Under review as submission to TMLR

On Lower Bounds for the Number of Queries in Clustering
Algorithms

Anonymous authors
Paper under double-blind review

Abstract

We consider clustering with the help of an oracle when all queries are made at once and
the clusters are determined after all the responses are received. We determine the minimum
number of queries required to completely cluster all items. We also consider active clustering
with the help of an oracle when a number of queries are made in the first round and the
remaining queries are made in the second round based upon the responses to the queries
from the first round. We determine a lower bound for the number of queries required to
completely cluster all items based upon an analysis of the number of queries made in the
first round.

1 Introduction

We consider the process of classification of a set of items into clusters by an oracle. This classification is
useful, for example, when sets of images such as images of dogs are to be grouped into sets of similar images,
such as breeds of dogs. The algorithms we consider identify the clusters by making queries about pairs of
items that provide information as to whether the two items are in the same cluster or not. In the real world,
this type of classification is presently performed by platforms such as Amazon Mechanical Turk, Zooinverse,
Planet Hunters, etc. |[Korlakai Vinayak & Hassibi (2016[)Y1 et al.| (2012). A clustering algorithm may be
designed for sending one query at a time and making the next query based upon responses to the queries
already sent out. That method of making queries is called active querying. Active querying may not be
a time efficient way of determining the clusters because of the time involved in waiting for the answers to
come. If a large number of queries are required, it may not be practical to make queries in that manner.

Another method of making queries is called passive querying wherein all the queries are sent out at once
and the clustering is determined when the answers are returned. This approach is not as computationally
efficient as active querying because of the potential redundancy of queries involved when the queries are
made at once and nothing is known about the clusters, especially when there are many items to be classified.

Herein, we examine a third approach which combines elements of active and passive querying which involves
sending out a number of queries at the same time and deciding the next step based upon an analysis of all
the responses received to those queries. We call the process of sending out the queries and analyzing the
responses a “round.” We call the set of queries in a round a “batch."

We determine the minimum number of queries required to complete clustering in one round and two round
algorithms and provide some additional analysis of the two round case based upon the number of queries
made in the first round.

2 Related Work

In [Mazumdar & Saha) (2017b)), the authors study the problem of query complexity, that is, the number of
queries required to cluster a set of elements. In the case of interactive clustering, they give information
theoretic lower bounds and upper bounds for the number of queries needed to cluster a set of n elements into
k clusters. They note that O(nk) is the upper bound on the query complexity which is also a lower bound

Under review as submission to TMLR

even for randomized algorithms, citing |Davidson et al.| (2015). Their main contribution are asymptotic
upper and lower bounds on the number of queries required to recover the clusters when side information
is provided in the form of certain similarity values between each pair of elements. In Mazumdar & Saha,
(2017a), Mazumdar and Saha provide information theoretic lower bounds for the number of queries for
clustering with noisy queries, which can be made interactively (adaptive queries) or up-front (non-adaptive).
Of particular interest in the context of the present paper is their result for the case when the number of
clusters, k, is k> 3, stating that if the minimum cluster size is r, then any deterministic algorithm must

2 . .
make 2 (%) queries even when query answers are not subject to error, to recover the clusters exactly.

Mazumdar and Saha comment that this shows that adaptive algorithms are much more powerful than their
nonadaptive counterparts, but that comment does not take into account the fact that adaptive algorithms in
practice may require much more time to run, which could make them impractical. The previous asymptotic
result is consistent with Theorem 1 of the present paper but our result provides a tighter lower bound and is
not asymptotic. In the aforementioned papers Mazumdar & Sahal (2017a)) and Mazumdar & Saha) (2017b)),
Mazumdar and Saha discuss motivation for studying query complexity of clustering.

Ashtiani et al. in|[Ashtiani et al.| (2016) consider the problem of center-based clustering in a Euclidean space,
which in general is NP-hard but allows a solution in polynomial time under additional assumptions upon
the structure of the clusters and when, in addition, responses to a number of same-cluster queries are given.
They show an asymptotic lower bound on the number of queries needed to do provide a polynomial-time
algorithm.

Ailon et al. in [Ailon et al.| (2017a)) give similar results to |Ashtiani et al.| (2016) for approximate clustering
without the additional assumptions upon the structure of the clusters when responses to a number of queries
are given. The lower bound on the number of queries required to get a polynomial-time approximation in
the algorithm provided in this work depends only on the number of clusters and is independent of the size
of the data set. Their results are extended to the case when the queries are subject to random error with
some bounded probability.

Chien et al. in [Chien et al.| (2018) also develop approximate center-based algorithms with size information
provided by same-cluster queries, but with constraints upon the size of the smallest cluster and they in-
troduced outliers into the analysis using different methods of proof. In their work the query complexity is
reduced both in the case of noisy and noiseless responses. Their work is related to the work in |Ashtiani
et al.| (2016) through the use of query models for improving clustering and the lower bound on the number
of queries is provided asymptotically as a function of the number of queries.

Vinayak et al. [Korlakai Vinayak & Hassibi (2016) demonstrates lower bounds for adaptive querying algo-
rithms. The work considers the setting of a unique underlying clustering and uses Hoeffding’s inequality and
a version of the law of iterative logarithm to get bounds on probabilities of successfully recovering clusters.

Another line of work that is similar to active clustering is explored by Vempaty et al. in [Vempaty et al.
(2014). They look at M-ary classification wherein queries are made to classify an object into one of M
fine-grained categories. These categories are used to determine which of the clusters an object belongs in.
Finally, Awasthi et al. in |Awasthi et al|(2017) examine the scenario of clustering iteratively beginning with
any initial clustering and split/merge requests of the clusters at each iteration. They note that this form of
clustering is easy for untrained workers since the split/merge requests only require a high-level understanding
of the clusters.

A framework for active clustering by an oracle has been considered since at least 2004 [Basu et al.| (2004),
when a method for selecting queries was provided with all the queries made at once. The numbers of queries
required to completely cluster the items were not provided.

Ashtiani |Ashtiani et al.| (2016 also proposes a framework for the popular k-means clustering where the
algorithm utilizes active clustering to speed up k-means clustering where a dissimilarity function of the items
is assumed and can be used to perform k-means clustering. In|Ashtiani et al.| (2016)), the results of a set of
answers to pairwise similarity queries are used in conjunction with a k-means clustering algorithm to cluster
the items in polynomial time. The paper |Ashtiani et al.| (2016) provides bounds on the number of queries
that are required to achieve polynomial time k-means clustering.

Under review as submission to TMLR

The work of |Ailon et al.| (2017b) extends the analysis of |Ashtiani et al.| (2016|). The authors of [Balcan &
Blum| (2008) analyze an adaptive querying setting where the clustering is not unique and needs only satisfy
several relations with respect to the data. Additionally, in each iteration, the worker is presented with a set
of queries and the worker is given a proposed clustering wherein the worker selects a cluster in the proposed
clustering to split into two clusters or selects two clusters to merge. Information theoretic bounds on the
number of queries are provided. The authors of |Awasthi et al| (2017) extend the work of |Balcan & Blum
(2008) with a similar problem formulation.

The work of [Karger et al.| (2011)) examines this situation and provides an asymptotically optimal algorithm
that makes the minimum number of queries while attaining a certain reliability in the answers of imperfect
workers. The workers are assumed to be either perfect or random.

Another line of passive querying is discussed in [Korlakai Vinayak et al. (2017)), where passive querying
involving 3-item comparisons is examined.

Finally, a similar task to pairwise similarity querying based upon active clustering clustering is rank aggre-
gation. In rank aggregation, pairwise comparisons can made to determine ordinal information about the
elements. Under the umbrella of rank aggregation are partitioning and selecting via pairwise comparisons.
Sorting via pairwise comparison queries is used to partition data above the k-th element and below the k-th
element. Selecting involves using pairwise queries to select the k-th element.

3 Background

Consider a set S of n unique items. Without loss of generality, we can identify the items with the integers

1, ..., n. The set is partitioned into k disjoint subsets, which we call clusters C1,...,Cy. Without loss of
generality, we can assume that the sizes of the clusters satisty |Cy| < |Cs|, ..., < |Ck|. We define I; = |C;| i =
1,....k

The objective of an active clustering algorithm is to identify the clusters by making queries about pairs of
items that provide information as to whether the two items are in the same cluster or not. That is, we study
an active clustering mechanism with pairwise similarity queries. The term active refers to the fact that the
answers to the queries are provided by workers who typically are members of the public.

We represent a query by an ordered pair of integers corresponding to the natural numbers assigned to the
items. If a query involves items a and b, then the query is denoted by (a,b),a <b,a€1,...,n,5€1,...,n.
The space of all queries is A = {z = (a,b) : @ € 1,...,n,b € 1,...,n,a < b}. The set A consists of

(n) _ nX(;zfl)

5 elements.

For query z = (a,b) € A, we can define a function f that is equal to 1 if the items a and b belong to the
same cluster and 0 if @ and b belong to different clusters. The algorithm places the items in the same cluster
if f (x) takes the value 1. One can think of f as an indicator function that indicates whether two elements
of a query are in the same cluster.

f(x)= (1)

1, ifaeC;, beC;forsomei=1,...,k

0, ifaec C;, be Cj, for some i # j.
We assume that the responses to the queries are not subject to error, which is sometimes expressed by
saying that the workers are perfect. The algorithms that we consider in this paper produce the clusters by
processing the queries and grouping items into “preclusters" based upon the responses to the queries that are
available until all clusters have been determined. A precluster is a group of items that have been determined
to belong to the same cluster at some stage of the process of determining the clusters. It is important to
note that the preclusters may not be complete clusters. For query = = (a,b), if a and b are found to be in
the same cluster, then we place the two items in the same precluster. An item that has not been found to
be in the same precluster as any other item is a precluster of size 1.

A key observation we use in our proofs is that the number of preclusters decreases by at most 1 with each
query that is processed. We envision the process of determining the clusters as starting with a collection of n

Under review as submission to TMLR

one-element preclusters, corresponding to the n items of the set. Every time a response to a query indicates
that the elements of the query that are in different preclusters are in the same cluster, i.e., f(z) =1, a
new precluster is created by combining the two preclusters containing the elements of the query into one
precluster. For example, if we start with n preclusters, the first time we come across a query x for which
f(z) = 1, we combine the two one-element clusters that contain the elements of the query into a new
precluster, so we now have n — 1 preclusters.

An active querying algorithm may be designed for sending one query at a time and making the next query
based upon responses to the queries already sent out. That method of making queries is called active
querying. Active querying may not be an efficient way of determining the clusters because of the time
involved in waiting for the answers to come. If a large number of queries is required, it may not be practical
to make queries in that manner. To remedy the lack of time effectiveness of active querying, another approach
is to send out a number of queries at the same time and decide the next step based upon an analysis of all
the responses received to those queries. We call the process of sending out the queries and analyzing the
responses a “round". We call the set of queries in a round a “batch.” A one-round algorithm is an algorithm
designed to complete the determination of the clusters in one round. That is, we need to send out enough
queries so that the responses will be sufficient to determine all the clusters. In this paper, we consider the
question of how many queries are required by algorithms with varying numbers of rounds.

4 Results

Observation 1 Consider a one-round algorithm. We first observe that in general, if nothing is known about
the number of clusters or their sizes, then in order to ensure that all the clusters are determined, (g) queries
are needed.

For example, suppose that there are clusters, that is, each item is in its own cluster. In that case, if a single
query x = (a1, az2) is omitted, no algorithm would be able to detect that items ay and as are in the same
cluster without additional information about the number and sizes of clusters.

If at least two items (a1 and ag) are in single-item clusters, then if the query x = (a1, az2) is omitted, there
would be no way to determine whether i; and iy are in the same cluster.

Observation 2 We obtain a different lower bound for the number of queries if the number of clusters, k,
is known. In this case, at least one query can always be removed, and the clustering can still be completed.
This is because if the number of preclusters has been reduced to k + 1 and one query is remaining, then we
do not need to make that query to complete the determination of clusters because we can deduce that the
response to the last query must be 1. When the number of clusters, k, is known, the lower bound is (g) —1.

However, if two queries are removed, then in general no algorithm may be able to determine all clusters even
if k is known. For example, if two queries are removed and there are two single-element clusters, say, {al}
and {ag}, and one two-element cluster, say {(13, a4}, then after all (g) — 2 queries have been analyzed we
may still be left with k + 1 preclusters. This is because if the two queries that are removed are (a1, a2) and
(a3, a4), then ay,as, a3, and ay would remain as one-element preclusters because there would be no way of
determining if a; and ay are in the same cluster or if a3 and a4 are in the same cluster. In other words, at
least one of the queries, (a1,as) or (a3, a4), are necessary to complete the determination of the clusters and
reduce the number of preclusters to k. The previous example suggests that the number of queries required
to determine all the clusters depends upon the size of the two smallest clusters. For a given active querying
algorithm, let B C A be the set of all queries that are utilized by the algorithm. We seek bounds upon the
size |B| of the set B.

Our main result for one-round algorithms is as follows:

Theorem 1 Let I; and lo be the sizes of the smallest cluster and the second smallest cluster, respectively,
and Cy and Cy be the smallest cluster and the second smallest cluster, respectively. Any active clustering
algorithm with perfect workers that determines all the clusters with one round requires more than M

queries.

Under review as submission to TMLR

Proof 1 Let S; = {j €l,...,n: (i,j) € B or (j,i) € B}7 where i € 1,...,n. In other words, S; is the

set of items for which the algorithm utilizes queries involving item i. If the algorithm wutilizes, for each item

i, at least p queries involving item i, i.e., |S;| > p, i = 1,...,n, then >, |S;| > p x n. For each query,

(i,7), we have i € S; and j € S;. So, Y., |Si| =2 x |B|. If item i is utilized in at least p queries for

eachi=1,...,n, then 2 x |B| > p x n. In other words, |B| > E5". If the number of queries utilized by the
pXn

algorithm, |B|, is less than or equal to ®5=, then at least 1 item will be involved in fewer than p queries.

Take p =n — (Iy +12). If fewer than ("_(h% queries are made, then at least one item will be involved
in less than n — (11 + l3) queries. If that item belongs to Cy or Cy, then the algorithm will not be able to
determine if the item is in cluster Cy or Cy. Thus, in the one-round case, if fewer than M queries

are made, it is not possible to always determine the clusters. O

Corollary 1 If there are k clusters, then the lower bound for the number of queries that are required to
_nyn=-1
determine the clusters in one round is w If there are k clusters, then the smallest cluster, [y,
must have at most 3 items. Furthermore, the second smallest cluster, la, must have at most % items. We

n—1

can prove that lo < =1

Assume for contradiction that [y > % Then, every cluster other than the smallest cluster must contain at
least % items. Using this, we can obtain a bound for n — l;, which is % (k—1) =n — 1. This means
that the size of the smallest cluster is 0, a contradiction.

n—1

%=1, we obtain from the prior corollary the lower bound of the

Corollary 2 Utilizing the inequality 7 <
form W =(i- %) x n2. This shows that for large n, this bound is asymptotically (n2), and for
large k, the coefficient of n? is close to %

Our results for one-round algorithms provide a lower bound of the number of queries that are required to
determine the clusters of a set of n items into k clusters when the sizes of the two smallest clusters are
known, which is M queries. Our results provide more than an order-wise asymptotic lower bound
since we provide a precise lower bound for the number of queries that are required to determine the clusters

of any number of items that are to be queried, a novelty.

Furthermore, it is easy to see that the lower bound is tight. Regardless of the algorithm, if fewer than
M queries are made in the first round, there will always be at least one item that has not been
directly compared against at least 1 + ¢ items. And, as proved above, regardless of the algorithm, any
time fewer than M queries are made, there exits a clustering where an item in either the smallest
cluster or the second smallest cluster has not been compared with any other item in its cluster. So, any time

(n—~1+12))xXn
2

fewer than queries are made, it is not possible to determine the clusters of all the items.

To sum up our results for one-round algorithms, we have developed a precise lower bound for the number of
queries that are required to cluster a set of n items into k clusters for any n and k, not just an order-wise
lower bound that only holds for large n, where our lower bound is always tight, and not just tight for large
n. We also give an approximation of the fraction of total number of possible queries that are required to
cluster the items in one round. There are approximately ”2—2 possible queries when n is large, and we showed
that a fraction of (%) of the possible queries are necessary to cluster the items in one round. This shows
that as k gets very large, nearly all the queries are needed to determine the clusters of all the items. In a
sense, this difference is also a measure of the amount of information that can be gained when the number
of clusters is known. If nothing is known, (72’) queries are needed to cluster the items, but when k is known,
11 2

our lower bound becomes (5 — E) X n-.

Our main result for two-round algorithms is stated in the following theorem.

Theorem 2 For a two-round algorithm, suppose that m queries are made in the first round and let d = .
In other words, the number of queries in the first round is d X n. Then, if the size of the largest cluster is
{ = ly, then the lower bound for the number of queries that are required to determine all clusters in two
rounds is n — d X (g)

Under review as submission to TMLR

Proof 2 We consider a randomly chosen query, X = (a,b), chosen from the set of possible queries A. Then
f(X) is a random variable that takes value 0 if a and b are not in the same cluster, or 1 if a and b are in
the same cluster. We calculate the probability P (f (X) =1). This is equivalent to the probability for a fized
query, (a,b), a and b are in the same cluster when the clustering is randomly chosen from the collection of
all possible clustering for the set S.

k
P(f(X)=1)=) P(f(X)=1la€C;) x P(a€C;) (2)

=1
k

=Y (beCilacCi) x P(acC) (3)
=1
k 2

NGl G =1 Gt (@)
; n % n—1 *; n

Consider the expected number of queries where a and b are in the same cluster for d x n queries in the
first round. Let X1,...,Xaxn be the queries in the first round. Then the number of queries for which both

elements are in the same cluster is = Z;ilen f(X5)

dxn dxn
E (Z f(Xa) =D _E(/(X:) (5)
g(dxn)gzdxf (6)

This is the expected number of queries that result in the elements of the query being in the same cluster.
Recall that each time a query reflects that the elements are in the same cluster, the number of preclusters is
reduced by 1, son —d x £ is the lower bound on the expected number of preclusters after d X n queries.

We showed that the expected number of queries where (f (X) =1) in a set of d X n queries that were made
in the first round is bounded by d x £. We can interpret this bound on the expected value as a bound on the
expected number of queries for which both elements are in the same cluster in a given set of d X n queries
made in the first round, where the expected value is taken with respect to all possible clusterings of the set S.
This means that there is some clustering for which the number of queries where both elements of the query
are in the same cluster is less than d x £. Therefore, for a given set of d X n queries in the first round, there
is a clustering of the set S such that the number of queries for which both elements of the query belong to
the same cluster is bounded by d X £. Recall that each time we process a query for which both items are in
the same cluster the number of preclusters is reduced by at most 1. Thus, the number of preclusters for that
set of queries is lower bounded by n — d x £ after d x n queries are made in the first round.

We next show that the number of queries required to determine all clusters in two rounds is (n—;ixé)' In
other words, if there are (n —d x £) preclusters after the first round, at least ("_g”

made in the first and second rounds.

) total queries must be

After the first round of querying, items that are found to be in the same cluster are indistinguishable, so we
can label items in the same precluster with the same integer. Let L be the set of labels. There are (n — d x)
different labels. We will show that every query in R = {x € (a,b):a€ Lbe La< b}, must be made.
Let Ly be the set of items that are labeled a; for some a3 € L. Let Lo be the set of items that are labeled
ag for some as € L,as # a1. Suppose there is no query involving an item in Ly and an item in Lo. Then,
if f(x) =0 for all queries x between items in the set L1 U Ly and items in the set of remaining items, the
algorithm will not be able to distinguish whether items in L1 and Lo are in the same cluster.

|

It is important to note that these (”_2”1 XZ) queries are not all made in the second round of querying. Every
time f (z) = 0, whether in the first or second round, two preclusters are compared and determined not to
be in the same cluster.

Under review as submission to TMLR

Corollary 3 Suppose that all the clusters are of equal size. Then, £ = 7 and the number of queries is at

least (”75%)

We could also say that if the sizes of clusters are approximately equal, this lower bound holds approximately.

As was the case with the one round algorithms, we note that under the constraint of d < %, we have
developed a precise lower bound for the number of queries that are required to cluster a set of n items into
k clusters for any n and k, not just an order-wise lower bound that only holds for large n, as is the case with
many analyses.

Corollary 4 A lower bound for the expected number of queries for any algorithm that are required to cluster
all the items is ("_gxz). If the expected number of queries for which both elements are in the same cluster
less than d x £, a lower bound for the expected number of preclusters is (n — d x £), and thus a lower bound
for the expected number queries that are required to cluster all the items in two Tounds is (”}dxz), using the
fact that the expected value of a random variable squared is greater than or equal to the square of the expected

value of a random variable.

Corollary 5 We can use the information above to determine a lower bound for the expected number of
queries that are required to cluster the items when the sizes of the clusters are not known but it is known that
PlaeC;) = % Va € S andVi € 1,...,k and the cluster that a given item is in does not affect the probability
that any other item is in a given cluster. In this case, the expected number of queries that are required to

cluster the items is at least ("_;%).

Proof 3 Clearly, for a fized query x = (a,b), P(f (z) =1) = Zle (a € Cy)xP(be C;) =+ so the expected
number of queries that result in the elements of the query being in the same cluster is E (Zflen f (xl)) =

ijln E(f (z5)) = Zfl:xl” P(f(X;)=1) < (dxn)t= %" This implies that a lower bound for the expected

d;”), so a lower bound for the

number of preclusters remaining after the first round of querying is (n —
dx

expected number of queries that are required to cluster all the items is (”_2 2) O

We recognize that our results for the two round case say little about the sizes and number of preclusters
that result after the first round. Information in this regard is potentially useful when the clusters are to
be approximated and the final set of clusters produced by the algorithm is not certain to be the underlying
clustering of the items. We use a corollary of Turan’s theorem Berge| (1985) to derive information about the
number and sizes of preclusters that remain after the first round.

Theorem 3 If d X n queries are made in the first round, in the worst case there will be a set of at least

#ﬁdx@) items that have not been found to be in the same cluster as any other item after the first round.

In other words, there will be, in the worst case, at least
round of querying.

#ﬁdxf) single element preclusters after the first

Proof 4 We can reformulate the problem as a graph theoretic problem if we identify elements with nodes
and queries x where f(x) = 1 with arcs. We call a subset of the nodes of a graph stable if no pair from it
is connected by an arc. We can then obtain a lower bound on the size of the largest stable set in the graph,
which corresponds to a lower bound of the expected number of items in the first round that have not been
found to be in the same cluster as any other item. Let

g = min{mam{h|G contains a stable set of size h}|G is a graph with c¢; nodes and m arcs}.

According to the corollary of Turan’s theorem, it can be shown that g > 2Xf;'l2+c Berge (1985). In our case,
¢; = n as we have n items to cluster, and m = d x £, since on expectation, there are d X { queries between
items where the two items are found to be in the same cluster, so there must exist a clustering such that

there are d x £ queries between items where the two items are found to be in the same cluster. So, in the

Under review as submission to TMLR

worst case, there are at least n-&-;ﬁ items that have not been found to be in the same cluster as any other

item after the first round of querying. O

Corollary 6 Ifd < 22E=n there will always be at least one cluster where none of the items in that cluster

2xe
2
have been compared to any other element in the cluster. If d < ”é’;z", s rer ry A So, since the size of

the smallest cluster is always less than or equal to 3, we know that it is always possible for at least the items
of the smallest cluster not to have been compared with each other.

Theorem 4 If d X n queries are made in the first round, there will always be a set of at least =

2XdXn+n

TZH items that are not directly compared against each other.

Proof 5 The proof of this is a direct application of the corollary of Turan’s theorem above, where items are
identified with nodes and comparisons with arcs in the obvious way. O
Corollary 7 If d x n queries are made in the first round and % > d, there will always be at least one
cluster where none of the items in the cluster are compared with any of the other items in the cluster. When
the set of items where no item has not directly been compared against one another is at least of size I if
% > d, simple algebra shows that at least 3; items, the upper bound for the number of items in the smallest
cluster, will not be directly compared against each other.

for the lower bounds for the number of queries required to cluster all items in the one round and two round
cases were obtained.

Sequential querying may be impractical because of the time involved in waiting for the answers to come. A
more realistic approach involves sending out a number of queries at the same time and deciding the next
step based upon an analysis of all the responses received, which is called querying in rounds. In the present
work, we provide lower bounds for the number of queries required to cluster a set of items in one and two
rounds in the worst case and in expectation, given the number of clusters and sizes of the smallest and
second smallest clusters. Additionally, we provide lower bounds for the expected number of queries when
an item is in any given cluster with equal probability. We determine lower bounds for the number of single
element preclusters after the first round of querying, the number of items that are not directly compared
against each other after the first round of querying, and the number of preclusters after the first round of
querying that have not been compared against each other. In the future, we will explore the possibility that
the answers to the query are noisy. We also wish to find lower bounds for crowdsourced clustering in more
than two rounds.

5 Numerical Experiments

We compare our lower bounds for the one-round case to those of Mazumdar & Saha| (2017a)) where k = 20
and the clusters are of equal size in Figure

6 Conclusion

We determined a lower bound for the number of queries required to cluster all items using active clustering
algorithms with perfect workers as a function of the number of items and the sizes of the two smallest clusters.
We also determined the number of queries required to determine all clusters in a two round algorithm with
perfect workers as a function of the number of items, the size of the largest cluster, and the number of
queries made in the first round. Analogous results are provided under the assumption that the clusters are
determined by a random mechanism in which case the lower bounds for the expected number of queries that
are required to determine all clusters are given in terms of the expected sizes of the clusters. In addition,
for the two round algorithm, we used graph theoretic methods to determine the minimum number of single
element preclusters after the first round of querying as a function of the number of queries made in the first
round and the size of the largest cluster, and the minimum number of items that are not directly compared
against each other as a function of the number of queries made in the first round.

Under review as submission to TMLR

%

‘#Ou‘r Algorithm
—A-Algorithm In [4]

2 >

3

S

Minimum Number Of Queries (Asymptotic)

%

200 400 600 800 1000 1200 1400 1600 1800 2000
Number Of Items To Be Clustered (n)

7 Acknowledgements

We are very grateful to Babak Hassibi and Navid Azizan-Ruhi from California Institute of Technology. The
ideas for this research came from them and they provided guidance throughout the project. We gratefully
acknowledge Lav Varshney from University of Illinois at Urbana-Champaign for insightful discussions and
reviews of the paper.

References

Nir Ailon, Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Approximate clustering with same-cluster
queries. CoRR, abs/1704.01862, 2017a. URL http://arxiv.org/abs/1704.01862.

Nir Ailon, Anup Bhattacharya, Ragesh Jaiswal, and Amit Kumar. Approximate clustering with same-cluster
queries. CoRR, abs/1704.01862, 2017b. URL http://arxiv.org/abs/1704.01862.

Hassan Ashtiani, Shrinu Kushagra, and Shai Ben-David. Clustering with same-cluster queries. CoRR,
abs/1606.02404, 2016. URL http://arxiv.org/abs/1606.02404.

Pranjal Awasthi, Maria Florina Balcan, and Konstantin Voevodski. Local algorithms for interactive clus-
tering. Journal of Machine Learning Research, 18(3):1-35, 2017. URL http://jmlr.org/papers/v18/
15-085.htmll

Maria-Florina Balcan and Avrim Blum. Clustering with interactive feedback. In Yoav Freund, Laszld
Gyorfi, Gyorgy Turdn, and Thomas Zeugmann (eds.), Algorithmic Learning Theory, pp. 316-328, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg. ISBN 978-3-540-87987-9.

Sugato Basu, Arindam Banerjee, and Raymond Mooney. Active semi-supervision for pairwise constrained
clustering. Proceedings of the STAM International Conference on Data Mining, 06 2004. doi: 10.1137/1.
9781611972740.31.

C. Berge. Graphs and Hypergraphs. Elsevier Science Ltd., Oxford, UK, UK, 1985. ISBN 0720404797.

I Chien, Chao Pan, and Olgica Milenkovic. Query k-means clustering and the double dixie cup problem,
2018.

Susan Davidson, Sanjeev Khanna, Tova Milo, and Sudeepa Roy. Top-k and clustering with noisy comparisons.
ACM Trans. Database Syst., 39(4), December 2015. ISSN 0362-5915. doi: 10.1145/2684066. URL https:
//doi.org/10.1145/2684066.

David R. Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for reliable crowdsourcing systems.
In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger (eds.), Advances in
Neural Information Processing Systems 24, pp. 1953-1961. Curran Associates, Inc., 2011. URL http:
//papers.nips.cc/paper/4396-iterative-learning-for-reliable-crowdsourcing-systems.pdf.

http://arxiv.org/abs/1704.01862
http://arxiv.org/abs/1704.01862
http://arxiv.org/abs/1606.02404
http://jmlr.org/papers/v18/15-085.html
http://jmlr.org/papers/v18/15-085.html
https://doi.org/10.1145/2684066
https://doi.org/10.1145/2684066
http://papers.nips.cc/paper/4396-iterative-learning-for-reliable-crowdsourcing-systems.pdf
http://papers.nips.cc/paper/4396-iterative-learning-for-reliable-crowdsourcing-systems.pdf

Under review as submission to TMLR

R. Korlakai Vinayak, T. Zrnic, and B. Hassibi. Tensor-based crowdsourced clustering via triangle queries.
In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2322—
2326, March 2017. doi: 10.1109/ICASSP.2017.7952571.

Ramya Korlakai Vinayak and Babak Hassibi. Crowdsourced clustering: Querying edges vs triangles. In D. D.
Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural Information
Processing Systems 29, pp. 1316-1324. Curran Associates, Inc., 2016. URL http://papers.nips.cc/
paper/6499-crowdsourced-clustering-querying-edges-vs-triangles.pdf.

Arya Mazumdar and Barna Saha. Clustering with noisy queries. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in Neural Information Process-
ing Systems 30, pp. 5788-5799. Curran Associates, Inc., 2017a. URL http://papers.nips.cc/paper/
7161-clustering-with-noisy-queries.pdf.

Arya Mazumdar and Barna Saha. Query complexity of clustering with side information. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in
Neural Information Processing Systems 30, pp. 4682-4693. Curran Associates, Inc., 2017b. URL http:
//papers.nips.cc/paper/7054-query-complexity-of-clustering-with-side-information.pdf.

A. Vempaty, L. R. Varshney, and P. K. Varshney. Reliable crowdsourcing for multi-class labeling using
coding theory. IEEFE Journal of Selected Topics in Signal Processing, 8(4):667-679, Aug 2014. ISSN
1932-4553. doi: 10.1109/JSTSP.2014.2316116.

Jinfeng Yi, Rong Jin, Shaili Jain, Tianbao Yang, and Anil Jain. Semi-crowdsourced clustering:
Generalizing crowd labeling by robust distance metric learning. In F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger (eds.), Advances in Neural Information Processing Systems, vol-
ume 25. Curran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper/2012/file/
dd45045£8c68db9f54e70c67048d32e8-Paper. pdf.

10

http://papers.nips.cc/paper/6499-crowdsourced-clustering-querying-edges-vs-triangles.pdf
http://papers.nips.cc/paper/6499-crowdsourced-clustering-querying-edges-vs-triangles.pdf
http://papers.nips.cc/paper/7161-clustering-with-noisy-queries.pdf
http://papers.nips.cc/paper/7161-clustering-with-noisy-queries.pdf
http://papers.nips.cc/paper/7054-query-complexity-of-clustering-with-side-information.pdf
http://papers.nips.cc/paper/7054-query-complexity-of-clustering-with-side-information.pdf
https://proceedings.neurips.cc/paper/2012/file/dd45045f8c68db9f54e70c67048d32e8-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/dd45045f8c68db9f54e70c67048d32e8-Paper.pdf

	Introduction
	Related Work
	Background
	Results
	Numerical Experiments
	Conclusion
	Acknowledgements

