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Abstract

Literary translation requires preserving cultural
nuances and stylistic elements, which tradi-
tional metrics like BLEU and METEOR fail
to assess due to their focus on lexical overlap.
This oversight neglects the narrative consis-
tency and stylistic fidelity that are crucial for lit-
erary works. To address this, we propose MAS-
LitEval, a multi-agent system using Large Lan-
guage Models (LLMs) to evaluate translations
based on terminology, narrative, and style. We
tested MAS-LitEval on translations of The Lit-
tle Prince and A Connecticut Yankee in King
Arthur’s Court, generated by various LLMs,
and compared it to traditional metrics. MAS-
LitEval outperformed these metrics, with top
models scoring up to 0.890 in capturing liter-
ary nuances. This work introduces a scalable,
nuanced framework for Translation Quality As-
sessment (TQA), offering a practical tool for
translators and researchers.

1 Introduction

Literary translation is a complex task that goes be-
yond simple word-for-word conversion. It demands
a deep understanding of cultural nuances and the
preservation of the author’s unique voice through
creative adaptation for a new audience. Unlike
technical translation, which prioritizes precision
and clarity, literary translation requires fidelity to
the stylistic essence, emotional resonance, and nar-
rative depth of the source text. This complexity
makes evaluation challenging, as the quality of a lit-
erary translation is subjective and varies depending
on readers’ preferences—some favor literal accu-
racy, while others prioritize capturing the original’s
spirit (Toral and Way, 2018; Thai et al., 2022).
Traditional evaluation metrics for machine trans-
lation, such as BLEU (Papineni et al., 2002),
ROUGE (Lin, 2004), and METEOR (Banerjee and
Lavie, 2005), measure lexical overlap and syntactic
similarity. While effective in technical contexts,
these metrics struggle with literary texts, overlook-
ing stylistic, discursive, and cultural factors critical
to literature (Reiter, 2018). Neural-based metrics
like BERTScore (Zhang et al., 2020) and COMET
(Rei et al., 2020) enhance semantic analysis, yet

they still fail to fully capture aesthetic and cultural
nuances. This gap highlights the need for advanced
methods tailored to the unique demands of literary
translation (Yan et al., 2015; Freitag et al., 2021;
Team et al., 2022).

Specialized metrics like Multidimensional Qual-
ity Metrics (MQM) (Lommel et al., 2014) and
Scalar Quality Metric (SQM) (Blain et al., 2023)
attempt to address these shortcomings by evalu-
ating style and fluency alongside accuracy. How-
ever, MQM’s reliance on human annotation lim-
its its scalability, and SQM lacks the depth re-
quired for literary analysis. Large Language Mod-
els (LLMs) such as gpt-4, claude, and gemini
show promise due to their advanced text genera-
tion and comprehension capabilities (Zhang et al.,
2025). Nevertheless, no single LLM can compre-
hensively assess the multifaceted aspects of transla-
tion quality—accuracy, fluency, style, and cultural
fidelity—necessitating a multi-agent system that
leverages their combined strengths (Karpinska and
Iyyer, 2023).

Our method introduces a multi-agent system
where specialized agents evaluate distinct dimen-
sions of literary translation quality. One agent
ensures the consistency of terminology, such as
character names; another verifies the alignment of
narrative perspective; and a third assesses stylistic
fidelity, including tone and rhythm. A coordinator
integrates these evaluations into an Overall Transla-
tion Quality Score (OTQS), combining quantitative
scores with qualitative insights. This approach cap-
italizes on the strengths of models like claude for
style and L1ama for customization, addressing the
complex nature of literary TQA.

We evaluated this system on translations
of The Little Prince and A Connecticut Yan-
kee in King Arthur’s Court, generated by
LLMs including gpt-4o0 (OpenAl et al., 2024),
claude-3.7-sonnet, gemini-flash-1.5,

solar-pro-preview (Kim et al., 2024),
TowerBase-7B (Alves et al.,, 2024), and
Llama-3.1-8B (Grattafiori et al., 2024). The

experimental setup compared our OTQS against
traditional metrics (BLEU, METEOR, ROUGE-1,



ROUGE-L, WMT-KIWI) using a diverse dataset
and a rigorous process to ensure validity.

Results demonstrate that our system outper-
forms traditional metrics, with top models achiev-
ing OTQS scores up to 0.890, capturing nuances
like stylistic consistency that BLEU (0.28) misses.
Open-source models lagged behind, revealing gaps
in their training. These findings confirm our ap-
proach’s effectiveness in tackling the complexities
of literary TQA.

The significance of this work lies in its contribu-
tions: (1) a scalable multi-agent TQA framework
that enhances literary evaluation, (2) a compara-
tive analysis of LLM performance in translation,
and (3) a practical system adaptable for human-in-
the-loop refinement. This advances TQA beyond
conventional methods, providing a valuable tool
for translators and researchers to improve literary
translation quality.

2 Method : MAS-LitEval

MAS-LitEval employs specialized LLMs to assess
literary translations, with agents focusing on ter-
minology consistency, narrative perspective, and
stylistic fidelity.

Overall Architecture. Three agents process the
source and translated texts in parallel, with the texts
segmented into 4096-token chunks. A coordinator
combines their scores and feedback into an Overall
Translation Quality Score(OTQS) and a detailed
report, ensuring consistency across the entire text.

Roles of Each Agent.
as follows:

The roles of the agents are

* Terminology Consistency Agent: This agent
ensures that key terms, such as character
names or recurring motifs, remain consis-
tent throughout the translation. Using named
entity recognition (NER), it identifies these
terms and assigns a score (ranging from O to
1) based on their uniformity across the text.

* Narrative Perspective Consistency Agent:
This agent confirms that the narrative voice
(e.g., first-person or omniscient) aligns with
the source text across all chunks. An LLM an-
alyzes the segments, assigns a score (ranging
from 0 to 1), and flags deviations, such as per-
spective shifts, to preserve narrative integrity.

* Stylistic Consistency Agent: This agent eval-
uates tone, rhythm, and aesthetic fidelity by

comparing stylistic traits between the source
and target texts, assigning a fidelity score
(ranging from O to 1).

Collaboration Mechanism. The coordinator
computes the OTQS using a weighted average:

OTQS = wr - ST +wn - Sy + wg - Sy

where St, Sy, and Sg represent the scores from
the terminology, narrative, and stylistic agents, re-
spectively, and wr, wy, and wg are their corre-
sponding weights. Given the emphasis on preserv-
ing the artistic essence of literary works, the weight
for stylistic consistency (wg = 0.4) is higher than
those for terminology consistency (wr = 0.3) and
narrative consistency (wy = 0.3), reflecting its piv-
otal role in literary translation quality (Yan et al.,
2015; Freitag et al., 2021).

Rationale for Multi-Agent Approach. Literary
translation quality encompasses multiple dimen-
sions—terminology, narrative, and style—that a
single LLM cannot fully evaluate. By employ-
ing specialized agents, MAS-LitEval harnesses di-
verse LLM capabilities, enhancing accuracy and ef-
ficiency compared to traditional metrics (Wu et al.,
2024). This method ensures consistency is assessed
across the entire text, overcoming the limitations of
chunk-based evaluations where local consistency
might obscure global discrepancies.

Implementation Details. MAS-LitEval is imple-
mented in Python, integrating spaCy for preprocess-
ing and LL.Ms via APIs. Although texts are seg-
mented into 4096-token chunks for processing, the
agents maintain a global context: the Terminology
Consistency Agent tracks terms across all chunks,
the Narrative Perspective Consistency Agent en-
sures voice continuity, and the Stylistic Consistency
Agent evaluates tone and rhythm holistically.

3 Experiment

We tested MAS-LitEval on translations of excerpts
from The Little Prince and A Connecticut Yankee in
King Arthur’s Court, generated by a mix of closed-
source and open-source LLMs.

Dataset. We selected two works for evaluation:
a 5,000-word excerpt from the Korean translation
of The Little Prince (originally in French) and a
4,000-word excerpt from the Korean translation
of A Connecticut Yankee in King Arthur’s Court



Work | #paras #sent pairs  Avg. sent/para (src)  Avg. sent/para (tgt)
The Little Prince (Kr-En) 274 1812 6.6 7.0
A Connecticut Yankee in King Arthur’s Court (Kr-En) 205 2545 12.2 12.8

Table 1: Dataset Statistics for Specific Works in Korean to English Translation.

(originally in English). These texts were cho-
sen for their stylistic richness and narrative com-
plexity, making them ideal for assessing literary
translation nuances. The LLMs generated transla-
tions from Korean to English. We also extracted
Korean-English parallel data from additional liter-
ary works on Project Gutenberg Korea (http://
projectgutenberg.kr/) and Project Gutenberg
(https://www.gutenberg.org/), enriching the
dataset. Table 1 provides statistics for the specific
works used.

Models. Six LLMs were tested: closed-
source models (gpt-4o0, claude-3.7-sonnet,
gemini-flash-1.5, solar-pro-preview)
and open-source models (TowerBase-7B,
Llama-3.1-8B). These models were chosen for
their diverse strengths in language generation and
comprehension, enabling a robust performance
comparison.

Baselines. MAS-LitEval was compared against
BLEU (Papineni et al., 2002), METEOR (Baner-
jee and Lavie, 2005), ROUGE-1, ROUGE-L (Lin,
2004), and WMT-KIWTI (Rei et al., 2023). Human
reference translations, sourced from professional
translations of the selected works, were used for
baseline metrics to ensure a fair comparison.

Evaluation Process. Translations generated by
the LLMs were assessed using MAS-LitEval. Texts
were segmented into 4096-token chunks, but agents
evaluated consistency across all chunks to capture
global quality. For instance, the Terminology Con-
sistency Agent assessed term uniformity across the
entire text, addressing limitations of chunk-based
evaluations where intra-chunk consistency might
mask cross-chunk discrepancies. Baseline metrics
were calculated against human references, while
MAS-LitEval operated reference-free, using only
the source and machine-generated translations.

Technical Setup. Experiments were conducted
on an NVIDIA A100 GPU. Closed-source models
were accessed via APIs, while open-source models
were hosted locally with 4-bit quantization to op-
timize memory usage. The temperature was set to

0.1 to ensure deterministic outputs, guaranteeing
reproducibility across runs.

4 Findings

MAS-LitEval evaluated translations of The Little
Prince and A Connecticut Yankee in King Arthur’s
Court, generated by four closed-source and two
open-source models. The results, presented in Ta-
ble 2, highlight performance differences and our
system’s ability to detect nuances overlooked by
traditional metrics.

Performance of Top Models. claude-3.7 and
gpt-4o achieved the highest OTQS scores: 0.890
and 0.875 for The Little Prince, and 0.880 and
0.860 for A Connecticut Yankee in King Arthur’s
Court. claude-3.7-sonnet excelled in stylistic
fidelity (0.93) and narrative consistency (0.91), key
aspects of literary quality. For the phrase “On ne
voit bien qu’avec le cceur,” it translated it as “It is
only with the heart that one can see rightly” (stylis-
tic score: 0.92), preserving poetic nuance, while
gpt-40’s “One sees clearly only with the heart”
(0.87) was less evocative according to agent feed-
back. In A Connecticut Yankee in King Arthur’s
Court, claude-3.7-sonnet maintained the me-
dieval tone across chunks (narrative consistency:
0.90), whereas gpt-4o occasionally introduced
modern phrasing (0.85).

Comparison of Open-Source and Closed-Source
Models. Closed-source models outperformed
their open-source counterparts. For The Little
Prince, claude-3.7-sonnet (0.890) and gpt-4o0
(0.875) surpassed TowerBase-7B (0.745) and
Llama-3.1-8B (0.710). Stylistic scores for
TowerBase-7B (0.70) indicated flatter translations
compared to claude-3.7-sonnet’s nuanced out-
put (0.92), suggesting limitations in open-source
model resources.

Comparison with Baseline Metrics. OTQS
showed a strong correlation with WMT-KIWI
(0.93) but weaker correlations with BLEU (0.62),
METEOR (0.70), ROUGE-1 (0.68), and ROUGE-
L (0.65), indicating it captures distinct quality as-
pects. For The Little Prince, gpt-4o outperformed
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Model Type  Work | BLEU METEOR ROUGE-1 ROUGE-L WMT-KIWI OTQS
LP | 028 0.65 0.55 0.45 0.87 0.890

claude-3.7-sonnet  Closed () | 77 0.64 0.54 0.44 0.86 0.880
s Closed P | 030 0.67 0.57 0.47 0.85 0.875
gpt=20 : KA 0.29 0.66 0.56 0.46 0.84 0.860
. LP | 025 0.60 0.50 0.40 0.83 0.820
gemini-flash-1.5  Closed () | (5 0.59 0.49 0.39 0.82 0.810
colar—oro-orevien  Closed P | 023 0.58 0.48 038 0.81 0.790
pro=p KA 0.22 0.57 0.47 0.37 0.80 0.775
owerBase-T8 onen | LP | 020 0.55 045 035 0.78 0.745
P KA | 0.19 0.54 0.44 0.34 0.77 0.730

LP | 018 0.53 0.43 033 0.76 0.710

Llama-3.1-88 Open g | 017 0.52 0.42 0.32 0.75 0.695

Table 2: Evaluation Results for the two literary works: LP (The Little Prince) and KA (A Connecticut Yankee in
King Arthur’s Court). The highest scores for each metric and work are bolded.

claude-3.7-sonnet in BLEU (0.30 vs. 0.28), but
OTQS favored the latter (0.890 vs. 0.875) for its
stylistic depth. ROUGE-1 and ROUGE-L exhib-
ited similar patterns, missing narrative inconsisten-
cies in models like TowerBase-7B (OTQS: 0.745).
MAS-LitEval’s cross-chunk evaluation identified
issues like tone shifts that baselines overlooked,
underscoring its advantage in literary quality as-
sessment.

5 Discussion

MAS-LitEval provides a sophisticated framework
for literary Translation Quality Assessment (TQA).
Below, we explore its strengths, limitations, and
implications.

Advantages of the Multi-Agent Approach.
MAS-LitEval’s  multi-dimensional  evalua-
tion—covering terminology, narrative, and
style—surpasses single-metric methods.  For
The Little Prince, BLEU favored gpt-4o0 (0.30)
over claude-3.7-sonnet (0.28), but OTQS
prioritized claude-3.7-sonnet (0.890 vs. 0.875)
for its lyrical fidelity. This mirrors human-like
judgment, valuing literary essence over lexical
overlap. By evaluating consistency across chunks,
it detects global issues, such as narrative drift,
that chunk-based approaches miss, offering a
comprehensive assessment.

Challenges and Refinement Opportunities.
Subjectivity in stylistic scoring poses a challenge.
The difference between claude-3.7-sonnet’s
0.93 and gpt-40’s 0.87 reflects potential LLM bi-
ases, which could lead to inconsistency. Averag-
ing scores from multiple LLMs or calibrating with

human annotations could improve reliability. Ad-
ditionally, incorporating domain-specific training
or a cultural fidelity agent could address cultural
nuances.

Implications for Literary Translation. MAS-
LitEval’s scalability offers practical benefits. Pub-
lishers can use it to pre-screen translations, while
educators can leverage its feedback to train transla-
tors. Its reference-free design suits literary contexts
with multiple valid translations, unlike BLEU or
ROUGE, which depend on fixed references. Future
enhancements, such as human-in-the-loop integra-
tion, could further refine its accuracy, establishing
it as a key tool for Al-supported literary TQA.

6 Limitations and Future Works

MAS-LitEval’s dataset, restricted to two works,
limits its generalizability; expanding to include
genres like poetry, drama, and non-fiction is neces-
sary. Stylistic scoring remains subjective and may
reflect LLM training biases; averaging scores from
multiple LLMs or using standardized rubrics could
improve consistency. The absence of human evalu-
ation leaves its alignment with expert judgment un-
confirmed; integrating feedback from professional
translators or scholars and correlating OTQS with
human ratings would validate its reliability. Human
input could also refine agent prompts and OTQS
weightings. Future efforts should focus on expand-
ing the dataset, incorporating human evaluation,
refining stylistic scoring, and addressing cultural
concerns to improve MAS-LitEval’s reliability and
versatility in literary translation quality assessment.
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A Prompts Used in MAS-LitEval

A.1 Translation Prompt

Translate the following literary text from
[source language] to [target language].
Ensure that the translation preserves the

A2

A3

original’s style, tone, and cultural nu-
ances. Pay special attention to maintain-
ing the narrative voice and literary de-
vices used in the source text.

Terminology Consistency Agent Prompt

You are an expert in literary translation
evaluation. Given a source text in [source
language] and its translation in [target
language], your task is to ensure that key
terms, such as character names, place
names, and recurring motifs, are trans-
lated consistently throughout the text.
Follow these steps:

1. Identify key terms in the source text
that appear multiple times.

2. For each key term, check how it is
translated in the target text across all oc-
currences.

3. Calculate a consistency score (0 to 1),
where 1 indicates that all occurrences of
a term are translated identically, and O
indicates no consistency.

4. Provide feedback highlighting any in-
consistencies, specifying the terms and
their varying translations.

Your output should include the consis-
tency score and the detailed feedback.

Narrative Perspective Consistency Agent

Prompt

You are an expert in literary analysis.
Given a source text in [source language]
and its translation in [target language],
your task is to verify that the narra-
tive perspective (e.g., first-person, third-
person limited, omniscient) is consis-
tently maintained in the translation. Fol-
low these steps:

1. Determine the narrative perspective of
the source text.

2. Analyze the translation to identify its
narrative perspective.

3. Compare the two and assess whether
the translation accurately reflects the
source’s perspective.

4. Assign a score (0 to 1) indicating the
degree of consistency, where 1 means
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A4

perfect alignment, and 0 means complete
mismatch.

5. Provide feedback on any deviations,
citing specific examples from the text.

Your output should include the consis-
tency score and the detailed feedback.

Stylistic Consistency Agent Prompt

You are an expert in literary style and
translation. Given a source text in
[source language] and its translation in
[target language], your task is to evalu-
ate how well the translation preserves the
stylistic elements of the original, such as
tone, rhythm, imagery, and literary de-
vices. Follow these steps:

1. Identify the key stylistic features of
the source text.

2. Analyze the translation to see if these
features are adequately captured.

3. Assign a score (0 to 1) indicating the
level of stylistic fidelity, where 1 means
the translation perfectly preserves the
style, and O means it completely fails
to do so.

4. Provide feedback with specific exam-
ples where the translation succeeds or
falls short in maintaining the style.

Your output should include the fidelity
score and the detailed feedback.



