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Abstract

This paper argues that the relationship between001
lexical identity and prosody—one well-studied002
parameter of linguistic variation—can be char-003
acterized using information theory. We predict004
that languages that use prosody to make lexical005
distinctions should exhibit a higher mutual in-006
formation between word identity and prosody,007
compared to languages that don’t. We test this008
hypothesis in the domain of pitch, which is009
used to make lexical distinctions in tonal lan-010
guages, like Cantonese. We use a dataset of011
speakers reading sentences aloud in ten lan-012
guages across five language families to esti-013
mate the mutual information between the text014
and their pitch curves. We find that, across lan-015
guages, pitch curves display similar amounts016
of entropy. However, these curves are easier to017
predict given their associated text in the tonal018
languages, compared to pitch- and stress-accent019
languages, and thus the mutual information is020
higher in these languages, supporting our hy-021
pothesis. Our results support perspectives that022
view linguistic typology as gradient, rather than023
categorical.024

1 Introduction025

One central tension in linguistics is between linguis-026

tic universality and diversity. The world contains027

some 7,000 languages (Ethnologue, 2023), each028

with its unique and idiosyncratic lexicon, phonolog-029

ical inventory, and grammar. At the same time, lin-030

guistic properties are shared between sets of related031

languages (Croft, 2002), and some features appear,032

or covary, across languages, giving rise to the hy-033

pothesis that human language is governed by a set034

of universal principles (Greenberg, 2005). Major035

advances in the study of language have been made036

through the introduction of frameworks that can037

describe both the typological variation observed038

between languages, as well as the universal consis-039

tencies observed across languages. Examples of040

such frameworks are the principles and parameters041

approach for syntactic structure (Chomsky, 1993; 042

Culicover, 1997) and Optimality Theory for phono- 043

logical systems (Prince and Smolensky, 2004). 044

One promising candidate for this type of frame- 045

work is information theory (Shannon, 1948). Stud- 046

ies have argued that information-theoretic ap- 047

proaches can explain universal principles in lan- 048

guages, including the distribution of word lengths 049

(Zipf, 1949; Piantadosi et al., 2011; Pimentel et al., 050

2023), the organization of semantic systems (Kemp 051

et al., 2018; Zaslavsky et al., 2018, 2021), word 052

orders (Dyer et al., 2021) as well as language pro- 053

cessing phenomena (Futrell et al., 2020; Wilcox 054

et al., 2023). However, information-based ap- 055

proaches are less widely used to describe typo- 056

logical variation (although c.f., Futrell et al., 2020; 057

Pimentel et al., 2020; Socolof et al., 2022). In 058

this paper, we take one well-studied crosslinguistic 059

parameter—whether or not a language has lexi- 060

cal tone—and argue that it can be characterized 061

information-theoretically, as the amount of mutual 062

information between a lexical item (i.e., a word) 063

and the pitch curve associated with that word. Our 064

goal is to demonstrate how an information-based 065

approach can be used to characterize crosslinguistic 066

variation, as well as to showcase how NLP meth- 067

ods can be used to formally quantify properties that 068

are debated in the formal linguistics literature (e.g., 069

whether a given language is a tonal language). 070

The domain we are interested in is prosody, or 071

the melody of speech. A word’s prosody is trans- 072

mitted through several unique features including 073

its duration, energy (perceived as loudness), and 074

fundamental frequency (perceived as pitch). Pitch, 075

specifically, is the main focus of our study. Cru- 076

cially, the role that pitch plays varies across lan- 077

guages: In tonal languages such as Vietnamese, 078

Mandarin, and Yoruba, all or most syllables carry 079

one of several discrete pitch contours which dif- 080

ferentiate between lexical items; similarly, pitch- 081

accent languages, such as Swedish or Japanese 082
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have an inventory of pitch contours that are lexi-083

cally contrastive, but they are typically not present084

on every word; in stress-accent languages such as085

English and Italian pitch does not differentiate be-086

tween lexical identity at all, playing other roles like087

providing cues for stress placement, or indicating088

whether or not a sentence is a question. However,089

there is an ongoing debate about the validity of this090

simple three-way distinction, with some arguing091

for a typological continuum over multiple prosodic092

features (see, e.g., Hyman, 2006).093

We use pitch as a case study to demonstrate094

how a typological parameter can be recast in095

information-theoretic terms. We hypothesize that096

given a lexical item’s identity, it should be eas-097

ier to predict its pitch curve in tonal compared to098

non-tonal languages; this is because in tonal lan-099

guages pitch is used to distinguish lexical identity.100

Information-theoretically, this means there should101

be more mutual information between lexical iden-102

tity and pitch in tonal languages, such as Cantonese,103

than in non-tonal languages, such as English.104

To test this hypothesis, we use a pipeline (Wolf105

et al., 2023) originally developed in English to106

measure the mutual information between prosody107

and written text; where text is used as a proxy108

for lexical identity. We make several technical109

contributions to this pipeline, enabling it to pro-110

duce more accurate MI estimates across languages.111

We measure mutual information for ten typologi-112

cally distinct languages: English, French, Italian,113

German, Swedish (Indo-European) Mandarin, Can-114

tonese (Sino-Tibeten), Japanese (Japonic), Thai115

(Kra–Dai), and Vietnamese (Austroasiatic). These116

languages are traditionally classified as either117

stress-accent, pitch-accent, or tonal. We find118

that, across languages, pitch curves display sim-119

ilar amounts of entropy, suggesting that pitch itself120

conveys similar amounts of information in each lan-121

guage. However, these curves are easier to predict122

given their associated text in the tonal languages,123

compared to pitch- and stress-accent languages,124

and thus the mutual information is higher in these125

languages, supporting our hypothesis. Interestingly,126

the mutual information does not follow a multi-127

modal distribution, which would classify languages128

into clearly distinct categories. Rather they show129

a continuum of values, in line with recent work130

arguing for a gradient, rather than a categorical ap-131

proach to prosodic typology (Hyman, 2006) and132

linguistic typology more broadly (Pimentel et al.,133

2020; Levshina et al., 2023; Baylor et al., 2024).134

2 Prosodic Typology 135

In this section, we provide a formal framework for 136

describing linguistic typologies based on prosodic 137

features. We start by outlining our notation: We 138

assume that each natural language consists of lexi- 139

cal items, w, drawn from a vocabulary W . We use 140

W to denote a lexical-item-valued random variable. 141

By “lexical item” we mean the sense of dictionary 142

definitions—each value of W is associated with a 143

unique semantic meaning, rather than with a partic- 144

ular orthographic representation. However, as we 145

do not have direct access to lexical identities in a 146

large corpus, we will relax this in our experiments 147

and work instead with orthographic words, which 148

we use as a proxy for lexical identities. In addition, 149

we define p, as a real-valued vector that represents 150

some prosodic feature for a given word. Although 151

in our subsequent experiments, p refers only to 152

the pitch curve, for the present we will use p for 153

prosody as a whole, including other features, such 154

as average acoustic energy or duration. We denote 155

a prosody-valued random variable as P. 156

What does it mean for a language to have con- 157

trastive tone, stress, or length? In linguistics text- 158

books, this is often defined through minimal pairs, 159

by showing that there are systematic correspon- 160

dences between lexical identity and the prosodic 161

feature of interest. For example Yip (2002) illus- 162

trates the notion of a tonal language by giving an 163

example of the syllable [yau] in Cantonese. If 164

pronounced with a high-rising tone, this syllable 165

means paint, however, if pronounced with a low- 166

level tone, it means again. Based on such examples, 167

we propose the following definition: 168

Definition 1 A language ℓ is typologically a p- 169

language if, in ℓ, prosodic feature p provides infor- 170

mation about lexical identity. 171

That is, if a language is a p-language, then know- 172

ing the prosodic value, p, of a particular lexical 173

item, w, should make that word easier to predict. 174

As an example, in Cantonese, if we know a word 175

has a high-rising tone, then it will be easier to pre- 176

dict that word’s meaning, compared to a situation 177

where we don’t know the pitch at all.1 178

Based on this definition, we propose that one nat- 179

ural way to describe prosodic typologies is through 180

the lens of information theory. Under informa- 181

1We acknowledge that “providing information about” lexi-
cal identity is a less stringent requirement than, say determin-
ing lexical identity. We adopt this definition, in part, because
it is more conducive to measuring, experimentally.
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tion theory, if a variable (e.g., p) makes another182

variable (e.g., w) easier to predict, we say that it183

contains information about it. We can thus say that184

a p-language should be one where pitch conveys185

information about lexical information, written as:186

MI(P;W) > 0 (1)187

That is, the MUTUAL INFORMATION (MI) be-188

tween p and w is greater than zero. Conversely, in189

non p-languages, where p does not determine lexi-190

cal identity, the mutual information will be roughly191

equivalent to zero, i.e., MI(P;W) ≈ 0. Note that192

because mutual information is symmetric, in p-193

languages, we also predict that lexical identity re-194

duces uncertainty about prosodic features, which is195

what we empirically test in the following sections.196

2.1 Predictions: Tone, Stress and Pitch-accent197

Languages198

The prediction outlined in eq. (1) is limited, in that199

it only makes a binary classification: MI should be200

positive in p-languages, and equal to zero in non201

p-languages. However, in real life, we expect that202

things are more complicated. Rather than a single203

distinction, one might expect to find more nuanced204

differences between languages. This should be205

the case especially when it comes to pitch—the206

focus of our study—as existing typologies already207

separate languages into (at least) three categories208

based on the relationship between pitch and lexical209

identity. We therefore outline three more concrete210

hypotheses, concerning the mutual information, MI211

of a language’s lexical identity (W) and pitch (P):212

Hypothesis 1 Typological Ordering Hypothesis:213

Languages will display the following ordering of214

average MI within linguistic typological groups:215

tonal languages » pitch-accent languages » stress-216

accent languages.217

In addition, we formulate two competing hypothe-218

ses that correspond to different approaches toward219

linguistic typology:220

Hypothesis 2 Categorical Prediction: Languages221

will display a categorical distinction in MI, sep-222

arated into modes corresponding to typological223

group.224

Hypothesis 3 Gradient Prediction: Languages225

will display a gradient in MI on a gradual con-226

tinuum. Differences between languages within a227

typological group can be as large as differences228

between groups.229

To explore these hypotheses, we improve an exist- 230

ing pipeline for estimating MI, the details of which 231

we will turn to in section 3. 232

2.2 A Type- or Token-level Prediction? 233

It is important to note the nature of the informa- 234

tion we treat here. In particular, we could define 235

the MI above in two ways: at the type or token 236

level. These would quantify categorically differ- 237

ent linguistic properties. A type-level MI(P;W) 238

measures how predictable a novel word’s pitch is 239

given its lexical identity; it would thus quantify if p- 240

values are systematically assigned to words based 241

on their meaning or orthography. As lexicons’ 242

form–meaning assignments are largely arbitrary 243

(a property known as the arbitrariness of the sign; 244

Saussure, 1916; Dautriche et al., 2017; Pimentel 245

et al., 2019), we would expect such type-level MI 246

to be small in both p- and non-p-languages. A 247

token-level MI(W;P), on the other hand, quanti- 248

fies how well p disambiguates known words in a 249

language, and should thus have significantly dif- 250

ferent values in p- and non-p-languages. We thus 251

focus on this MI’s token-level definition here. 252

3 Methods 253

The prediction in eq. (1) is about lexical items, 254

however, we do not have direct access to these 255

in the multilingual corpora we use for this study. 256

Rather, we have access to textual representations, 257

i.e., orthographic words, which often correspond 258

to lexical items. In the rest of this paper, therefore, 259

we take W to be a random variable corresponding 260

to either a piece of text or an orthographic word. 261

Furthermore, as we are specifically interested in 262

pitch, from here on out P is a random variable that 263

represents the parameterization of a pitch curve, 264

specifically, as opposed to just a general prosodic 265

feature. We discuss how we represent P and W at 266

greater length in Section 3.3 and Section 3.4. 267

3.1 Estimating Mutual Information 268

We estimate the mutual information between 269

prosody and text, following the proposal from Wolf 270

et al. (2023). Wolf et al. estimate this quantity by 271

first decomposing MI as the difference between 272

two entropies, and separately estimating each term 273

MI(P,W) = H(P)−H(P | W) (2a) 274

≈ Hθ(P)−Hθ(P | W) (2b) 275

As represented by eq. (2b), we estimate the 276

MI as the difference between two cross entropies, 277
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Hθ(·). The cross-entropy is defined as the expec-278

tation of − log pθ(p) or − log pθ(p | w), given the279

ground-truth distribution p(p) or p(p,w), respec-280

tively. Following Wolf et al. (2023), we use re-281

distributive sampling (Tibshirani and Efron, 1993;282

Beirlant et al., 1997) to estimate these quantities.283

Given model pθ, we select a set of held-out test284

samples from our dataset, and then estimate each285

quantity as the average negative log probability286

(i.e., surprisal) of these test items:287

Hθ(P) ≈ 1

N

N∑
n=1

log
1

pθ(pn)
(3a)288

Hθ(P | W) ≈ 1

N

N∑
n=1

log
1

pθ(pn | wn)
(3b)289

Where pn and wn are the nth text/pitch pair in290

our test set. In order to make this estimation, we291

need to learn a probability distribution pθ(p) and292

pθ(p | w). We do so with the following methods.293

3.1.1 Estimating pθ(p)294

Following Wolf et al. (2023) we estimate the295

unconditional distribution with a Gaussian Kernel296

Density Estimate, KDE (Parzen, 1962; Sheather,297

2004). Bandwidth is optimized via 10-fold298

cross-validation, using the training and validation299

data, selecting from Scott’s rule, Silverman’s rule,300

and fixed values. We implement this with SciPy301

(Virtanen et al., 2020). After selecting the optimal302

bandwidth, we fit the KDE on the training data and303

compute eq. (3a) on the held-out test data.304

3.1.2 Estimating pθ(p | w)305

Wolf et al. (2023) estimate this conditional distri-306

bution by using a neural network to learn the pa-307

rameterization, ϕ of a predictive distribution Z(·)308

that captures the desired conditional probability309

distribution, pθ(p | w). In their setup, the pre-310

dictive distribution is always either a Gaussian,311

Gamma or Laplace distribution. This, however,312

leads to a discrepancy between the expressivity313

of the distribution learned for the conditional and314

unconditional distributions, pθ(p | w) and pθ(p).315

The KDEs used to model pθ(p) construct non-316

parametric distributions from the bottom-up, sum-317

ming together many Gaussians and having a num-318

ber of parameters that grows with K, the number of319

samples in the training dataset; this distribution can320

thus be increasingly complex given larger training321

datasets. However, the learned conditional distribu-322

tion, pθ(p | w), is fit as a parametric distribution323

Language Tag Type Family Hours Tokens Types Speakers

German DE SA Indo-Euro. 8.6 47819 13519 338
English EN SA Indo-Euro. 7.8 47670 10930 557
French FR SA Indo-Euro. 7.4 27974 8062 260
Italian IT SA Indo-Euro. 8.7 39413 10937 1641

Japanese JA PA Japonic 6.4 54866 6434 896
Swedish SV PA Indo-Euro. 6.6 38761 8002 461

Vietnamese VI Tonal Austroasiatic 5.9 37838 2468 130
Thai TH Tonal Kra-Dai 6.8 42153 4315 1749

Cantonese YUE Tonal Sino Tibetan 6.5 37380 6753 747
Mandarin ZH Tonal Sino Tibetan 7.9 36729 12547 1723

Table 1: Overview of the languages and dataset used in
this study. SA= Stress Accent, PA= Pitch Accent.

Z (Gaussian or Gamma), and is thus constrained 324

independently of the training dataset size. There- 325

fore, the two distributions are not apples to apples. 326

In particular, the greater expressivity of the uncon- 327

ditional distribution pθ(p) means that, in practice, 328

eq. (2b) is likely to underestimate the true mutual 329

information and can often be negative. To fix this 330

problem, we use two different methods for estimat- 331

ing the conditional probability distribution, which 332

we outline below. 333

Conditional KDEs: For this method, we 334

partition the dataset by orthographic word type 335

and fit a different KDE for each partition. We use 336

two different estimation procedures: In the first, 337

C-KDE-ALL, we use the whole dataset for band- 338

width selection, training, and entropy estimation, 339

which we do using Monte Carlo sampling. In the 340

second, C-KDE-SPLIT, we use 70% the dataset 341

for bandwidth selection and training and estimate 342

entropy using redistributive sampling on the 343

held-out portion. As the accuracy of the estimate 344

decreases with fewer samples, we discard words 345

with frequency lower than a certain threshold, 346

λ. We conducted several pilot experiments 347

with λ = {20, 30, 40, 50, 60} and found that the 348

qualitative nature of the results did not change. In 349

section 4, we present results for λ = 40. 350

Mixture Density Networks (MDNs): For our 351

second method, we employ a MIXTURE DENSITY 352

NETWORK (MDN) (Bishop, 1994). MDNs are 353

very similar to KDE estimators insofar as the final 354

conditional probability is the sum of several Gaus- 355

sian kernels. However, the means and variances of 356

these Gaussians are learned by a neural network, 357

LMθ, with parameters θ, given input w. In addi- 358

tion, the network also learns a set of weights w 359

that govern the mixture of the individual Gaussians. 360
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The conditional distribution is therefore:361

pθ(p | w) = (4)362

K∑
k=1

wk(w; θ)N (p | µk(w; θ), σk(w; θ))363

where wk is the weight µk is the mean and σk is the364

variance of the kth Gaussian kernel. To ensure the365

properness of the distribution, the weights (which366

must sum to one) are the output of a softmax367

function, and standard deviations (which must be368

positive) are the output of a soft-plus function. We369

use 20 kernels per dimension. The MDN itself370

consists of a Multi-Layer Perceptron, where the371

number of layers and hidden units are hyperparam-372

eters tuned during training, and by default, we use373

a five-layer MLP with 512 hidden units per layer.374

3.2 Dataset375

We use the Common Voice dataset (Ardila et al.,376

2020), a multilingual corpus that contains paired377

text–audio samples from contributors reading indi-378

vidual sentences out loud.2 Samples are rated by379

other contributors who assign them either a thumbs-380

up or a thumbs-down. The validated portion of the381

dataset that we use includes only sentences whose382

first two ratings are up-votes. We select data from383

ten languages, across five different language fam-384

ilies, representing a range of stress-accent, pitch-385

accent, and tonal languages. The details of each386

language are given in Table 1. We sample 5000 sen-387

tences per language for consistency, based on the388

language with the fewest validated sentences. In or-389

der to extract word-level prosodic features we align390

each sentence’s audio to its text at the word level us-391

ing the Montreal Forced Aligner (McAuliffe et al.,392

2017). For our Sino-Tibetan languages (Mandarin393

and Cantonese) we use two different tokenization394

or word-grouping schemes. In one both MFA align-395

ment and NLP tokenization use characters as input396

units (this is tagged with (chr) in figures), and397

in the other MFA aligns audio to words, and NLP398

tools tokenize sentences into words using their de-399

fault tokenizer.400

3.3 Representation of Pitch401

Representing the pitch curve of a word presents402

substantial challenges: We want to find a relatively403

low-dimensional representation space, but one that404

2The dataset is released under a Creative Commons Attri-
bution Share-Alike license.

can still capture the complexities of pitch contours 405

across languages, which may, for example, contain 406

rising and falling elements on a single word. To 407

do so, we use the preprocessing methods given 408

in Suni et al. (2017) to extract the fundamental 409

frequency, f0 from the raw waveforms from each 410

aligned word segment, and to remove outliers. We 411

apply interpolation to create a smooth f0 curve 412

across moments where no pitch is being produced, 413

for example during unvoiced consonants. Once it 414

has been extracted, we resample the f0 curves to 415

100 points and parameterize them with the first four 416

coefficients of a discrete cosine transform (DCT). 417

The objective of our prosodic pipeline, therefore, is 418

to estimate the four coefficients of the DCT pitch 419

representation. 420

3.4 Representation of Text 421

Although our prediction about prosodic typologies 422

concerns lexical items, we estimate mutual infor- 423

mation between pitch and text. For our conditional 424

KDEs we simply condition on orthographic words 425

in the dataset. However, for our MDNs, we rep- 426

resent text using the representational space of pre- 427

trained word embeddings and language models. In 428

our experiments, we use three different models, 429

corresponding to different amounts of context: 430

No context (fastText): We use fastText repre- 431

sentations (Bojanowski et al., 2017) to estimate 432

p(p | w). To do so, we simply feed the fastText 433

embedding as the input into the MDN network. As 434

the fastText embeddings provide non-contextual 435

representations of word forms, in conjunction with 436

the conditional KDEs, we treat them as closest to in- 437

stantiating the “lexical identity” over which our pre- 438

diction is based. Therefore, we predict that the dif- 439

ferences in MI between pitch-accent, stress-accent, 440

and tonal languages will be the strongest for this 441

textual representation and for conditional KDEs. 442

Previous Context (mGPT) and Bidirectional 443

Context (mBERT): Additionally, we estimate 444

p(p | w) using representations from mGPT (Shli- 445

azhko et al., 2024) a multilingual autoregressive 446

language model, largely based on the GPT-2 archi- 447

tecture, as well as a multilingual version of BERT, 448

mBERT (Devlin et al., 2019). For both models, we 449

use hidden representations as inputs to our MDN 450

network. During training, we fine-tune the com- 451

bined model, not just the MDN network. When 452

words are tokenized into multiple parts, we use the 453

representation of the final token. 454
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Figure 1: Main Results: Mutual information between pitch and text across languages. Lines show within typological
group averages. Error bars show standard deviations from Monte Carlo resampling (C-KDE-all, C-KDE-split)
or 5-fold cross-validation (fastText, mGPT, mBERT). We find that tonal languages have higher MI on average
compared to stress-accent and pitch-accent languages.

As both mGPT and mBERT have access to con-455

text, they are capable of disambiguation between456

different senses of a word (Chawla et al., 2021).457

On one hand, this may make their representations458

closer to the “lexical identity” over which our the-459

oretical prediction is made. On the other hand,460

because these models have access to context, they461

also likely represent non-lexical properties of the462

context that affect pitch. For example, although En-463

glish is not a tonal language, sentence-final punctu-464

ation (e.g., question marks) can provide strong cues465

to pitch. Therefore, there may be nonzero MI be-466

tween pitch and mBERT representations, even for467

non-tonal languages. In addition, because of their468

longer context, these models can be thought of as469

estimating MI between pitch and the sentence, as470

opposed to pitch and the word. We, therefore, make471

two predictions: First, because of the increased rep-472

resentational capacity of our neural LMs, we expect473

higher mutual information when they are used for474

estimation. Second, because our conditional KDE475

and fastText embeddings more closely resemble476

lexical identity, we expect greater differences in477

MI between tonal and non-tonal languages when478

these methods are used.479

4 Results480

4.1 Main Results481

Mutual Information: The results of our exper-482

iment are visualized in fig. 1, with our different483

representations of text across the different facets.484

Horizontal bars show within typological group aver- 485

ages. The data support the typological ordering hy- 486

pothesis: We observe higher MI in tonal languages 487

compared to non-tonal languages, for all of our es- 488

timation methods. Additionally, we find evidence 489

supporting the tonal » pitch-accent » stress-accent 490

hierarchy, especially for our C-KDE and fastText 491

models. The ordering is not present for mGPT, 492

where stress-accent languages have higher aver- 493

age MI than pitch-accent languages, or in mBERT, 494

where stress- and pitch-accent languages have al- 495

most identical MI. 496

Following the logic outline in section 3.4, we 497

observe the greatest separation between tonal and 498

non-tonal languages when using estimation tech- 499

niques that do not take context into account (i.e., 500

fastText and C-KDE). While estimation methods 501

that incorporate longer context tend to have higher 502

mutual information on average, these methods col- 503

lapse the difference between typological groups. 504

For example, using mBERT, we find the highest 505

average MI of any model, but we also find almost 506

no difference between tonal and stress-accent lan- 507

guages, in terms of group averages. We suspect 508

that this is because mBERT, with its bidirectional 509

context, is capable of representing non-lexical in- 510

formation that can be useful for predicting pitch 511

even in non-tonal languages, for example, whether 512

a given sentence is a question. 513

Interestingly, even though prosodic type behav- 514

ior is consistent across models (i.e., tonal languages 515
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always have the highest MI), within each prosodic516

type models show variability. For example, our517

conditional KDE methods suggest that German is518

the stress-accent language with the highest MI be-519

tween pitch and lexical item. However, when using520

mGPT, we find the highest MI for English, and in521

mBERT, French. One possibility, here, is that the522

different ways we represent context between these523

models lead to different amounts of MI. We return524

to this point in the larger context of our gradient vs.525

categorical hypotheses in the discussion.526

Conditional and Differential Entropy: To527

zoom in on these data further, fig. 2 shows the same528

results broken down into conditional and differen-529

tial entropy. The difference between these two is530

the MI, shown in figure 1 and visualized here as the531

vertical distance to the x = y line, which is plotted532

for English, Japanese, and Mandarin.3 Overall, we533

observe a relatively narrow range for both differen-534

tial entropy (ranging from 8–10.5 bits) and condi-535

tional entropy (ranging from 7–10 bits) across lan-536

guages. These data support recent studies showing537

that information-theoretic properties of human lan-538

guage exist within a narrow bandwidth (Bentz et al.,539

2017; Wilcox et al., 2023; Pimentel et al., 2020)540

3We find higher entropy in our word embedding models,
compared to our C-KDE models. We believe that because
we excluded words that occurred fewer than λ = 40 times,
this dataset was free of many low-frequency words whose
pitch was potentially difficult to predict. Therefore, this differ-
ence may be an artifact of our methods, and not necessarily
reflective of the C-KDE being an overall better estimation
technique.

When looking at conditional entropy instead of 541

mutual information, we observe more consistency 542

at the language level. For all methods, Vietnamese, 543

Chinese, and German have higher entropy (both 544

conditional and differential), and Japanese, Can- 545

tonese, and (to some extent) English have lower 546

entropy. The overall amount of entropy present in 547

a language does not follow typological patterns or 548

even the complexity of a language’s tonal system. 549

Cantonese, which is traditionally analyzed as hav- 550

ing nine tones, always has lower entropy values 551

than Mandarin, which is typically analyzed as hav- 552

ing only four. However, other factors like average 553

word length and isolating vs. agglutinating could 554

be factors. 555

4.2 Follow-up Experiment: Effect of Subword 556

Tokenization 557

One difference between C-KDE, fastText and 558

our neural-network-based estimation techniques 559

(mBert and mGPT) is that the latter two use sub- 560

word tokenization schemes. For words that have 561

multiple tokens, we used the embedding of the last 562

token in the word during estimation. It’s possible 563

that this skews or biases our results. Additionally, 564

the number of single-token words varies across 565

languages within our multilingual models, with En- 566

glish having more single-token words than the other 567

languages. To investigate how this may impact our 568

results, we took each of our initial datasets, and sub- 569

setted them to include only words with k or fewer 570

tokens. We then re-ran our MI estimation proce- 571
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Figure 3: Impact of tokenization on MI estimation: x-axis shows the proportion of words in our dataset tokenized
into more than one token. Subsampling data to include only words with one token changes the estimated MI.

dure using only mBERT and mGPT. This resulted572

in datasets that were balanced in terms of tokens-573

per-word, but not in terms of total dataset size.574

The results are visualized in fig. 3. We can see575

that as the percentage of multi-token words de-576

creases, the MI estimation changes, suggesting that,577

indeed, this impacts our results. However, the over-578

all picture of the results remains the same—there579

is no clear separation between tone, pitch-accent580

and stress-accent languages using these models.581

Howe the tokens-per-word ratio decreases, the MI582

increases for most (although not all) languages, sug-583

gesting that the MI estimates in fig. 1 are slight un-584

derestimates. For additional presentation of these585

data see appendix A.586

5 Discussion587

Our experiments supported the typological order-588

ing hypothesis, namely that tonal languages have589

higher MI between pitch and text, followed by590

pitch-accent and stress-accent languages. The591

ordering of languages according to this predic-592

tion is relatively clean, especially for the tonal593

vs. non-tonal distinction. Among the C-KDE594

estimates, where we expect the separation to be595

the strongest, we found only one tonal language596

(Cantonese, word level) with a lower MI than597

any stress-accent language. And with fastText,598

we found that all tonal languages had higher MI599

than all stress-accent. Finally, we generally found600

that pitch-accent languages fell between tonal and601

stress-accent languages, as expected.602

What do our results say about the status of cate-603

gorical vs. gradient typological theories? On one604

hand, they could be construed to support the cate-605

gorical prediction. Using fastText, we can find a606

single amount of mutual information (0.34 nats) 607

that separates all tonal from non-tonal languages. 608

At the same time, our results demonstrate interest- 609

ing gradient differences both between and within 610

prosodic types. Firstly, it’s not the case that lan- 611

guages are clearly separated into different modes 612

based on typological type. For example, in our 613

fastText models, there is far more variation in MI 614

within tonal languages (ranging from 0.36–1.58 615

nats) than between tonal vs. stress-accent groups 616

(0.23 vs. 0.88 nats). Based on these considera- 617

tions, we conclude that our data are more closely 618

aligned with the gradient prediction as outlined in 619

section 2.1. 620

We close by discussing the relationship between 621

our definition of a p-language and Greenberg’s 622

notion of an implicational universal (Greenberg, 623

2005). While implicational universals result in mu- 624

tual information between linguistic properties, we 625

argue that it is not possible to reduce such univer- 626

sals to MI alone. To take one example, a well- 627

studied implicational universal holds that VSO lan- 628

guages always have prepositions (as opposed to 629

postpositions). This implies that there is mutual in- 630

formation between a language’s word order and its 631

adposition placement. However, if the implication 632

were reversed—VSO implies postpositions—the 633

amount of MI would remain unchanged. Impor- 634

tantly, implicational universals specify how fea- 635

tures of a language covary, not just that they do 636

covary. Zooming out, we can say that implicational 637

universals and p-languages are a larger class of lin- 638

guistic variation that implies MI between linguistic 639

features. Further characterizing how mutual infor- 640

mation relates to known typological features is an 641

important direction for future research. 642
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Limitations643

One limitation of this work has to do with our644

dataset: First, the dataset is relatively small, with645

just 5, 000 sentences per language. Second, we646

did not control for the number of unique speak-647

ers in the dataset, meaning that some languages648

have over-representation from a single or handful649

of individuals. For example, our Thai data includes650

samples from 1749 speakers, whereas our Viet-651

namese data includes samples from just 130 speak-652

ers. One other shortcoming of our dataset is that653

while our pitch-accent and tonal languages include654

data from multiple language families, our stress-655

accent data comes entirely from Indo-European656

languages. Finally, our dataset did not control for657

content, meaning the distribution of concepts and658

therefore words could vary substantially between659

different languages. While collecting high-quality660

audio-text-aligned data across multiple languages661

is a difficult undertaking, assembling such a dataset662

could be the basis for future research.663

Ethics Statement664

We foresee no obvious ethical problems with this665

research. Furthermore, we do not foresee any obvi-666

ous risks with this research.667
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(a) mGPT
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Figure 4: Fine-Grained Analysis of Subword Tokenization Effects on MI Estimation in mGPT and mBERT.
The x-axis represents subword filtering levels: “All” (no filtering), “3” (subsetted words with at most 3 subword
tokens), “2” (at most 2 tokens), and “1” (only single-token words). Bars show estimated MI, the green line represents
the retained token ratio after subsetting, and the red line represents the misalignment ratio in the retained data.

French, and German keep more data, while Chi-850

nese, Thai, and Swedish lose more, resulting in851

cleaner but smaller datasets for MI estimation.852

Languages also vary in initial misalignment (red853

lines). English has the least, while Chinese and854

Thai have more, leading to larger MI gains after855

filtering and suggesting that MI is likely underesti-856

mated in our data for these languages with mGPT857

and mBERT model representation.858

B Hyperparameter and Hyperparameter859

search860

We perform a hyperparameter search using 5-fold861

cross-validation to tune the fastText MDN model.862

The search space includes:863

• Learning rate: 0.01, 0.001864

• Dropout: 0.2, 0.5865

• Hidden layers: 15, 20, 30 866

• Hidden units: 512, 1024 867

Models are trained for a maximum of 50 epochs 868

using the AdamW optimizer with weight decay (L2 869

regularization = 0.001) and early stopping (patience 870

= 3) based on validation loss. The best hyperparam- 871

eters are selected based on average performance 872

across the 5 folds, and evaluated on the test set. 873

For mGPT (ai-forever/mGPT) and mBERT 874

(bert-base-multilingual-cased) MDNs, we 875

fine-tune using AdamW (weight decay = 0.1), a 876

learning rate of 5.0 × 10−5 with ReduceLROn- 877

Plateau (factor = 0.1, patience = 2), batch size 16 878

(effective 64), gradient clipping at 1.0, dropout of 879

0.1 (applied to the MLP head), and early stopping 880

(patience = 3). For mGPT, we fine-tune only the 881

last eight transformer layers, freezing the rest for 882

11



efficiency, resulting in 612M trainable parameters883

(out of 1.4B total). For mBERT, all layers are fine-884

tuned, with 177M trainable parameters.885
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