 4/4 68.84 69.62 71.18 73.71

PD-Quant (Liu et al., 2023) 4/4 68.33 69.30 71.04 73.30

MRECG (Ma et al., 2023) 4/4 68.84 69.46 71.22 -

NWQ (Wang et al., 2022) 4/4 69.14 69.85 71.92 74.60

DJOS(ours) 4/4 69.22 69.90 71.98 74.82

DJOS+OMR0.5(ours) 4/4 69.46±0.12 70.11±0.05 72.21±0.09 74.93±0.22

BRECQ(Li et al., 2021b) 3/3 23.41 65.87 55.16 49.78

QDROP(Wei et al., 2022) 3/3 57.98 66.75 65.54 66.81

PD-Quant (Liu et al., 2023) 3/3 57.64 66.12 65.09 64.88

MRECG (Ma et al., 2023) 3/3 58.40 66.30 66.08 -

NWQ (Wang et al., 2022) 3/3 61.24 67.58 67.38 68.85

DJOS(ours) 3/3 63.57 67.71 67.72 69.60

DJOS+OMR0.5(ours) 3/3 64.63±0.18 68.20±0.07 68.83±0.09 71.65±0.21

BRECQ(Li et al., 2021b) 2/2 0.24 42.54 3.58 0.61

QDROP(Wei et al., 2022) 2/2 13.05 54.72 41.47 28.77

PD-Quant (Liu et al., 2023) 2/2 13.67 53.14 40.92 28.03

MRECG (Ma et al., 2023) 2/2 14.44 54.46 43.67 -

NWQ (Wang et al., 2022) 2/2 26.42 59.14 48.49 41.17

DJOS(ours) 2/2 31.43 60.09 51.32 45.08

DJOS+OMR0.5(ours) 2/2 39.35±1.76 61.58±0.12 55.05±0.08 51.44±1.21

To show the generalizability of our method, various neural structures are experimented on ImageNet
classification task, including ResNet-18, MobileNet-v2 (Sandler et al., 2018), RegNetX-600MF (Ra-
dosavovic et al., 2020) and MnasNet2.0 (Tan et al., 2019). For some current PTQ methods which
do not report their quantization results in some low-bit settings, we re-implement them based on
their open source codes with unified settings. The average experimental results over 5 runs are
summarized in Table 2. The ”DJOS” in the table indicates that only DJOS in our method is used.
The ”DJOS+OMR0.5” indicates that both DJOS and OMR are adopted, where the proportion of
selected important channels is set as k = 0.5 in OMR. Most of the existing methods have good
performance results in W4A4 setting. It can be observed that our method provides an accuracy im-
provement about 0 ∼ 1% compared to the strong baseline methods including NWQ (Wang et al.,
2022), MRECG (Ma et al., 2023). In W3A3, our method improve Mobile-v2 by 3.39%, Reg-600
by 1.45% and Mnas2.0 by 2.80%. In W2A2, BRECQ shows nearly 0% Acc@1 on Mobile-v2 and
Mnas2.0. However, our method still far outperforms NWQ by more than 10% on Mobile-v2, and
Mnas2.0.

For object detection, we choose two-stage Faster RCNN (Ren et al., 2015) and one-stage Reti-
naNet (Lin et al., 2017), where Res-18, Res-50 and Mobile-v2 are selected as backbones respec-

7

Under review as a conference paper at ICLR 2024

Table 3: mAP for object detection on MS COCO.

Methods W/A
Faster RCNN RetinaNet

Res-50 Res-18 Res-50 Mobile-v2

FP32 32/32 40.26 34.91 37.39 33.31

BRECQ (Li et al., 2021a) 4/4 37.19 33.41 34.67 29.81

QDROP (Wei et al., 2022) 4/4 38.53 33.57 35.81 31.47

NWQ (Wang et al., 2022) 4/4 38.54 33.63 35.98 31.81

DJOS(ours) 4/4 38.60 33.83 36.01 31.89

DJOS+OMR0.5 (ours) 4/4 38.93 34.02 36.05 32.11

QDROP (Wei et al., 2022) 3/3 33.49 31.21 32.13 27.55

NWQ (Wang et al., 2022) 3/3 35.25 31.88 32.45 28.43

DJOS(ours) 3/3 35.68 32.13 32.50 28.82

DJOS+OMR0.5 (ours) 3/3 36.44 32.51 33.35 29.65

QDROP (Wei et al., 2022) 2/2 21.05 21.95 20.27 12.01

NWQ (Wang et al., 2022) 2/2 25.01 23.92 22.95 16.21

DJOS(ours) 2/2 25.07 26.15 24.15 17.93

DJOS+OMR0.5 (ours) 2/2 29.73 27.26 26.29 20.11

Table 4: Acc@1 on ImageNet of OMR and OCS.
Network Methods W/A Acc W/A Acc Weight size

Res-50 OCS0.1 4/4 6.7 2/2 0.1 1.1x

Res-50 OMR0.1 4/4 75.50 2/2 59.68 1.1x

Table 5: Acc@1 on ImageNet for ViTs.

Methods W/A ViT-S ViT-B DeiT-S DeiT-B

FP32 32/32 81.39 84.54 79.80 81.80

PTQ4ViT (Yuan et al., 2022) 4/4 42.57 30.69 34.08 64.39

APQ-ViT (Ding et al., 2022) 4/4 47.95 41.41 43.55 67.48

NWQ (Wang et al., 2022) 4/4 57.79 56.87 65.76 76.06

DJOS(ours) 4/4 58.09 57.21 66.23 76.18

Table 6: Acc@1 with same FLOPs on ImageNet
Methods W/A Mobile-v2 Res-18 Reg-600 Mnas2.0

Ori 32/32 72.49 71.08 73.71 76.68

Channels-plus 32/32 74.85 71.80 75.37 78.57

OMR0.5 + Ori 4/2 48.62 63.70 62.73 58.45
NWQ + Channels-plus 4/2 43.24 62.09 60.20 53.23

OMR0.5 + Ori 2/2 39.35 61.58 55.05 51.44
NWQ + Channels-plus 2/2 32.02 60.64 52.73 47.24

Table 7: Acc@1 among different k of OMR
Methods W/A Mobile-v2 Res-18 Reg-600 Mnas2.0

DJOS(ours) 2/2 31.43 60.09 51.32 45.08

DJOS+OMR0.3(ours) 2/2 36.33 61.25 53.79 49.35

DJOS+OMR0.5(ours) 2/2 39.35 61.58 55.05 51.44

DJOS+OMR0.7(ours) 2/2 39.75 61.96 55.91 53.35

DJOS+OMR1.0(ours) 2/2 41.65 62.11 57.24 54.40

tively. As (Wei et al., 2022; Li et al., 2021b), we quantize the input and output layers of the network
to 8 bits and do not quantize the head of the detection model, but the neck (FPN) is quantized. The
experimental results are shown in Table 3. In W3A3 setting, our method improves the mAP of
Res-50-based Faster RCNN by 1.19% and Mobile-v2-based RetinaNet by 1.22%. In harder W2A2
setting, our method achieves more than 3% improvement over the current best method across all
four experimental networks, which obtains a 4.72% improvement on Res-50-based Faster RCNN.

4.2 OMR V.S. CHANNELS-INCREASED NWQ UNDER THE SAME FLOPS.

For OMR0.5, it brings extra 50% channels only for OMR-sovlable structures. Thus we add the same
number of channels on the same layers in FP32 networks. Then we train these new FP32 networks
from scratch with timm (Wightman, 2019) training pipeline. As the second row of Table 6, extra
channels bring about 2.4%, 0.8%, 1.7% and 1.9% gain for MobileNet-v2, ResNet-18, RegNetX-
600MF and MnasNet2.0 FP32 networks. Since most PTQs, like NWQ, do not change FLOPs of
networks, it is fair to compare OMR0.5 on original FP32 networks to NWQ on new FP32 networks
under the same FLOPs. In W4A2 and W2A2 settings, OMR0.5 achieves better performance across
all these networks, especially for MoblieNet-V2, about 9.1% better in W4A2 and 8.8% in W2A2
setting. Therefore, if we want to improve FP32 performance by adding more channels on
networks, the gain will also get lost due to outlier clipping in most PTQ methods. Differently,
with these important outliers saved, our OMR achieves better performance.

4.3 COMPARISON BETWEEN OMR AND OCS UNDER THE SAME FLOPS

OCS (Zhao et al., 2019) also proposed to duplicate channels containing outliers. However, as de-
scription from themselves, OCS failed to quantize activation into low bits. Different from OCS’s
halving operation, our OMR’s migration do not squeeze all values into a narrower range. Thus OMR
achieves much better performance for activation quantization. Their practical extra-introduced cost
is the same. The fair comparison with expanding ratio 0.1 is shown in Table 4.

8

Under review as a conference paper at ICLR 2024

Algorithm 1: PTQ using DOMR optimization

Input: Pretrained FP32 Model {W l}Nl=1; calib
input xl; the ratio of the selected channel k.

Params: x’s quant-step sx; W’s quant / dequant-
step, adaround param: sw, s′w, α.

1st Stage: Iterative MSE Optimization for sw, then
decouple sw and s′w, and freeze sw.

2nd Stage: Jointly Optimize s′w, sx, α, then OMR
for j = 1 to T -iteration do

Modify weight by OMR with equation 12
W i′ ← concat(W i,W i);
bi′ ← concat(bi, bi − xclip)

Modify next layer W i+1 as equation 13
W i+1′ ← concat(W i+1,W i+1);

Forward to get FP32 and quantized output

Ŵ i′ sx,sw,α,s′w←−−−−−−−W i′, x̂i sx←− xi as equa4, 2
xi+1′ = W i′xi + bi′; x̂i+1′ = Ŵ i′x̂i + bi′

∆ = xi+1′ − x̂i+1′

Optimize sx, s′w, α as equation 6 with ∆

Output: Quantized model

Table 8: Effect Visualization of DJOS

iters 0 5k 10k 15k 20K

Sw1 0.544 0.544 0.544 0.544 0.544

Sw1′ 0.544 0.508 0.460 0.444 0.442

Sw2 0.943 0.943 0.943 0.943 0.943

Sw2′ 0.943 0.902 0.790 0.796 0.795

Loss: a single Sw 107 59.3 48.2 55.2 50.7

Loss: decoupled Sw, Sw′ 107 54.4 43.2 51.1 46.5

Table 9: Gain of DJOS Varies on Differ-
ent Networks and bitwidth settings
Methods W/A Mobile-v2 Res-18 Reg-600 Mnas2.0

DJOS 2/2 5.01↑ 0.95↑ 2.93↑ 3.91↑
DJOS 3/3 2.33↑ 0.13↑ 0.34↑ 0.75↑

Table 10: OMR V.s. Actual Bit+1
Methods W/A Mobile-v2 Res-18 Reg-600

DJOS 4/2 41.77 61.77 59.56

DJOS+OMR0.5 4/2 48.62 63.70 62.73

DJOS+OMR1.0 4/2 52.08 64.74 65.16

DJOSbit+1 4/3 52.08 64.74 65.16

Table 11: Overall Cost Comparison with Existing PTQs.

Criterion Importance to Inference MRECG NWQ DJOS DJOS+OMR

Extra Params/FLOPs/Mem in Fake Quant Low ! ! ! !

Quant Time in Fake Quant High < 1GPU-Hours < 1GPU-Hours < 1GPU-Hours < 1GPU-Hours

Extra Params/FLOPs/Mem in Real Quant High # # # !

4.4 ABLATION STUDY ON IMAGENET

1) Explore different proportion of selected k in OMR. Table 7 with k in [0,0.3,0.5,0.7,1.0] shows
that performance improves with OMR applied, and performance gain improves more as k increases.

2) Visualize the effect of DJOS on quant/dequant-step and its different gain on different networks
and bit settings. As Table 8, DJOS with decoupled quant-step converges to a lower loss than original
single quant-step. As Table 9, DJOS gains more on lighter-weight models and lower bitwidth.

3) Compare OMR with actual bit+1 on OMR-solvable structures for activation quantization. As
Table 10, they perform the same.

4) The overall cost comparison with existing PTQs is shown on Table 11.

5 CONCLUSION

In this paper, we propose a novel PTQ approach called DOMR, including DJOS and OMR. DJOS
propose to decouple the single quant-step into a quant-step and a dequant-step, then jointly optimize
dequant-step only. OMR migrates the clipped outlier activation that is non-trivial into safe clipping
range based on the nature of CNN structure and PTQ’s clipping operation. Thus b-bit activation
in OMR-solvable structures can be expanded to (b + 1) bits equally, which equals to breaking the
hardware’s bitwidth shackle. Although OMR brings extra computation, it performs much better
compared to other PTQs under the same FLOPs. Thus OMR is especially helpful on a predefined
bitwidth accelerator. Experiments demonstrate DOMR establishes a new SOTA for PTQ.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Yoshua Bengio, Nicholas Léonard, and Aaron C. Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. CoRR, abs/1308.3432, 2013.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pp. 248–255. Ieee, 2009.

Yifu Ding, Haotong Qin, Qinghua Yan, Zhenhua Chai, Junjie Liu, Xiaolin Wei, and Xianglong Liu.
Towards accurate post-training quantization for vision transformer. In MM ’22: The 30th ACM
International Conference on Multimedia, Lisboa, Portugal, October 10 - 14, 2022, pp. 5380–
5388. ACM, 2022.

Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149, 2015.

Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distilling the knowledge in a neural network. arXiv
preprint arXiv:1503.02531, 2(7), 2015.

Itay Hubara, Yury Nahshan, Yair Hanani, Ron Banner, and Daniel Soudry. Accurate post training
quantization with small calibration sets. In ICML, pp. 4466–4475, 2021.

Benoit Jacob, Skirmantas Kligys, Bo Chen, and Menglong Zhu. Quantization and training of neural
networks for efficient integer-arithmetic-only inference. In CVPR, 2018.

Raghuraman Krishnamoorthi. Raghuraman krishnamoorthi. quantizing deep convolutional networks
for efficient inference: A whitepaper. arXiv preprint arXiv:1806.08342, 2018.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi
Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. ICLR, 2021a.

Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and
Shi Gu. Brecq: Pushing the limit of post-training quantization by block reconstruction. arXiv
preprint arXiv:2102.05426, 2021b.

Chen Lin, Bo Peng, Zheyang Li, Wenming Tan, Ye Ren, Jun Xiao, and Shiliang Pu. Bit-shrinking:
Limiting instantaneous sharpness for improving post-training quantization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16196–16205,
June 2023.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In ECCV. Springer,
2014.

Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense
object detection. In ICCV, pp. 2999–3007, 2017.

Jiawei Liu, Lin Niu, Zhihang Yuan, Dawei Yang, Xinggang Wang, and Wenyu Liu. Pd-quant: Post-
training quantization based on prediction difference metric. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 24427–24437, June 2023.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Xuefeng Xiao, Rui Wang, Shilei Wen, Xin Pan, Fei Chao,
and Rongrong Ji. Solving oscillation problem in post-training quantization through a theoreti-
cal perspective. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 7950–7959, June 2023.

Markus Nagel, Rana Ali Amjad, Mart van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In ICML, volume 119, pp. 7197–7206,
2020a.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up
or down? adaptive rounding for post-training quantization. In ICML, pp. 7197–7206, 2020b.

10

Under review as a conference paper at ICLR 2024

Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Alex M Bron-
stein, and Avi Mendelson. Loss aware post-training quantization. Machine Learning, 110(11):
3245–3262, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In NeurIPS, 2019.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick, Kaiming He, and Piotr Dollár. Designing
network design spaces. In CVPR, pp. 10428–10436, 2020.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object
detection with region proposal networks. NeurIPS, 28, 2015.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen. Mo-
bilenetv2: Inverted residuals and linear bottlenecks. In CVPR, pp. 4510–4520, 2018.

Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark Sandler, Andrew Howard, and
Quoc V Le. Mnasnet: Platform-aware neural architecture search for mobile. In CVPR, pp. 2820–
2828, 2019.

Changbao Wang, Dandan Zheng, Yuanliu Liu, and Liang Li. Leveraging inter-layer dependency for
post -training quantization. In NeurIPS, 2022.

Xiuying Wei, Ruihao Gong, Yuhang Li, Xianglong Liu, and Fengwei Yu. Qdrop: Randomly drop-
ping quantization for extremely low-bit post-training quantization. In ICLR, 2022.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and Guangyu Sun. Ptq4vit: Post-training
quantization for vision transformers with twin uniform quantization. In Computer Vision - ECCV
2022 - 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XII,
volume 13672, pp. 191–207. Springer, 2022.

Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Christopher De Sa, and Zhiru Zhang. Improving neural
network quantization without retraining using outlier channel splitting. In ICML, 2019.

11

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	Introduction
	Related Work
	Proposed Method
	Decouple and Jointly Optimize Quant-Steps
	Break Bit Shackle with Outlier-Migrated Reconstruction

	Experiments
	Classification on ImageNet and Object Detection on MS COCO
	OMR V.s. Channels-Increased NWQ under the Same FLOPs.
	Comparison Between OMR and OCS under the Same FLOPs
	Ablation Study on ImageNet

	Conclusion

