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Abstract

This paper argues that the relationship between
lexical identity and prosody—one well-studied
parameter of linguistic variation—can be char-
acterized using information theory. We predict
that languages that use prosody to make lexical
distinctions should exhibit a higher mutual in-
formation between word identity and prosody,
compared to languages that don’t. We test this
hypothesis in the domain of pitch, which is
used to make lexical distinctions in tonal lan-
guages, like Cantonese. We use a dataset of
speakers reading sentences aloud in ten lan-
guages across five language families to esti-
mate the mutual information between the text
and their pitch curves. We find that, across lan-
guages, pitch curves display similar amounts
of entropy. However, these curves are easier to
predict given their associated text in the tonal
languages, compared to pitch- and stress-accent
languages, and thus the mutual information is
higher in these languages, supporting our hy-
pothesis. Our results support perspectives that
view linguistic typology as gradient, rather than
categorical.

1 Introduction

One central tension in linguistics is between linguis-
tic universality and diversity. The world contains
some 7,000 languages (Ethnologue, 2023), each
with its unique and idiosyncratic lexicon, phonolog-
ical inventory, and grammar. At the same time, lin-
guistic properties are shared between sets of related
languages (Croft, 2002), and some features appear,
or covary, across languages, giving rise to the hy-
pothesis that human language is governed by a set
of universal principles (Greenberg, 2005). Major
advances in the study of language have been made
through the introduction of frameworks that can
describe both the typological variation observed
between languages, as well as the universal consis-
tencies observed across languages. Examples of
such frameworks are the principles and parameters

approach for syntactic structure (Chomsky, 1993;
Culicover, 1997) and Optimality Theory for phono-
logical systems (Prince and Smolensky, 2004).
One promising candidate for this type of frame-
work is information theory (Shannon, 1948). Stud-
ies have argued that information-theoretic ap-
proaches can explain universal principles in lan-
guages, including the distribution of word lengths
(Zipf, 1949; Piantadosi et al., 2011; Pimentel et al.,
2023), the organization of semantic systems (Kemp
et al., 2018; Zaslavsky et al., 2018, 2021), word
orders (Dyer et al., 2021) as well as language pro-
cessing phenomena (Futrell et al., 2020; Wilcox
et al., 2023). However, information-based ap-
proaches are less widely used to describe typo-
logical variation (although c.f., Futrell et al., 2020;
Pimentel et al., 2020; Socolof et al., 2022). In
this paper, we take one well-studied crosslinguistic
parameter—whether or not a language has lexi-
cal tone—and argue that it can be characterized
information-theoretically, as the amount of mutual
information between a lexical item (i.e., a word)
and the pitch curve associated with that word. Our
goal is to demonstrate how an information-based
approach can be used to characterize crosslinguistic
variation, as well as to showcase how NLP meth-
ods can be used to formally quantify properties that
are debated in the formal linguistics literature (e.g.,
whether a given language is a tonal language).
The domain we are interested in is prosody, or
the melody of speech. A word’s prosody is trans-
mitted through several unique features including
its duration, energy (perceived as loudness), and
fundamental frequency (perceived as pitch). Pitch,
specifically, is the main focus of our study. Cru-
cially, the role that pitch plays varies across lan-
guages: In tonal languages such as Vietnamese,
Mandarin, and Yoruba, all or most syllables carry
one of several discrete pitch contours which dif-
ferentiate between lexical items; similarly, pitch-
accent languages, such as Swedish or Japanese



have an inventory of pitch contours that are lexi-
cally contrastive, but they are typically not present
on every word; in stress-accent languages such as
English and Italian pitch does not differentiate be-
tween lexical identity at all, playing other roles like
providing cues for stress placement, or indicating
whether or not a sentence is a question. However,
there is an ongoing debate about the validity of this
simple three-way distinction, with some arguing
for a typological continuum over multiple prosodic
features (see, e.g., Hyman, 2006).

We use pitch as a case study to demonstrate
how a typological parameter can be recast in
information-theoretic terms. We hypothesize that
given a lexical item’s identity, it should be eas-
ier to predict its pitch curve in tonal compared to
non-tonal languages; this is because in tonal lan-
guages pitch is used to distinguish lexical identity.
Information-theoretically, this means there should
be more mutual information between lexical iden-
tity and pitch in tonal languages, such as Cantonese,
than in non-tonal languages, such as English.

To test this hypothesis, we use a pipeline (Wolf
et al., 2023) originally developed in English to
measure the mutual information between prosody
and written text; where text is used as a proxy
for lexical identity. We make several technical
contributions to this pipeline, enabling it to pro-
duce more accurate MI estimates across languages.
We measure mutual information for ten typologi-
cally distinct languages: English, French, Italian,
German, Swedish (Indo-European) Mandarin, Can-
tonese (Sino-Tibeten), Japanese (Japonic), Thai
(Kra—Dai), and Vietnamese (Austroasiatic). These
languages are traditionally classified as either
stress-accent, pitch-accent, or tonal. We find
that, across languages, pitch curves display sim-
ilar amounts of entropy, suggesting that pitch itself
conveys similar amounts of information in each lan-
guage. However, these curves are easier to predict
given their associated text in the tonal languages,
compared to pitch- and stress-accent languages,
and thus the mutual information is higher in these
languages, supporting our hypothesis. Interestingly,
the mutual information does not follow a multi-
modal distribution, which would classify languages
into clearly distinct categories. Rather they show
a continuum of values, in line with recent work
arguing for a gradient, rather than a categorical ap-
proach to prosodic typology (Hyman, 2006) and
linguistic typology more broadly (Pimentel et al.,
2020; Levshina et al., 2023; Baylor et al., 2024).

2 Prosodic Typology

In this section, we provide a formal framework for
describing linguistic typologies based on prosodic
features. We start by outlining our notation: We
assume that each natural language consists of lexi-
cal items, w, drawn from a vocabulary V. We use
‘W to denote a lexical-item-valued random variable.
By “lexical item” we mean the sense of dictionary
definitions—each value of W is associated with a
unique semantic meaning, rather than with a partic-
ular orthographic representation. However, as we
do not have direct access to lexical identities in a
large corpus, we will relax this in our experiments
and work instead with orthographic words, which
we use as a proxy for lexical identities. In addition,
we define p, as a real-valued vector that represents
some prosodic feature for a given word. Although
in our subsequent experiments, p refers only to
the pitch curve, for the present we will use p for
prosody as a whole, including other features, such
as average acoustic energy or duration. We denote
a prosody-valued random variable as P.

What does it mean for a language to have con-
trastive tone, stress, or length? In linguistics text-
books, this is often defined through minimal pairs,
by showing that there are systematic correspon-
dences between lexical identity and the prosodic
feature of interest. For example Yip (2002) illus-
trates the notion of a tonal language by giving an
example of the syllable [yau] in Cantonese. If
pronounced with a high-rising tone, this syllable
means paint, however, if pronounced with a low-
level tone, it means again. Based on such examples,
we propose the following definition:

Definition 1 A language ¢ is typologically a p-
language if, in ¢, prosodic feature p provides infor-
mation about lexical identity.

That is, if a language is a p-language, then know-
ing the prosodic value, p, of a particular lexical
item, w, should make that word easier to predict.
As an example, in Cantonese, if we know a word
has a high-rising tone, then it will be easier to pre-
dict that word’s meaning, compared to a situation
where we don’t know the pitch at all.!

Based on this definition, we propose that one nat-
ural way to describe prosodic typologies is through
the lens of information theory. Under informa-

'We acknowledge that “providing information about” lexi-
cal identity is a less stringent requirement than, say determin-
ing lexical identity. We adopt this definition, in part, because
it is more conducive to measuring, experimentally.



tion theory, if a variable (e.g., p) makes another
variable (e.g., w) easier to predict, we say that it
contains information about it. We can thus say that
a p-language should be one where pitch conveys
information about lexical information, written as:

MI(P; W) > 0 (D

That is, the MUTUAL INFORMATION (MI) be-
tween p and w is greater than zero. Conversely, in
non p-languages, where p does not determine lexi-
cal identity, the mutual information will be roughly
equivalent to zero, i.e., MI(P; W) ~ 0. Note that
because mutual information is symmetric, in p-
languages, we also predict that lexical identity re-
duces uncertainty about prosodic features, which is
what we empirically test in the following sections.

2.1 Predictions: Tone, Stress and Pitch-accent
Languages

The prediction outlined in eq. (1) is limited, in that
it only makes a binary classification: MI should be
positive in p-languages, and equal to zero in non
p-languages. However, in real life, we expect that
things are more complicated. Rather than a single
distinction, one might expect to find more nuanced
differences between languages. This should be
the case especially when it comes to pitch—the
focus of our study—as existing typologies already
separate languages into (at least) three categories
based on the relationship between pitch and lexical
identity. We therefore outline three more concrete
hypotheses, concerning the mutual information, MI
of a language’s lexical identity (W) and pitch (P):

Hypothesis 1 Typological Ordering Hypothesis:
Languages will display the following ordering of
average MI within linguistic typological groups:
tonal languages » pitch-accent languages » stress-
accent languages.

In addition, we formulate two competing hypothe-
ses that correspond to different approaches toward
linguistic typology:

Hypothesis 2 Categorical Prediction: Languages
will display a categorical distinction in MI, sep-
arated into modes corresponding to typological
group.

Hypothesis 3 Gradient Prediction: Languages
will display a gradient in MI on a gradual con-
tinuum. Differences between languages within a
typological group can be as large as differences
between groups.

To explore these hypotheses, we improve an exist-
ing pipeline for estimating MI, the details of which
we will turn to in section 3.

2.2 A Type- or Token-level Prediction?

It is important to note the nature of the informa-
tion we treat here. In particular, we could define
the MI above in two ways: at the type or token
level. These would quantify categorically differ-
ent linguistic properties. A type-level MI(P; W)
measures how predictable a novel word’s pitch is
given its lexical identity; it would thus quantify if p-
values are systematically assigned to words based
on their meaning or orthography. As lexicons’
form—meaning assignments are largely arbitrary
(a property known as the arbitrariness of the sign;
Saussure, 1916; Dautriche et al., 2017; Pimentel
et al., 2019), we would expect such type-level M1
to be small in both p- and non-p-languages. A
token-level MI(W; P), on the other hand, quanti-
fies how well p disambiguates known words in a
language, and should thus have significantly dif-
ferent values in p- and non-p-languages. We thus
focus on this MI’s token-level definition here.

3 Methods

The prediction in eq. (1) is about lexical items,
however, we do not have direct access to these
in the multilingual corpora we use for this study.
Rather, we have access to textual representations,
i.e., orthographic words, which often correspond
to lexical items. In the rest of this paper, therefore,
we take W to be a random variable corresponding
to either a piece of fext or an orthographic word.
Furthermore, as we are specifically interested in
pitch, from here on out P is a random variable that
represents the parameterization of a pitch curve,
specifically, as opposed to just a general prosodic
feature. We discuss how we represent P and W at
greater length in Section 3.3 and Section 3.4.

3.1 Estimating Mutual Information

We estimate the mutual information between
prosody and text, following the proposal from Wolf
et al. (2023). Wolf et al. estimate this quantity by
first decomposing MI as the difference between
two entropies, and separately estimating each term

MI(P, W) = H(P) — H(P | W) (2a)
~Hy(P) —Hy(P | W)  (2b)

As represented by eq. (2b), we estimate the
MTI as the difference between two cross entropies,



Hy(+). The cross-entropy is defined as the expec-
tation of — log py(p) or —log py(p | w), given the
ground-truth distribution p(p) or p(p, w), respec-
tively. Following Wolf et al. (2023), we use re-
distributive sampling (Tibshirani and Efron, 1993;
Beirlant et al., 1997) to estimate these quantities.
Given model py, we select a set of held-out test
samples from our dataset, and then estimate each
quantity as the average negative log probability
(i.e., surprisal) of these test items:

1 Y 1
Hy(P)~ — > o (3a)
9( ) Nn:1 gpé(p”)
1 1
Ho(P | W)~ > log———— (3b)
9( ’ ) N — gpe(pn ‘ an)

Where p” and w” are the n'" text/pitch pair in
our test set. In order to make this estimation, we
need to learn a probability distribution py(p) and
po(p | w). We do so with the following methods.

3.1.1 Estimating py(p)

Following Wolf et al. (2023) we estimate the
unconditional distribution with a Gaussian Kernel
Density Estimate, KDE (Parzen, 1962; Sheather,
2004). Bandwidth is optimized via 10-fold
cross-validation, using the training and validation
data, selecting from Scott’s rule, Silverman’s rule,
and fixed values. We implement this with SciPy
(Virtanen et al., 2020). After selecting the optimal
bandwidth, we fit the KDE on the training data and
compute eq. (3a) on the held-out test data.

3.1.2 Estimating py(p | w)

Wolf et al. (2023) estimate this conditional distri-
bution by using a neural network to learn the pa-
rameterization, ¢ of a predictive distribution Z(-)
that captures the desired conditional probability
distribution, pg(p | w). In their setup, the pre-
dictive distribution is always either a Gaussian,
Gamma or Laplace distribution. This, however,
leads to a discrepancy between the expressivity
of the distribution learned for the conditional and
unconditional distributions, py(p | w) and py(p).
The KDEs used to model py(p) construct non-
parametric distributions from the bottom-up, sum-
ming together many Gaussians and having a num-
ber of parameters that grows with K, the number of
samples in the training dataset; this distribution can
thus be increasingly complex given larger training
datasets. However, the learned conditional distribu-
tion, pp(p | w), is fit as a parametric distribution

Language | Tag Type Family Hours Tokens Types Speakers
German | DE~ SA Indo-Euro. 8.6 47819 13519 338
English | EN  SA Indo-Euro. 7.8 47670 10930 557
French | FR  SA Indo-Euro. 74 27974 8062 260
Italian | IT  SA Indo-Euro. 8.7 39413 10937 1641
Japanese | JA  PA Japonic 6.4 54866 6434 896
Swedish | SV PA Indo-Euro. 6.6 38761 8002 461
Vietnamese | VI Tonal Austroasiatic 5.9 37838 2468 130
Thai | TH Tonal Kra-Dai 6.8 42153 4315 1749
Cantonese | YUE Tonal Sino Tibetan 6.5 37380 6753 747

Mandarin | ZH Tonal Sino Tibetan 7.9 36729 12547 1723

Table 1: Overview of the languages and dataset used in
this study. SA= Stress Accent, PA= Pitch Accent.

Z (Gaussian or Gamma), and is thus constrained
independently of the training dataset size. There-
fore, the two distributions are not apples to apples.
In particular, the greater expressivity of the uncon-
ditional distribution py(p) means that, in practice,
eq. (2b) is likely to underestimate the true mutual
information and can often be negative. To fix this
problem, we use two different methods for estimat-
ing the conditional probability distribution, which
we outline below.

Conditional KDEs: For this method, we
partition the dataset by orthographic word type
and fit a different KDE for each partition. We use
two different estimation procedures: In the first,
C-KDE-ALL, we use the whole dataset for band-
width selection, training, and entropy estimation,
which we do using Monte Carlo sampling. In the
second, C-KDE-SPLIT, we use 70% the dataset
for bandwidth selection and training and estimate
entropy using redistributive sampling on the
held-out portion. As the accuracy of the estimate
decreases with fewer samples, we discard words
with frequency lower than a certain threshold,
A. We conducted several pilot experiments
with A = {20, 30,40, 50,60} and found that the
qualitative nature of the results did not change. In
section 4, we present results for A = 40.

Mixture Density Networks (MDNSs): For our
second method, we employ a MIXTURE DENSITY
NETWORK (MDN) (Bishop, 1994). MDNs are
very similar to KDE estimators insofar as the final
conditional probability is the sum of several Gaus-
sian kernels. However, the means and variances of
these Gaussians are learned by a neural network,
LMy, with parameters 6, given input w. In addi-
tion, the network also learns a set of weights w
that govern the mixture of the individual Gaussians.



The conditional distribution is therefore:
po(p | w) = 4

K
> wF(w; )N (p | 4 (w; 0), 0% (w; 0))
k=1

where w” is the weight ;¥ is the mean and o” is the
variance of the k*" Gaussian kernel. To ensure the
properness of the distribution, the weights (which
must sum to one) are the output of a softmax
function, and standard deviations (which must be
positive) are the output of a soft-plus function. We
use 20 kernels per dimension. The MDN itself
consists of a Multi-Layer Perceptron, where the
number of layers and hidden units are hyperparam-
eters tuned during training, and by default, we use
a five-layer MLP with 512 hidden units per layer.

3.2 Dataset

We use the Common Voice dataset (Ardila et al.,
2020), a multilingual corpus that contains paired
text—audio samples from contributors reading indi-
vidual sentences out loud.” Samples are rated by
other contributors who assign them either a thumbs-
up or a thumbs-down. The validated portion of the
dataset that we use includes only sentences whose
first two ratings are up-votes. We select data from
ten languages, across five different language fam-
ilies, representing a range of stress-accent, pitch-
accent, and tonal languages. The details of each
language are given in Table 1. We sample 5000 sen-
tences per language for consistency, based on the
language with the fewest validated sentences. In or-
der to extract word-level prosodic features we align
each sentence’s audio to its text at the word level us-
ing the Montreal Forced Aligner (McAuliffe et al.,
2017). For our Sino-Tibetan languages (Mandarin
and Cantonese) we use two different tokenization
or word-grouping schemes. In one both MFA align-
ment and NLP tokenization use characters as input
units (this is tagged with (chr) in figures), and
in the other MFA aligns audio to words, and NLP
tools tokenize sentences into words using their de-
fault tokenizer.

3.3 Representation of Pitch

Representing the pitch curve of a word presents
substantial challenges: We want to find a relatively
low-dimensional representation space, but one that

’The dataset is released under a Creative Commons Attri-
bution Share-Alike license.

can still capture the complexities of pitch contours
across languages, which may, for example, contain
rising and falling elements on a single word. To
do so, we use the preprocessing methods given
in Suni et al. (2017) to extract the fundamental
frequency, fp from the raw waveforms from each
aligned word segment, and to remove outliers. We
apply interpolation to create a smooth fy curve
across moments where no pitch is being produced,
for example during unvoiced consonants. Once it
has been extracted, we resample the fj curves to
100 points and parameterize them with the first four
coefficients of a discrete cosine transform (DCT).
The objective of our prosodic pipeline, therefore, is
to estimate the four coefficients of the DCT pitch
representation.

3.4 Representation of Text

Although our prediction about prosodic typologies
concerns lexical items, we estimate mutual infor-
mation between pitch and fext. For our conditional
KDEs we simply condition on orthographic words
in the dataset. However, for our MDNs, we rep-
resent text using the representational space of pre-
trained word embeddings and language models. In
our experiments, we use three different models,
corresponding to different amounts of context:

No context (fastText): We use fastText repre-
sentations (Bojanowski et al., 2017) to estimate
p(p | w). To do so, we simply feed the fastText
embedding as the input into the MDN network. As
the fastText embeddings provide non-contextual
representations of word forms, in conjunction with
the conditional KDEs, we treat them as closest to in-
stantiating the “lexical identity” over which our pre-
diction is based. Therefore, we predict that the dif-
ferences in MI between pitch-accent, stress-accent,
and tonal languages will be the strongest for this
textual representation and for conditional KDEs.

Previous Context (mGPT) and Bidirectional
Context (mBERT): Additionally, we estimate
p(p | w) using representations from mGPT (Shli-
azhko et al., 2024) a multilingual autoregressive
language model, largely based on the GPT-2 archi-
tecture, as well as a multilingual version of BERT,
mBERT (Devlin et al., 2019). For both models, we
use hidden representations as inputs to our MDN
network. During training, we fine-tune the com-
bined model, not just the MDN network. When
words are tokenized into multiple parts, we use the
representation of the final token.
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Figure 1: Main Results: Mutual information between pitch and text across languages. Lines show within typological
group averages. Error bars show standard deviations from Monte Carlo resampling (C-KDE-all, C-KDE-split)
or 5-fold cross-validation (fastText, mGPT, mBERT). We find that tonal languages have higher MI on average

compared to stress-accent and pitch-accent languages.

As both mGPT and mBERT have access to con-
text, they are capable of disambiguation between
different senses of a word (Chawla et al., 2021).
On one hand, this may make their representations
closer to the “lexical identity” over which our the-
oretical prediction is made. On the other hand,
because these models have access to context, they
also likely represent non-lexical properties of the
context that affect pitch. For example, although En-
glish is not a tonal language, sentence-final punctu-
ation (e.g., question marks) can provide strong cues
to pitch. Therefore, there may be nonzero MI be-
tween pitch and mBERT representations, even for
non-tonal languages. In addition, because of their
longer context, these models can be thought of as
estimating MI between pitch and the sentence, as
opposed to pitch and the word. We, therefore, make
two predictions: First, because of the increased rep-
resentational capacity of our neural LMs, we expect
higher mutual information when they are used for
estimation. Second, because our conditional KDE
and fastText embeddings more closely resemble
lexical identity, we expect greater differences in
MI between tonal and non-tonal languages when
these methods are used.

4 Results
4.1 Main Results

Mutual Information: The results of our exper-
iment are visualized in fig. 1, with our different
representations of text across the different facets.

Horizontal bars show within typological group aver-
ages. The data support the typological ordering hy-
pothesis: We observe higher MI in tonal languages
compared to non-tonal languages, for all of our es-
timation methods. Additionally, we find evidence
supporting the tonal » pitch-accent » stress-accent
hierarchy, especially for our C-KDE and fastText
models. The ordering is not present for mGPT,
where stress-accent languages have higher aver-
age MI than pitch-accent languages, or in mBERT,
where stress- and pitch-accent languages have al-
most identical MI.

Following the logic outline in section 3.4, we
observe the greatest separation between tonal and
non-tonal languages when using estimation tech-
niques that do not take context into account (i.e.,
fastText and C-KDE). While estimation methods
that incorporate longer context tend to have higher
mutual information on average, these methods col-
lapse the difference between typological groups.
For example, using mBERT, we find the highest
average MI of any model, but we also find almost
no difference between tonal and stress-accent lan-
guages, in terms of group averages. We suspect
that this is because mBERT, with its bidirectional
context, is capable of representing non-lexical in-
formation that can be useful for predicting pitch
even in non-tonal languages, for example, whether
a given sentence is a question.

Interestingly, even though prosodic type behav-
ior is consistent across models (i.e., tonal languages
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Figure 2: Main Results Separated into Conditional/Differential Entropy: Dashed line shows the y = z line.
Points show individual languages. Colored lines for En, Ja, and Zh visualize the MI of these languages, which is the

points’ vertical distance from the dotted line.

always have the highest MI), within each prosodic
type models show variability. For example, our
conditional KDE methods suggest that German is
the stress-accent language with the highest MI be-
tween pitch and lexical item. However, when using
mGPT, we find the highest MI for English, and in
mBERT, French. One possibility, here, is that the
different ways we represent context between these
models lead to different amounts of MI. We return
to this point in the larger context of our gradient vs.
categorical hypotheses in the discussion.

Conditional and Differential Entropy: To
zoom in on these data further, fig. 2 shows the same
results broken down into conditional and differen-
tial entropy. The difference between these two is
the MI, shown in figure 1 and visualized here as the
vertical distance to the x = y line, which is plotted
for English, Japanese, and Mandarin.? Overall, we
observe a relatively narrow range for both differen-
tial entropy (ranging from 8—10.5 bits) and condi-
tional entropy (ranging from 7-10 bits) across lan-
guages. These data support recent studies showing
that information-theoretic properties of human lan-
guage exist within a narrow bandwidth (Bentz et al.,
2017; Wilcox et al., 2023; Pimentel et al., 2020)

3We find higher entropy in our word embedding models,
compared to our C-KDE models. We believe that because
we excluded words that occurred fewer than A = 40 times,
this dataset was free of many low-frequency words whose
pitch was potentially difficult to predict. Therefore, this differ-
ence may be an artifact of our methods, and not necessarily
reflective of the C-KDE being an overall better estimation
technique.

When looking at conditional entropy instead of
mutual information, we observe more consistency
at the language level. For all methods, Vietnamese,
Chinese, and German have higher entropy (both
conditional and differential), and Japanese, Can-
tonese, and (to some extent) English have lower
entropy. The overall amount of entropy present in
a language does not follow typological patterns or
even the complexity of a language’s tonal system.
Cantonese, which is traditionally analyzed as hav-
ing nine tones, always has lower entropy values
than Mandarin, which is typically analyzed as hav-
ing only four. However, other factors like average
word length and isolating vs. agglutinating could
be factors.

4.2 Follow-up Experiment: Effect of Subword
Tokenization

One difference between C-KDE, fastText and
our neural-network-based estimation techniques
(mBert and mGPT) is that the latter two use sub-
word tokenization schemes. For words that have
multiple tokens, we used the embedding of the last
token in the word during estimation. It’s possible
that this skews or biases our results. Additionally,
the number of single-token words varies across
languages within our multilingual models, with En-
glish having more single-token words than the other
languages. To investigate how this may impact our
results, we took each of our initial datasets, and sub-
setted them to include only words with k or fewer
tokens. We then re-ran our MI estimation proce-
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Figure 3: Impact of tokenization on MI estimation: z-axis shows the proportion of words in our dataset tokenized
into more than one token. Subsampling data to include only words with one token changes the estimated MI.

dure using only mBERT and mGPT. This resulted
in datasets that were balanced in terms of tokens-
per-word, but not in terms of total dataset size.

The results are visualized in fig. 3. We can see
that as the percentage of multi-token words de-
creases, the M1 estimation changes, suggesting that,
indeed, this impacts our results. However, the over-
all picture of the results remains the same—there
is no clear separation between tone, pitch-accent
and stress-accent languages using these models.
Howe the tokens-per-word ratio decreases, the MI
increases for most (although not all) languages, sug-
gesting that the MI estimates in fig. 1 are slight un-
derestimates. For additional presentation of these
data see appendix A.

5 Discussion

Our experiments supported the typological order-
ing hypothesis, namely that tonal languages have
higher MI between pitch and text, followed by
pitch-accent and stress-accent languages. The
ordering of languages according to this predic-
tion is relatively clean, especially for the tonal
vs. non-tonal distinction. Among the C-KDE
estimates, where we expect the separation to be
the strongest, we found only one tonal language
(Cantonese, word level) with a lower MI than
any stress-accent language. And with fastText,
we found that all tonal languages had higher MI
than all stress-accent. Finally, we generally found
that pitch-accent languages fell between tonal and
stress-accent languages, as expected.

What do our results say about the status of cate-
gorical vs. gradient typological theories? On one
hand, they could be construed to support the cate-
gorical prediction. Using fastText, we can find a

single amount of mutual information (0.34 nats)
that separates all tonal from non-tonal languages.
At the same time, our results demonstrate interest-
ing gradient differences both between and within
prosodic types. Firstly, it’s not the case that lan-
guages are clearly separated into different modes
based on typological type. For example, in our
fastText models, there is far more variation in M1
within tonal languages (ranging from 0.36—1.58
nats) than between tonal vs. stress-accent groups
(0.23 vs. 0.88 nats). Based on these considera-
tions, we conclude that our data are more closely
aligned with the gradient prediction as outlined in
section 2.1.

We close by discussing the relationship between
our definition of a p-language and Greenberg’s
notion of an implicational universal (Greenberg,
2005). While implicational universals result in mu-
tual information between linguistic properties, we
argue that it is not possible to reduce such univer-
sals to MI alone. To take one example, a well-
studied implicational universal holds that VSO lan-
guages always have prepositions (as opposed to
postpositions). This implies that there is mutual in-
formation between a language’s word order and its
adposition placement. However, if the implication
were reversed—V SO implies postpositions—the
amount of MI would remain unchanged. Impor-
tantly, implicational universals specify how fea-
tures of a language covary, not just that they do
covary. Zooming out, we can say that implicational
universals and p-languages are a larger class of lin-
guistic variation that implies MI between linguistic
features. Further characterizing how mutual infor-
mation relates to known typological features is an
important direction for future research.



Limitations

One limitation of this work has to do with our
dataset: First, the dataset is relatively small, with
just 5,000 sentences per language. Second, we
did not control for the number of unique speak-
ers in the dataset, meaning that some languages
have over-representation from a single or handful
of individuals. For example, our Thai data includes
samples from 1749 speakers, whereas our Viet-
namese data includes samples from just 130 speak-
ers. One other shortcoming of our dataset is that
while our pitch-accent and tonal languages include
data from multiple language families, our stress-
accent data comes entirely from Indo-European
languages. Finally, our dataset did not control for
content, meaning the distribution of concepts and
therefore words could vary substantially between
different languages. While collecting high-quality
audio-text-aligned data across multiple languages
is a difficult undertaking, assembling such a dataset
could be the basis for future research.

Ethics Statement

We foresee no obvious ethical problems with this
research. Furthermore, we do not foresee any obvi-
ous risks with this research.
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Figure 4: Fine-Grained Analysis of Subword Tokenization Effects on MI Estimation in mGPT and mBERT.
The x-axis represents subword filtering levels: “All” (no filtering), “3” (subsetted words with at most 3 subword
tokens), “2” (at most 2 tokens), and “1” (only single-token words). Bars show estimated MI, the green line represents
the retained token ratio after subsetting, and the red line represents the misalignment ratio in the retained data.

French, and German keep more data, while Chi-
nese, Thai, and Swedish lose more, resulting in
cleaner but smaller datasets for MI estimation.

Languages also vary in initial misalignment (red
lines). English has the least, while Chinese and
Thai have more, leading to larger MI gains after
filtering and suggesting that MI is likely underesti-
mated in our data for these languages with mGPT
and mBERT model representation.

B Hyperparameter and Hyperparameter
search

We perform a hyperparameter search using 5-fold
cross-validation to tune the fastText MDN model.
The search space includes:

* Learning rate: 0.01, 0.001

* Dropout: 0.2, 0.5
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* Hidden layers: 15, 20, 30
e Hidden units: 512, 1024

Models are trained for a maximum of 50 epochs
using the AdamW optimizer with weight decay (L2
regularization = 0.001) and early stopping (patience
= 3) based on validation loss. The best hyperparam-
eters are selected based on average performance
across the 5 folds, and evaluated on the test set.
For mGPT (ai-forever/mGPT) and mBERT
(bert-base-multilingual-cased) MDNs, we
fine-tune using AdamW (weight decay = 0.1), a
learning rate of 5.0 x 10~ with ReduceLROn-
Plateau (factor = 0.1, patience = 2), batch size 16
(effective 64), gradient clipping at 1.0, dropout of
0.1 (applied to the MLP head), and early stopping
(patience = 3). For mGPT, we fine-tune only the
last eight transformer layers, freezing the rest for



efficiency, resulting in 612M trainable parameters
(out of 1.4B total). For mBERT, all layers are fine-
tuned, with 177M trainable parameters.
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