
Safe Neurosymbolic Learning with
Differentiable Symbolic Execution

Chenxi Yang
The University of Texas at Austin

cxyang@cs.utexas.edu

Swarat Chaudhuri
The University of Texas at Austin

swarat@cs.utexas.edu

Abstract

We study the problem of learning worst-case-safe parameters for programs that use
neural networks as well as symbolic, human-written code. Such neurosymbolic
programs arise in many safety-critical domains. However, because they need
not be continuous, let alone differentiable, they cannot be learned using existing
gradient-based approaches to safe learning. Our method, Differentiable Symbolic
Execution (DSE), learns such programs by sampling code paths using symbolic
execution, constructing gradients of a worst-case “safety loss” along these paths,
and then backpropagating these gradients through program operations using a
generalization of the REINFORCE estimator. We evaluate the method on real-
world benchmarks. Our experiments show that DSE significantly outperforms the
state-of-the-art DIFFAI method on these tasks.

1 Introduction

Safety on worst-case inputs has recently emerged as a key challenge in deep learning research. Formal
verification of neural networks [2] is an established response to this challenge. In particular, an
exciting body of recent work [22, 20, 9, 27] has sought to incorporate formal verification into the
training of neural networks. DIFFAI, among the most prominent of such approaches, uses a neural
network verifier to construct a differentiable, worst-case safety loss for the learner. This loss is used to
regularize a standard data-driven loss, biasing the learner towards parameters that are both performant
and safe.

A weakness of these methods is that they only consider functional properties (such as adversarial
robustness) of isolated neural networks. By contrast, in real-world applications, neural networks are
often embedded within human-written symbolic code, and correctness requirements apply to the
entire neurosymbolic composition. For example, consider a car directed by a neural controller [25].
Safety properties for the car are functions of its trajectories, and these trajectories depend not just on
the controller but also the symbolic equations that define the environment. While recent work [8]
has studied the verification of such neurosymbolic programs, there is no prior work on integrating
verification and learning for such systems.

In this paper, we present the first steps towards such an integration. The fundamental technical
challenge here is that while a neural network is differentiable over its parameters, the code surrounding
may be non-differentiable or even discontinuous. This puts our problem beyond the scope of existing
methods for integrated learning and verification.

We overcome this difficulty using a new method, Differentiable Symbolic Execution (DSE), for
estimating gradients of worst-case safety losses of nondifferentiable neurosymbolic programs. DSE
is based on a generalization of the classic REINFORCE estimator, which backpropagates gradients
through non-differentiable operations by approximating integrals with sampling. In our problem, the
integral is the aggregate of the safety losses along symbolic control flow paths in the program. To
apply REINFORCE-like ideas here, we need to represent and sample paths in a symbolic way. We do
so through an adaptation of the classic method of symbolic execution.
35th Conference on Neural Information Processing Systems (aiplans 2021), Sydney, Australia.

mailto:cxyang@cs.utexas.edu
mailto:swarat@cs.utexas.edu

We evaluate DSE through several case studies in the embedded control and navigation domains. Our
baselines include an extended version of DIFFAI, the current state of the art, and an ablation that
does not use an explicit safety loss. Our experiments show that DSE significantly outperforms the
baselines in finding safe and high-performance model parameters.

2 Problem Formulation
Programs. We define programs with embedded neural networks as symbolic transition systems
(STS) [21]. Formally, a program Fθ is a tuple (Loc, X, l0, Init ,Safe,Transθ). Here, Loc is a finite
set of (control) locations, X = {x1, . . . , xm} is a set of real-valued variables, and l0 ∈ Loc is the
initial location. Init , a boolean formula over X , is an initial condition for the program. Safe is a
map from locations to constraints over X; intuitively, Safe(l) is a safety requirement asserted at
location l. Finally, Transθ is a transition relation consisting of transitions (l, G, Uθ, l′) such that: (i)
l is the source location and l′ is the destination location; (ii) the guard G is a constraint over X; and
(iii) the update Uθ is a vector 〈U1,θ, . . . , Um,θ〉, where each Ui,θ is a real-valued expression over X
constructed using standard symbolic operators and neural networks with parameters θ. We assume
that each Ui,θ is differentiable in θ. Also, we assume that the programs are deterministic. That is, if G
and G′ are guards for two distinct transitions from the same source state, then G ∧G′ is unsatisfiable.

Safety Semantics. Let a state of Fθ be a pair s = (l, v), where l is a location and v ∈ Rm is an
assignment of values to the variables (i.e., v(i) is the value of xi). Such a state is said to be at location
l. A state (l0, v), where v satisfies Init , is an initial state. A state (l, v) is safe if v satisfies Safe(l).

Let v ∈ Rm be an assignment to the variables. For a real-valued expressionE overX , letE(v) be the
value of E when xi is substituted by v(i). For an update U = 〈U1, . . . , Un〉, we define U(v) as the
assignment 〈U1(v), . . . , Un(v)〉. A length-n trajectory of Fθ is a sequence τ = 〈s0, . . . , sn〉, with
si = (li, vi), such that: (i) s0 is an initial state; and (ii) for each i, there is a transition (li, G, U, li+1)
such that vi satisfies G and vi+1 = U(vi). We denote this trajectory by τ(s0).

Let us assume a real-valued loss Unsafe(s) that quantifies the unsafeness of each state s. We require
Unsafe(s) = 0 if s is safe and Unsafe(s) > 0 otherwise. We lift this measure to trajectories τ by
letting Unsafe(τ) =

∑
s appears in τ Unsafe(s). The safety loss C(θ) for Fθ is now defined as:

C(θ) = max
s is an initial state

Unsafe(τ(s)). (1)

Thus, C(θ) = 0 if and only if all program trajectories are safe.

Problem Statement. Our learning problem formalizes a setting in which we have training data for
neural networks inside a program Fθ. While training the networks with respect to this data, we must
ensure that the overall program satisfies its safety requirements. To ensure that the parameters of
the different neural networks in Fθ are not incorrectly entangled, we assume that only one of these
networks, NNθ, has trainable parameters.

We expect as input a training set of i.i.d. samples from an unknown distribution over the inputs and
outputs of NNθ, and a differentiable data loss Q(θ) that quantifies the network’s fidelity to this
training set. Our learning goal is to solve the following constrained optimization problem:

min
θ
Q(θ) s.t. C(θ) ≤ 0. (2)

3 Approach
Learning Framework. Our learning approach is based on two ideas. First, we directly apply
a recently-developed equivalence between constrained and regularized learning [1, 18] to reduce
Equation (2) to a series of unconstrained optimization problems. (For more details, see Appendix A.1.)
Second, we use the novel technique of Differentiable Symbolic Execution (DSE) to solve these
unconstrained problems.

A key feature of our high-level algorithm is that it repeatedly solves the optimization problem
min
θ
Q(θ) + λC(θ) (3)

for fixed values of λ. This problem is challenging because while Q(θ) is differentiable in θ, C(θ)
depends on the entirety of Fθ and may not even be continuous. As we demonstrate in Section 4, this
makes it difficult to apply state-of-the-art gradient-based approaches to worst-case safe learning. DSE,
our main contribution, addresses this challenge by estimating gradients∇θC#(θ) of a differentiable
approximation C#(θ) of C(θ).

2

Background on Symbolic Execution. DSE is a refinement of symbolic execution [5], a clas-
sic technique for systematic formal analysis of programs. A symbolic executor systematically
searches the set of symbolic trajectories of programs, which we now define. Consider a program
Fθ = (Loc, X = {x1, . . . , xm}, l0, Init ,Safe,Transθ) as in Section 2. First, we fix a syntactically
restricted class Vθ of boolean constraints over the variables X and parameters θ. Vθ is required to be
closed under conjunction. Next, we define an abstraction function α : 2R

m → Vθ that maps sets S of
assignments to X to overapproximations drawn from Vθ.

We use α to construct an overapproximate update U#
θ : Vθ → Vθ for each update Uθ in Fθ. For all

V ∈ Vθ, we have U#
θ (V) = α({Uθ(v) : v satisfies V }). A symbolic state of Fθ is now defined as a

pair σθ = (l, Vθ), where l is a location and V ∈ Vθ. Intuitively, σθ represents the set of states of Fθ
that are at location l and satisfy the property Vθ.

Let us call a transition t = (l, G, U, l′) enabled at a symbolic state (l, V) if (G ∧ V) is satisfiable. A
symbolic trajectory of Fθ is a sequence τ#θ = 〈σ0, . . . , σn〉 with the following properties: (i). σ0 =
(l0, V0), with Init ⊇ V0; (ii). Let σi = (li, Vi). Then there exists a transition t = (li, Gi, Ui, li+1)
such that: (i) t is enabled at σi, and (ii) Vi+1 = U#(Gi ∧ Vi). In this case, we write σi+1 = t(σi).
Intuitively, τ#θ represents an overapproximation of the set of concrete trajectories of Fθ that pass
through the “control path” 〈l0, . . . , ln〉.
The above symbolic trajectory is safe if for all i, Vi ⇒ Safe(li). Intuitively, in this case, all concrete
trajectories that the symbolic trajectory represents follow the program’s safety requirements.

Probabilistic Symbolic Execution. A key difficulty with using symbolic execution to estimate the
safety loss C(θ) is that our programs need not be differentiable, or even continuous. On the one hand,
a discontinuous conditional statement can assign very different values to the variable in different
branches. On the other hand, a slight change in θ can sometimes cause the guard G of the conditional
to go from being True on some values of the variables used in conditional statement x, to being
False on all values of x. If the symbolic trajectory τ# in which G is True serves as an edge case
to judge whether a program is worst-case-safe, learning safe parameters would be difficult, as there
would be no gradient guiding the optimizer back to the case in which G is True.

DSE overcomes these difficulties using a probabilistic approach to symbolic execution. Specifically,
at a symbolic state σi = (li, Vi), the symbolic executor in DSE samples its next action following a
probability distribution pθ(t | σi), where t ranges over program transitions or a special action Stop.

For a boolean expression Vθ over the program variables and parameters, let Vol(Vθ) denote the
volume of the assignments to X that satisfy Vθ. Then we define: (i). If there is a unique program
transition t that is enabled at σi, then pθ(t|σi) = 1; (ii). If there is no transition t that is enabled at
σi, then pθ(Stop|σi) = 1; and (iii). Otherwise, let t1, . . . , tk be the transitions that are enabled at σi,
with ti = (li, Gi, Ui, li+1). Then pθ(tj |σi) = Vol(Gj∧Vi)

Vol(Vi)
.

DSE uses the distribution pθ(t|σi) to sample symbolic trajectories. Let τ#θ = 〈σ0, . . . , σn〉, with
σi+1 = ti(σi). The probability of sampling τ# is pθ(τ

#
θ) =

∏
i pθ(ti|σi−1). We note that pθ is

differentiable in θ.

Approximate Safety Loss. A key decision in DSE is to approximate the overall worst-case loss
C(θ) by the expectation of a differentiable safety loss computed per sampled symbolic trajectory.
Recall the safety loss Unsafe(s) for individual states. For σ = (l, V), we define Unsafeθ(σ) as
a differentiable approximation of the worst-case loss maxs satisfies V Unsafe(s). We lift this loss to
symbolic trajectories τ#θ = 〈σ0, . . . , σn〉 by defining Unsafeθ(τ

#) =
∑
iUnsafeθ(σi). We observe

that Unsafeθ is differentiable in θ.

Our approximation to the safety loss is now given by:

C#(θ) = Eτ#∼pθ(τ#)Unsafeθ(τ
#). (4)

Gradient Estimation. Our ultimate goal is to compute the gradient ∇θC#(θ) of the approximate
safety loss. At first sight, the classic REINFORCE estimator, or its lower-variance refinements, seems
suitable for this task, given that they can differentiate an integral over sampled “paths”. However, a
subtlety in our setting is that the losses for individual paths (symbolic trajectories) is a function of θ.
This calls for a generalization of traditional REINFORCE-like estimators.

3

(a) Thermostat[Safety] (b) Thermostat[Data Loss] (c) AC[Safety]

(d) AC[Data Loss] (e) Racetrack[Safety] (f) Racetrack[Data Loss]

Figure 1: The provably safe portion and the test data loss of Ablation, DIFFAI + and DSE when
varying the size of the data to train.

More precisely, we adapt the derivation of REINFORCE to our setting as follows:

∇θ(C#(θ)) = ∇θEτ#∼p(τ#)Unsafe(τ
#)

= ∇θ
∫
τ#∼p(τ#)

p(τ#)Unsafe(τ#)dτ#

=

∫
τ#∼p(τ#)

p(τ#) ∗ ∇θUnsafe(τ#) +∇θp(τ#)Unsafe(τ#)dτ#

= Eτ#∼p(τ#)[∇θUnsafe(τ#)] +Eτ#∼p(τ#)[Unsafe(τ
#)∇θ(logp(τ#))]

The above derivation can be further refined to incorporate the variance reduction techniques for
REINFORCE that are commonly employed in generative modeling and reinforcement learning. The
use of such techniques is orthogonal to our main contribution, and we ignore it in this paper.

4 Evaluation
System Setup. Our framework is built on top of PyTorch [24]. We use the Adam Optimizer [17]
for all the experiments with default parameters and a weight decay of 0.000001. We ran all the
experiments using a single-thread implementation on a Linux system with Intel Xeon Gold 5218
2.30GHz CPUs and GeForce RTX 2080 Ti GPUs.

Baselines. We use two types of baselines: (i). Ablation, which does not use safety constraint
explicitly, but train each neural network modules in the programs for each task with its own dataset.
(ii). DIFFAI +, an extended version of the original DIFFAI method [22]. DIFFAI+ extends DIFFAI
by adding the meet and join operations following the abstract interpretation technique [10].

Benchmarks. We give 3 case studies as benchmarks (See A.5 for detailed programs.): (i). Thermostat
models the controlling dynamics of a thermostat, where two neural networks modeling the controller
are the target to learn; (ii). Racetrack is a variant of the navigation benchmark [6, 8]. Two vehicles are
trained by path planners separately and the racetrack system is expected to learn two safe controllers
so that vehicles do not crash into walls or with each other; and (iii). Aircraft-Collision(AC) aims
to learn safe parameters for an airplane that performs maneuvers to avoid a collision with a second
plane.

Evaluation of Safety and Data Loss. Once training is over, we expect the learned program to fare
well in terms of safety and data loss values. We evaluate the test data loss by running the learned
program on 10000 initial states that were not seen during training. We evaluate the safety loss using an
abstract interpreter [10] that splits the initial condition into 10000 intervals, then constructs symbolic

4

trajectories from these programs. This analysis is sound (unlike the approximate loss employed
during DSE training) , meaning that the program is safe if the safety loss evaluates to 0. Our safety
metric is the provably safe portion, which is the fraction of these 10000 trajectories that are safe.

Results. From Figure 1a, 1c, 1e, we exhibit that DSE can learn programs with 0.99 provably safe
portion even with 200 data points and the results keep when increasing the number of data used.
Meanwhile, both DIFFAI + and ablation can not provide safe programs for AC and racetrack. For
thermostat, ablation and DIFFAI + can achieve 0.8 provably safe portion only when using 5000 and
10000 data points to train.

When increasing the number of data used, ablation and DIFFAI + can reach 0.95 provably safe portion
with 10000 data points for the thermostat case. However, the variance of results are large as the
minimum provably safe portion can reach 0.74 and 0.0 for ablation and DIFFAI +. In the thermostat
case, DIFFAI +’s performance mainly comes from the guidance from the data loss rather than the
safety loss. For the other two cases, larger data size can not help the ablation and DIFFAI + to give
much safer programs. For AC, the program learnt from ablation is very close to the safe area but the
ablation is still not accurate enough to give a safe program in every step. In the racetrack, increasing
the data size to train vehicles’ controllers can only satisfy the safety of “not crashing into walls”.
The property, “distance between vehicles” which depends on the interaction between neural network
modules, can not be learnt to be safe when increasing data size as this property is not represented
by isolated neural networks. Meanwhile, our test data loss is sometimes larger yet comparable with
the ablation and DIFFAI + from Figure 1b, 1f. For AC specifically, the safety constraint can help
the learner overcome some local optimal yet unsafe areas to get a safer result with more accurate
behaviors.

5 Related Work
Verification of Neural and Neurosymbolic Models. There are many recent papers on the verifica-
tion of worst-case properties of neural networks [4, 13, 15, 11, 31]. There are also several recent
papers [14, 30, 29, 8] on the verification of compositions of neural networks and symbolic systems
(for example, plant models). To our knowledge, the present effort is the first to integrate a method
of this sort — propagation of worst-case intervals through neurosymbolic program — with the
gradient-based training of neurosymbolic programs.

Verified Deep Learning. There is a growing literature on methods that incorporate worst-case
objectives (safety, robustness, or stability) into the training loops of neural networks [32, 22, 20, 9, 27].
Most prior work on this topic focuses on the training of single neural networks. There are a few
domain-specific efforts that consider the environment of the neural networks being trained. For
example, [26] uses spectral normalization to constrain the neural network module of a neurosymbolic
controller and ensure that it respects certain stability properties. Unlike DSE, the training process
in these methods treat the neural network in an isolated way and does not consider the interactions
between the neural network modules and surrounding human-written code [28, 25, 23, 16].

Verified Parameter Synthesis for Symbolic Code. There is a large body of work on parameter
synthesis for traditional symbolic code [3, 7] with respect to worst-case correctness constraints.
However, because these methods do not use contemporary gradient-based learning, scaling them to
programs with neural modules is impractical.

6 Conclusion
We presented DSE, the first approach to worst-case-safe parameter learning for neurosymbolic
programs that embed neural networks inside potentially discontinuous symbol code. Our key
innovation is that we design and implement a new way to bridge symbolic execution and stochastic
gradient estimator to represent and learn the loss of symbolic properties. We exhibit that DSE
outperforms a state-of-the-art approach to worst-case-safe deep learning.

Our current implementation of DSE uses an interval representation of symbolic states. Future work
should explore more precise representations such as zonotopes. One challenge in DSE is that learning
here can get harder as the symbolic state representation gets more precise. In particular, if we increase
the number of components of the initial symbolic state beyond a point, each component would only
lead to a unique symbolic trajectory, and there would be no gradient signal to adjust the relative
weights of the different symbolic trajectories. Future work should seek to identify good, possible
adaptive, tradeoffs between precision of symbolic states and ease of learning.

5

Acknowledgments: Work on this paper was supported by the United States Air Force and DARPA
under Contract No. FA8750-20-C-0002, by ONR under Award No. N00014-20-1-2115, and by NSF
under grant #1901376.

References
[1] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudík, John Langford, and Hanna Wallach. A

reductions approach to fair classification. In International Conference on Machine Learning,
pages 60–69. PMLR, 2018.

[2] Aws Albarghouthi. Introduction to neural network verification. arXiv preprint arXiv:2109.10317,
2021.

[3] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman, Sanjit A
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. IEEE, 2013.

[4] Greg Anderson, Shankara Pailoor, Isil Dillig, and Swarat Chaudhuri. Optimization and abstrac-
tion: a synergistic approach for analyzing neural network robustness. In Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation, pages
731–744, 2019.

[5] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and Irene Finocchi.
A survey of symbolic execution techniques. ACM Computing Surveys (CSUR), 51(3):1–39,
2018.

[6] Andrew G Barto, Steven J Bradtke, and Satinder P Singh. Learning to act using real-time
dynamic programming. Artificial intelligence, 72(1-2):81–138, 1995.

[7] Swarat Chaudhuri, Martin Clochard, and Armando Solar-Lezama. Bridging boolean and
quantitative synthesis using smoothed proof search. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 207–220, 2014.

[8] Maria Christakis, Hasan Ferit Eniser, Holger Hermanns, Jörg Hoffmann, Yugesh Kothari, Jianlin
Li, Jorge A Navas, and Valentin Wüstholz. Automated safety verification of programs invoking
neural networks. In International Conference on Computer Aided Verification, pages 201–224.
Springer, 2021.

[9] Jeremy Cohen, Elan Rosenfeld, and Zico Kolter. Certified adversarial robustness via randomized
smoothing. In International Conference on Machine Learning, pages 1310–1320. PMLR, 2019.

[10] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Proceedings of the 4th
ACM SIGACT-SIGPLAN symposium on Principles of programming languages, pages 238–252,
1977.

[11] Yizhak Yisrael Elboher, Justin Gottschlich, and Guy Katz. An abstraction-based framework for
neural network verification. In International Conference on Computer Aided Verification, pages
43–65. Springer, 2020.

[12] Yoav Freund and Robert E Schapire. Game theory, on-line prediction and boosting. In
Proceedings of the ninth annual conference on Computational learning theory, pages 325–332,
1996.

[13] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri,
and Martin Vechev. Ai2: Safety and robustness certification of neural networks with abstract
interpretation. In 2018 IEEE Symposium on Security and Privacy (SP), pages 3–18. IEEE, 2018.

[14] Radoslav Ivanov, James Weimer, Rajeev Alur, George J Pappas, and Insup Lee. Verisig:
verifying safety properties of hybrid systems with neural network controllers. In Proceedings of
the 22nd ACM International Conference on Hybrid Systems: Computation and Control, pages
169–178, 2019.

6

[15] Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex:
An efficient smt solver for verifying deep neural networks. In International Conference on
Computer Aided Verification, pages 97–117. Springer, 2017.

[16] Michael Katz, Kavitha Srinivas, Shirin Sohrabi, Mark Feblowitz, Octavian Udrea, and Oktie
Hassanzadeh. Scenario planning in the wild: A neuro-symbolic approach. FinPlan 2021,
page 15, 2021.

[17] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[18] Hoang Le, Cameron Voloshin, and Yisong Yue. Batch policy learning under constraints. In
International Conference on Machine Learning, pages 3703–3712. PMLR, 2019.

[19] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[20] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

[21] Zohar Manna and Amir Pnueli. Temporal verification of reactive systems: safety. Springer
Science & Business Media, 2012.

[22] Matthew Mirman, Timon Gehr, and Martin Vechev. Differentiable abstract interpretation for
provably robust neural networks. In International Conference on Machine Learning, pages
3578–3586. PMLR, 2018.

[23] Ben Nassi, Yisroel Mirsky, Dudi Nassi, Raz Ben-Netanel, Oleg Drokin, and Yuval Elovici.
Phantom of the adas: Securing advanced driver-assistance systems from split-second phantom at-
tacks. In Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications
Security, pages 293–308, 2020.

[24] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-
performance deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-
Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Processing Systems 32,
pages 8024–8035. Curran Associates, Inc., 2019.

[25] S Joe Qin and Thomas A Badgwell. An overview of nonlinear model predictive control
applications. Nonlinear model predictive control, pages 369–392, 2000.

[26] Guanya Shi, Xichen Shi, Michael O’Connell, Rose Yu, Kamyar Azizzadenesheli, Animashree
Anandkumar, Yisong Yue, and Soon-Jo Chung. Neural lander: Stable drone landing control
using learned dynamics. In 2019 International Conference on Robotics and Automation (ICRA),
pages 9784–9790. IEEE, 2019.

[27] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus Püschel, and Martin T Vechev. Fast
and effective robustness certification. NeurIPS, 1(4):6, 2018.

[28] Peter Stone, Rodney Brooks, Erik Brynjolfsson, Ryan Calo, Oren Etzioni, Greg Hager, Julia
Hirschberg, Shivaram Kalyanakrishnan, Ece Kamar, Sarit Kraus, et al. Artificial intelligence
and life in 2030: the one hundred year study on artificial intelligence. 2016.

[29] Xiaowu Sun, Haitham Khedr, and Yasser Shoukry. Formal verification of neural network
controlled autonomous systems. In Proceedings of the 22nd ACM International Conference on
Hybrid Systems: Computation and Control, pages 147–156, 2019.

[30] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen,
Weiming Xiang, Stanley Bak, and Taylor T Johnson. Nnv: The neural network verification
tool for deep neural networks and learning-enabled cyber-physical systems. In International
Conference on Computer Aided Verification, pages 3–17. Springer, 2020.

7

[31] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal security
analysis of neural networks using symbolic intervals. In 27th {USENIX} Security Symposium
({USENIX} Security 18), pages 1599–1614, 2018.

[32] Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert Stanforth, Bo Li, Duane
Boning, and Cho-Jui Hsieh. Towards stable and efficient training of verifiably robust neural
networks. arXiv preprint arXiv:1906.06316, 2019.

8

Algorithm 1: Learning Safe, Optimal Parameter Mixtures [1, 18]
for t = 1, ..., N do

θt ← Bestθ(λt)

θ̂t ←Uniform(θ1, . . . , θt), λ̂t← 1
t

∑
λt

Lmax← L(θ̂,Bestλ(θ̂))

Lmin← L(Bestθ(λ̂t), λ̂t)

if Lmax − Lmin < ν then return (θ̂t, λ̂t);
λt+1← λ-Update(θ1, . . . , θt)

A Appendix

A.1 Learning Framework

We use an equivalence between constrained and regularized learning that [1, 18], among others, have
recently developed in other learning settings, we reduce our problem to a series of unconstrained
optimization tasks.

We convexify the program set {[[Fθ]] : θ ∈ Rk} by considering stochastic mixtures [18] and represent
the convexified set as a probabilistic function [[Fθ̂]](v). Following DSE, we rewrite Equation 2 in
terms of these mixtures:

θ̂∗ = argmin
θ̂

Q(θ̂) s.t. C#(θ̂) ≤ 0 (5)

We convert Equation 5 to a Lagrangian function

L(θ̂, λ) = Q(θ̂) + λC#(θ̂) (6)
(7)

, where λ ∈ R+ is a Lagrange multiplier. Following the equilibrium computation technique by [12],
Equation 5 can be rewritten as

max
λ∈R+

min
θ̂
L(θ̂, λ). (8)

Solutions to this problem can be interpreted as equilibria of a game between a λ-player and a θ̂-player
in which the θ̂-player minimizes L(θ̂, λ) given the current λ, and the λ-player maximizes L(θ̂, λ)
given the current θ̂. Our overall algorithm is shown in Algorithm 1. In this pseudocode, ν is a
predefined positive real. Uniform(θ1, . . . , θt) is the mixture that selects a θi out of {θ1, . . . , θt}
uniformly at random.

Bestθ(λ) refers to the θ̂ player’s best response for a given value of λ (it can be shown that this
best response is a single parameter value, rather than a mixture of parameters). Computing this best
response amounts to solving the unconstrained optimization problem minθ L(θ, λ), i.e.,

Bestθ(λ) = min
θ
Q(θ) + λC#(θ). (9)

Bestλ(θ̂) is the λ-player’s best response to a particular parameter mixture θ̂. We define this function
as

Bestλ(θ̂) =

{
0 if C#(θ̂) ≤ 0
S otherwise

(10)

where S is the upper bound on λ. Intuitively, when C#(θ̂) is non-positive, the current parameter
mixture is safe. As L is a linear function of λ, the minimum value of L is achieved in this case when
λ is zero. For other cases, the minimum L is reached by setting λ to the maximum value S.

Finally, λ-Update(θt) computes, in constant time, a new value of λ based on the most recent best
response by θ̂ player. We do not describe this function in detail; please see [1] for more details.

Following prior work, we can show that Algorithm 1 converges to a value (θ̂, λ̂) that is within additive
distance ν from a saddle point for Equation 8. To solve our original problem (Equation 2), we take

9

1 Example(x): // x ∈ [−5, 5]
2 y := NNθ(x)
3 if y ≤ 1.0:
4 z := x + 10.0
5 else :
6 z := x − 5.0
7 assert (z <= 1)

Loc = {`2, `3, `7}, X = {x, y, z}, l0 = {`2}
Init = (−5 ≤ x ≤ 5)

Safe(l7) = (z ≤ 1),Safe(l2) = True,Safe(l3) = True

Transθ = {(`2,True, 〈y := NNθ(x)〉, `3),
(`3, (y ≤ 1.0), 〈z := x+ 10.0〉, `7),
(`3, (y > 1.0), 〈z := x− 5.0〉, `7)

Figure 2: (Left) An example program. NNθ is a neural network with parameters θ. DIFFAI fails to
learn safe parameters for this program. (Right) The program as an STS. The location `i in the STS
corresponds to line i in the program. We abbreviate the updates by only showing the variable that
changes value.

the returned θ̂ and then return the real-valued parameter θi to which this mixture assigns the highest
probability. It is easy to see that this value is an approximate solution to Equation 2.

A.2 An Example Program Following Our Approach

Programs in higher-level languages can be translated to the STS notation in a standard way. For
example, Figure 2 (left) shows a simple high-level program. The STS for this program appears in
Figure 2 (right). Remarkably, while the program is simple, the state-of-the-art DIFFAI approach to
verified learning fails to learn safe parameters for it.

Assume that NNθ ∈ [−2, 1] when x > 0, and NNθ ∈ (1, 2] when x ≤ 0. This program has two
symbolic trajectories from x ∈ [−5, 5]. We represent the state set over x, y, z:

• τ#1 = 〈(`2, x ∈ [−5, 5]), (`3, x ∈ [−5, 5]∧y ∈ [−2, 2]), (`7, x ∈ [−5, 5]∧y ∈ [−2, 1]∧z ∈
[5, 15])〉

• τ#2 = 〈(`2, x ∈ [−5, 5]), (`3, x ∈ [−5, 5]∧y ∈ [−2, 2]), (`7, x ∈ [−5, 5]∧y ∈ (1, 2]∧ z ∈
[−10, 0])〉.

We note that only τ#2 is safe.

We have p(τ#1) = p(t2|σ2), as the other transitions in τ#1 have probability 1. We compute p(t2|σ2) =
Vol([−2,1])
Vol([−2,2]) = 0.75. Thus, p(τ#1) = 0.75 and similarly, p(τ#2) = 0.25.

A.3 Abstract Update for Neural Network Modules

We consider the box domain in the implementation. For a program with p variables, each component
in the domain represents a p-dimensional box. Each component of the domain is a pair b = 〈bc, be〉,
where bc ∈ Rp is the center of the box and be ∈ Rp≥0 represents the non-negative deviations. The
interval concretization of the i-th dimension variable of b is given by

[(bc)i − (be)i, (bc)i + (be)i].

Now we give the abstract update for the box domain following [22].

Add. For a concrete function f that replaces the i-th element in the input vector x ∈ Rp by the
sum of the j-th and k-th element:

f(x) = (x1, . . . , xi−1, xj + xk, xi+1, . . . xp)
T .

The abstraction function of f is given by:

f#(b) = 〈M · bc,M · be〉,
where M ∈ Rp×p can replace the i-th element of x by the sum of the j-th and k-th element by M · bc.

Multiplication. For a concrete function f that multiplies the i-th element in the input vector
x ∈ Rp by a constant w:

f(x) = (x1, . . . , xi−1, w · xi, xi+1, . . . , xp)
T .

The abstraction function of f is given by:

f#(b) = 〈Mw · bc,M|w| · be〉,

10

where Mw · bc multiplies the i-th element of bc by w and M|w| · be multiplies the i-th element of be
with |w|.

Matrix Multiplication. For a concrete function f that multiplies the input x ∈ Rp by a fixed
matrix M ∈ Rp′×p:

f(x) =M · x.
The abstraction function of f is given by:

f#(b) = 〈M · bc, |M | · be〉,
where M is an element-wise absolute value operation. Convolutions follow the same approach, as
they are also linear operations.

ReLU. For a concrete element-wise ReLU operation over x ∈ Rp:

ReLU(x) = (max(x1, 0), . . . ,max(xp, 0))T ,
the abstraction function of ReLU is given by:

ReLU#(b) = 〈ReLU(bc + be) + ReLU(bc − be)
2

,
ReLU(bc + be)− ReLU(bc − be)

2
〉.

where bc + be and bc − be denotes the element-wise sum and element-wise subtraction between bc
and be.

Sigmoid. As Sigmoid and ReLU are both monotonic functions, the abstraction functions follow
the same approach. For a concrete element-wise Sigmoid operation over x ∈ Rp:

Sigmoid(x) = (
1

1 + exp(−x1)
, . . . ,

1

1 + exp(−x1)
)T ,

the abstraction function of Sigmoid is given by:

Sigmoid#(b) = 〈Sigmoid(bc + be) + Sigmoid(bc − be)
2

,
Sigmoid(bc + be)− Sigmoid(bc − be)

2
〉.

where bc + be and bc − be denotes the element-wise sum and element-wise subtraction between bc
and be. All the above abstract updates can be easily differentiable and parallelized on the GPU.

A.4 Instantiation of the Unsafe Function

In general, the Unsafe(s) function over individual states can be any differentiable distance function
between a point and a set which satisfies the property that Unsafe(s) = 0 if s is in the safe set, A,
and Unsafe(s) > 0 if s is not in A. We give the following instantiation as the unsafeness score over
individual states:

Unsafe(s) =

{
minx∈A DIST(s, x) if s /∈ A

0 if s ∈ A
where DIST denotes the euclidean distance between two points.

Similarly, the Unsafe(σ) function over symbolic states can be any differentiable distance function
between two sets which satisfies the property that Unsafe(σ) = 0 if V is inA, and Unsafe(σ) > 0 if
V is not in A. We give the following instantiation as a differentiable approximation of the worst-case
loss maxs satisfies V Unsafe(s) in our implementation:

Unsafe(σ) =

{
mins satisfies V Unsafe(s) + 1 if V ∧ A = ∅

1− Vol(V ∧A)
Vol(V) if V ∧ A 6= ∅

A.5 Benchmarks for Case Studies

The detailed programs describing Aircraft-Collision, Thermostat and Racetrack are in Figure 3, 4
and 5. The πθ of Aircraft Collision and πcoolθ , πheatθ in Thermostat are a 3 layer feed forward net
with 64 nodes in each and a ReLU after each layer except the last one. A sigmoid layer serves as the
last layer. Both the πagent1θ and πagent2θ in Racetrack are a 3 layer feed forward net with 64 nodes in
each and a ReLU after each layer.

11

1 aircraftcollision(x):
2 x1, y1 := x, -15.0
3 x2, y2 := 0.0, 0.0
4 steps := 15
5 i = 0
6 while i < steps:
7 p0, p1, p2, p3, step := πθ(x1, y1, x2, y2, step, stage)
8 stage := argmax(p0, p1, p2, p3)
9 if stage == CRUISE:

10 x1, y1 := MOVE_CRUISE(x1, y1)
11 else if stage == LEFT:
12 x1, y1 := MOVE_LEFT(x1, y1)
13 else if stage == STRAIGHT:
14 x1, y1 := MOVE_STRAIGHT(x1, y1)
15 else:
16 x1, y1 := MOVE_RIGHT(x1, y1)
17
18 x2, y2 := MOVE_2(x2, y2)
19 i := i + 1
20 assert (!IS_CRASH(x1, y1, x2, y2))
21 return

Figure 3: Aircraft Collision

1 thermostat(x):
2 steps = 20
3 isOn = 0.0
4 i = 0
5 while i < steps:
6 if isOn ≤ 0.5:
7 isOn := πcoolθ (x)
8 x := COOLING(x)
9 else:

10 isOn, heat := πheatθ (x)
11 x := WARMING(x, heat)
12 i := i + 1
13 assert(!EXTREME_TEMPERATURE(x))
14
15 return

Figure 4: Thermostat

A.6 Experimental Details and Additional Results

A.6.1 System Setup.

Our framework is built on top of PyTorch [24]. We use the Adam Optimizer [17, 19] for all the
experiments with default parameters and a weight decay of 0.000001. For training and testing of the
data loss, we use a batch size of 512. For the safety loss representation, we consider the input set as
one component if not specified. We ran all the experiments using a single-thread implementation on
a Linux system with Intel Xeon Gold 5218 2.30GHz CPUs and GeForce RTX 2080 Ti GPUs. All
the experiments are tested via 10000 data for the test data loss and splitting the input set to 10000
components evenly to measure safety. We use provably safe portion, which is the portion of the safe
symbolic trajectories among the symbolic trajectories from the 10000 components, to denote the
safety.

A.6.2 Data Generation

For each program to be synthesized, we have a benchmark program consisting of predefined functions
(in the form of classic programs without neural networks).The program-form module is replaced by
neural networks with unknown parameters in the training and evaluation steps.

12

1 racetrack(x):
2 x1, y1, x2, y2 := x, 0.0, x, 0.0
3 steps := 20
4 while i < steps:

5 p10, p11, p12 := πagent1θ (x1, y1)

6 p20, p21, p22 := πagent2θ (x2, y2)
7 action1 := argmax(p10, p11, p12)
8 action2 := argmax(p20, p21, p22)
9 x1, y1 := MOVE(x1, y1, action1)

10 x2, y2 := MOVE(x2, y2, action2)
11 i := i + 1
12 assert(!CRASH_WALL(x1, y1) && !CRASH_WALL(x2, y2)
13 && !CRASH(x1, y1, x2, y2))
14
15 return

Figure 5: Racetrack

For each benchmark, we uniformly sample the points from a continuous input set and execute the
predefined benchmark program to get the input-output example dataset for each neural network
modules. Specifically, as we generate the data when treating the neurosymbolic program as a whole
and each program is safe, a neurosymbolic program with neural network modules 100% fitting the
datasets satisfies the safety constraint when the safety property can be measured. That said, any
concrete trajectories produced by the benchmark program, which starts from the points in the input
set are safe. Interestingly, there are also benchmark programs where the safety can not be measured.
Take racetrack as an example, we consider a racetrack system safe if two vehicles do not crash into
the maps and each other. The two vehicles are trained separately as we only require each of the
vehicle to follow the path planner in one map and there is no specific distance requirement of them
when mimicing the path planner’s behaviors. Therefore, there is no safety property representation
over the distance between vehicles during data generation. The benchmark program satisfies other
properties which exist, e.g. each vehicle not crashing into the wall.

A.6.3 Training Performance

Figure 6 illustrates the training performance of safety loss when we use 200 data points to train for
DIFFAI + and DSE. We can see that DSE can converge while DIFFAI + is quite unstable for these
three cases and can not converge to a small safety loss.

(a) Thermostat (b) Aircraft Collision (c) Racetrack

Figure 6: Training performance on different benchmarks. The y-axis represents the safety loss
(C#(θ)) and the x-axis gives the number of training epochs.

A.6.4 Provable Safety Analysis

Figure 7 displays the trajectories from the learnt programs of Ablation, DIFFAI + and DSE. The larger
portion of the symbolic trajectories is provably safe from DSE than the ones from baselines which is
indicated by the less overlapping between the green trajectories and the gray area. Meanwhile, we
give the concrete trajectories to remove the influence from the potential over-approximation of the
symbolic trajectories. More concrete trajectories of thermostat, aircraft-collision, and the distance
property of racetrack from DSE fall into the safe area compared with DIFFAI + and Ablation.

13

(a) Ablation(Final) (b) DIFFAI +(Final) (c) DSE (Middle) (d) DSE (Final)

(e) Ablation(Final) (f) DIFFAI +(Final) (g) DSE (Middle) (h) DSE (Final)

(i) Ablation(Final)[pos] (j) DIFFAI +(Final)[pos] (k) DSE (Middle)[pos] (l) DSE (Final)[pos]

(m) Ablation(Final) [dist] (n) DIFFAI +(Final) [dist] (o) DSE (Middle) [dist] (p) DSE (Final) [dist]

Figure 7: Trajectories during training. Each row exhibits the concrete trajectories and symbolic
trajectories of one case from different methods. From top to bottom, the cases are Thermostat
(Figure. 7a, 7b, 7c, 7d), Aircraft-Collision (Figure. 7e, 7f, 7g, 7h), Racetrack with position property
(Figure. 7i, 7j, 7k, 7p) and distance property (Figure. 7m, 7n, 7o, 7p). Each figure shows the
trajectories (concrete: red, symbolic: green) of programs learnt by the method from the different
training stages, which is denoted by “Middle” and “Final”. We separate the input state set into 100
components to plot the symbolic trajectories clearly. During evaluation, we separate the input set into
10000 components to get more accurate symbolic trajectories measurement.

A.6.5 Target Problems

For cases studies, the three cases are all neurosymbolic programs with neural modules to make
decisions. Meanwhile, the interaction between neural networks is important for these benchmarks.
In thermostat and aircraft-collision, the neural modules’ outputs decide the actions that the neural
module to take in the next steps. In racetrack, the distance between two neural modules regulates
each step of the vehicles’ controllers. In summary, DSE performs much better in the cases where
neural modules are used in the conditional statement and the interaction between neural modules is
important for the safety property.

14

	Introduction
	Problem Formulation
	Approach
	Evaluation
	Related Work
	Conclusion
	Appendix
	Learning Framework
	An Example Program Following Our Approach
	Abstract Update for Neural Network Modules
	Instantiation of the Unsafe Function
	Benchmarks for Case Studies
	Experimental Details and Additional Results
	System Setup.
	Data Generation
	Training Performance
	Provable Safety Analysis
	Target Problems

