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ABSTRACT Focusing on person re-identification datasets, this paper proposes a new method to estimate
the test accuracy curve over the training image number in a precise, interpretable, and efficient manner
to receive financial and privacy protection benefits. An existing method, neural scaling law, accurately
approximates the curve by fitting a regression function to data points of a training image number and the
corresponding accuracy. However, fitting such a function does not explain the reason for the estimated curve.
Moreover, obtaining a data point updates model parameters with heavy computation. Therefore, this paper
investigates the key factors of a person re-identification dataset that determine the regression parameters.
By incorporating the found factors, our method becomes interpretable. Simultaneously, the method
significantly reduces computation costs since model updates are no longer needed. We experimentally show
that our method is as precise as the uninterpretable neural scaling law incurring nearly millions of model
updates.

INDEX TERMS Efficiency, interpretability, neural scaling laws.

I. INTRODUCTION
Person Re-Identification (Person Re-ID) [1], [2], [3] is a
computer vision task to retrieve images of a specific person
and plays an important role in analysis for surveillance and
marketing. To have accurate deep-learning-based Person Re-
ID models for the test split of a dataset, practitioners often
train (or adapt) off-the-shelf pre-trained models with images
from the training split of the same dataset. The more training
images are used the more accurate the model becomes [4].
At the same time, the computation and data collection fee and
the risk of privacy leakage also increase. The financial budget
and the privacy risk tolerance in training should depend on
the situation of practitioners (e.g., economic and cultural).
Some practitioners probably cannot start their Person Re-
ID business until the amount they need to pay and the size
of the risk to incur in training are clarified. For example,
a retail business operator in a small country potentially cannot
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afford to pay the fee unless they believe it is necessary
to meet the required accuracy. In addition, practitioners in
privacy-sensitive countries may be hindered by the lack
of transparency in the amount of identifiable information
uploaded to the cloud for training. These practitioners need to
know the required number of training images. However, our
preliminary experiments in Figure 1 reveal that the accuracy
curve over the training image number is up to the dataset. In
the figure, data points of the training image number and the
corresponding accuracy form an upward-convex curve for the
MSMT17 [5], Market-1501 [6], and PersonX [7] datasets, but
MSMT17 requires 3× as many images to achieve the 30%
rank-1 accuracy as the others even for the same architecture
(i.e., ResNet50 [8]) from the same initial parameters (i.e.,
pre-trained with ImageNet [9]) by minimizing the same
loss function for the same number of epochs with the
same learning rate in the same training algorithm (i.e., the
mutual-mean teaching [2] unsupervised domain adaptation
technique). Therefore, we solve the problem of giving an
interpretable guideline to the required training image number
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FIGURE 1. Data points of a training image number and the resulting
accuracy for MSMT17, Market-1501, and PersonX datasets. The three
datasets have respective training and test splits. A data point represents
the number of images from the training split used in training and the
corresponding test accuracy on all images in the test split. To achieve the
30% rank-1 accuracy (the dotted line), MSMT17 needs its 15K training
images while Market-1501 and PersonX only require 5K even for the
same Person Re-ID model architecture from the same initial parameters.
This paper aims to fit a curve to the data points in an interpretable and
efficient manner.

in unseen datasets by estimating the accuracy curve over
the training image number within the minimum amount of
data collection and computation. This is an entirely new
problem even if existing approaches [4], [10] based on Neural
Scaling Laws (NSLs) [11], [12], [13], [14], [15], [16] seem
to tackle a similar class of problem because such approaches
are neither interpretable nor efficient. NSLs start training
with a few images and predict the performance gain from
additional training images by fitting a regression function
to data points of an image number and the corresponding
accuracy. NSLs are uninterpretable because they do not
explain why the data points form the curve. Moreover,
NSLs are inefficient because observing the accuracy of
every training image number incurs heavy computation in
updating model parameters. In contrast, our method will be
interpretable and efficient while keeping the accuracy curve
estimation as precise as NSLs.

To introduce interpretability, this paper follows a dataset
representation approach [17], [18]. A dataset representation
embeds a dataset into a vector to infer a dataset prop-
erty. Toward the representation for the regression param-
eter regression, we investigate the underlying relationship
between datasets and their accuracy curve over the training
image number. As a result, we find that only five key factors
of a dataset (i.e., luminance mean, luminance deviation,
camera number, person- and camera-wise image volume,
and gallery person number) are enough as the dataset
representation. The representation explains why datasets
require many or few training images and/or how the number
of images can be reduced. For example, when the luminance-
mean factor has a small value, many training images are
required to achieve a certain accuracy; thus, relocating
cameras to brighter places can reduce the training image
number to achieve a certain accuracy. Furthermore, a small
luminance-deviation factor (i.e., most people in the dataset
wear clothes of similar colors) requires many training images.

Moreover, a large gallery person number is translated into
requiring many training images. In other words, dividing the
test split into pieces eases training because shorter videos
usually have images of fewer gallery persons. The other
finding of this paper is that the five key factors, after a simple
modification, can be linearly translated into the regression
parameters. Thus, we are free from model updates because
the linear parameters once calibrated (optimized) work for
many Person Re-ID datasets.

Relying on the relationship, this paper proposes a new
method, namely Interpretable and Efficient accuracy-Curve-
over-training-image-number Estimator (IECE), consisting
of the dataset representation and representation conversion
modules. Given a few labeled images from a dataset, the
former module extracts the representation vector of the
dataset, which is composed of those five key factors. The
latter converts the representation vector into parameters in a
new regression function. The parameters reflect significant
differences in accuracy curves among datasets.

We assess IECE with Root Mean Squared Error (RMSE)
from the estimated curve to ground-truth data points of a
training image number and the corresponding accuracy. With
the ImageNet-pre-trained ResNet50 Person Re-ID model
and the Unreal dataset [19] for linear parameter calibration,
IECE marks 3.55, 8.55, and 5.59 RMSE for the MSMT17,
Market-1501, and PersonX evaluation, which are less than
the double scores achieved by the latest NSL [13] not in
an interpretable manner with 470K, 273K, and 67.5K model
updates, i.e., 1.80, 4.61, and 4.44 RMSE. The same tendency
mostly holds for the TransReID [20] Person Re-IDmodel and
MSMT17 calibration.

Our contributions are listed below.
• We find the five key factors of a Person Re-ID dataset
that explain how many training images achieve a certain
accuracy.

• We incorporate the five factors for IECE to be not only
interpretable but also efficient in estimating the accuracy
curve over the training image number.

• Experiments verify that IECE estimates the curve as
precisely as the latest NSLs.

II. RELATED WORK
A. PERSON RE-IDENTIFICATION
To find a person of interest (query person) in a video
stream, Person Re-Identification (Person Re-ID) [2], [3],
[21], [22], [23], [24] compares a query person image with
every single detected person image from the video stream
(gallery image) and tells if the two images are of the same
person or not. The literature has found difficulties such as
occlusion [25], partial bodies [26], viewpoint [7], outfit [27],
illumination [28], [29]), and cardinality (e.g., the number of
people in the dataset, number of images per person [30],
or that of scenes [7], [31]). All these difficulties could
affect the accuracy curve over the training image number.
However, the first four are hard to adopt because they need
additional labels. Practitioners are often unable to pay the
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labeling fee. Thus, we investigate the relationship between
the illumination or cardinality of a dataset and the accuracy
curve and find two illumination-related and three cardinality-
related key factors. Experiments prove that the five factors
are enough for standard Person Re-ID datasets to estimate
the accuracy curve.

B. NEURAL SCALING LAWS
Even though existing methods [4], [10], [32] using regression
functions in Neural Scaling Laws (NSLs) [10], [11], [12],
[14], [15], [16] inspired us to propose IECE, the NSL-
based methods and IECE have several clear differences.
First, existing methods estimate the accuracy of a training
image subset obtained by adding a few images to another
subset whose accuracy they can know through training and
testing. This is an easier problem than ours, with little bias
in choosing samples to add, where no bias issues have been
discussed. In contrast, we estimate the accuracy of a training
image subset without any information about its accuracy.
The bias becomes unignorable. Therefore, IECE estimates
the expected accuracy curve over all possible training
image sampling choices. Second, IECE is interpretable
thanks to the key factors translated into the regression
parameters, but existing methods are not. Finally, IECE is
efficient, but existing methods are not. IECE replaces the
heavy computation in model parameter updates with simpler
operations in the dataset representation and representation
conversion modules.

C. DATASET REPRESENTATION
Previous studies have proposed dataset representation tech-
niques to infer dataset properties. For example, Task2Vec [17]
embeds tasks (i.e., the combination of dataset and loss) into
the Fischer-information-matrix-based representation vectors
and picks a computer vision model pre-trained with the
closest task in terms of representation vector as the best
pre-trained model for transfer learning. Automatic model
Evaluation [18], [33] and its modification [34] are other
dataset representation techniques that use the feature mean
and covariance or cluster mean to estimate the accuracy
degradation due to distribution shifts. In this study, we invent
a new dataset representation using the five factors of Person
Re-ID datasets that dominate the accuracy curve over the
training image number.

III. PROBLEM DEFINITION
This section defines the curve estimation problem on a two-
stage basis. First, we define the curve estimation problem
in classification datasets, which are easier to understand.
Second, wemove on to the problem in Person Re-ID datasets.

A. CLASSIFICATION CURVE ESTIMATION
With xi ∈ [0, 1]c×h×w and yi ∈ {1, · · · ,C l

} representing
the i-th image and class label for (c, h,w,C l) ∈ Z4

+ denot-
ing channel number, height, width, and class number,
Dl

= {(xi, yi)}N
l

i=1 represents the l-th image classification

dataset for l ∈ {0, 1, · · · ,L}. The dataset is randomly divided

into training and test splits,1 i.e., Dl
tr = {(xitr, y

i
tr)}

N 0
tr

i=1 and

Dl
te = {(xite, y

i
te)}

N 0
te

i=1, where N
l
tr + N l

te = N l . We train a
classifier f with initial parameters θ0 using a subset of Dl

tr
for E ∈ Z+ epochs to minimize the loss function Lcv in
the learning rate γ . Note that (f , θ0,E,Lcv, γ ) are shared
across l. There is an infinite number of ways to sample
images to form subsets. By GlM , we denote all the ways to
generate M ∈ Z+ subsets from Dl

tr. We let Dl
m and vlm for

m ∈ {1, · · · ,M} be the m-th subset of Dl
tr when a certain

gl ∈ GlM is applied and the corresponding test accuracy on
Dl

te. Furthermore, we consider a regression function v(n; α)
to approximate the accuracy curve over the training image
number n ∈ Z+, where α ∈ RA for A ∈ Z+ denotes the
regression parameters. We define the optimal parameters of
Dl by

αl(gl) = arg min
α

M∑
m=1

[
vlm − v(|Dl

m|; α)
]2

. (1)

The accuracy curve estimation problem estimates

α0
:= Eg0∈G0 [α0(g0)] (2)

hinted at by
{
(Dl, αl(gl))

}L
l=1. We call the l = 0 and l ≥ 1

datasets evaluation and calibration datasets, respectively.

B. PERSON RE-ID CURVE ESTIMATION
This paragraph describes the three modifications for Person
Re-ID datasets with the superscript l omitted. First, for i ∈

{1, · · · ,N }, we assume the camera label of the i-th image zi ∈

{1, · · · ,Z } can be used, where Z ∈ Z+ is the total number of
cameras. Second, we use the first sample in the test split as
the query sample and the rest as gallery ones. With i = 0 and
i ≥ 1 corresponding to the labeled query and gallery samples,
the test split is represented byDte = {(xite, y

i
te, z

i
te)}

Nte
i=0, where

y0te ∈ {yite}
Nte
i=1 and {yitr}

Ntr
i=1 ∩ {yite}

Nte
i=1 = ∅. When Dte has

multiple query samples, we average vm over all samples.
Third, we set the constraint that any training subset Dm has
all images such that yite = y or no such images for any
y ∈ {1, · · · ,C} to match the real-world scenario where
persons appear in front of the cameras in turn (i.e., one goes
out of the area, then another comes in).

IV. PROPOSED METHOD: IECE
This section proposes Interpretable and Efficient accuracy-
Curve-over-training-image-number Estimator (IECE). Sec-
tion IV-A designs the dataset representation module (i.e.,
finding the five key factors). Section IV-B implements the
representation conversion module. Section IV-C prepares
regression functions with parameters that better explain
significant differences in accuracy curves among datasets
than existing functions.

1We assume the training and test samples are independent and identically
distributed.
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TABLE 1. The rank-10 accuracy of MSMT17-derived datasets. We change
the luminance of MSMT17 images. The accuracy is best when the
luminance mean and deviation are largest (×1).

A. DATASET REPRESENTATION MODULE
To find key factors, we analyze Person Re-ID datasets that
differ in illumination and cardinality by surveying their
test accuracy after the mutual mean teaching [2] domain
adaptation over the ImageNet-pre-trained [9] ResNet50 [8]
model.

1) ILLUMINATION-RELATED FACTORS
Images from strong lighting are better distinguished than
those from weak lighting, where strong or weak lighting is
the lighting during day or night [28]. Essentially, we can
see the main difference between them in luminance [35].
We argue that high-luminance datasets need fewer training
images because the image foreground becomes easy to
tell from the background. In addition, we argue that a
deviated dataset in terms of luminance needs fewer train-
ing images because the image foreground (e.g., clothing
color [29]) becomes unique to the person. To support these
arguments, we surveyed the MSMT172 dataset variants
with a modified luminance mean and a deviation by
multiplying a coefficient ai ∈ R to the image xi such that
Ei[Lum(aixi)]/Ei[Lum(xi)] and Vi[Lum(aixi)]/Vi[Lum(xi)]
fall on 1/2 and 1/4, where Lum : [0, 1]3×h×w → [0, 1]
yields the luminance [35] of an image. In Table 1, the dataset
with the highest mean and highest deviation achieves the
best accuracy. From this insight, we adopt the Luminance-
Mean (LM) and Luminance-Deviation (LD) factors of dataset
D = {(xi, yi, zi)}Ni=1, i.e.,

sLM = E
x∈D

[Lum(x)] ≈
1
N

N∑
i=1

Lum(xi), (3)

sLD =

√
V
x∈D

[Lum(x)]

sLM
≈

√√√√ N∑
i=1

(
Lum(xi)
sLM

− 1
)2

. (4)

Equations (3) and (4) do not need all N samples
in the dataset D, as experimentally demonstrated
in Section V-C.

2) CARDINALITY-RELATED FACTORS
The number of images or classes dominates model accu-
racy [30]. We argue that the camera number Z , the shot
number (i.e., the number of images per person) R =

N/|{yi}Ni=1|, and the gallery person number {yite}
Nte
i=1 play

especially important roles. First, a dataset with many cameras

2MSMT17 was chosen for having real images of the morning, noon, and
night.

FIGURE 2. The rank-10 accuracy transition over the shot number for
different camera numbers in Unreal. The accuracy almost always exceeds
50% (the horizontal gray line) when the shot number reaches four times
the camera number (the vertical dashed line).

(i.e., larger Z ) is likely to have two images of the same person
that have similar luminance values but look different due to
the difference in image background [36] and thus requires
more training images. Second, a dataset with a small shot
number (especially R < Z ) has no two images of the same
person from the same camera to guide training and thus
requires more training images. Finally, a dataset with many
gallery persons (i.e., larger {yite}

Nte
i=1) can contain images of

persons who are similar to the query person but not are and
thus requires more training images.

Fig. 2 illustrates the accuracy over the shot number R and
camera number Z with random subsets of the Unreal [19]
dataset.3 First, we can see that a larger Z yields a lower
accuracy. Thus, we define the Camera-Number (CN) factor
as

sCN =

Z∑
z=1

min (Zp(z), 1) (5)

≈

Z∑
z=1

min

(
Z ·

∣∣{i|zi = z}Ni=1

∣∣
N

, 1

)
, (6)

with the probability mass function p(z) that zi ∈ D follows.
The raw Z is inappropriate for this factor where a camera
label z exists such that p(z) ≪ 1/Z . Second, we can see that
accuracy is low especially when R/Z < 1, and surpasses 50%
when R/Z ≈ 4. Thus, we design the Person- and Camera-
wise image Volume (PCV) defined as

sPCV =
R
sCN

≈
N∣∣{yi}Ni=1

∣∣ · sCN . (7)

Section V-C again shows the sampling number in (5) and (7)
can be reduced.

In Unreal, the rank-10 accuracy of the gallery person
number |{yite}

Nte
i=1| was reduced from 86.1% at 375 per-

sons to 81.3% at 750 and 75.9% at 1,500. From this
insight, we formulate the Gallery Person Number (GPN)
factor by

sGPN = log10
∣∣∣{yite}Nte

i=1

∣∣∣ . (8)

3Unreal was chosen for having more images of more persons and cameras
than MSMT17.
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TABLE 2. Existing (left column; A = 3) and reduced (right; A = 2) regression functions.

B. REPRESENTATION CONVERSION MODULE
The module converts the dataset representation vector
s ∈ R5 into the regression parameter set α ∈ RA, where

s = (sLM, sLD, sCN, sPCV, sGPN)⊤ . (9)

For simplicity, we assume that every regression parameter is
a monotonic and convex function of the factors. Under this
assumption, we implement the function as

α̂(s;W , b) = W ŝ+ b, (10)

ŝ = (s/λ)ν , (11)

where division and power operations are performed in every
component, W ∈ RA×5, and b ∈ RA are the learnable slope,
and intercept parameters, and λ ∈ R5

+ and ν ∈ R5 are
the hyperparameters called scaler and aligner. The scaler
balances the scale among factors. The aligner brings {(ŝ, α)}
to a flat plane for the slope and intercept parameters well
fit. With calibration datasets and their optimal regression
parameter values, namely {(Dl, αl(gl))}Ll=1, where gl is
randomly chosen from Gl , we minimize the following
differentiable loss function:

Lcalib(W , b) =

L∑
l=1

∥∥∥αl(gl) − α̂λ,ν (s
l
;W , b)

∥∥∥2
2
, (12)

where sl is the representation vector of Dl .

C. SUITABLE REGRESSION FUNCTIONS
The NSL literature has proposed several regression functions.
We invent better versions for our problem and even better
ones not from NSLs. The left column of Table 2 lists
the existing NSL regression functions, namely Power Law
(PL) [13], Arctan (AT) [4], Logarithmic (LG) [4], and
Algebraic Root (AR) [4], which have A = 3 parameters
each. The right column lists their better versions by reducing
parameters (A = 2), which could perform better when
v(0) ≈ 0 as in Fig. 1. Still, the reduced versions do not
precisely describe the curve property. Concretely, the PL
parameters are α1 = v(1) and α2 =

v′(1)
v(1) , which reflect no

information for n ≫ 1. Even though AC covers 0 < n < ∞

with v′(0) =
100
π

α1
α2
2+1

and v(∞) = 100 −
200
π

arctanα2,

α in AC is nonlinear to v′(0) and v(∞). LN ignores the
n ≫ 1 information again. In AR, α1 =

100
v(∞) and

α2 = log100 2/(1 − log100 v(1)) are nonlinear again. Thus,
we employ the Terminal Velocity (TV) function,

v(n; α) = α2 ·

(
1 − e−

α1
α2
n
)

, (13)

TABLE 3. Hyperparameter values used throughout experiments.

from the physics literature [37]. TV meets α1 = v′(0) and
α2 = v(∞). We call α1 and α2 the climbing rapidity and
terminal accuracy. Since v(n) < 100% for any n ∈ Z+,
we also consider another version of TV:

v(n; α) = min(α2, 100) ·

(
1 − e−

α1
min(α2,100) n

)
. (14)

V. EXPERIMENTS
This section shows our IECE precisely estimates the accuracy
curve over the training image number of Person Re-ID
datasets. First, we calibrated W and b parameters by
minimizing (12) with αl of Dl

= {Dl
tr,Dl

te} for l ∈

{1, · · · ,L} and hyperparameters (λ, ν) set to the values4

listed in Table 3. The optimal regression parameter set αl of
PL, AT, LG, AR, and TV was obtained through (1) using the
test accuracy vlm onDl

te after training using them-th subsetDl
m

of Dl
tr for m ∈ {1, · · · ,M} with the Person Re-ID model fθ0 ,

learning rate γ , epoch size E , and loss function Lcv defined
in Section V-A. Then, we evaluated the Root Mean Squared
Error (RMSE),5 that is,√√√√ 1

M

M∑
m=1

[
v0m − v̂(|D0

m|; α̂λ,ν (s0;W , b))
]2

, (15)

of the evaluation dataset D0, whose value being small means
IECE pricisely estimates the curve for D0. Section V-B
introduces Person Re-ID datasets used as {Dl

}
L
l=0 and

describes the calculation of the optimal regression parameter
αl . Section V-C reports RMSE results.

A. PERSON RE-ID MODEL AND TRAINING ALGORITHM
ResNet50 [8] and TransReID [20] pre-trained on Ima-
geNet [9] served as the initial Person Re-ID model fθ0 . The
cumulative matching characteristic curve at rank-k and mean
Average Precision (mAP) [1] were the Person Re-ID accuracy
metrics v. The mutual mean teaching [2] was applied in
unsupervised and supervised manners over the combination
of softmax cross entropy, soft entropy, softmax triplet, and

4Hyperparameters are surveyed in the supplementary material.
5We chose RMSE because it was used in earlier work [4], [10].
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TABLE 4. Dataset summary. The number of cameras (#C), persons, and images are reported along with factor values. For datasets with an explicit split,
the person number is presented separately for training and testing while the image number for training (N0

tr), gallery (N0
te), and query. For calibration

datasets (Calib), factor values are reported only for the average and standard deviation over the L datasets. ‘Eval’ represents an evaluation dataset.

TABLE 5. The main results: RMSE achieved by the proposed method, IECE. If RMSE is smaller, the estimated curve is closer to ground-true data points.
‘U/S’ represents an unsupervised or supervised training. ‘Arch’ is the Person Re-ID model architecture (i.e., ResNet50 or TransReID). The Unreal, MSMT17,
Market-1501, and PersonX datasets are used for calibration (C) and evaluation (E). The median RMSE over evaluation datasets and Person Re-ID metrics
(i.e., mAP, rank-1, rank-5, and rank-10) is reported. Numbered regression function names match Table 2. As for TV, the two versions defined
in (13) and (14) are tested. The row-wise best RMSE values are bolded. (†: For our environment, TransReID was too large to perform clustering in pseudo
label generation [2] for unsupervised learning.)

soft softmax triplet as the loss functionLcv forE = 50 epochs
in the γ = 3.5e-4 learning rate.

B. DATASETS AND OPTIMAL REGRESSION PARAMETERS
We used the Unreal [19], MSMT17 [5], Market-1501 [6],
and PersonX [7] datasets. For IECE to perform better,
calibration datasets {Dl

= (Dl
tr,Dl

te)}
L
l=1 are encouraged to

support the evaluation datasetD0 in most factors (i.e., {sl}Ll=1
should surround s0 in most components). Yet, assuming that
the support stands in all components is not very practical.
On such a policy, we fetched L = 153 and L =

162 calibration datasets from Unreal and MSMT17 that
mostly support the others serving as evaluation datasets6

(for details of fetching and subset generation policy gl , see
Appendices A, B, and C). Table 4 shows {sl}Ll=1 is well
deviated but not every s0 is in El≥1[sl] ±

√
Vl≥1[sl] in some

components.

C. RESULTS AND DISCUSSION
1) EXISTING REGRESSION FUNCTIONS VS OUR TV
FUNCTIONS
Table 5 compares existing regression functions with TV
in the median RMSE over all the evaluation datasets
and all the Person Re-ID accuracy metrics (for the raw

6Unreal andMSMT17 are larger than the others, being eligible to generate
calibration datasets.

data, see Appendix D). First, we can see that the TV
functions (i.e., both (13) and (14)) outperform most existing
regression functions that have two or three regression
parameters. This superiority owes to the climbing-rapidity
and terminal-accuracy parameters directly describing the
significant difference in the accuracy curve among datasets.
Second, the former and latter TV implementations work
better for unsupervised and supervised scenarios. This is
because the unsupervised scenario tends to have an accuracy
v that reaches the terminal accuracy at n larger than the
supervised one. For n such that v(n) has not reached the
terminal accuracy, accuracy curves can fit a part of TV
functions with α2 > 100%.

2) STATE-OF-THE-ART NSLS VS IECE
In this discussion and later on, unless otherwise noted,
our report focuses on the rank-1 accuracy metric, which is
the most commonly used among the four metrics. Table 6
compares the state-of-the-art NSLs [4], [13] with IECE in
rank-1 RMSE. Without access to data points, IECE with the
best regression function marks RMSE values comparable7

to that of NSLs in most cases. In Table 6, comparable
RMSE was not achieved only in supervised MSMT17

7We regard RMSE<17.0 as being ‘‘comparable’’. 17.0 is the largest NSL
score in Table 6.
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TABLE 6. Rank-1 RMSE for unsupervised ResNet50 Unreal calibration (left) and supervised TransReID Unreal calibration (right) achieved by the
State-of-The-Art (SoTA) NSL baselines along with the number of data points accessed (#DP) and the number of model parameter updates (#MU). NSLs’
RMSE values are mostly comparable to IECE’s ones.

TABLE 7. Ablation study: The smallest RMSE is achieved with all the factors. The column-wise best values are bolded.

TABLE 8. List of the camera-number (CN) and raw-camera-number (RCN) factor values and RMSE results in unsupervised ResNet50 Unreal calibration.
Unreal factor values are averaged over all L datasets. The better RMSE value by CN or RCN is bolded.

evaluation, which owed to bad calibration datasets, not to the
IECE methodology.

3) ABLATION OF FACTORS
Table 7 lists the RMSE values when one of the key factors is
lacking, which suggests that all factors are necessary to keep
RMSE small.

4) JUSTIFICATION OF THE CAMERA-NUMBER FACTOR
Table 8 compares the camera-number factor sCN =

min(Zp(z), 1) to the raw camera number sRCN = Z .
As expected, the corrected version had smaller RMSE values
than the raw version, especially in PersonX, where the ratio
of the two versions (i.e., sCN/sRCN = 100%) is significantly
different from others (i.e., 73%, 69%, and 86%), suggesting
that the camera number correction is required when p(z) is
different among datasets.

5) IECE EVALUATION WITH FEWER IMAGES
Fig. 3 illustrates RMSE values when N in (3), (4), (5), (7) is
replaced with smaller numbers. We can see that IECE still
marks small RMSE values unless we have all N labeled
images to feed the dataset representation module. That said,
N scales in the data collection or labeling fee.

6) INTERPRETABILITY OF THE ACCURACY CURVE
Table 9 lists the calibrated slope parameter values for the
TV function in (14). A positive and negative slope value
suggests a positive and negative correlation between scaled
and aligned factors ŝ and regression parameters α (i.e.,
the climbing rapidity and terminal accuracy). In reading
the correlation coefficient, bear in mind that ŝ increases
when s decreases if the aligner hyperparameter ν has a
negative value in Table 3. As for the luminance-mean
and luminance-deviation factors, the aligner and slope are
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TABLE 9. Assigned values of the TV(14) slope parameters (W ) in the unsupervised ResNet50 Unreal calibration. The left and right values in a cell
represent slopes for α1 and α2.

FIGURE 3. RMSE values achieved with fewer labeled images fed to
IECE in unsupervised ResNet50 Unreal calibration for rank-1 accuracy on
MSMT17 evaluation (left: TV(13), right: TV(14)). Boxplots present median
and quartile RMSE values along with the ×1.5 inter-quartile range. The
‘‘Reported RMSE’’ is the one reported in Table 5 with 82K images of 3,060
persons.

almost consistently positive; therefore, a brighter and more
deviated dataset can be said to have an accuracy curve
with a more rapid climb and higher terminal accuracy.
The camera-number factor has negative aligner and slope
values, suggesting that datasets with fewer cameras are prone
to rapidly climbing and terminating at high accuracy. The
person- and camera-wise image volume factor often has
positive slope values for α2 and the aligner is positive,
implying datasets with a larger shot number tend to achieve
high accuracy with enough training images. The gallery-
person-number slope for α1 is consistently assigned with
positive values, but the aligner is negative, so datasets with
fewer gallery persons are likely to have rapidly climbing
curves. These findings from TV encourage practitioners to
relocate cameras and adjust the person number to save the
training image number to achieve a certain accuracy.

VI. LIMITATIONS
A. DESIGNED FOR STANDARD PERSON RE-ID DATASETS
We only solved illumination and cardinality as difficul-
ties dominating Person Re-ID accuracy curves. Corner-
case datasets have different difficulties. For example, the
angle of depression is key in the Bird-View Person Re-ID

TABLE 10. Number of images, unique persons, and cameras in four
Unreal scenarios.

dataset [38]. Image sharpness dominates Vehicle Re-ID [36],
[39], [40], [41], [42], [43], [44] accuracy curves because
subtle differences (e.g., tire wheels and emblems) tell two car
identities of the same car model in the same color. Yet, new
factors for new difficulties would extend the interpretable and
computationally efficient accuracy curve estimation toward
such corner cases and general computer vision or vision-
language datasets beyond Object Re-ID.

B. MODEL-WISE CALIBRATION IS INEVITABLE
In IECE, calibration and evaluation datasets must share
the model architecture f and initial parameters θ0 as
described in Section III. This can limit the usability of
IECEwhen practitioners estimate the accuracy curve over the
training image number of multiple pre-trained models (e.g.,
practitioners may use Task2Vec [17] to pick the best one from
multiple candidates) because they need to prepare calibrated
IECEs individually for all candidates. Nevertheless, the
Task2Vec dataset representation added to our five factors
could lift the constraint on f and θ0.

C. NO GUARANTEED TOLERANCE TO SAMPLING BIAS
In (2), we formulated the accuracy curve estimation problem
to estimate the expected regression parameter averaged over
all g0 ∈ G0 as the guideline. However, no theory supports the
real regression parameter set of g0 falling near the guideline
(i.e., the variance is small enough). Even though we did not
observe a large variance in our experiments, a dataset with
diverse images could lead to a large variance. A potential
future direction would be estimating Vg0∈G0 [α0(g0)] along
with Eg0∈G0 [α0(g0)].

VII. RESPONSIBILITY TO HUMAN SUBJECTS
In contrast to the Unreal and PersonX datasets consisting
of synthetic images, MSMT17 and Market-1501 include
identifiable person images. We checked that no ethical issues
were reported for the datasets. We used the dataset in a
way that met the release agreements, but that unfortunately
did not allow us to present actual images as samples to
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TABLE 11. Assigned factor values for Unreal scenario combinations. For example, ABC uses images from scenarios A, B, and C, not D. A alone and C alone
are excluded for too small LD and CN component values.

TABLE 12. List of MSMT17 training and test person labels in categories A
and B.

TABLE 13. Counting images of persons in categories A and B from every
camera. In the training and test splits, a camera often shoots persons in
either A or B and seldom ones in the other.

qualitatively determine whether our key factors reflected
image appearance in illumination.

VIII. CONCLUSION
We found the five factors of a Person Re-ID dataset
determining the accuracy curve over the training image
number. By incorporating the key factors, IECE became
interpretable and efficient. Extensive experiments showed

TABLE 14. The number of cameras, persons, and images in training and
test splits for every MSMT17 group. Image numbers in test splits are
reported separately for gallery and query.

that IECE marked as small RMSE values as uninterpretable
NSL baselines that incurred computational costs in nearly
millions of Person Re-ID model updates, as long as all the
five factors were used even with a reduced number of samples
fed to IECE. Also, we found that the TV function from
physics can be used as a better regression function with
climbing rapidity and terminal accuracy directly explaining
the significant differences in accuracy curves among datasets.
For the future, we hope subsequent research builds new
factors after ours to extend the accuracy-curve-over-training
image estimation toward general computer vision and vision-
language datasets.

APPENDIX A UNREAL CALIBRATION CONFIGURATION
As shown in Table 10, Unreal consists of four scenarios,
which we tag A, B, C, and D. Every scenario has a different
image background and a different number of cameras Z ; thus
the sLM, sLD, and sCN factor values differ in Table 11.We used
this difference to maintain the diversity among Unreal-
derived calibration datasets. Scenarios B and D could already
serve as calibration datasets (A and C did not for the outlier
factor values compared to those in our evaluation datasets).
To increase the number of calibration datasets, we added
the combinations of A, B, C, and D, which introduced
more diversity in (sLM, sLD, sCN). Still, the combination
variation in the other two factors was not large enough. Thus,
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TABLE 15. Assigned factor values for MSMT-17 group combinations (e.g., ‘00111111’ represents groups 3-8). ‘11111001’ was removed for CN that was too
small and PCV that was too large.

we sampled Ntr = 12, 000 training images of Ntr/(sPCV · Z )
persons, Nte = Z · exp(sGPN) · sPCV gallery and Z · exp(sGPN)
query images for sPCV ∈ {3, 4, 5, 6} and exp(sGPN) ∈

{375, 750, 1500}. This sampling yielded the final Unreal-
derived calibration datasets {Dl

= (Dl
tr,Dl

te)}
L
l=1, counting

L = 153. The l-th training split Dl
tr for l ∈ {1, · · · ,L}

was further divided into subsets {Dl
m}

M
m=1 and the accuracy

vlm was tested on Dl
te. In the subset division (i.e., choice

of gl), we paid attention so that the sampling bias would
be reduced. To this end, we ensured every image in Dl

tr
appeared in a certain number of subsets using Algorithm 1.
The algorithm takes the l-th Unreal dataset Dl

= (Dl
tr,Dl

te),
Person Re-ID model fθ0 , and a parameter J ⊂ Z+ to yield
the subsets {Dl

jr }jr and the corresponding test accuracy vljr
on Dte for j ∈ J and r ∈ {0, · · · , j − 1}, where (j, r)
substitutes for m. Every image in Dl

tr appeared in |J | out
of M =

∑
j∈J j subsets. Throughout the paper, we used

J = {1, 2, 3, 5, 10, 15} and had M = 36 subsets from Dl
tr.

Using {(Dl
jr , v

l
jr )}jr , we calculated the optimal parameter

αl = arg min
α

∑
j∈J

1
j

j−1∑
r=0

[
vljr − v̂(|Dl

jr |; α)
]2 . (16)

APPENDIX B MSMT17 CALIBRATION CONFIGURATION
Even though MSMT17 does not have more than one explicit
scenario whereas Unreal had four, we found that MSMT17

Algorithm 1 Observing Data Points of a Training Image
Number and the Corresponding Accuracy. Used for calibra-
tion Datasets
Require: Dtr = {(xitr, y

i
tr, z

i
tr)}

Ntr
i=1

Require: Dte = {(xite, y
i
te, z

i
te)}

Nte
i=0

Require: fθ0
Require: J ⊂ Z+

Ensure: {(|Djr |, vjr )}jr
1: for j ∈ J do
2: for r ∈ {0, 1, · · · , j− 1} do
3: Djr =

{
(xitr, y

i
tr)
∣∣∣yitr −

Yr
j ∈

{
1 · · · , Yj

}}
4: Train fθ0 with Djr and observe accuracy vjr on Dte
5: end for
6: end for

persons could be categorized into two categories as described
in Table 12, namely A and B. As shown in Table 13, a person
from category A and one from B often appear in front of
different cameras, which helps us make calibration datasets
with variation in CN. To introduce variation in PCV,we sorted
persons in categories A and B in the ascending order of the
image number and fetched 125 training persons each to make
eight groups listed in Table 14, where we chose 125 test
persons each that were themost similar to the training persons
in the image number.
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TABLE 16. The detailed main results.

Since the groups were too small in the image number for
a calibration dataset, we considered 8C6 combinations of
them as well as ones with half luminance mean for the LM
variation. After removing a combination with outliers, the
resulting L = 162 calibration datasets had the factor values
listed in Table 15. Algorithm 1 yielded {(Dl

jr , v
l
jr )}jr used in

calculating {αl}Ll=1 again.

APPENDIX C EVALUATION CONFIGURATION
We used MSMT17, Market-1501, and PersonX datasets

for evaluation as they are. Since the sampling bias was
not as severe as in calibration, we used a simpler and
computational-friendly g0 algorithm to generate the subsets
and observe the corresponding test accuracy {(D0

m, v0m)}m for
the optimal regression parameter calculation, which we refer
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Algorithm 2Making Subsets of a Dataset and Observing the
Corresponding Accuracy. Used for evaluation Datasets

Require: Dtr = {(xitr, y
i
tr, z

i
tr)}

Ntr
i=1

Require: Dte = {(xite, y
i
te, z

i
te)}

Nte
i=0

Require: fθ0
Require: Y = {ηm ∈ Z}m∈{1,··· ,|Y |}

Ensure: {(|Dm|, vm)}m∈{1,··· ,2|Y |}

1: for m ∈ |{1, · · · , |Y|}| do
2: Xm =

{
(xitr, y

i
tr)
∣∣yitr ∈ {1, · · · , ηm}

}
3: Train fθ0 with Dm and observe vm on Dte
4: Xm+1 =

{
(xitr, y

i
tr)
∣∣yitr ∈ {Y , · · · ,Y − ηm + 1}

}
5: Train fθ0 with Dm+1 and observe vm+1 on Dte
6: end for

TABLE 17. RandPerson (RP) key factor values and the rank-1 RMSE result
on the TV(13) function. (†: Since the .885 PCV factor value was too small
compared to others in Table 4, we had to use different Unreal-derived
calibration datasets.)

to as Algorithm 2. The algorithm takes D0
m = (D0

tr,D0
te),

the Person Re-ID model fθ0 , and a parameter Y ⊂ Z+

and fetches the images of every η ∈ Y persons from
the head and tail as the training subset D0

m and observed
the corresponding accuracy v0m, for m ∈ {1, · · · ,M =

2|Y|}. We adopted Y = {200, 225, · · · , 975} for
MSMT17, Y = {200, 225, · · · , 750} for Market-1501, and
Y = {200, 225, · · · , 400} for PersonX.

APPENDIX D DETAILED RESULTS
Table 16 lists the raw data for Table 5.

APPENDIX E EVALUATION IN REAL-WORLD DATASET
We assess the preciseness of IECE with the RandPerson [31]
dataset, which is proposed as a more real-world dataset than
MSMT17, Market-1501, and PersonX. Table 17 summarizes
the key factor values of RandPerson and reports RMSE.
We can see that the RandPerson RMSE is small enough to
compare with the ones reported earlier in Table 5.
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