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ABSTRACT Focusing on person re-identification datasets, this paper proposes a new method to estimate
the test accuracy curve over the training image number in a precise, interpretable, and efficient manner
to receive financial and privacy protection benefits. An existing method, neural scaling law, accurately
approximates the curve by fitting a regression function to data points of a training image number and the
corresponding accuracy. However, fitting such a function does not explain the reason for the estimated curve.
Moreover, obtaining a data point updates model parameters with heavy computation. Therefore, this paper
investigates the key factors of a person re-identification dataset that determine the regression parameters.
By incorporating the found factors, our method becomes interpretable. Simultaneously, the method
significantly reduces computation costs since model updates are no longer needed. We experimentally show
that our method is as precise as the uninterpretable neural scaling law incurring nearly millions of model

updates.

INDEX TERMS Efficiency, interpretability, neural scaling laws.

I. INTRODUCTION

Person Re-Identification (Person Re-ID) [1], [2], [3] is a
computer vision task to retrieve images of a specific person
and plays an important role in analysis for surveillance and
marketing. To have accurate deep-learning-based Person Re-
ID models for the test split of a dataset, practitioners often
train (or adapt) off-the-shelf pre-trained models with images
from the training split of the same dataset. The more training
images are used the more accurate the model becomes [4].
At the same time, the computation and data collection fee and
the risk of privacy leakage also increase. The financial budget
and the privacy risk tolerance in training should depend on
the situation of practitioners (e.g., economic and cultural).
Some practitioners probably cannot start their Person Re-
ID business until the amount they need to pay and the size
of the risk to incur in training are clarified. For example,
aretail business operator in a small country potentially cannot

The associate editor coordinating the review of this manuscript and

approving it for publication was Yiming Tang

afford to pay the fee unless they believe it is necessary
to meet the required accuracy. In addition, practitioners in
privacy-sensitive countries may be hindered by the lack
of transparency in the amount of identifiable information
uploaded to the cloud for training. These practitioners need to
know the required number of training images. However, our
preliminary experiments in Figure 1 reveal that the accuracy
curve over the training image number is up to the dataset. In
the figure, data points of the training image number and the
corresponding accuracy form an upward-convex curve for the
MSMT17 [5], Market-1501 [6], and PersonX [7] datasets, but
MSMT17 requires 3x as many images to achieve the 30%
rank-1 accuracy as the others even for the same architecture
(i.e., ResNet50 [8]) from the same initial parameters (i.e.,
pre-trained with ImageNet [9]) by minimizing the same
loss function for the same number of epochs with the
same learning rate in the same training algorithm (i.e., the
mutual-mean teaching [2] unsupervised domain adaptation
technique). Therefore, we solve the problem of giving an
interpretable guideline to the required training image number
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FIGURE 1. Data points of a training image number and the resulting
accuracy for MSMT17, Market-1501, and PersonX datasets. The three
datasets have respective training and test splits. A data point represents
the number of images from the training split used in training and the
corresponding test accuracy on all images in the test split. To achieve the
30% rank-1 accuracy (the dotted line), MSMT17 needs its 15K training
images while Market-1501 and PersonX only require 5K even for the
same Person Re-ID model architecture from the same initial parameters.
This paper aims to fit a curve to the data points in an interpretable and
efficient manner.

in unseen datasets by estimating the accuracy curve over
the training image number within the minimum amount of
data collection and computation. This is an entirely new
problem even if existing approaches [4], [10] based on Neural
Scaling Laws (NSLs) [11], [12], [13], [14], [15], [16] seem
to tackle a similar class of problem because such approaches
are neither interpretable nor efficient. NSLs start training
with a few images and predict the performance gain from
additional training images by fitting a regression function
to data points of an image number and the corresponding
accuracy. NSLs are uninterpretable because they do not
explain why the data points form the curve. Moreover,
NSLs are inefficient because observing the accuracy of
every training image number incurs heavy computation in
updating model parameters. In contrast, our method will be
interpretable and efficient while keeping the accuracy curve
estimation as precise as NSLs.

To introduce interpretability, this paper follows a dataset
representation approach [17], [18]. A dataset representation
embeds a dataset into a vector to infer a dataset prop-
erty. Toward the representation for the regression param-
eter regression, we investigate the underlying relationship
between datasets and their accuracy curve over the training
image number. As a result, we find that only five key factors
of a dataset (i.e., luminance mean, luminance deviation,
camera number, person- and camera-wise image volume,
and gallery person number) are enough as the dataset
representation. The representation explains why datasets
require many or few training images and/or how the number
of images can be reduced. For example, when the luminance-
mean factor has a small value, many training images are
required to achieve a certain accuracy; thus, relocating
cameras to brighter places can reduce the training image
number to achieve a certain accuracy. Furthermore, a small
luminance-deviation factor (i.e., most people in the dataset
wear clothes of similar colors) requires many training images.
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Moreover, a large gallery person number is translated into
requiring many training images. In other words, dividing the
test split into pieces eases training because shorter videos
usually have images of fewer gallery persons. The other
finding of this paper is that the five key factors, after a simple
modification, can be linearly translated into the regression
parameters. Thus, we are free from model updates because
the linear parameters once calibrated (optimized) work for
many Person Re-ID datasets.

Relying on the relationship, this paper proposes a new
method, namely Interpretable and Efficient accuracy-Curve-
over-training-image-number Estimator (IECE), consisting
of the dataset representation and representation conversion
modules. Given a few labeled images from a dataset, the
former module extracts the representation vector of the
dataset, which is composed of those five key factors. The
latter converts the representation vector into parameters in a
new regression function. The parameters reflect significant
differences in accuracy curves among datasets.

We assess IECE with Root Mean Squared Error (RMSE)
from the estimated curve to ground-truth data points of a
training image number and the corresponding accuracy. With
the ImageNet-pre-trained ResNet50 Person Re-ID model
and the Unreal dataset [19] for linear parameter calibration,
IECE marks 3.55, 8.55, and 5.59 RMSE for the MSMT17,
Market-1501, and PersonX evaluation, which are less than
the double scores achieved by the latest NSL [13] not in
an interpretable manner with 470K, 273K, and 67.5K model
updates, i.e., 1.80, 4.61, and 4.44 RMSE. The same tendency
mostly holds for the TransReID [20] Person Re-ID model and
MSMT17 calibration.

Our contributions are listed below.

o We find the five key factors of a Person Re-ID dataset
that explain how many training images achieve a certain
accuracy.

« We incorporate the five factors for IECE to be not only
interpretable but also efficient in estimating the accuracy
curve over the training image number.

o Experiments verify that IECE estimates the curve as
precisely as the latest NSLs.

Il. RELATED WORK

A. PERSON RE-IDENTIFICATION

To find a person of interest (query person) in a video
stream, Person Re-Identification (Person Re-ID) [2], [3],
[21], [22], [23], [24] compares a query person image with
every single detected person image from the video stream
(gallery image) and tells if the two images are of the same
person or not. The literature has found difficulties such as
occlusion [25], partial bodies [26], viewpoint [7], outfit [27],
illumination [28], [29]), and cardinality (e.g., the number of
people in the dataset, number of images per person [30],
or that of scenes [7], [31]). All these difficulties could
affect the accuracy curve over the training image number.
However, the first four are hard to adopt because they need
additional labels. Practitioners are often unable to pay the
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labeling fee. Thus, we investigate the relationship between
the illumination or cardinality of a dataset and the accuracy
curve and find two illumination-related and three cardinality-
related key factors. Experiments prove that the five factors
are enough for standard Person Re-ID datasets to estimate
the accuracy curve.

B. NEURAL SCALING LAWS

Even though existing methods [4], [10], [32] using regression
functions in Neural Scaling Laws (NSLs) [10], [11], [12],
[14], [15], [16] inspired us to propose IECE, the NSL-
based methods and IECE have several clear differences.
First, existing methods estimate the accuracy of a training
image subset obtained by adding a few images to another
subset whose accuracy they can know through training and
testing. This is an easier problem than ours, with little bias
in choosing samples to add, where no bias issues have been
discussed. In contrast, we estimate the accuracy of a training
image subset without any information about its accuracy.
The bias becomes unignorable. Therefore, IECE estimates
the expected accuracy curve over all possible training
image sampling choices. Second, IECE is interpretable
thanks to the key factors translated into the regression
parameters, but existing methods are not. Finally, IECE is
efficient, but existing methods are not. IECE replaces the
heavy computation in model parameter updates with simpler
operations in the dataset representation and representation
conversion modules.

C. DATASET REPRESENTATION

Previous studies have proposed dataset representation tech-
niques to infer dataset properties. For example, Task2Vec [17]
embeds tasks (i.e., the combination of dataset and loss) into
the Fischer-information-matrix-based representation vectors
and picks a computer vision model pre-trained with the
closest task in terms of representation vector as the best
pre-trained model for transfer learning. Automatic model
Evaluation [18], [33] and its modification [34] are other
dataset representation techniques that use the feature mean
and covariance or cluster mean to estimate the accuracy
degradation due to distribution shifts. In this study, we invent
a new dataset representation using the five factors of Person
Re-ID datasets that dominate the accuracy curve over the
training image number.

lil. PROBLEM DEFINITION

This section defines the curve estimation problem on a two-
stage basis. First, we define the curve estimation problem
in classification datasets, which are easier to understand.
Second, we move on to the problem in Person Re-ID datasets.

A. CLASSIFICATION CURVE ESTIMATION

With x' € [0, 1]9>% and yi e {1,---, Cl} representing
the i-th image and class label for (c, h, w, C ! ) € Zi denot-
ing channel number, height, width, and class number,
Dl = {(x, yi)}f.\’:l | represents the [-th image classification
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datasetfor/ € {0, 1, - - - , L}. The dataset is randomly d(i)vided

into training and test splits,' i.e., D/, = {(x/,, Yt and
0

DL = {(xk, y{e)}?iel, where N\ + N = N!. We train a

classifier f with initial parameters 6y using a subset of Dfr
for E € Z4 epochs to minimize the loss function L, in
the learning rate y. Note that (f, 6y, E, Lcy, ) are shared
across [. There is an infinite number of ways to sample
images to form subsets. By Q}w, we denote all the ways to
generate M € Z subsets from D... We let D!, and v/, for
m € {1,---, M} be the m-th subset of D/, when a certain
g e g}u is applied and the corresponding test accuracy on
Dfe. Furthermore, we consider a regression function v(n; &)
to approximate the accuracy curve over the training image
number n € Z,, where € R for A € Z, denotes the
regression parameters. We define the optimal parameters of
D! by

M
Ozl(gl) = arg min Z I:vin — v(|D£n|, a)]2 . 0
@ m=1

The accuracy curve estimation problem estimates
a? :=Egpcgola’(g")] 2)

hinted at by {(D', ozl(gl))}lel. We call the/ = Oand [ > 1
datasets evaluation and calibration datasets, respectively.

B. PERSON RE-ID CURVE ESTIMATION

This paragraph describes the three modifications for Person
Re-ID datasets with the superscript / omitted. First, for i €
{1, ---, N}, we assume the camera label of the i-th image Ze
{1,---,Z} can be used, where Z € Z. is the total number of
cameras. Second, we use the first sample in the test split as
the query sample and the rest as gallery ones. With i = 0 and
i > 1 corresponding to the labeled query and galler% samples,
the test split is represented by De = {(x{e, Ve, 2te) ;> Where
Yo € i and Y N Y = @. When D has
multiple query samples, we average v,, over all samples.
Third, we set the constraint that any training subset D,, has
all images such that y{e = y or no such images for any
y € {l,---,C} to match the real-world scenario where
persons appear in front of the cameras in turn (i.e., one goes
out of the area, then another comes in).

IV. PROPOSED METHOD: IECE

This section proposes Interpretable and Efficient accuracy-
Curve-over-training-image-number Estimator (IECE). Sec-
tion IV-A designs the dataset representation module (i.e.,
finding the five key factors). Section IV-B implements the
representation conversion module. Section IV-C prepares
regression functions with parameters that better explain
significant differences in accuracy curves among datasets
than existing functions.

1We assume the training and test samples are independent and identically
distributed.
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TABLE 1. The rank-10 accuracy of MSMT17-derived datasets. We change
the luminance of MSMT17 images. The accuracy is best when the
luminance mean and deviation are largest (x1).

LumStd x1  x1/2 x1/4

Lum Mean x 1 62.5% 613% 59.1%
x1/2 57.6% 59.0% 59.4%
x1/4 499%  534% 53.4%

A. DATASET REPRESENTATION MIODULE

To find key factors, we analyze Person Re-ID datasets that
differ in illumination and cardinality by surveying their
test accuracy after the mutual mean teaching [2] domain
adaptation over the ImageNet-pre-trained [9] ResNet50 [8]
model.

1) ILLUMINATION-RELATED FACTORS

Images from strong lighting are better distinguished than
those from weak lighting, where strong or weak lighting is
the lighting during day or night [28]. Essentially, we can
see the main difference between them in luminance [35].
We argue that high-luminance datasets need fewer training
images because the image foreground becomes easy to
tell from the background. In addition, we argue that a
deviated dataset in terms of luminance needs fewer train-
ing images because the image foreground (e.g., clothing
color [29]) becomes unique to the person. To support these
arguments, we surveyed the MSMT17? dataset variants
with a modified luminance mean and a deviation by
multiplying a coefficient a’ € R to the image x’ such that
E;[Lum(a'x))]/E;[Lum(x")] and V;[Lum(a'x")]/V;[Lum(x")]
fall on 1/2 and 1/4, where Lum : [0, 113" — [0, 1]
yields the luminance [35] of an image. In Table 1, the dataset
with the highest mean and highest deviation achieves the
best accuracy. From this insight, we adopt the Luminance-
Mean (LM) and Luminance-Deviation (LD) factors of dataset
D= {,y, zi)}?lzl, ie.,

N
siv = E [Lum(x)] ~ %Ewmu"), 3)

xYD [Lum(x)] N N

i 2
Z(Lum(x) B 1) L@

: SLM
i=1

SLD =

SLM

Equations (3) and (4) do not need all N samples

in the dataset D, as experimentally demonstrated
in Section V-C.

2) CARDINALITY-RELATED FACTORS

The number of images or classes dominates model accu-
racy [30]. We argue that the camera number Z, the shot
number (i.e., the number of images per person) R =
N/ |{yi}§\': 1, and the gallery person number {y{e}ﬁ\iel play
especially important roles. First, a dataset with many cameras

2MSMT17 was chosen for having real images of the morning, noon, and
night.
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FIGURE 2. The rank-10 accuracy transition over the shot number for
different camera numbers in Unreal. The accuracy almost always exceeds
50% (the horizontal gray line) when the shot number reaches four times
the camera number (the vertical dashed line).

(i.e., larger Z) is likely to have two images of the same person
that have similar luminance values but look different due to
the difference in image background [36] and thus requires
more training images. Second, a dataset with a small shot
number (especially R < Z) has no two images of the same
person from the same camera to guide training and thus
requires more training images. Finally, a dataset with many
gallery persons (i.e., larger {yie}f.\fl) can contain images of
persons who are similar to the query person but not are and
thus requires more training images.

Fig. 2 illustrates the accuracy over the shot number R and
camera number Z with random subsets of the Unreal [19]
dataset.® First, we can see that a larger Z yields a lower
accuracy. Thus, we define the Camera-Number (CN) factor
as

V4
sen = Y min (Zp(z), 1) Q)

z=1
V4 i AN

~ Zmin(z e =it | 1), (©)
z=1 N

with the probability mass function p(z) that z' € D follows.
The raw Z is inappropriate for this factor where a camera
label z exists such that p(z) < 1/Z. Second, we can see that
accuracy is low especially when R/Z < 1, and surpasses 50%
when R/Z =~ 4. Thus, we design the Person- and Camera-
wise image Volume (PCV) defined as

R N

SN O] sen

N

SpCV =
Section V-C again shows the sampling number in (5) and (7)
can be reduced.

In Unreal, the rank-10 accuracy of the gallery person
number |{y{e}§i°1| was reduced from 86.1% at 375 per-
sons to 81.3% at 750 and 75.9% at 1,500. From this
insight, we formulate the Gallery Person Number (GPN)
factor by

®)

;N
sGpN = logj ‘{ﬂe im1] -

3Unreal was chosen for having more images of more persons and cameras
than MSMT17.
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TABLE 2. Existing (left column; A = 3) and reduced (right; A = 2) regression functions.

a = (a1,a2,a3)

a = (a1,02)

PL3:  v(n) = a1n®2 + a3

AC3:  v(n) = @ arctan (Ocl on+ ag) + a3

LN3:  v(n) —a1 In(n+ a2) + as
)

AR3:  v(n) = 100n (1 + |ayn|®2) 1/ %2 4 a3

PL2:  v(n) = ayn®

AC2:  v(n) = 200 (arctan (a1 on+ 042) — arctan ag)
LN2:  v(n )—a1( n(n+ az2) — lnas)

AR2:  v(n) = 100n (1 + |ayn|®2) "1/ @2

B. REPRESENTATION CONVERSION MODULE
The module converts the dataset representation vector
s € R’ into the regression parameter set o € R?, where

-
5 = (SLM, SLD, SCN, SPCV, SGPN) = - 9

For simplicity, we assume that every regression parameter is
a monotonic and convex function of the factors. Under this
assumption, we implement the function as

&(s; W, b) = W8 + b, (10)
§=(s/N, (11)

where division and power operations are performed in every
component, W € RA*3 and b € R4 are the learnable slope,
and infercept parameters, and \ € Ri and v € R’ are
the hyperparameters called scaler and aligner. The scaler
balances the scale among factors. The aligner brings {(s, «)}
to a flat plane for the slope and intercept parameters well
fit. With calibration datasets and their optimal regression
parameter values, namely {(D!, ol (g ))}l 1» Where g s
randomly chosen from G!, we minimize the following
differentiable loss function:

LW =Y o'~ axuiwon| . a2

where s is the representation vector of D!.

C. SUITABLE REGRESSION FUNCTIONS

The NSL literature has proposed several regression functions.
We invent better versions for our problem and even better
ones not from NSLs. The left column of Table 2 lists
the existing NSL regression functions, namely Power Law
(PL) [13], Arctan (AT) [4], Logarithmic (LG) [4], and
Algebraic Root (AR) [4], which have A = 3 parameters
each. The right column lists their better versions by reducing
parameters (A = 2), which could perform better when
v(0) =~ 0 as in Fig. 1. Still, the reduced versions do not
precisely describe the curve property. Concretely, the PL
parameters are oy = v(1) and ap = V() \which reflect no

v’
information for n > 1. Even though AC covers 0 < n < o0

with V/(0) = 21 and v(c0) = 100 — Z¥ arctan oz,
2

« in AC is nonlinear to v'(0) and v(oo). LN ignores the

n > 1 information again. In AR, o7 = % and

ay = logigg2/(1 — log;oov(1)) are nonlinear again. Thus,
we employ the Terminal Velocity (TV) function,

Y @) = oy - (1 _ 6‘55") , (13)
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TABLE 3. Hyperparameter values used throughout experiments.

LM LD CN PCV GPN

Scaler (A)  +.400 +.500 +4.73 +6.50 +3.50
Aligner (v) +1.88 +500 -3.13 +5.00 -.500

from the physics literature [37]. TV meets a; = V/(0) and
ar = v(0o). We call «; and a the climbing rapidity and
terminal accuracy. Since v(n) < 100% for any n € Z,,
we also consider another version of TV:

v(n; @) = min(aea, 100) - (1 - e‘minsz”) a4

V. EXPERIMENTS

This section shows our IECE precisely estimates the accuracy
curve over the training image number of Person Re-ID
datasets. First, we calibrated W and b parameters by
minimizing (12) with o/ of D! = (D!, DL} for | €
{1,---,L} and hyperparameters (), v) set to the values*
listed in Table 3. The optimal regression parameter set o/ of
PL, AT, LG, AR, and TV was obtained through (1) using the
testaccuracy v\, on D/, after training using the m-th subset D/,
of D{r form € {1, --- , M} with the Person Re-ID model fj,,
learning rate y, epoch size E, and loss function L., defined
in Section V-A. Then, we evaluated the Root Mean Squared
Error (RMSE),5 that is,

M
1 - A 2
= 2 [0 = DY a6 W] (15)

m=1

of the evaluation dataset D°, whose value being small means
IECE pricisely estimates the curve for DY, Section V-B
introduces Person Re-ID datasets used as {D' }L o and
describes the calculation of the optimal regression parameter
al. Section V-C reports RMSE results.

A. PERSON RE-ID MODEL AND TRAINING ALGORITHM

ResNet50 [8] and TransReID [20] pre-trained on Ima-
geNet [9] served as the initial Person Re-ID model fg,. The
cumulative matching characteristic curve at rank-k and mean
Average Precision (mAP) [1] were the Person Re-ID accuracy
metrics v. The mutual mean teaching [2] was applied in
unsupervised and supervised manners over the combination
of softmax cross entropy, soft entropy, softmax triplet, and

4Hyperparameters are surveyed in the supplementary material.
5We chose RMSE because it was used in earlier work [4], [10].
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TABLE 4. Dataset summary. The number of cameras (#C), persons, and images are reported along with factor values. For datasets with an explicit split,
the person number is presented separately for training and testing while the image number for training (N2), gallery (N2), and query. For calibration
datasets (Calib), factor values are reported only for the average and standard deviation over the L datasets. ‘Eval’ represents an evaluation dataset.

Dataset | #C #Persons #Images | CE SLM SLD SCN  SPCV  SGPN
Unreal 34 6,798 1,904,381 Calib 375 371 14.8 4.83 2.88
(063)  (068) (55 (1.66) (0.25)

MSMT 15 1,040+3,060  32,621+82,161+11,659 | Calib 229 .360 10.1 3.17 2.52
077)  (006) (0.9 (0.27) (0.32)

Eval 297 365 10.3 2.60 3.49

Market 6 751+750 12,936+13,115+3,368 Eval .398 195 5.17 3.38 2.88
PersonX 6 410+750 9,840+27,000+4,500 Eval .368 .348 6.00 6.00 2.88

TABLE 5. The main results: RMSE achieved by the proposed method, IECE. If RMSE is smaller, the estimated curve is closer to ground-true data points.
‘U/S’ represents an unsupervised or supervised training. ‘Arch’ is the Person Re-ID model architecture (i.e., ResNet50 or TransRelD). The Unreal, MSMT17,
Market-1501, and PersonX datasets are used for calibration (C) and evaluation (E). The median RMSE over evaluation datasets and Person Re-ID metrics
(i.e., mAP, rank-1, rank-5, and rank-10) is reported. Numbered regression function names match Table 2. As for TV, the two versions defined

in (13) and (14) are tested. The row-wise best RMSE values are bolded. (i: For our environment, TransRelD was too large to perform clustering in pseudo

label generation [2] for unsupervised learning.)

U/S Arch  Unreal MSMT Market PersonX ‘ PL3 PL2 AC3 AC2 LN3 LN2 AR3 AR2 TVv{3) (14
U Res C E E E 7.88 12.5 15.1 10.4 12.0 40.2 11.0 13.0 7.68 8.29
- C E E 12.5 21.1 41.8 27.3 183 43.6 64.1 21.9 8.56 10.9

Trans C E E E (Omitted due to limitation in GPU memory 1)

- C E E (Omitted due to limitation in GPU memory T)
S Res C E E E 33.3 25.2 17.4 19.4 15.6  89.0 374 44.0 26.5 5.77
- C E E 70.5 55.3 349 87.9 424 87.6 10.8 49.5 641 >1K
Trans C E E E 28.8 21.4 21.3 18.7 18.3  37.6 21.2 30.8 17.5 16.3
- C E E 39.9 40.3 82.7 48.7 41.6 325 16.2 39.9 41.5 57.9

soft softmax triplet as the loss function Ly for E = 50 epochs
in the y = 3.5e-4 learning rate.

B. DATASETS AND OPTIMAL REGRESSION PARAMETERS
We used the Unreal [19], MSMT17 [5], Market-1501 [6],
and PersonX [7] datasets. For IECE to perform better,
calibration datasets {D' = (D/,, Dfe)}lel are encouraged to
support the evaluation dataset P in most factors (i.e., {s’ }lel
should surround s® in most components). Yet, assuming that
the support stands in all components is not very practical.
On such a policy, we fetched L = 153 and L =
162 calibration datasets from Unreal and MSMT17 that
mostly support the others serving as evaluation datasets®
(for details of fetching and subset generation policy g', see
Appendices A, B, and C). Table 4 shows {s! }[L=1 is well
deviated but not every s%is in Ei>1 [s'1 £ / Vis1 [s/] in some
components.

C. RESULTS AND DISCUSSION

1) EXISTING REGRESSION FUNCTIONS VS OUR TV
FUNCTIONS

Table 5 compares existing regression functions with TV
in the median RMSE over all the evaluation datasets
and all the Person Re-ID accuracy metrics (for the raw

6Unreal and MSMT17 are larger than the others, being eligible to generate
calibration datasets.
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data, see Appendix D). First, we can see that the TV
functions (i.e., both (13) and (14)) outperform most existing
regression functions that have two or three regression
parameters. This superiority owes to the climbing-rapidity
and terminal-accuracy parameters directly describing the
significant difference in the accuracy curve among datasets.
Second, the former and latter TV implementations work
better for unsupervised and supervised scenarios. This is
because the unsupervised scenario tends to have an accuracy
v that reaches the terminal accuracy at n larger than the
supervised one. For n such that v(n) has not reached the
terminal accuracy, accuracy curves can fit a part of TV
functions with «r» > 100%.

2) STATE-OF-THE-ART NSLS VS IECE

In this discussion and later on, unless otherwise noted,
our report focuses on the rank-1 accuracy metric, which is
the most commonly used among the four metrics. Table 6
compares the state-of-the-art NSLs [4], [13] with IECE in
rank-1 RMSE. Without access to data points, IECE with the
best regression function marks RMSE values comparable’
to that of NSLs in most cases. In Table 6, comparable
RMSE was not achieved only in supervised MSMT17

TWe regard RMSE<17.0 as being ‘““‘comparable”. 17.0 is the largest NSL
score in Table 6.
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TABLE 6. Rank-1 RMSE for unsupervised ResNet50 Unreal calibration (left) and supervised TransRelD Unreal calibration (right) achieved by the
State-of-The-Art (SoTA) NSL baselines along with the number of data points accessed (#DP) and the number of model parameter updates (#MU). NSLs’
RMSE values are mostly comparable to IECE’s ones.

MSMT17 Market-1501 PersonX
Method RMSE #DP  #MU RMSE #DP  #MU RMSE #DP  #MU
SoTA NSL  PL3 1.80/1.62 64 470K | 4.66/3.92 46 273K | 5.97/5.28 18 675K
NSL  AC3 1.84/1.60 64 470K | 4.61/3.89 46 273K | 4.44/.959 18 675K
NSL  LN3 1.95/1.70 64 470K | 17.0/5.36 46 273K | 4.55/.950 18 675K
NSL  AR3 1.85/1.65 64 470K | 4.69/3.94 46 273K | 4.57/.959 18 675K
Ours IECE  Best | 3.55/23.6 0 0 | 855118 0 0 | 5.59/2.37 0 0
Reference NSL ~ PL2 4.35/1.63 64 470K | 5.89/2.19 46 273K | 7.28/3.80 18 675K
NSL AC2 1.83/1.74 64 470K | 4.79/4.17 46 273K | 4.39/1.00 18 675K
NSL  LN2 6.88/2.44 64 470K | 14.9/4.43 46 273K | 9.59/1.13 18 675K
NSL  AR2 5.21/1.76 64 470K | 13.2/4.72 46 273K | 7.43/4.02 18 675K
NSL  TV(13) | 1.83/1.84 64 470K | 4.60/1.14 46 273K | 4.87/1.52 18 675K
NSL  TV(14) | 1.83/1.84 64 470K | 7.89/4.34 46 273K | 5.13/1.13 18 675K

TABLE 7. Ablation study: The smallest RMSE is achieved with all the factors. The column-wise best values are bolded.

U/S Arch Calib Eval Metric LM LD CN PCV GPN TV(3) TV(4)

8] Res Unreal MSMT  rank-1 v v v v v 5.90 11.9

v v v v 31.2 21.7

v v v v 12.9 7.10

v v v v 29.3 19.4

v v v v 20.0 29.6

v v v v 22.7 18.7

rank-10 v v v v v 7.62 4.12

v v v v 40.9 28.8

v v v v 17.4 14.6

v v v v 353 24.8

v v v v 36.6 28.9

v v v v 36.9 31.7

TABLE 8. List of the camera-number (CN) and raw-camera-number (RCN) factor values and RMSE results in unsupervised ResNet50 Unreal calibration.
Unreal factor values are averaged over all L datasets. The better RMSE value by CN or RCN is bolded.

Factor values Rank-1 RMSE Rank-10 RMSE
Dataset SCN / SRCN TV(13) TV(14) TV(13) TV(14)
Unreal 14.8/20.3=73% N/A N/A N/A N/A
MSMT17 10.3/15=69% 5.90/5.35 11.9/237 7.62/6.74 4.17/6.63
Market-1501 5.17/6=86% 10.5/14.8  15.4/7.90 5.55/23.8  8.30/8.19
PersonX 6.00/6 =100% 5.59/25.2 7.37/143 12.3/40.9  8.28/23.0

evaluation, which owed to bad calibration datasets, not to the
IECE methodology.

3) ABLATION OF FACTORS
Table 7 lists the RMSE values when one of the key factors is

lacking, which suggests that all factors are necessary to keep
RMSE small.

4) JUSTIFICATION OF THE CAMERA-NUMBER FACTOR

Table 8 compares the camera-number factor scN =
min(Zp(z), 1) to the raw camera number SrcN Z.
As expected, the corrected version had smaller RMSE values
than the raw version, especially in PersonX, where the ratio
of the two versions (i.e., scN/sreN = 100%) is significantly
different from others (i.e., 73%, 69%, and 86%), suggesting
that the camera number correction is required when p(z) is
different among datasets.

VOLUME 12, 2024

5) IECE EVALUATION WITH FEWER IMAGES

Fig. 3 illustrates RMSE values when N in (3), (4), (5), (7) is
replaced with smaller numbers. We can see that IECE still
marks small RMSE values unless we have all N labeled
images to feed the dataset representation module. That said,
N scales in the data collection or labeling fee.

6) INTERPRETABILITY OF THE ACCURACY CURVE

Table 9 lists the calibrated slope parameter values for the
TV function in (14). A positive and negative slope value
suggests a positive and negative correlation between scaled
and aligned factors § and regression parameters « (i.e.,
the climbing rapidity and terminal accuracy). In reading
the correlation coefficient, bear in mind that § increases
when s decreases if the aligner hyperparameter v has a
negative value in Table 3. As for the luminance-mean
and luminance-deviation factors, the aligner and slope are
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TABLE 9. Assigned values of the TV(14) slope parameters (W) in the unsupervised ResNet50 Unreal calibration. The left and right values in a cell

represent slopes for «; and «,.

Metrics | LM LD

CN PCV GPN

mAP +.003 +.003 | +.004 +.003
rank-1 +.008  -.000 | +.013 -.000
rank-5 +012  +1.14 | +.019 +1.63
rank-10 | +.013  +6.94 | +.018 +19.8

+.004  +.001 | -.001 -.004 | +.008 +.019
+006 -002 | -.001 +.000 | +.025 -.005
+.009 +.694 | -.002 +.038 | +.048 -2.15
+.009 +546 | -.002 +.442 | +.069 -18.6
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FIGURE 3. RMSE values achieved with fewer labeled images fed to

IECE in unsupervised ResNet50 Unreal calibration for rank-1 accuracy on
MSMT17 evaluation (left: TV(13), right: TV(14)). Boxplots present median
and quartile RMSE values along with the x 1.5 inter-quartile range. The
“Reported RMSE” is the one reported in Table 5 with 82K images of 3,060
persons.

almost consistently positive; therefore, a brighter and more
deviated dataset can be said to have an accuracy curve
with a more rapid climb and higher terminal accuracy.
The camera-number factor has negative aligner and slope
values, suggesting that datasets with fewer cameras are prone
to rapidly climbing and terminating at high accuracy. The
person- and camera-wise image volume factor often has
positive slope values for «y and the aligner is positive,
implying datasets with a larger shot number tend to achieve
high accuracy with enough training images. The gallery-
person-number slope for «; is consistently assigned with
positive values, but the aligner is negative, so datasets with
fewer gallery persons are likely to have rapidly climbing
curves. These findings from TV encourage practitioners to
relocate cameras and adjust the person number to save the
training image number to achieve a certain accuracy.

V1. LIMITATIONS

A. DESIGNED FOR STANDARD PERSON RE-ID DATASETS
We only solved illumination and cardinality as difficul-
ties dominating Person Re-ID accuracy curves. Corner-
case datasets have different difficulties. For example, the
angle of depression is key in the Bird-View Person Re-ID
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TABLE 10. Number of images, unique persons, and cameras in four
Unreal scenarios.

Scenario A B C D
#Images 196,013 369,447 470,004 868,917
#Persons 11,788 6,489 6,599 6,798
#Cameras 6 16 6 6

Cameras located at  Outdoor  Outdoor  Outdoor Indoor

dataset [38]. Image sharpness dominates Vehicle Re-ID [36],
[39], [40], [41], [42], [43], [44] accuracy curves because
subtle differences (e.g., tire wheels and emblems) tell two car
identities of the same car model in the same color. Yet, new
factors for new difficulties would extend the interpretable and
computationally efficient accuracy curve estimation toward
such corner cases and general computer vision or vision-
language datasets beyond Object Re-ID.

B. MODEL-WISE CALIBRATION IS INEVITABLE

In IECE, calibration and evaluation datasets must share
the model architecture f and initial parameters 6y as
described in Section III. This can limit the usability of
IECE when practitioners estimate the accuracy curve over the
training image number of multiple pre-trained models (e.g.,
practitioners may use Task2Vec [17] to pick the best one from
multiple candidates) because they need to prepare calibrated
IECEs individually for all candidates. Nevertheless, the
Task2Vec dataset representation added to our five factors
could lift the constraint on f and 6.

C. NO GUARANTEED TOLERANCE TO SAMPLING BIAS

In (2), we formulated the accuracy curve estimation problem
to estimate the expected regression parameter averaged over
all g € GV as the guideline. However, no theory supports the
real regression parameter set of g¥ falling near the guideline
(i.e., the variance is small enough). Even though we did not
observe a large variance in our experiments, a dataset with
diverse images could lead to a large variance. A potential
future direction would be estimating Voo [«®(g")] along
with E o.gola®(g)].

VII. RESPONSIBILITY TO HUMAN SUBJECTS

In contrast to the Unreal and PersonX datasets consisting
of synthetic images, MSMT17 and Market-1501 include
identifiable person images. We checked that no ethical issues
were reported for the datasets. We used the dataset in a
way that met the release agreements, but that unfortunately
did not allow us to present actual images as samples to
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TABLE 11. Assigned factor values for Unreal scenario combinations. For example, ABC uses images from scenarios A, B, and C, not D. A alone and C alone

are excluded for too small LD and CN component values.

Combination LM LD CN PCV GPN # Patterns
A 530 175 4.92 N/A N/A 0
B 362 331 12.7 2.86/4.12/5.39/6.72  2.57/2.88/3.18 12
C 457 271 5.42 N/A N/A 0
D 202 293 4.19 1.91/2.89/3.41 2.57/2.88/3.18 9
AB 413 323 18.6 3.15/4.41/5.80/7.24  2.57/2.88/3.18 12
AC 468 262 8.69 2.45/3.48/4.69/5.75  2.57/2.88/3.18 12
AD 355 505 9.59 2.17/2.98/4.20/5.02  2.57/2.88/3.18 12
BC 418 .309 13.3 3.26/4.53/5.82/6.95  2.57/2.88/3.18 12
BD 287 424 16.5 3.18/4.83/6.15/7.55  2.57/2.88/3.18 12
CD .389 399 8.86 2.46/3.61/4.60/5.88  2.57/2.88/3.18 12
ABC 435 .307 19.5 3.26/4.76/6.17/7.59  2.57/2.88/3.18 12
ABD .343 445 22.2 3.28/4.86/6.15/7.42  2.57/2.88/3.18 12
BCD 359 413 18.5 3.64/5.13/6.48/8.11  2.57/2.88/3.18 12
ABCD 381 404 23.6 3.52/4.99/6.37/7.90  2.57/2.88/3.18 12
Avg=+StdDv 3.75£.063  371£.068  14.845.5 4.8341.66 2.8840.25 L =153

TABLE 12. List of MSMT17 training and test person labels in categories A
and B.

Category Person labels #Persons
Train A 0-107, 146-219, 381-483, 567-624 618
ramn 676-760, 798-866, 878-920, 944-1021
B 108-145, 220-380, 484-566, 625-675 03
761-797, 867-877, 921-943, 1022-1040
0-322, 436-659, 902-1149
Test A 1219-1450, 1697-1853, 2005-2241 1975

2353-2556, 2586-2709, 2777-3002
323-435, 660-901, 1150-1218

B 1451-1696, 1854-2004, 2242-2352 1085
2557-2585, 2710-2776, 3003-3059

TABLE 13. Counting images of persons in categories A and B from every
camera. In the training and test splits, a camera often shoots persons in
either A or B and seldom ones in the other.

Train Test

z A B A B

1 4,408 502 13,672 577
2 20 183 23 116
3 360 94 1,062 443
4 236 1,378 585 3,335
5 3,225 1,071 11,231 1,477
6 73 1,605 181 4,502
7 1,821 1,632 6,335 3,065
8 19 776 41 2,496
9 181 1,215 559 3,263
10 0 655 37 2,215
11 145 3,009 544 8,034
12 295 1,069 406 3,111
13 101 3,534 381 9,934
14 3,116 760 10,782 1,039
15 846 292 3,390 432
Total 14,846 17,775 49,229 44,591

qualitatively determine whether our key factors reflected
image appearance in illumination.

VIil. CONCLUSION

We found the five factors of a Person Re-ID dataset
determining the accuracy curve over the training image
number. By incorporating the key factors, IECE became
interpretable and efficient. Extensive experiments showed
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TABLE 14. The number of cameras, persons, and images in training and
test splits for every MSMT17 group. Image numbers in test splits are
reported separately for gallery and query.

Group  #Cameras  #Persons #Images
1 15 125+125 5,984+(5,933+792)
2 15 125+125 3,609+(3,609+453)
3 12 125+125 2,922+(2,922+433)
4 14 125+125 2,388+(2,388+426)
5 12 125+125 1,835+(1,835+308)
6 15 125+125  9,460+(9,068+1,108)
7 15 125+125 4,095+(4,095+552)
8 15 125+125 1,780+(1,780+288)

that IECE marked as small RMSE values as uninterpretable
NSL baselines that incurred computational costs in nearly
millions of Person Re-ID model updates, as long as all the
five factors were used even with a reduced number of samples
fed to IECE. Also, we found that the TV function from
physics can be used as a better regression function with
climbing rapidity and terminal accuracy directly explaining
the significant differences in accuracy curves among datasets.
For the future, we hope subsequent research builds new
factors after ours to extend the accuracy-curve-over-training
image estimation toward general computer vision and vision-
language datasets.

APPENDIX A UNREAL CALIBRATION CONFIGURATION

As shown in Table 10, Unreal consists of four scenarios,
which we tag A, B, C, and D. Every scenario has a different
image background and a different number of cameras Z; thus
the sp.m, SLD, and scn factor values differ in Table 11. We used
this difference to maintain the diversity among Unreal-
derived calibration datasets. Scenarios B and D could already
serve as calibration datasets (A and C did not for the outlier
factor values compared to those in our evaluation datasets).
To increase the number of calibration datasets, we added
the combinations of A, B, C, and D, which introduced
more diversity in (spm, SLD, ScN). Still, the combination
variation in the other two factors was not large enough. Thus,
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TABLE 15. Assigned factor values for MSMT-17 group combinations (e.g., ‘00111111’ represents groups 3-8). ‘11111001" was removed for CN that was too

small and PCV that was too large.

Combination LM LD CN PCV GPN # Patterns
00111111 .301/.154 .363 10.8 2.69 2.01/2.57/2.88 6
01011111 .306/.152 .358 10.7 2.80 2.01/2.57/2.88 6
01101111 .304/.151 .363 10.7 2.87 2.01/2.57/2.88 6
01110111 .307/.153 .363 10.6 2.98 2.01/2.57/2.88 6
01111011 .305/.152 .350 8.49 2.61 2.01/2.57/2.88 6
01111101 .305/.152 .357 9.38 2.93 2.01/2.57/2.88 6
01111110 .306/.152 357 10.8 3.07 2.01/2.57/2.88 6
10111111 .307/.153 .355 10.7 3.04 2.01/2.57/2.88 6
10101111 .307/.152 .363 10.8 3.32 2.01/2.57/2.88 6
10110111 .308/.153 .360 10.6 3.26 2.01/2.57/2.88 6
10111011 .305/.152 364 8.88 2.83 2.01/2.57/2.88 6
10111101 .306/.152 .364 10.1 3.20 2.01/2.57/2.88 6
10111110 .305/.152 .363 10.6 341 2.01/2.57/2.88 6
11001111 .304/.151 .366 10.8 3.24 2.01/2.57/2.88 6
11010111 .305/.152 .357 10.5 3.37 2.01/2.57/2.88 6
11011011 .300/.149 352 8.63 3.04 2.01/2.57/2.88 6
11011101 .306/.152 354 10.0 3.30 2.01/2.57/2.88 6
11011110 .306/.152 357 10.8 3.37 2.01/2.57/2.88 6
11100111 .307/.153 .356 10.6 343 2.01/2.57/2.88 6
11101011 .302/.150 .357 9.05 2.97 2.01/2.57/2.88 6
11101101 .302/.150 .355 10.1 3.38 2.01/2.57/2.88 6
11101110 .304/.151 .370 10.6 3.55 2.01/2.57/2.88 6
11110011 .304/.151 353 8.22 3.32 2.01/2.57/2.88 6
11110101 .307/.153 .360 9.56 3.39 2.01/2.57/2.88 6
11110110 .306/.152 .360 10.5 3.55 2.01/2.57/2.88 6
11111001 .305 .348 6.29 3.85 N/A 0
11111010 .301/.149 .358 8.91 3.13 2.01/2.57/2.88 6
11111100 .306/.152 .355 9.96 344 2.01/2.57/2.88 6
Avg+StdDv .229+.077  .360+.006  10.1£0.85  3.1740.27 2.5240.32 L =162

we sampled Ny = 12, 000 training images of Ny/(spcv - Z)
persons, N = Z - exp(sgpN) - spcy gallery and Z - exp(sGpN)
query images for spcy € {3,4,5,6} and exp(sgpn) €
{375, 750, 1500}. This sampling yielded the final Unreal-
derived calibration datasets {D' (Dfr, Dfe)}lel, counting
L 153. The [-th training split D{r forl € {1,---,L}
was further divided into subsets {Dfn}% | and the accuracy
vl was tested on D. In the subset division (i.e., choice
of g'), we paid attention so that the sampling bias would
be reduced. To this end, we ensured every image in Dfr
appeared in a certain number of subsets using Algorithm 1.
The algorithm takes the /-th Unreal dataset D! = (D.,, DL),
Person Re-ID model fy,, and a parameter J C Z to yield
the subsets {D]l.r }jr and the corresponding test accuracy vjr
on D forj € Jand r € {0,---,j — 1}, where (j, r)
substitutes for m. Every image in Dfr appeared in |J| out
of M = Zje 7J subsets. Throughout the paper, we used
J =1{1,2,3,5,10, 15} and had M = 36 subsets from Dfr.

Using {(D]’- v]l-r)} ir» we calculated the optimal parameter

(.

jeJ

7o

Jj=1

>[4 -

r=0

2
ol = arg min \A/(|D]l-r|; Ol)] (16)
(03

APPENDIX B MSMT17 CALIBRATION CONFIGURATION
Even though MSMT17 does not have more than one explicit
scenario whereas Unreal had four, we found that MSMT17
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Algorithm 1 Observing Data Points of a Training Image
Number and the Corresponding Accuracy. Used for calibra-
tion Datasets

N

Require: Dy = {(x{;, yi;. z{r)}i=1

Require: D = {(x}., Yie, Zl) i-\ieo

Require: fj,

Require: J C Z4

Ensure: {(|Djr|v er)}jr
1: forje J do
2 forr €{0,1,---,j— 1} do
v D ={edob -2 e i 1
4: Train fy, with D;, and observe accuracy vj on Dee
5 end for
6: end for

persons could be categorized into two categories as described
in Table 12, namely A and B. As shown in Table 13, a person
from category A and one from B often appear in front of
different cameras, which helps us make calibration datasets
with variation in CN. To introduce variation in PCV, we sorted
persons in categories A and B in the ascending order of the
image number and fetched 125 training persons each to make
eight groups listed in Table 14, where we chose 125 test
persons each that were the most similar to the training persons
in the image number.
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TABLE 16. The detailed main results.

U/S Arch  Calib  Eval Metrics | PL3 PL2 AC3 AC2 LN3 LN2 AR3 AR2 TV(13) (14
U  Res Unreal MSMT  mAP 697 119 174 153 850 128 755 894 877 996
rank-1 | 355 17.0 335 347 188 226 883 893 590 119

rank-5 | 427 115 182 173 120 436 248 4.87 661  7.82

rank-10 | 10.7 6.05 178 17.6 7.80 493 674 545 762 417

Market ~ mAP 158 228 175 116 244 305 288 376 140  16.1
rank-1 | 168 254 887 855 228 368 510 265 105 154

rank-5 | 13.0 233 509 518 197 753 153 222 514 108

rank-10 | 10.7 208 451 669 175 804 131 187 555  8.30

PersonX mAP 733 114 200 576 121 158 213 203 774 8.12

rank-1 | 844 131 127 654 107 221 367 155 559 737

rank-5 | 505 938 850 987 770 568 568 104 838 535

rank-10 | 673 7.36 108 108 6.62 613 523  7.49 123 828

MSMT Market ~ mAP 151 210 469 501 181 261 516 319 105 105
rank-1 | 189 281 415 266 161 372 685 156 1.0 112

rank-5 | 21.5 30.1 431 252 216 431 670 224 939 142

rank-10 | 20.8 303 422 232 221 453 588 213 772 106

PersonX mAP 453 973 276 279 160 139 455 176 6.62  6.68

rank-1 | 991 213 256 251 185 442 902 276 659 6.6l

rank-5 | 501 179 266 694 226 563 799  6.54 677 219

rank-10 | 544 750 249 807 18.1 562 613 657 229 229

S Res  Unreal MSMT  mAP 685 382 659 692 569 373 428 477 923 505
rank-1 | 79.9 425 437 567 615 655 697 505 581 325

rank-5 | 764 464 317 468 521 780 324 269 442 215

rank-10 | 75.1 508 27.6 422 467 824 875 125 368 174

Market ~ mAP 274 141 219 199 182 793 252 102 295 152
rank-1 | 302 210 183 190 130 917 100 402 123 1716

rank-5 | 363 286 162 149 123 970 236 59.6 940  2.92

rank-10 | 387 318 165 135 122 982 223 652 843 176

PersonX mAP 146 218 166 278 185 862 493 342 417 437

rank-1 | 121 105 11.6 184 694 946 251 377 235 3.9

rank-5 | 157 847 122 149 507 985 424 529 138 116

rank-10 | 18.1 103 11.8 126 495 993 426 57.7 100 .504

MSMT Market  mAP 399 955 929 101 227 8.08 803 47.0 131 357
rank-1 | 31.1 249 211 267 210 879 623 248 424 424

rank-5 | 379 273 547 333 186 970 101 210 379 381

rank-10 | 39.1 335 534 476 190 982 115 521 320 324

PersonX mAP 105 238 103 167 109 782 101 634 1269 2141

rank-1 120 772 133 165 875 587 469 376  >10K >10K

rank-5 | 104 91.1 610 179 720 985 785 719  >10K >I0K

rank-10 | 101 100 487 185 621 993 752 759  >10K >I0K

Trans Unreal MSMT  mAP 437 236 477 398 258 923 796 237 534 473
rank-1 | 863 577 730 805 750 23.6 931  65.1 782 687

rank-5 | 955 587 723 796 813 308 946 77.0 778 623

rank-10 | 934 594 677 753 797 382 941 798 740 570

Market ~ mAP 176 955 151 191 156 102 454 921 274 229
rank-1 | 286 167 235 244 210 118 294 214 124 207

rank-5 | 290 200 229 183 143 849 870 127 9.19 12,0

rank-10 | 30.8 227 19.6 152 118 898 546 28.7 837 8.6l

PersonX mAP 220 289 292 978 249 393 501 400 6.39  9.89

rank-1 | 115 183 7.89 108 127 370 243 215 183 237

rank-5 | 801 127 863 106 105 927 163 263 16.7 227

rank-10 | 9.06 990 7.94 915 9.5 955 182 329 120 174

MSMT Market  mAP 172 216 391 504 213 280 107 210 139 139
rank-1 | 205 151 679 811 131 242 105 648 180 332

rank-5 | 11.8 141 785 9.04 165 294 308 113 105  4.52

rank-10 | 157 164 488 126 179 319 221 100 385 572

PersonX mAP 807 744 125 640 81.1 587 636 588 114 114

rank-1 | 593 59.1 289 470 619 330 207 64.0 650 825

rank-5 | 91.5 850 122 514 728 371 117 652 170 237

rank-10 | 105 879 869 506 752 404 609 650 785 977

Since the groups were too small in the image number for
a calibration dataset, we considered gCg combinations of
them as well as ones with half luminance mean for the LM
variation. After removing a combination with outliers, the
resulting L = 162 calibration datasets had the factor values
listed in Table 15. Algorithm 1 yielded {(D},, v},)}; used in

calculating {O/}IL:1 again.

o
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APPENDIX C EVALUATION CONFIGURATION

We used MSMT17, Market-1501, and PersonX datasets
for evaluation as they are. Since the sampling bias was
not as severe as in calibration, we used a simpler and
computational-friendly g° algorithm to generate the subsets
and observe the corresponding test accuracy {(D,%, v9n)}m for
the optimal regression parameter calculation, which we refer
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Algorithm 2 Making Subsets of a Dataset and Observing the
Corresponding Accuracy. Used for evaluation Datasets
N

Require: Dy = {(xir, y{%, Zir_)}i:l
Require: D = {(x{e, YVie, Zte) i
Require: fy,

Require: YV = {ny € Z}yeqr, 1y))
Ensure: {(|Dyl, vi)lme(1,- 2131}
1: forme |{1,---,|)]}| do

2 sz{(xir,yir) |y£r€{1s 1nm}}

3 Train fy, with Dy, and observe vy, on D

4 Xnp Z{(xér’yir) ’yire{Y’"' ’Y_nm‘i'l}}
5 Train f, with D,,11 and observe v;, 11 on D

6: end for

TABLE 17. RandPerson (RP) key factor values and the rank-1 RMSE result
on the TV(13) function. (i: Since the .885 PCV factor value was too small
compared to others in Table 4, we had to use different Unreal-derived
calibration datasets.)

U/S Arch Calib Eval ‘ SLM  SLD SCN SPCV  SGPN ‘ RMSE
U Res Unealf RP | 351 474 175 885 385 | 6.8
; ; 0 _ 0 o
to as Algorithm 2. The algorithm takes D, = (D, Dy),

the Person Re-ID model fj,, and a parameter YV C Z4
and fetches the images of every n € ) persons from
the head and tail as the training subset DY, and observed
the corresponding accuracy v31, form € {1,.---,M =
2|Y]}. We adopted Y = {200,225,---,975} for
MSMT17, Y = {200,225, --- , 750} for Market-1501, and
Y = {200, 225, - - - , 400} for PersonX.

APPENDIX D DETAILED RESULTS
Table 16 lists the raw data for Table 5.

APPENDIX E EVALUATION IN REAL-WORLD DATASET
We assess the preciseness of IECE with the RandPerson [31]
dataset, which is proposed as a more real-world dataset than
MSMT17, Market-1501, and PersonX. Table 17 summarizes
the key factor values of RandPerson and reports RMSE.
We can see that the RandPerson RMSE is small enough to
compare with the ones reported earlier in Table 5.
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