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Abstract

Parameter-efficient training, based on low-rank optimization, has become a highly
successful tool for fine-tuning large deep-learning models. However, these methods
fail at low-rank pre-training tasks where maintaining the low-rank structure and
the objective remains a challenging task. We propose the Quadratic Reweighted
Rank Regularizer dubbed Q3R, which leads to a novel low-rank inducing training
strategy inspired by the iteratively reweighted least squares (IRLS) framework.
Q3R is based on a quadratic regularizer term which majorizes a smoothed log
determinant serving as rank surrogate objective. Unlike other low-rank training
techniques, Q3R is able to train weight matrices with prescribed, low target ranks
of models that achieve comparable predictive performance as dense models, with
small computational overhead, while remaining fully compatible with existing
architectures. In experiments, we are able to truncate 60% of the parameters of a
ViT-Tiny parameters with marginal loss in CIFAR-10 performance and up to 80%
with only 4% accuracy drop. The efficacy of Q3R is confirmed on Transformers
across both image and language tasks, including for low-rank fine-tuning.
The code is available at https://github.com/ThatE10/q3r.git.

1 Introduction

Modern deep learning architectures continue to grow in size and complexity (RWC`19), creating
a growing demand for efficient training methodologies. Low-rank regularization has emerged
as a powerful paradigm for addressing these challenges by explicitly constraining the parameter
search space through matrix factorization. This approach builds on the empirical observation that
neural networks exhibit inherent low-dimensional structure in their weight matrices during training
(GK`22).

Practical implementations face three key challenges: (1) performance degradation compared to
full-rank baselines, (2) optimal rank selection across layers, and (3) maintaining training stability.
Prior work addresses these through spectral initialization (GK`22), orthogonality regularization
(YYT`20).
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Recent advances in parameter-efficient fine-tuning (PEFT) have expanded the low-rank training
paradigm through methods like Low-Rank Induced Training (LoRITa) (AZW). These approaches
maintain the original model architecture during inference while inducing low-rank structure through
strategic layer overparameterization during training. LoRITa specifically decomposes weight matrices
Wi into products

śN
k“1 W

k
i during optimization, enabling implicit rank reduction through singular

value truncation post-training (AZW). This methodology demonstrates that explicit rank constraints
can be replaced by training dynamics that naturally favor low-rank solutions.

Despite their promise, existing low-rank training approaches present several notable limitations.
Traditional low-rank methods often suffer from performance degradation relative to full-rank baselines
(GK`22; YYT`20). Methods such as LoRA and LoRITa, while effective at reducing trainable
parameters, can struggle to capture the full structure making it difficult to generalize to complex
tasks (AZW). Furthermore, PEFT techniques introduce additional hyperparameters (such as rank
and scaling factors) whose optimal values may not generalize across architectures, datasets, or
downstream tasks, often requiring extensive re-tuning and experimentation. In multilingual or
low-resource settings, PEFT methods like LoRA have been observed to yield inconsistent results,
sometimes improving language-specific generation at the expense of reasoning or generalization
abilities (KJP`25). Combining multiple PEFT modules for multi-task or continual learning can also
lead to increased memory usage and system complexity, offsetting some of the intended efficiency
gains. Overall, it can be observed that the advances in LoRA-type parameter-efficient training
methods have not yet been able to be translated to enable robust low-rank pre-training.

2 Contribution

We propose Quadratic Reweighted Rank Regularization (Q3R), which solves the pre-existing
problems by introducing an optimizer-compatible regularization framework based on smoothed
log-determinant rank surrogates outlined in Section 4.1, which is specifically designed for low-rank
pre-training. Our approach is theoretically grounded in saddle-escaping second-order optimization
methods, and it comes with little computational overhead compared to unregularized training despite
its efficacy for promoting low-rank neural network weight matrices. Additionally, we propose the
Adam variant AdamQ3R in Section 4.2, which is tailored to optimizing Q3R-regularized loss functions
and which improves the performance of training Q3R-regularized models.

Numerical experiments show that Q3R is able to reduce the number of parameters in ViT models
by 60% during pre-training on CIFAR-10, with only around 1.3% accuracy drop. We validate the
performance of Q3R for low-rank fine-tuning with experiments fine-tuning RoBERTa and Llama3 on
GLUE tasks, for which Q3R achieves comparable performance compared to dense fine-tuning and
state-of-the art low-rank PEFT methods. Compared to state-of-the-art low-rank training methods such
as LoRA (HSW`22b), LoRITa (AZW), Q3R consistently produces models with better generalization
at high truncation levels, without requiring overparameterization or full-rank warmup phases.

In Section 4, we elaborate the methodology of the proposed work, which is further discussed with a
detailed derivation in the Supplementary material in Appendix A. In Section 5, we empirically show
the performance of Q3R, in comparison to other state-of-the-art methods. We continue with more
experimental evaluations in the Supplementary material in Appendix D. Appendix D also includes
discussions of the computational aspects of our methodology. In Appendix E, we demonstrate the
robustness of Q3Rto different hyperparameter variations. We briefly discuss the limitations of our
work in Section 6.

3 Related Work

Parameter-Efficient Fine-Tuning (PEFT) Parameter-efficient fine-tuning is the concept of modi-
fying only parts of a fully parametrized pre-trained model to excel at specific task of interest. PEFT
methods such as adapters (HGJ`19) and LoRA (HSW`22b) introduce small, trainable modules
into a frozen pretrained model, drastically reducing the number of parameters to be updated. These
techniques often match full fine-tuning performance with only a tiny fraction of trainable parame-
ters. However, the low-rank constraints that make LoRA-style methods efficient for downstream
tasks also limit capacity if applied during pre-training. Training from scratch with only low-rank
adapters or factorizations (instead of full-rank weight updates) tends to underperform, as it restricts
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optimization to a low-dimensional subspace (ZZC`24). LoRA assumes a well-formed pretrained
weight W plus a low-rank perturbation of rank-r adapter matrices A P Rdˆr and B P Rrˆd such
that ∆W “ AB; without a strong initial W , such updates struggle to capture the full complexity
needed for learning from scratch. KronA replaces LoRA’s product with a Kronecker factorization for
better rank-parameter trade-offs (ETK`25). DoRA decouples update magnitude and direction via a
learnable scaling factor, improving upon LoRA’s expressivity (LWY`24). Compacter uses shared,
low-rank, Kronecker-parameterized adapters across layers, matching standard adapters with only
0.05 % extra parameters (MHR21).

Low-Rank Training in Neural Networks. Neural networks often exhibit implicit low-rank struc-
ture during training, as optimization dynamics like SGD with weight decay tend to bias models
toward low-rank solutions (GSGP25; HMZ`23). This observation has motivated a range of explicit
low-rank training methods that constrain parameter matrices directly. A common approach factor-
izes weights and trains the factorized weights instead, reducing compute and memory costs with
minor accuracy loss (KTMF21). Techniques like LoRA (WMPG24b) and its extensions (LSMR23)
inject low-rank updates into pretrained Transformer weights, enabling parameter-efficient adaptation.
However, pre-training directly under low-rank constraints remains more challenging. (WMPG24a)
shares a similar motivation to ours—studying the limitations of LoRA-style low-rank pre-training and
proposing an alternative regularization-driven approach to induce low-rank structure during training.
Although we approach the problem through a different optimization framework, their analysis and
framing of the limitations of adapter-based methods are highly relevant and can guide refinement of
both the positioning and justification of our method. Regularization-based approaches use nuclear
norm or log-determinant surrogates to promote low-rank solutions (SZCT23), while others apply
orthogonality constraints and adaptive rank pruning (YYT`20; YCS`20). In Transformers, low-rank
parameterizations have achieved 2–5ˆ compression with minimal performance drop (AZW), and
Cuttlefish (WAUc`23) automates rank selection by monitoring stable ranks during a warmup phase.
Still, many methods rely on post-hoc truncation or overparameterization, which do not minimize
rank during training. Our work addresses this gap by directly optimizing for low-rank solutions via
reweighted least squares, promoting compact representations throughout pre-training. However, many
of these methods rely on overparameterization or post-hoc truncation and do not directly minimize
rank during training. In contrast, our approach promotes low-rank structure directly via optimization,
using a principled regularization technique rooted in reweighted least squares.

Spectral Low-Rank Regularization. A related line of work studies algorithms that impose low-
rankness of neural network matrices based on the nuclear norm, Schatten-p quasi-norm or a direct
rank regularization. In particular, (AS17) proposed a proximal stochastic gradient descent applied to
the nuclear norm. Methods that apply spectral truncation (e.g., via truncated SVD) during training or
post-training (YTW`20; XLZ`20) can also be understood within this framework. A downside of
such approaches is the computational overhead: they require at least a truncated SVD at every iteration,
which quickly becomes computationally prohibitive for larger networks. Moreover, arguably, such
aggressive, discontinuous rank regularization interferes with the continuous gradient-based training
process of the network.

In contrast, our proposed Q3R regularizer imposes low-rankness more gradually by reweighting at
periodic intervals, at which a smoothing parameter is updated as well, which we find to be sufficient
for convergence while significantly reducing the computational overhead. This “soft” imposition of
low-rank structure aligns with insights from IRLS-based methods (see below). A spectral, Schatten-p
regularization is also the core of the motivation of LoRITa (AZW); however, in this case, the spectral
regularization can be seen as a justification of an (unweighted) squared Frobenius norm regularization
on factor matrices, whereas Q3R does not work with factor matrices and considers a reweighted
quadratic term.

Rank Regularization and IRLS. In a line of work that significantly precedes the interest in
low-rank techniques for deep learning, the problem of identifying or learning a low-rank matrix
from noisy, under-determined linear measurements has been studied for decades in control theory
(FHB03; DCM22), recommender systems (Kor09; KBV09) and compressed sensing (RFP10; DR16).
Even in this setting, which is fundamentally linear unlike the training of deep neural networks, the
minimization of a rank objective subject to the constraints is NP-hard (Nat95; RFP10) , motivating
surrogate formulations or relaxations. Convex relaxations using the nuclear norm (CR09; RFP10;
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DR16; CW18) have been popular for a long time due to their strong recovery guarantees under
suitable assumptions and their ability to be tackled using the machinery of convex optimization
(BV04), but fail to result in a convex formulation in the deep learning setting. Even disregarding
computational limitations of convex regularizations (CC18), non-convex rank surrogates such as the
log-determinant penalty (FHB03) lead to algorithms which are more data-efficient as a evidenced for
a variety of low-rank matrix recovery problems (FHB04; CESV13; KS18; KM23).
If combined with a suitable smoothing strategy, the non-smooth optimization framework of Iteratively
Reweighted Least Squares (IRLS), originally pioneered by Weiszfeld (Wei37; WP09; BS15), has
emerged as a leading algorithmic framework to optimize non-convex rank surrogates (FRW11; MF10;
KMV21; GTK24) as it provides good trade-offs between scalability, data-efficiency, saddle-point
evasion (present due to inherent non-convexity) and fast convergence. On a high level, IRLS solves a
sequence of weighted Frobenius-norm problems that progressively suppress smaller singular values.
The proposed rank regularization term Q3R (detailed in Section 4.1) builds on recent improvements on
low-rank IRLS weight operator formulations (KMV21; GTK24) (or reweighting strategies), which,
unlike older formulations (FRW11; MF10), allow for fast saddle-point evasion and locally quadratic
convergence rates. To the best of our knowledge, IRLS-type low-rank regularization, which is at
the core of Q3R, has not been explored in the literature in the context of deep learning so far. While
providing an interesting perspective on older IRLS formulations (FRW11; MF10) from an average
gradient outer product perspective, the recent work (RBD25) does not provide insights towards
the derivation of quadratically convergent IRLS methods (KMV21; GTK24), nor does it extend the
framework towards low-rank training of deep networks.

In the language of the low-rank recovery literature, LoRA-type (HSW`22a) approaches are known
under the name of (Burer-Monteiro (BM03)) matrix factorization methods (SL16; ZL15; MWCC20;
CLC19; ZCZ22; XSCM23; SZ25). While popular in applications (KBV09; RKZK22) due to their
scalability, it is known that they can be outperformed by IRLS or Riemannian optimization approaches
in more challenging setups involving, e.g., limited data (ZN22; LHLZ24), which is one motivation of
our work.

4 Methodology

In this section, we provide a detailed derivation and definition of the Quadratic Reweighted Rank
Regularizer Q3R in Section 4.1, before we embed it into a training scheme to train low-rank weights
of deep learning models in Section 4.2.

4.1 Low-Rank Regularization via Q3R

Given a neural network with K weight matrices Θ “ tWi : Wi is weight matrix, i “ 1, . . . ,Ku, a
functionally ideal regularization term to add to the loss function of the network for the promotion of
a low-rank weight is simply the rank of W. However, rankpWq is non-convex and not continuous,
and thus hard to incorporate into a gradient-based training methodology.

In the following, we consider the non-convex, but continuously differentiable rank surrogate Fϵp¨q

called ϵ-smoothed log-determinant, defined as

FϵpWq :“
d

ÿ

i“1

fϵpσipWqq, where fϵpσq “

"

ϵ2 plogpσq ´ logpϵqq ` 1
2ϵ

2, if σ ě ϵ,
1
2σ

2, if σ ă ϵ,
(1)

where σipWq is the i-th singular value of W, and which is parametrized by a smoothing parameter
ϵ ą 0. The definition of (1) follows (KM23) and is related to the log-determinant heuristics
log detpW ` ϵIq “

řd
i“1 logpσipWq ` ϵq defined for positive semi-definite matrices W P Rdˆd

of (FHB03; CESV13; RBD25). Compared to other log-determinant type functions, Fϵp¨q from (1)
has a few advantages: It is lower bounded by 0 for any ϵ and has a 1-Lipschitz gradient, making
the objective compatible with gradient-based optimizers without extensive step-size adaptation.
Furthermore, its smoothing parameter ϵ regulates the non-convexity of its optimization landscape and
recovers the well-known squared Frobenius norm as FϵpWq “ 1

2}W}2F in the case of σ1pWq ă ϵ.

The rank regularizer we study in this paper, however, is not simply Fϵp¨q: If we were to work
directly with the ϵ-smoothed log-determinant, its gradients ∇FϵpWq would require a full spectral
decomposition of W at each training iteration (see supplementary material).
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Instead, we consider, given an expansion center point W1 (which may correspond to the current
weight matrix during a neural network training dynamics), the quadratic model Qϵp¨|W1q defined as

QϵpW | W1q “ FϵpW
1q ` 1

2 xW, RW1,ϵpWqy ´ 1
2 xW1, RW1,ϵpW

1qy, (2)

where RW1,ϵp¨q : Rd1ˆd2 Ñ Rd1ˆd2 is a positive definite, so-called reweighting operator (KMV21;
GTK24), defined in Definition 4.1 below.
Definition 4.1 (Reweighting Operator (KM23)). Let ϵ ą 0 and W1 P Rd1ˆd2 be a matrix with
singular value decomposition W1 “ UW1 diagpσipW

1qqVJ
W1 , where U P Rd1ˆrpW1,ϵq and V P

Rd2ˆrpW1,ϵq are matrices of the leading rpW1, ϵq left and right singular vectors satisfying UW1 “

rU UKs P Rd1ˆd1 and VW1 “ rV VKs P Rd2ˆd2 , and

rpW1, ϵq :“ |ti P t1, . . . ,minpd1, d2qu : σipW
1q ą ϵu| (3)

is the number of singular values of W1 larger than ϵ. Then we define the reweighting operator
RW1,ϵ : Rd1ˆd2 Ñ Rd1ˆd2 associated to the matrix W1 and smoothing parameter ϵ as

RW1,ϵpWq “ UW1Σ´1
ϵ,d1

UJ
W1WVW1Σ´1

ϵ,d2
VJ

W1 ,

where Σϵ,d “ diagpmaxpσipW
1q{ϵ, 1qqdi“1 P Rdˆd for d P td1, d2u.

The reweighting operator satisfies the following simple properties (shown in the supplementary
material), which makes working with it computationally feasible.

Lemma 4.1. For ϵ ą 0 and W1, let U P Rd1ˆrpW1,ϵq, V P Rd1ˆrpW1,ϵq and RW1,ϵ : Rd1ˆd2 Ñ

Rd1ˆd2 be as in Definition 4.1. Then the following statements are true:

1. RW1,ϵp¨q is a positive definite operator with respect to the Frobenius inner product xA,By “

trpAJBq, i.e., xW,RW1,ϵpWqy ą 0 for all non-zero W P Rd1ˆd2 .

2. The image RW1,ϵpWq of any W P Rd1ˆd2 w.r.t. the reweighting operator can be computed as

RW1,ϵpWq “ ϵ2UΣ´1UJWVΣ´1VJ ` ϵUΣ´1UJWpI ´ VVJq

` ϵpI ´ UUJqWVΣ´1VJ ` pI ´ UUJqWpI ´ VVJq,
(4)

where Σ “ diagpσipW
1qq

rpW1,ϵq

i“1 P RrpW1,ϵqˆrpW1,ϵq is the diagonal matrix containing the largest
rpW1, ϵq singular values of W1.
3. The quadratic model of (2) satisfies, for all W,W1 P Rd1ˆd2 , that

QϵpW | W1q “ FϵpW
1q ` x∇FϵpW

1q,W ´ W1y ` 1
2 xW ´ W1, RW1,ϵpW ´ W1qy. (5)

We note that the quadratic model Qϵp¨ | W1q (2) defined by RW1,ϵ is a majorizing quadratic model
that satisfies QϵpW|W1q ě FϵpWq for all W P Rd1ˆd2 .2 It is different from a second-order Taylor
expansion of the Fϵp¨q about W1, which would only be an approximation, but no majorization
due to the non-convex nature of Fϵp¨q. The quadratic model can still be related to a second-order
Taylor expansion of Fϵ via (5) as each generalized Hessian (HUSN84) B2FϵpW

1q of Fϵ satisfies
B2FϵpW

1q ĺ RW1,ϵ in the Loewner order.

We observe that in the quadratic model QϵpW | W1q of (2), the only term that depends on W is the
second summand. Thus, to obtain a simple, differentiable regularizer term that can be incorporated
into a deep learning framework, we define the Quadratic Reweighted Rank Regularizer Q3R of a neural
network weight matrix W P Rd1ˆd2 , given W1 P Rd1ˆd2 and ϵ ą 0, as Q3RW1,ϵ : R

d1ˆd2 Ñ R
with

Q3RW1,ϵpWq “
1

2
xW,RW1,ϵpWqy. (6)

As we see in the next section, it is simple and tractable to compute its gradient ∇W Q3RW1,ϵpWq P

Rd1ˆd2 , which can be used by any gradient-based optimizer.

2This majorization property is implicitly postulated in (KMV21; KM23), but without proof. While proving
this property is beyond the scope of this paper, we believe that the statement is true.
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Algorithm 1 Update Reweighting Operator RW1,ϵold p¨q ÞÑ RW,ϵnew p¨q

1: Input: NN weight matrix W P Rd1ˆd2 ; target rank rtarget; prev. smoothing parameter ϵold.
2: Output: Updated ϵnew, reweighting operator RW,ϵnew (via Σ, U, V), envelope rank renv
3: Compute rU,Σ,Vs “ SVDϵold pWq of W, where SVDϵold p¨q computes a partial singular value

decomposition of its input up to order rp¨, ϵoldq (see (3)) as well as σrtarget`1pWq.
4: ϵnew “ min

`

ϵold, σrtarget`1pWq
˘

. Ź UPDATE SMOOTHING (7)
5: renv “ rpW, ϵnewq Ź UPDATE RANK ENVELOPE
6: Set U “ U:,1:renv , V “ V:,1:renv , Σ “ Σ1:renv,1:renv Ź RESTRICT PART. SVD MATRICES

7: return Reweighting operator RW,ϵnew implicitly defined by UPRd1ˆrenv , VPRd2ˆrenv , Σ & ϵnew.

Furthermore, we periodically (but not at each training iteration) update the reweighting operator of
Q3R (and thus, the underlying quadratic model QϵpW | W1q) by setting W1 Ð W and re-compute
RW1,ϵ, for which a truncated SVD of W is sufficient due to (4). Additionally, whenever updating
RW1,ϵ, we apply the non-increasing update

ϵ Ð minpϵ, σrtarget`1pWqq (7)

to the smoothing parameter ϵ, which uses a target rank parameter rtarget as an input. The rationale of
this smoothing parameter update is two-fold: first, this choice gives partial control on the expected
rank of the weight matrix after training, as the value of RW1,ϵpWq tends to 0 if ϵ follows the dynamics
of (7) in the case of ϵ Ñ 0 for matrices W whose row and column spaces are both orthogonal to the
columns of U and V, respectively. Second, this choice increases the non-convexity the ϵ-smoothed
log-determinant Fϵ underlying Q3R gradually (YATC20), facilitating a fast convergence to true
low-rank solutions without becoming trapped in high-rank local minima (KMV21; KM23). We
summarize computational steps of a reweighting operator update in Algorithm 1.

4.2 Neural Network Training via AdamQ3R

Let now y : Rd1
1ˆd1

2 ˆRdK
1 ˆdK

2 ˆRdin Ñ Rdout be the input-output mapping of a deep neural network
that depends on weight parameter matrices Θ “ tWk P Rdk

1ˆdk
2 : Wk is weight matrix, k “

1, . . . ,Ku. For a Transformer-based architecture such as Vision Transformer (DBKea21), the weight
matrices include square layer- and head-wise query, key and value weight matrices Wq,Wk,Wv P

Rdˆd as well as rectangular projection and MLP layer weight matrices. Given a pairwise loss ℓp¨, ¨q

such as cross entropy and a training dataset txi, yiu
n
i“1, we can define the (unregularized) network

loss as LpΘq “ 1
n

řn
i“1 ℓ

`

ypΘ, xiq, yi
˘

.
Algorithm 2 Low-Rank Training via AdamQ3R

Input: Minibatch size B, reweighting period T , Q3R param-
eter λ, learning rate α “ 0.001, β1 “ 0.9, β2 “ 0.999,
δ “ 10´8, η “ 3, target rank rtarget.

1: Initialize parameter W0, ϵ0 and reweighting operator
RW0,ϵ0

2: for t “ 0, 1, . . . do
3: if t mod T “ 0 then
4: Update reweighting operator Rt t

T up¨q :“

RWt,ϵtp¨q and ϵt Ź USE ALGORITHM 1
5: end if
6: Sample minibatch S “ tpxi, yiquBi“1
7: gt`1 Ð ∇WLSpWtq Ź COMPUTE BATCH

GRADIENT OF L8: mt`1 Ð β1mt ` p1 ´ β1qgt`1

9: vt`1 Ð β2vt ` p1 ´ β2qg2
t`1

10: m̂t`1 Ð mt`1{p1 ´ βt`1
1 q

11: v̂t`1 Ð vt`1{p1 ´ βt`1
2 q

12: Rt Ð Rt t
T upWtq Ź COMPUTE Q3R GRADIENT (4)

13: Wt`1 Ð Wt ´ η
´ αm̂t`1

a

v̂t`1 ` δ
` λRt

¯

14: end for
15: return Wt

In order to gradually impose low-rank weights dur-
ing training, we propose to optimize instead the
Q3R-regularized total loss LQ3RpΘq :“ LpΘq `

λ
řK

k“1:Q3R is active for Wk
Q3RW

1

k,ϵk
pWkq, where

λ ą 0 is a regularization parameter and the
Q3RW

1

k,ϵk
p¨q are as in (6); the tW

1

ku are ini-
tially set to the initialization weights, and ϵk “ 8

for each k “ 1, . . . ,K. We observe that due
to the definition of Q3R, the gradient with re-
spect to the regularizer terms can be computed
as ∇Wk

Q3RW
1

k,ϵk
pWkq “ RW

1

k,ϵk
pWkq for

each k, i.e., by computing the image of Wk with
respect to the reweighting operator RW

1

k,ϵk
p¨q of

Definition 4.1.

The Q3R-regularized loss LQ3R can now be used
in conjunction with any optimizer suitable for
the neural network architecture such as minibatch
stochastic gradient or Adam (A`14). To ensure
that the quadratic models underlying Q3R match
the ϵk-smoothed log-determinant rank surrogates
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Fϵk (1) closely, we update the reweighting operators RW
1

k,ϵk
p¨q via Algorithm 1 on a fixed iteration

schedule of every T training iterations–we call this parameter T the reweighting period.

However, instead of using a generic adaptive gradient optimizer such as Adam on LQ3R, we observe
that the Q3R terms already possess accurate second-order information of underlying regularization
surrogate, which means that including the Q3R terms into the adaptive part of an Adam-like optimizer
is likely to be suboptimal. For this reason, we propose to use a dedicated adaptive optimizer to
optimize LQ3R, dubbed AdamQ3R, which is detailed in Algorithm 2. AdamQ3R extends the observation
of AdamW (LH19) that a decoupling of regularization term (in that case, squared Frobenius norm
regularization) and network loss improves generalization performance to Q3R regularization, avoiding
a distortion of the loss landscape. A validation of the benefits of using AdamQ3R vs. standard Adam
applied to LQ3R can be found in the supplementary material.

Computational Aspects. Following the low-rank training framework of Q3R, for example, via
AdamQ3R, introduces a limited computational overhead compared to unregularized deep learning.
Every T training iterations, a truncated singular value decomposition of order renv (see Algorithm 1)
of each weight matrix Wi P Rd1ˆd2 to which Q3R is applied is required, which has a time complexity
of Opd1d2renv ` pd1 ` d2qr2envq (HMT11). Similarly, calculating a Q3R gradient Rt in Algorithm 2
imposes a total cost of O

`

d1d2renv ` pd1 ` d2qr2env ` r3env

˘

. Since the smoothing parameter update
rule (7) is designed to relate renv with the target rank rtarget such that renv « rtarget, the additional time
complexity is somewhat proportional to the target rank. To obtain significant parameter reductions
in the trained network weight matrices, it is chosen such that rtarget ! minpd1, d2q, which limits the
computational overhead of Q3R in the most interesting use cases. Additional memory requirements
amount to renvpd1 ` d2 ` 1q per weight matrix as the reweighting operator information needs to be
stored via U,V and Σ.

5 Experiments

We explore the ability of Q3R to obtain favorable trade-offs between model performance and parameter-
efficiency across diverse architectures and data distributions experimentally. To this end, we compare
different low-rank training methodologies across a range of architecture-dataset pairs: we pre-train
ViT-Tiny (DBKea21; SKZ`22) on CIFAR-10, ViT-Base (DBKea21) on CIFAR-100, followed by
post-training low-rank truncation (AZW); further, we fine-tune BERT-Large (DCLT19) on GLUE
benchmark tasks (without truncation).

5.1 Low-Rank Pre-Training

We compare the accuracy of models trained by Q3R against baselines LoRITa (AZW), LoRA
(HSW`22a), and a model trained without low-rank regularization, after post-training truncation.
After training, we truncate each layer weight matrix Wk P Θ using a truncated SVD to obtain
factor matrices A,B with inner dimension r and Wk « AB for a range of ranks r corresponding
to different parameter retention percentages p. Depending on the experiment, we apply low-rank
regularization to different subsets of weights tWku.

ViT-Tiny Trained on CIFAR-10. We train ViT-Tiny on CIFAR-10 for 100 epochs using a learning
rate of α “ 0.00004. We enable low-rank training for all Transformer blocks, accounting for 96%
of ViT-Tiny’s parameters. We conduct a hyperparameter sweep across different configurations, and
Figure 1a shows the best performance achieved by each training method when rank regularization
is applied to the MLP and QKV weights. From Table 1, we find that AdamQ3R retains 42.4% of
the original parameters with only a 1.22% performance drop, and retains 23.2% of parameters with
a 4.4% performance drop, while LoRITa consistently underperforms in comparison. As shown in
Figure 1b, despite various hyperparameter configurations λ and d for LoRITa, AdamQ3R consistently
outperforms LoRITa upon truncation.

ViT-Base Trained on CIFAR-100. To demonstrate the performance of the low-rank pre-training
methods on a more challenging dataset and larger model, we train the 86M parameter ViT-Base from
scratch for 100 epochs on CIFAR-100 with data augmentation and α “ 0.0001 (SKZ`22). In line
with practice for large-scale Transformers (LFX`24), we apply low-rank training techniques solely to
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Model\Parameter Retetion p 5% 10% 15% 20% 30% 40% 100%
Vanilla ViT-T 0.1475 0.1252 0.1350 0.1213 0.1624 0.1524 0.6840

LoRA - 0.3546 0.3655 0.3576 - - -

LoRITa D=2, λ=10´1 0.0989 0.1433 0.1543 0.2125 0.3247 0.4523 0.7142
LoRITa D=3, λ=10´1 0.2258 0.3861 0.4466 0.5035 0.6368 0.6740 0.7273
LoRITa D=3, λ=10´3 0.1338 0.2136 0.3839 0.4560 0.5973 0.6253 0.7449

Q3R, rtarget “ 10%, λ=10´3 0.2322 0.4085 0.5606 0.6295 0.6526 0.6654 0.6843
Q3R, rtarget “ 15%, λ=10´3 0.1796 0.4758 0.5883 0.6215 0.6455 0.6555 0.6737
Q3R, rtarget “ 20%, λ=10´3 0.1998 0.4737 0.6175 0.6511 0.6749 0.6833 0.6990
Q3R, rtarget “ 10%, λ=10´2 0.2041 0.4387 0.6115 0.6449 0.6707 0.6771 0.6889
Q3R, rtarget “ 15%, λ=10´2 0.1313 0.3896 0.6158 0.6550 0.6689 0.6801 0.6982
Q3R, rtarget “ 20%, λ=10´2 0.1870 0.4335 0.6123 0.6496 0.6744 0.6868 0.6962

Table 1: MLP truncation performance of ViT-T, rank regularization is applied to both attention (QKV) blocks
and MLP blocks. For LoRA, factor ranks are adaptive to p.

(a) Upper Bounds Comparison (b) AdamQ3R vs. LoRITa Variants

Figure 1: Performance curves on CIFAR-10 with rank regularization applied to MLP and QKV blocks: (a) Best
performance across methods, (b) AdamQ3R vs. LoRITa variants.

the multi-head self attention blocks (QKV, but not to the MLP blocks). Despite the additional size and
complexity of ViT-Base compared to ViT-Tiny, Q3R remains robust and exhibits larger performance
advantages with 0.40-0.44 test accuracy at 20% parameters retained, whereas LoRITa models do not
exceed an accuracy of 0.25 at the same truncation level despite their substantial overparametrization
(Figures 2a and 2b).

ViT-Tiny with Low-Rank Attention Weights. We train ViT-Tiny for 100 epochs on CIFAR-
10 (Kri09) from scratch with learning rate α “ 0.0004, with low-rank regularization applied
only to attention weights. We evaluate the methods for a larger set of hyperparameters as
shown in Figure 3b using layer-wise truncation levels with retained parameter percentages p P

t5%, 10%, 15%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%u, and present results in Figure 3. Fig-
ure 3a shows that Q3R experiences almost no performance drop up to p “ 30% for most parameter
choices, exceeding the performance of reference methods. Figure 3b shows that the worst performing
Q3R model still outperforms any LoRA, LoRITa, or vanilla ViT-Tiny below p “ 60%, showcasing
the method’s robustness.

ViT-Base on ImageNet-1k. We train ViT-Base on ImageNet-1k using Automatic Mixed Precision
(MNA`18) with AutoAugmentation (CZM`19) for 100 epochs. Training is conducted with a
learning rate of α “ 4 ˆ 10´5, a batch size of 384, and gradient clipping (ZHSJ20) across 4 L40S
GPUs. We observe that Q3R consistently outperforms the baseline model while utilizing fewer
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(a) Upper Bounds Comparison (b) AdamQ3R vs. LoRITa Variants

Figure 2: Performance curves on CIFAR-100 with rank regularization applied to QKV blocks: (a) Best
performance across methods, (b) AdamQ3R vs. LoRITa variants.

(a) Upper Bounds Comparison (b) AdamQ3R vs. LoRITa Variants

Figure 3: Performance curves on CIFAR-10 with rank regularization applied to QKV blocks: (a) Best perfor-
mance across methods, (b) AdamQ3R vs. LoRITa variants.

parameters. This performance advantage holds under two truncation paradigms: attention matrices
only, and entire Transformer blocks. In both cases, Q3R maintains performance comparable to the
full baseline model, as seen in Table 2.

Optimizer | Transformer Modules 0.1 0.15 0.2 0.3 0.4 0.5 1
AdamQ3R | QKV, MLP 0.0138 0.1439 0.3376 0.421 0.4458 0.4556 0.5816
Adam | QKV, MLP 0.0193 0.0976 0.2950 0.399 0.4311 0.4523 0.5179

AdamQ3R | QKV 0.1713 0.3016 0.4623 0.4895 0.4952 0.4975 0.5816
Adam | QKV 0.2552 0.3366 0.4551 0.4882 0.4882 0.4937 0.5179

Table 2: ViT-Base on ImageNet-1k validation accuracy post-truncation on the last epoch

5.2 Low-Rank Fine-Tuning

Q3R not only induces a low-rank structure during pre-training in a memory-efficient manner, but
also extends naturally to compact fine-tuning. We fine-tune pre-trained RoBERTa models on the
GLUE benchmark using AdamQ3R with the proposed Q3R regularizer, and compare against full
fine-tuning and LoRA (HSW`22b). We impose Q3R on the weight matrices that are added to the
full-rank pretrained weight matrices. For LoRA, we adopt the hyperparameters from (HSW`22b),
and for Q3R we cross-validate the learning rate and regularization hyperparameter λ. As shown
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Table 3: GLUE Benchmark Scores

Method MRPC RTE CoLA STS-B SST-2 QQP MNLI QNLI Average
Dense Fine-tuning 91.9 77.62 62.3 90.19 94.04 90.2 87.3 91.49 85.88
LoRA rank=4 89.04 73.55 56.25 89.86 94.3 90.11 87.00 92.5 84.58
Q3R rank=4 92.24 77.23 63.50 90.19 92.2 91.60 87.2 90.20 85.86

in Table 3, Q3R matches or exceeds LoRA’s accuracy on most tasks and exhibits a performance
closer to dense fine-tuning. These results demonstrate that Q3R can serve as a unified, low-rank
training strategy—both for pre-training and fine-tuning of Transformer models. We discuss additional
fine-tuning experiments in Appendix D.2.

6 Limitations

While our experiments showcase a robust post-truncation accuracy of Q3R-trained Transformers on
vision and natural language tasks in small-to-medium scale settings that exceeds (or in the case of
fine-tuning, matches) the one of other relevant low-rank training paradigms, the viability of Q3R is yet
to be established across diverse architectures and large-scale problems. Fundamentally, Q3R relies on
a suitable choice of the regularization strength hyper parameter λ, as well as on a suitable choice of
the target rank rtarget. We provide ablations about these values in Appendix E.1. While Q3R exhibits
vulnerability to elevated values of λ due to a convergence to a trivial, very low-rank matrix, this is
easily detectable by monitoring the tail ratio T pX, rq “

řr
i“1 σ2

i

}X}2F
on models. In practice, we have

observed stable behavior within the range λ P r0.001, 0.01s. The target rank rtarget remains insensitive
to underestimation because of the direct computation of epsilon resulting in a large ϵ, and due to the
monotonicity of the smoothing parameter update function (7), ϵ remains within a reasonable bound.
We note that for weight matrices and iterations with large ϵ, the effect of AdamQ3R resembles the
one of AdamW with weight decay parameter λ (see also (6)).

Arguably, a limitation of this work is also the fact that while the final weights after training are (for
appropriate parameters) low-rank, AdamQ3R still handles dense weight matrix variables throughout
training, which does not allow a reduction of the parameter budget during training, unlike recent
work (MHP25). More elaborate post-training postprocessing (e.g., inspired by (WAUc`23)) might
lead to further performance improvements.

7 Conclusion

We introduced Quadratic Reweighted Rank Regularization (Q3R), a principled, optimizer-compatible
framework for inducing low-rank structure in deep neural network weights through explicit, contin-
uous regularization. By majorizing a smoothed log-determinant surrogate with a quadratic model
embedded in the AdamQ3R optimizer, Q3R trains weight matrices to achieve target ranks with mini-
mal accuracy loss. This enables model compression with negligible performance degradation under
reasonable parameter reductions, decreasing deployment costs and increasing throughput. Our ex-
perimental results demonstrate that Q3R generalizes across modalities and training regimes, with its
design being particularly suitable for low-rank pre-training. Reducing Q3R’s computational overhead,
for example via low-rank subspace projections, remains to future work.
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Supplementary material for Q3R: Quadratic Reweighted Rank Regularizer for
Effective Low-Rank Training

In this supplementary material, we first provide theoretical justifications of the relationship between
Q3R and the smoothed objective, expanding on Section 4.1, in Appendix A. The derivation of a
Q3Rvalue evaluation algorithm is provided in Appendix B. The expression used in AdamQ3R is
derived in Appendix C. In Appendix D, we discuss more experimental results in both pre-training and
fine-tuning, and we discuss the computational aspects. In the concluding part of this supplementary
material, in Appendix E, we demonstrate the robustness of Q3R to hyperparameter variation.

A Relationship between Smoothed Log-Determinant and Q3R

In this section, we expand on the relationship between the ϵ-smoothed log-determinant surrogate
objective Fϵp¨q defined in (1). Part of this material is covered in (KM23, Section B.2) in a different
context.

A.1 Properties of Smoothed Log-Deteriminant

We focus first on some basic properties of the ϵ-smoothed log-determinant Fϵ : Rd1ˆd2 Ñ R, which,
as we recall from (1), was defined for any W P Rd1ˆd2 as

FϵpWq :“
d

ÿ

i“1

fϵpσipWqq, where fϵpσq “

"

ϵ2 plogpσq ´ logpϵqq ` 1
2ϵ

2, if σ ě ϵ,
1
2σ

2, if σ ă ϵ,

given ϵ ą 0.

As seen by its definition, Fϵp¨q is a spectral function, i.e., it only depends on the singular values
σ1pWq, σ2pWq, . . . of W, but not on any singular vector information.

Let now d :“ minpd1, d2q. More precisely, we can define, following (Lew95; Bec17; LS05), a
spectral function F : Rd1ˆd2 Ñ R as a function for which there exists a function f : Rd

Ñ R for
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which F “ f ˝ σ, where σ : Rd1ˆd2 Ñ Rd,W ÞÑ σpWq “ pσ1pWq, . . . , σdpWqq is the function
mapping matrices in Rd1ˆd2 to its singular value vector σpWq. A key towards understanding the
derivative structure is that we can obtain an explicit formula for the gradient ∇F pWq of Fϵ at W
if the function f in the spectral function definition is absolutely (permutation) symmetric (Bec17,
Section 7.3) according to Definition A.1. It is easy to check that fϵ from the definition of the
ϵ-smoothed log-determinant Fϵp¨q satisfies this definition.

Definition A.1 (Absolutely permutation symmetric functions). 1. Let x P Rd. We call rpxq P

Rd the non-increasing rearrangement of x if it holds that

rpxq1 ě rpxq2 ě . . . ě rpxqd

and there is a permutation matrix P P Pd such that rpxqi “ pPxqi for all i P rds.

2. We say that a function f : Rd
Ñ R is absolutely permutation symmetric if

fpxq “ fprp|x|qq (8)

for any x P Rd.

For ease of notation, given a vector v P Rd, we define dgpvq P Rd1ˆd2 be the rectangular diagonal
matrix such that for v P Rd and any i P t1, . . . , d1u, j P t1, . . . , d2u,

dgpvqij “

"

vi, if i “ j,

0, else.

Next, we cite a key result about the differentiability of spectral functions which is due to

Proposition A.1 (Differentiability of Spectral Functions (LS05, Section 7)). Let F : Rd1ˆd2 Ñ R be
a spectral function F “ f ˝σ with an associated function f : Rd

Ñ R that is absolutely permutation
symmetric. Then, F is differentiable at W P Rd1ˆd2 if and only if f is differentiable at σpWq P Rd.

In this case, the gradient ∇F of F at W is given by

∇F pWq “ U dg
`

∇fpσpWq
˘

VJ

if W “ U dg
`

σpWq
˘

VJ is a singular value decomposition of W with orthogonal matrices
U P Rd1ˆd1 and V P Rd2ˆd2 .

Using Proposition A.1, we can characterize the derivative of the Fϵ for arbitrary ϵ ą 0, as established
in the following lemma.

Lemma A.2. Let ϵ ą 0 and Fϵ : Rd1ˆd2 Ñ R be the ϵ-smoothed log-determinant of Equation (1).
Then Fϵ is differentiable with 1-Lipschitz gradient ∇Fϵ : Rd1ˆd2 Ñ Rd1ˆd2 that is given by

∇FϵpWq “ UW dg

ˆ

σipWq

maxpσipWq{ϵ, 1q2

˙d

i“1

VJ
W (9)

for any matrix W with singular value decomposition W “ UW dg
`

σpWq
˘

VJ
W “

UW dg
`

σ
˘

VJ
W.

Proof of Lemma A.2. For the differentiability of Fϵ, as per Proposition A.1, it is sufficient to show that
the function fppσ1, . . . , σdqq “

řd
i“1 fϵpσiq with fϵ : Rě0 Ñ R as defined in (1) is differentiable at

any pσ1, . . . , σdq P Rd
ě0. Due to the sum structure of f , this will follow if fϵ is itself differentiable at

any σ ě 0.

To this, we observe that for any σ ą 0, σ ‰ ϵ, we have that fϵ is differentiable at σ with derivative

f 1
ϵpσq “

#

ϵ2

σ , if σ ą ϵ

σ, if 0 ď σ ă ϵ.

Since limσÕϵ f
1
ϵpσq “ ϵ “ limσŒϵ f

1
ϵpσq, it follows that fϵ is also differentiable at σ “ ϵ with

f 1
ϵpϵq “ ϵ, and thus, differentiable on the entirety of its domain. The formula (9) follows then directly

from Proposition A.1.
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Remark A.3. It is well-known that the optimization of convex functions (BV04) is from many
perspectives less challenging than the optimization of non-convex functions. In Section 4.1, we have
claimed that the ϵ-smoothed log-determinant surrogate is not convex. This can indeed by shown
directly by invoking (LS05, Proposition 6.1), which states that a spectral function F “ f ˝σ is convex
if and only if f is convex. Indeed, it is easy to see that fϵp¨q is not convex due to its logarithmic
dependence on the input for large inputs, which shows that Fϵp¨q is not a convex function.

As mentioned in Section 4.1, we see from (9) that computing ∇FϵpWq given the matrix W P Rd1ˆd2

indeed would require a full singular value decomposition that includes at least d leading singular val-
ues. Defining rpW, ϵq :“ |ti P t1, . . . , du : σipWq ą ϵu| as in (3) and Σ “ diagpσipWqq

rpW,ϵq

i“1 P

RrpW,ϵqˆrpW,ϵq as in (4), we obtain for U and V defined from the rpW, ϵq leading columns of
UW “ rU UKs P Rd1ˆd1 and VW “ rV VKs P Rd2ˆd2 that

∇FϵpWq “ ϵ2UΣ´1VJ ` UKΣKV
J
K, (10)

inserting the formula from (9), with the notation that ΣK “ dg pσipWqq
d
i“rpW,ϵq`1. Fundamentally,

this is the key reason why a direct inclusion of the smoothed log-determinant objective into a
gradient-based optimization algorithm is computationally inefficient.

Finally, we conclude with the observation that Fϵp¨q becomes convex if ϵ " 0 is chosen large enough.
In particular, it holds for any W P Rd1ˆd2 that

FϵpWq “

d
ÿ

i“1

fϵpσipWqq “

d
ÿ

i“1

1

2
σ2
i pWq “

1

2
}W}2F

if additionally the largest singular value σ1pWq of W satisfies σ1pWq ď ϵ. Here, we used in the
last equality that the Frobenius norm of a matrix is the ℓ2-norm if its singular values.

A.2 The Quadratic Model Function Underlying Q3R

We proceed by justifying the claims made in Section 4.1 about the relationship between the ϵ-
smoothed log-determinant Fϵp¨q, the Q3R-regularizer Q3RW1,ϵp¨q, the quadratic model Qϵp¨ | W1q of
(2) and the reweighting operator RW1,ϵp¨q. To this end, we show the first statements of Lemma A.2
that characterize the reweighting operator RW1,ϵp¨q.

Proof of Lemma 4.1.1. Let W1 P Rd1ˆd2 be arbitrary with singular value decomposition W1 “

U1 dgpσipW
1qqV1J. Recall from Definition 4.1 that

RW1,ϵpWq “ U1Σ´1
ϵ,d1

U1JWV1Σ´1
ϵ,d2

V1J,

where Σϵ,d “ diagpmaxpσipW
1q{ϵ, 1qqdi“1 P Rdˆd for d P td1, d2u.

To show that RW1,ϵ : Rd1ˆd2 Ñ Rd1ˆd2 is a positive definite operator, we consider any W P Rd1ˆd2

such that W ‰ 0, which implies that }W}F ą 0. Defining Z :“ U1JWV1, we see that

xW,RW1,ϵpWqy “ tr
`

WJRW1,ϵpWq
˘

“ tr
´

WJU1Σ´1
ϵ,d1

U1JWV1Σ´1
ϵ,d2

V1J
¯

“ tr
´

V1JWJU1Σ´1
ϵ,d1

U1JWV1Σ´1
ϵ,d2

¯

“ tr
´

ZJΣ´1
ϵ,d1

ZΣ´1
ϵ,d2

¯

“ tr
´

pΣ´1
ϵ,d1

ZqJZΣ´1
ϵ,d2

¯

“

d1
ÿ

i“1

d2
ÿ

j“1

pΣ´1
ϵ,d1

ZqijpZΣ´1
ϵ,d2

qij

“

d1
ÿ

i“1

d2
ÿ

j“1

rσirσjZ
2
ij

with rσi :“ maxpσipW
1q{ϵ, 1q´1 for i P t1, . . . ,maxpd1, d2qu, with using the cyclicity of the trace

in the third equality. Since rσi, rσj ą 0 for all i, j, we can establish the lower bound

xW,RW1,ϵpWqy “

d1
ÿ

i“1

d2
ÿ

j“1

rσirσj ě
maxpd1,d2q

min
i“1

rσ2
i

d1
ÿ

i“1

d2
ÿ

j“1

Z2
ij “

maxpd1,d2q

min
i“1

rσ2
i }Z}2F

“
maxpd1,d2q

min
i“1

rσ2
i }U1JWV1}2F “

maxpd1,d2q

min
i“1

rσ2
i }W}2F ą 0.
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Due to the definition of Q3R (6), an implication of this is that

Q3RW1,ϵpWq “
1

2
xW,RW1,ϵpWqy ě 0

and Q3RW1,ϵpWq “ 0 ô W “ 0, i.e., the value of Q3R is always non-negative and positive for
non-zero matrices.

We proceed with the proof of the second statement of Lemma 4.1, which provides an explicit formula
for the reweighting operator that only requires a partial SVD of W1.

Proof of Lemma 4.1.2. If W1 “ UW1 dgpσipW
1qqVJ

W1 is a full singular value decomposition of
W1 with UW1 “ rU UKs P Rd1ˆd1 and VW1 “ rV VKs P Rd2ˆd2 , we recall that the
image of a matrix W P Rd1ˆd2 with respect to RW1,ϵ is defined (see Definition 4.1) as

RW1,ϵpWq “ UW1Σ´1
ϵ,d1

UJ
W1WVW1Σ´1

ϵ,d2
VJ

W1 , (11)

using the definition for Σϵ,d from the proof of Lemma 4.1.1 above.

With a similar argument as made in (10), we can see that

UW1Σ´1
ϵ,d1

UJ
W1 “ ϵUΣ´1UJ ` UKU

J
K “ ϵUΣ´1UJ ` I ´ UUJ

with Σ “ diagpσipW
1qq

rpW1,ϵq

i“1 P RrpW1,ϵqˆrpW1,ϵq, U P Rd1ˆrpW1,ϵq and the identity matrix I. In
the last equation, we used that UKU

J
K is the projection operator onto the subspace that is orthogonal

to the one spanned by the columns of U. Analogously, we obtain that

VW1Σ´1
ϵ,d2

VJ
W1 “ ϵVΣ´1VJ ` VKV

J
K “ ϵVΣ´1VJ ` I ´ VVJ,

where V P Rd2ˆrpW1,ϵq. Inserting these two equations into (11), we obtain

RW1,ϵpWq “ UW1Σ´1
ϵ,d1

UJ
W1WVW1Σ´1

ϵ,d2
VJ

W1 “

“
`

ϵUΣ´1UJ ` I ´ UUJ
˘

W
`

ϵVΣ´1VJ ` I ´ VVJ
˘

“ ϵ2UΣ´1UJWVΣ´1VJ ` ϵUΣ´1UJW
`

I ´ VVJ
˘

` ϵ
`

I ´ UUJ
˘

WVΣ´1VJ `
`

I ´ UUJ
˘

W
`

I ´ VVJ
˘

,

where the last equality shows the statement of Lemma 4.1.2.

As a preparation for the proof of the last statement of Lemma 4.1, we formulate the following lemma
which relates the gradient of Fϵ at W with the reweighting operator.

Lemma A.4 (Gradient Condition). Let ϵ ą 0 For any W P Rd1ˆd2 , the reweighting operator
RW,ϵ : Rd1ˆd2 Ñ Rd1ˆd2 satisfies

RW,ϵpWq “ ∇FϵpWq, (12)

where ∇FϵpWq is the gradient of the ϵ-smoothed log-determinant at W.

Proof. If W “ UW dgpσipWqqVJ
W is a singular value decomposition of W with UW “

rU UKs P Rd1ˆd1 and VW “ rV VKs P Rd2ˆd2 , we observe that

RW,ϵpWq “ UWΣ´1
ϵ,d1

UJ
W

`

UW dgpσipWqqVJ
W

˘

VWΣ´1
ϵ,d2

VJ
W

“ UWΣ´1
ϵ,d1

dgpσipWqqΣ´1
ϵ,d2

VJ
W

“ UW dg

ˆ

σipWq

maxpσipWq{ϵ, 1q2

˙d

i“1

VJ
W “ ∇FϵpWq,

using the gradient formula Lemma A.2 in the last equality.
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As a corollary of Lemma A.4, we see that for W1 “ W, the gradient of the Q3R regularizer satisfies

∇Q3RW,ϵpWq “ ∇FϵpWq.

This is this a direct implication of Lemma A.4 since

∇W Q3RW1“W,ϵpWq “ ∇W

ˆ

1

2
xW,RW1“W,ϵpWqy

˙

“ RW,ϵpWq

using the self-adjointness (see, e.g., (KM23, Appendix B)) of RW,ϵ.

The gradient condition (12) enables us to equate the definition of the quadratic model function (2)
Qϵp¨ | W1q (which is, up to a constant that depends on ϵ and W1 the same as the value of Q3R) with
the standard quadratic model form of (5).

Proof of Lemma 4.1.3. Let W,W1 P Rd1ˆd2 be arbitrary. To show the equation (5), we start with
its right hand side. By inserting (12), we obtain

FϵpW
1q ` x∇FϵpW

1q,W ´ W1y ` 1
2 xW ´ W1, RW1,ϵpW ´ W1qy

“ FϵpW
1q ` xRW1,ϵpW

1q,W ´ W1y `
1

2
xW,RW1,ϵpWqy ´ xRW1,ϵpW

1q,Wy

`
1

2
xW1,RW1,ϵpW

1qy

“ FϵpW
1q `

1

2
xW,RW1,ϵpWqy ´

1

2
xW1,RW1,ϵpW

1qy

“: QϵpW | W1q,

where we also use the self-adjointness of RW1,ϵp¨q in the first equality. The last expression corre-
sponds to the definition of the quadratic model Qϵp¨ | W1q of Fϵp¨q given the expansion point W1.
This concludes the proof.

From this proof, it becomes clear that the quadratic model Qϵp¨ | W1q is a pure quadratic model with
vanishing linear term. This implies that, for example, Qϵp´W | W1q “ QϵpW | W1q for all W,
which reflects the geometry of the smoothed log-determinant Fϵp¨q better than a mixed quadratic
model function as it likewise satisfies Fϵp´Wq “ FϵpWq.

B Computation of Q3R value

In this section, we provide an implementable algorithm for evaluating the Q3R regularizer
Q3RW1,ϵpWq as defined in (6), defined in Algorithm 3 below.

We note that strictly speaking, evaluating Q3RW1,ϵpWq is never necessary in a training scheme such
as AdamQ3R; however, evaluating Q3RW1,ϵpWq might be insightful to keep track of the extent of
the regularization.

First, we decompose the reweighting operator image such that

RW1,ϵpWq “ T ϵ
1 ` T ϵ

2 ` T ϵ
3 ` T ϵ

4

with
T ϵ
1 “ ϵ2 UΣ´1UJ WVΣ´1VJ,

T ϵ
2 “ ϵUΣ´1UJ W pI ´ VVJq,

T ϵ
3 “ ϵ pI ´ UUJqWVΣ´1VJ,

T ϵ
4 “ pI ´ UUJqW pI ´ VVJq.

Defining
I1 “

@

W, T ϵ
1

D

“ ϵ2 tr
`

WJUΣ´1UJWVΣ´1VJ
˘

,

I2 “
@

W, T ϵ
2

D

“ ϵ tr
`

WJUΣ´1UJW pI ´ VVJq
˘

,

I3 “
@

W, T ϵ
3

D

“ ϵ tr
`

WJpI ´ UUJqWVΣ´1VJ
˘

,

I4 “
@

W, T ϵ
4

D

“ tr
`

WJpI ´ UUJqW pI ´ VVJq
˘

,
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we can write
@

W,RW1,ϵpWq
D

“ I1 ` I2 ` I3 ` I4.

Apply cyclicity to I1, I2, I3.

I1 “ ϵ2 tr
`

VJWJUΣ´1UJWVΣ´1
˘

,

I2 “ ϵ
”

tr
`

WJUΣ´1UJW
˘

´ tr
`

WJUΣ´1UJWVVJ
˘

ı

,

I3 “ ϵ
”

tr
`

WJWVΣ´1VJ
˘

´ tr
`

WJUUJWVΣ´1VJ
˘

ı

.

Expand I4.

I4 “ tr
`

WJW
˘

´ tr
`

WJWVVJ
˘

´ tr
`

WJUUJW
˘

` tr
`

WJUUJWVVJ
˘

.

Group terms.
@

W,RW1,ϵpWq
D

“ trpWJWq

` ϵ2 tr
`

VJWJUΣ´1UJWVΣ´1
˘

` ϵ tr
`

WJUΣ´1UJW
˘

´ ϵ tr
`

WJUΣ´1UJWVVJ
˘

` ϵ tr
`

WJWVΣ´1VJ
˘

´ ϵ tr
`

WJUUJWVΣ´1VJ
˘

´ tr
`

WJWVVJ
˘

´ tr
`

WJUUJW
˘

` tr
`

WJUUJWVVJ
˘

.

Then by rearranging each pair of trace-terms we arrive at

@

W,RW1,ϵpWq
D

“ tr
`

WJW
˘

` tr
`

UJWWJU
`

ϵΣ´1 ´ I
˘˘

` tr
`

VJWJWV
`

ϵΣ´1 ´ I
˘˘

` tr
`

VJWJU
`

ϵΣ´1 ´ I
˘

UJWV
`

ϵΣ´1 ´ I
˘˘

.

For each iteration we calculate the quadratic regularizer xW,RW1,ϵpWqy for weight matrices W.
For algorithmic simplicity, We now re-arrange the summand of our Q3R regularizer and show the
simplified expression for this inner product in Algorithm 3. We later show in Equation (13), where
we derive the expression of this inner product and we show that this matches the one proposed in
Algorithm 3.

f “ tr
`

WJW
˘

looooomooooon

t1

` tr
`

VJWJUSUJWVS
˘

loooooooooooooooomoooooooooooooooon

t2

` tr
`

VJWJWVS
˘

loooooooooomoooooooooon

t3

` tr
`

UJWWJUS
˘

loooooooooomoooooooooon

t4

,

S “ ϵΣ´1 ´ I,

T “ WV, B “ WJU, C “ UJWV, M “ S1{2 CS1{2.

Using trpAJAq “ }A}2F and cyclicity:

t1 “ trpWJWq “ }W}2F ,

t2 “ tr
`

S pUJWVqS pUJWVq
˘

“ }M}2F ,

t3 “ tr
`

S pWVqJpWVq
˘

“ }TS1{2}2F ,

t4 “ tr
`

S pWJUqJpWJUq
˘

“ }BS1{2}2F .

Putting it all together, with R “ S1{2:

fpW,U,Vq “ }W}2F ` }M}2F ` }TR}2F ` }BR}2F , R “ pϵΣ´1 ´ Iq1{2. (13)
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Algorithm 3 Computation of the Q3R function value Q3RW1,ϵpWq

1: Input: W P Rd1ˆd2 , U P Rd1ˆr, V P Rd2ˆr, S P Rrˆr

2: Output:e fpW,U, V, Sq “ }W }2F ` }M}2F ` }T R}2F ` }BR}2F
3: 1. Compute projections
4: T Ð W V Opd1d2rq

5: B Ð WJU Opd1d2rq

6: 2. Form intermediate products
7: C Ð UJT Opd1r

2q

8: Compute symmetric square-root R of S: RRJ “ S Opr3q

9: M Ð RC RJ Opr3q

10: 3. Evaluate Frobenius norms
11: t1 Ð }W }2F Opd1d2q

12: t2 Ð }M}2F Opr2q

13: t3 Ð }T R}2F Opd1r
2 ` d1rq

14: t4 Ð }BR}2F Opd2r
2 ` d2rq

15: return f Ð t1 ` t2 ` t3 ` t4

To summarize, we obtain a total FLOP count of

Ttotal “ 2 d1d2r ` pd1 ` d2qr2 ` 2r3 `
`

d1d2 ` pd1 ` d2qr ` r2
˘

“ O
`

d1d2r ` pd1 ` d2qr2 ` r3
˘

for evaluating Q3RW1,ϵpWq.

C Computation of the Gradient of Q3R

From Equation (4), we rearrange the summand for algorithmic simplicity

RW1,ϵpWq “ ϵ2 UΣ´1UJ WVΣ´1VJ ` ϵUΣ´1UJ W pI ´ VVJq

` ϵ pI ´ UUJqWVΣ´1VJ ` pI ´ UUJqW pI ´ VVJq.

Using ϵΣ´1 “ I ` S, we rewrite each term:

T ϵ
1 “ ϵ2 UΣ´1UJ WVΣ´1VJ “ U pI ` SqUJ WV pI ` SqVJ,

T ϵ
2 “ ϵUΣ´1UJ W pI ´ VVJq “ U pI ` SqUJ W pI ´ VVJq,

T ϵ
3 “ ϵ pI ´ UUJqWVΣ´1VJ “ pI ´ UUJqWV pI ` SqVJ,

T ϵ
4 “ pI ´ UUJqW pI ´ VVJq.

Collecting like-terms in powers of S gives the compact form

RW1,ϵpWq “ W
loomoon

T1

`USUJ W
looooomooooon

T2

`WVSVJ
looooomooooon

T3

`USUJ WVSVJ
looooooooooomooooooooooon

T4

with S “ ϵΣ´1 ´ I.

Now, we deduce the gradient in the following algorithm that is used in line 12 of Algorithm 2. We
explain the step-by-step computation of our RW1,ϵpWq stated below.
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Algorithm 4 COMPUTATION GRADIENT OF Q3R : Compute RW1,ϵpWq

1: Input: WPRd1ˆd2 , UPRd1ˆr, VPRd2ˆr, singular values σPRr
ą0, threshold ϵ

2: Output: G “ RW1,ϵpWq

3:
4: s Ð 1{maxpσ, 1q Ź r element-wise comparisons
5: S Ð diagpsq Ź create diagonal matrix of shape r ˆ r
6: Sshift Ð ϵS ´ I Ź r subtractions on diagonal
7:
8: A Ð UJW Ź r ˆ d1 by d1 ˆ d2 → r ˆ d2 (cost: rd1d2)
9: B Ð WV Ź d1 ˆ d2 by d2 ˆ r → d1 ˆ r (cost: d1d2r)

10:
11: C Ð A ¨ V Ź r ˆ d2 by d2 ˆ r → r ˆ r (cost: rd2r)
12: E Ð Sshift ¨ C ¨ Sshift Ź r ˆ r triple product (cost: 2r3)
13: for i “ 1, . . . , r do
14: for j “ 1, . . . , r do
15: Eij Ð pSshiftqii ¨ Cij ¨ pSshiftqjj
16: end for end for Ź elementwise scalar products (cost: r2)
17: T2 Ð U ¨ E ¨ VJ Ź

• U ¨ E: d1 ˆ r by r ˆ r → d1 ˆ r (cost: d1r2)
• Then ¨VJ: d1 ˆ r by r ˆ d2 → d1 ˆ d2 (cost: d1d2r)

18:
19: T1 Ð W Ź copy or identity operation (d1 ˆ d2)
20: T3 Ð B ¨ Sshift ¨ VJ Ź

• B ¨ Sshift: d1 ˆ r by r ˆ r → d1 ˆ r (cost: d1r2)
• Then ¨VJ: d1 ˆ r by r ˆ d2 → d1 ˆ d2 (cost: d1d2r)

21: D Ð Sshift ¨ A Ź r ˆ r by r ˆ d2 → r ˆ d2 (cost: r2d2)
22: T4 Ð U ¨ D Ź d1 ˆ r by r ˆ d2 → d1 ˆ d2 (cost: d1rd2)
23:
24: gradient Ð T1 ` T2 ` T3 ` T4 Ź elementwise addition of d1 ˆ d2 matrices
25: return gradient

D Experimental Results

In this section, we provide details regarding the experimental training methodology of Section 5 as
well as some additional data of these experiments.

D.1 Experimental Protocol

In the experiments, we compared the training of unregularized models, as well as models regularized
by Q3R , LoRITa (AZW) and LoRA (HSW`22a). Due to the limitations of some techniques not
providing strong truncation guide lines, we truncate each method at various truncation ranks r.
Ensuring such that r is chosen to always ensure that the factor matrix pairs always have less original
parameters, to minimize a practical environment. In Table 1 we find that running with p “ .20 or
r “ 19 and λ “ 0.001 performs best given the truncation and accuracy trade-offs.

ViT Hyperparameter Selection We selected each model’s learning rate based on the perfor-
mance of the unmodified ViT model for each respective dataset. All ViT models were configured
with an input resolution of 224×224 pixels and utilized patch size 16 for tokenization. LoRITa
hyperparameter optimization was conducted through grid search with regularization parameter
λ P t10´1, 10´2, 10´3, 10´4u and rank parameter d P t1, 2, 3u to ensure optimal performance.
The best-performing configuration from three independent runs was selected for evaluation across
additional datasets. LoRA was evaluated across various target ranks, with the proportion param-
eter p selected from p P t0.05, 0.15, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9u. AdamQ3R underwent grid
search optimization with regularization parameter λ P t10´3, 10´2, 10´1u and proportion parameter
r P t0.05, 0.1, 0.15, 0.2u, with a stable period “ 5. The regularization strength remained con-
stant regardless of matrix dimensions. The QKV projection matrices were selected as the target
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for modification due to their prevalence in the literature as candidates for model compression and
adaptation.

CIFAR-100 Data Augmentation For CIFAR-100 experiments, we applied comprehensive data
augmentation during training, including random cropping with 4-pixel padding from the original
32×32 images, random horizontal flipping, and subsequent resizing to 224×224 pixels to match the
ViT input requirements. Images were normalized using channel-wise means of (0.4914, 0.4822,
0.4465) and standard deviations of (0.2023, 0.1994, 0.2010), corresponding to the CIFAR-100
dataset statistics. The test set underwent only resizing to 224×224 pixels and the same normalization
procedure, without augmentation.

Fine-Tuning Experimental Details We fine-tuned the pre-trained RoBERTa-Base model (from
Hugging Face) on all nine GLUE tasks using a maximum sequence length of 512 and a batch size
of 16 (30 for CoLA). We run all fine-tuning experiments with a target rank as low as 4. The best
performing setup had ’reweighting period’ of 3 and λ P t1.5, 2u. As shown in Table 3, we compare
Q3R with LoRA and dense fine-tuning. The tasks and their metrics are summarized below:

• Single-Sentence Classification
– CoLA: 8.5 k train / 1 k test; linguistic acceptability; Matthews correlation
– SST-2: 67 k train / 1.8 k test; sentiment classification; accuracy

• Similarity & Paraphrase
– MRPC: 3.7 k train / 1.7 k test; paraphrase detection; accuracy / F1
– STS-B: 7 k train / 1.4 k test; sentence similarity; Pearson / Spearman correlation
– QQP: 364 k train / 391 k test; question paraphrase detection; accuracy / F1

• Natural Language Inference
– MNLI: 393 k train / 20 k matched + 20 k mismatched test; entailment classification;

accuracy
– QNLI: 105 k train / 5.4 k test; question–answer entailment; accuracy
– RTE: 2.5 k train / 3 k test; textual entailment; accuracy
– WNLI: 634 train / 146 test; coreference-based inference; accuracy

D.2 Fine-tuning Experiments

To assess the potential of Q3R for fine-tuning large language models, we conducted an ad-
ditional experiment on Llama 3.2–3B using an NVIDIA A5000 GPU. Since the original
meta-llama/Llama-3.2-3B checkpoint provides only the pre-trained language model parameters,
we instantiated the LlamaForSequenceClassification module, which attaches an additional
linear projection, commonly referred to as the classification head, on top of the final hidden-state
representation. This head, whose weight matrix is registered as score.weight (and optionally
score.bias), is absent from the checkpoint and was therefore initialized with random Gaussian
values.

The fine-tuning setup involves training this weight matrix as well as additive weights for the Q, K,
and V layers.

With Q3R (λ “ 0.0001, target rank “ 4, for 100 epochs), we achieved an F1 score of 81.89% on
the MRPC dataset of the GLUE benchmark, whereas full fine-tuning (effectively corresponding to
setting λ “ 0) resulted in an F1 score of 80.7% after the same number of epochs.

To further compare our proposed method, we conducted experiemnts on Llama3.2-1B on a subset of
the GLUE tasks. Table 4 provides a comparison of our method’s performance with dense fine-tuning
and LoRA.

We achieved the performance as mentioned in Table 4, with a single value of λ without any extensive
hyperparameter search. While we acknowledge that better performance for GLUE tasks like RTE can
often be obtained by starting from a more finely tuned initialization, these results demonstrate that
the proposed method is effective even for the fine-tuning of large-scale LLMs.
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Table 4: GLUE Benchmark Results for Llama3.2-1B

Model MRPC SST-2 RTE CoLA STS-B
Dense 86.3 95.3 77.3 47.09 90.5
LoRA rank=4 87.3 95.7 80.9 61.8 89.1
Q3R rank=4 87.8 94.4 64.7 51.8 87.04

D.3 Appendix Tables

Table 5 and Table 6 demonstrate the low rank induction techniques on ViT models. We train ViT-B
on CIFAR-100 in Table 6 and ViT-T on CIFAR-10 in Table 5 respectively.

Table 5: Performance at varying percentages of parameters saved on ViT-T when regularizer is applied to only
attention blocks.

Model 15% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Vanilla ViT-T 0.4687 0.5430 0.5892 0.6170 0.6542 0.6694 0.6726 0.6788 0.6892 0.7027
Q3R rank=4, λ=0.01 0.6032 0.6630 0.7043 0.7060 0.7084 0.7080 0.7079 0.7079 0.7077 0.7152
Q3R rank=9, λ=0.01 0.4852 0.5616 0.6668 0.6772 0.6831 0.6835 0.6832 0.6829 0.6831 0.7034
Q3R rank=14, λ=0.01 0.4576 0.5812 0.6866 0.6970 0.6988 0.7002 0.6997 0.6996 0.7003 0.7104
Q3R rank=19, λ=0.01 0.6208 0.6792 0.6913 0.6977 0.6978 0.6970 0.6970 0.6967 0.6966 0.7061
Q3R rank=4, λ=0.001 0.5694 0.6629 0.7017 0.7053 0.7084 0.7091 0.7086 0.7086 0.7079 0.7158
Q3R rank=9, λ=0.001 0.4214 0.5304 0.6467 0.6680 0.6691 0.6692 0.6691 0.6696 0.6695 0.6955
Q3R rank=14, λ=0.001 0.6040 0.6364 0.6642 0.6695 0.6695 0.6694 0.6698 0.6701 0.6704 0.6819
LoRITa D=1, α=0.1 0.1154 0.1217 0.1234 0.1091 0.1502 0.2310 0.3377 0.4197 0.5027 0.7061
LoRITa D=1, α=0.001 0.1576 0.1512 0.1602 0.1586 0.1902 0.2456 0.2955 0.3221 0.4056 0.7086
LoRITa D=1, α=0.01 0.1474 0.1514 0.1539 0.1644 0.2486 0.2968 0.4150 0.4857 0.5326 0.6911
LoRITa D=2, α=0.01 0.2478 0.2559 0.3115 0.4065 0.5127 0.5641 0.5997 0.6456 0.6720 0.7287
LoRITa D=2, α=0.1 0.2041 0.2589 0.3639 0.5397 0.5982 0.6408 0.6727 0.6910 0.7025 0.7595
LoRITa D=2, α=0.001 0.2195 0.2774 0.4163 0.5115 0.5461 0.5675 0.6137 0.6417 0.6614 0.7393
LoRITa D=3, α=0.01 0.3794 0.5074 0.5907 0.6385 0.6598 0.6761 0.6843 0.6916 0.6959 0.7462
LoRITa D=3, α=0.001 0.3951 0.5147 0.5952 0.6308 0.6639 0.6676 0.6798 0.6847 0.6833 0.7367
LoRA rank=4 0.3443 0.3443 0.3443 0.3443 0.3443 0.3443 0.3443 0.3443 0.3443 0.3443
LoRA rank=14 0.5859 0.5859 0.5859 0.5859 0.5859 0.5859 0.5859 0.5859 0.5859 0.5859

Table 6: CIFAR-100 Performance with ViT-B Attention Block Truncation

Model 5% 10% 15% 20% 30% 40% 100%
Vanilla ViT-B Best 0.2773 0.3355 0.3659 0.3909 0.4172 0.4327 0.4686
Q3R, rank=19, λ=0.01 0.3238 0.3979 0.4172 0.4301 0.4411 0.4485 0.4625
Q3R, rank=19, λ=0.001 0.3174 0.3790 0.3945 0.4050 0.4130 0.4197 0.4408
Q3R, rank=14, λ=0.001 0.3250 0.3978 0.4149 0.4240 0.4351 0.4429 0.4613
Q3R, rank=14, λ=0.01 0.3465 0.3950 0.4062 0.4172 0.4305 0.4389 0.4526

LoRITa D=2, α=0.1 0.0152 0.0444 0.0883 0.1404 0.2428 0.3043 0.4021
LoRITa D=3, α=0.001 0.0607 0.1375 0.2001 0.2380 0.2975 0.3269 0.4103
LoRITa D=3, α=0.1 0.0570 0.1369 0.2003 0.2401 0.2946 0.3188 0.4111

D.4 Computational Aspects

For few experiments like Q3R, we used NVIDIA A5000 to train the ViT models. The rest of the
experiments were performed on NVIDIA V100 with 32GB memory. The fine-tuning experiemtns
were all performed in NVIDIA A5000 GPUs.

D.5 Computational Overhead of Methodology

In Algorithms 3 and 4, we provide the detailed stepwise FLOP count of our method. Following the
experiments testing the influence of the reweighting period on the truncation, we report the average
training time of the first 5 epochs below. Note that regularization was only applied on the QKV
matrices of a ViT-Tiny Transformer.
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Table 7: Average training time (5 epochs) and reserved GPU memory for ViT-Tiny with QKV-only regularization.

Model Variant / Setting Avg. Time (s) Reserved GPU Mem (GB)

Base — 150.91 6.26

AdamQ3R T“500 205.34 6.28
T“100 207.39 6.31
T“50 209.29 6.62
T“20 217.90 8.22
T“10 218.88 8.62

LoRA R“4 124.83 11.89
R“14 144.51 11.87
R“28 145.28 11.89

Depth1 baseline — 157.29 8.35

Based on the theoretical computational overhead outlined in Algorithm 3 Algorithm 1, along with
the results above, we expect Q3R to incur additional computational and memory overhead. The
added memory originates from the additional weight matrices stored in Q3R to perform the weight
least squares minimization. We attribute the lower Reserved GPU Memory from implementation
differences in the optimizer.

E Ablation Studies

Table 8 presents the comparison between the regularization term (6) and Algorithm 2 evaluated across
varied truncation levels and hyperparameters. Initially AdamQ3R presents competitive performance
against Q3R; however, Q3R provides superior truncation performance on the validation set at lower
truncation values (20% and below). The impact of the regularization parameter is notably small, with
λ “ 0.001 generally providing superior performance.

Table 8: Performance of Vit-T with AdamQ3R and Q3R across different truncation level on CIFAR10.

Model Name 5% 10% 15% 20% 30% 40% 100%
AdamQ3R, rank = 0.05˚ 0.1904 0.4600 0.6032 0.6630 0.7043 0.7060 0.7152
AdamQ3R, rank = 0.10˚ 0.2081 0.3591 0.4852 0.5616 0.6668 0.6772 0.7034
AdamQ3R, rank = 0.15˚ 0.1266 0.3970 0.4576 0.5812 0.6866 0.6970 0.7104
AdamQ3R, rank = 0.20˚ 0.1740 0.4717 0.6208 0.6792 0.6913 0.6977 0.7061
AdamQ3R, rank = 0.05^ 0.2701 0.4608 0.5694 0.6629 0.7017 0.7053 0.7158
AdamQ3R, rank = 0.10^ 0.1066 0.1741 0.4214 0.5304 0.6467 0.6680 0.6955
AdamQ3R, rank = 0.15^ 0.2467 0.4993 0.6040 0.6364 0.6642 0.6695 0.6819
Q3R, rank = 0.04˚ 0.2476 0.5171 0.6544 0.6862 0.6884 0.6874 0.6920
Q3R, rank = 0.09˚ 0.1959 0.5040 0.6789 0.6789 0.6862 0.6870 0.6827
Q3R, rank = 0.19˚ 0.2774 0.4317 0.6337 0.6697 0.6818 0.6896 0.6901
Q3R, rank = 0.04^ 0.2828 0.4699 0.6004 0.6569 0.6801 0.6801 0.6934
Q3R, rank = 0.09^ 0.3202 0.5527 0.6827 0.7024 0.7024 0.7079 0.7081
Q3R, rank = 0.19^ 0.3119 0.4440 0.6137 0.6670 0.6839 0.6877 0.6885

Legend: ˚ Regularization parameter λ “ 0.01, ^ Regularization parameter λ “ 0.001

E.1 Robustness to Hyperparameter Variations

Empirically, we found Q3R to be quite robust to its hyperparameters within reasonable ranges. Below,
we are providing few empirical evidences from Table 1on ViT-Tiny. However, similar results can be
conducted across other datasets and backbones as in Table 4 (CIFAR-100 on ViT-Base). Generally,
when choosing λ, a viable rule is easy to tell if the choice of lambda is too small by monitoring if the
Q3R value increases within the first few epochs. We recommend a value of λ that is slightly larger
than the lower bound of the divergence threshold, as determining if the λ value is too large remains a
challenge.
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Table 9: Effect of regularization strength λ on accuracy.

Parameter Retention Accuracy (%)

1% 46.08–46.30
5% 63.40–63.65
10% 66.30–66.40
25% 70.68–70.74
50% 71.04–71.09
100% (no trunc.) 71.95–71.52

Beyond the 20% retention point, the absolute accuracy gap never exceeds 0.3 percentage points,
confirming that AdamQ3R is largely insensitive to λ within the 0.001–0.01 range in this practical
operating regime.

Table 10: Effect of target rank rtarget on accuracy.

Retention (%) Accuracy (%)

1% 0.5683
5% 0.6568
10% 0.7068
25% 0.6671
50% 0.6457
100% 0.6663

Once 30% of the parameters are retained, the choice of rank changes accuracy by ă 0.3%, confirming
low sensitivity to rank in this regime. We here scale the target rank by layer dimensions so that a
single hyper-parameter r works for networks of any size.

E.2 Merits of Low-Rank Initialization

In our experiments, we implemented supervised initialization where the regulated weight matrix has
a rank greater than or equal to the target rank hyperparameter specified in Q3R. Our findings support
the hypothesis that low-rank initialization in Q3R imposes a strong constraint on the optimization
landscape when the rank is low, thereby limiting the model’s capacity to explore more expensive
solutions during training. This hypothesis is further supported by the fine-tuning results on RoBERTa
where Q3R is applied to the pretrained model and continuously tuned on the GLUE benchmark
tasks. We achieve notable results that support the general intuition that models tend to learn better
representation through expensive subspaces during the training process. Due to the time constraint
of the evaluation period, we could experiment on only the smaller data we observe that LowRank
initialization is unable to surpass the performance of Q3R without such constraint on the initialization.
However, the accuracy is within 1 range of the full rank initialized model which proves that our
proposed method can be implemented in resource constrained setups as well. We provide the example
of the empirical evidence performed on CIFAR-10 on ViT-Tiny with λ “ 0.05 and α “ 0.01.

E.3 Choice of Reweighting Period

We observe in Table 12 that higher reweighting periods (T ) (300, 200, 100) result in underperformance
in comparison to the lower reweighting periods(T ) (25, 5). While longer reweighting periods provide
some computational performance gains based upon formulation Algorithm 1, we observe superior
performance for faster intervals which corresponds to the IRLS-majorisation of the logdet.

Code : The code is available at https://github.com/ThatE10/q3r.git.
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Table 11: Parameter retention effect on accuracy (AdamQ3R + LowRank).

Parameter Retention Accuracy (%)

1% 46.08
5% 63.40
10% 66.30
25% 70.68
50% 71.04
100% (no trunc.) 72.19

Table 12: Model performance under different truncation percentages. Best value per column is bolded. Each
model trained with λ “ 0.001, r “ 0.2, Trained for 30 epochs

Model Name 5% 10% 15% 20% 30% 40% 100%
AdamQ3R,T = 300 0.2999 0.5609 0.6651 0.6801 0.6847 0.6838 0.6827
AdamQ3R, T = 200 0.2601 0.5914 0.6519 0.6766 0.6869 0.6885 0.6871
AdamQ3R, T = 100 0.2764 0.4871 0.6623 0.6776 0.6869 0.6885 0.6936
AdamQ3R, T = 25 0.3729 0.5813 0.6555 0.6725 0.6734 0.6778 0.6790
AdamQ3R, T = 5 0.1740 0.6838 0.6828 0.6949 0.6995 0.7000 0.7031

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
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Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract includes the main contribution of the paper and to highlight
it properly, there is a separate subsection in the Introduction that discusses on the main
contribution of the paper

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer:[Yes]

Justification: We discuss the limitations of the paper in a separate section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The Methodology section contains detailed description of the proposed training
strategy and the related algorithms. The supplementary material contains additional formulae
and explanations.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The Experiment section includes all the hyperparameter details and model
variants. Further discussion on the choice of hyperparameter is included in the supplementary
material.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: In the supplementary material we provide an anonymized GitHub repository
of this paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The Experiments section includes all the hyperparameter choice and the
Methodology section includes the detailed description of the algorithm.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The Experiments section discusses the accuracy and performance of the models
in detail.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

30

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details about the experimental resources are mentioned in the Supplementary
material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The NeurIPS Code of Ethics https://neurips.cc/public/
EthicsGuidelines is followed while writing the paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This paper fall under the category of optimizing neural networks.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The data, models used in the paper are all publicly accessible.

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All the existing work mentioned in the paper are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
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has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: [NA]
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.
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• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA] .
Justification: LLMS are not used for any important component of the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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