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Abstract. High-dimensional data visualization is a fundamental chal-
lenge in modern data analysis. Among the numerous methods devel-
oped, t-distributed Stochastic Neighbor Embedding (t-SNE) has become
a standard tool for projecting complex data into a low-dimensional space
while preserving local structure. Despite its widespread use, the assump-
tion of a Student’s t-distribution in the low-dimensional space has rarely
been questioned. This work explores alternative distribution laws for
t-SNE and introduces P7-SNE, which provides greater flexibility in con-
trolling local and global interactions. We also analyze the underlying
forces in these methods and illustrate how distribution choice affects
attraction and repulsion in the projected space.
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1 Introduction

Visualizing high-dimensional data is crucial in many domains, from image recog-
nition to genomics. t-SNE [7] is widely used to reduce dimensionality while
preserving local neighborhood structure. However, the choice of the Student’s
t-distribution as the low-dimensional similarity function has rarely been revis-
ited. Our work investigates whether other distributions can improve visualization
quality both quantitatively and qualitatively. We also focus on understanding
the forces that drive points in the projection, as these forces determine cluster
formation, separation, and crowding effects.

2 t-SNE Overview

t-SNE matches two distributions: the high-dimensional similarities P = {pij}
and the low-dimensional similarities Q = {qij}. In standard t-SNE, those are
given by

pij =
exp(−||xi − xj ||2)∑
k ̸=l exp(−||xk − xl||2)

,
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qij =
(1 + ||yi − yj ||2)−1∑
k ̸=l(1 + ||yk − yl||2)−1

,

where the xi and the yi represents the point i in the high dimensional space and
in the low dimensional space. The algorithm minimizes the Kullback-Leibler
divergence

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

whose gradient is

∂C

∂yi
= 4

∑
j

(pij − qij)
yi − yj

1 + ||yi − yj ||2
.

Intuitively, pij represents the probability that points i and j are neighbors
in high-dimensional space, and qij is the similarity in low-dimensional space.
The gradient can be interpreted in terms of forces: an attractive force pulling
similar points together, and a repulsive force pushing dissimilar points apart.
The Student’s t-distribution is characterized by a heavy tail, which limits the
crowding effect and allows distant points to exert a small repulsive influence.

3 Pearson type VII-based method

P7-SNE replaces the Student’s t-distribution with alternative distribution, the
Pearson VII distribution [4]. This distribution is a more flexible generalization
of the Student’s t law. Indeed it can be tuned to be exactly the t law but it can
also tend to be a Gaussian or to have heavier tails than this modification in Van
der Maaten’s algorithm [6] changes the tail behavior of qij given by

q
(P7)
ij =

(
1 +

(
||yi−yj ||−λ

α

)2
)−m

∑
k ̸=l

(
1 +

(
||yk−yl||−λ

α

)2
)−m ,

and the gradient’s KL divergence is

∂C

∂yi

(P7)

=4
∑
j

(pij − qij)(yi − yj)
m(∥yi − yj∥ − λ)

((
∥yi−yj∥−λ

α

)2

+ 1

)−1

α2

 .

In the rest of the article we will use the notation CoeffP7
ij for the last term of

the gradient. If we select α = 1, m = 1 and λ = 0, P7-SNE reduces to t-SNE. If



Title Suppressed Due to Excessive Length 3

we let m tend to +∞ the Pearson VII becomes a Gaussian and P7-SNE reduces
to classical SNE [2]. By tuning distribution parameters, P7-SNE can increase
or decrease the range of interactions, affecting both attraction and repulsion.
Stronger long-range repulsion can prevent crowding and produce more globally
structured embeddings, while local attraction ensures that clusters remain tight.

4 Analysis of Forces

The behavior of points in the low-dimensional embedding can be understood
through the lens of forces [1]. For classical t-SNE, the pairwise attractive and
repulsive forces are

F attr
ij = pij

yi − yj
1 + ∥yi − yj∥2

and F rep
ij = qij

yi − yj
1 + ∥yi − yj∥2

.

The total force on point i is then

Fi =
∑
j

F attr
ij −

∑
j

F rep
ij .

Here, attraction is strong between nearby points (due to pij being large for
neighbors) and diminishes rapidly with distance. Repulsion acts globally but
weakly, as qij decreases slowly with distance due to the long tails of the Student’s
t-distribution. This reduces the crowding effect in low dimensions.

For P7-SNE, the forces are generalized to account for the Pearson VII dis-
tribution and become

F attr
ij = pijCoeffP7

ij (yj − yi),

F rep
ij = qijCoeffP7

ij (yi − yj).

Figure 1 illustrate how modifying the distribution affects the range and strength
of forces. P7-SNE can produce embeddings where clusters remain compact lo-
cally while exhibiting better global separation, thanks to tunable long-range
repulsion.

Fig. 1. Visualization of the influence of a single point (green point) on the visualization
(red if influenced and black if not) in t-SNE (top) and P7-SNE (bottom).
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Fig. 2. Visualization of the Digits dataset with t-SNE (top) and P7-SNE (bottom).

5 Experimental Results

We evaluated classical t-SNE and P7-SNE on several datasets, but we will only
present those on Digits with metrics AUC-Log-RNX [3](neighborhood preserva-
tion), Distance Consistency (DSC) [5](cluster separation) and Distribution Con-
sistency (DC) [5](crowding evaluation). Visual inspection complements quanti-
tative measures. Notice how clusters are well formed in both visualizations as
we can see in Fig. 2, but less cluttered and easier to read with P7-SNE.

Metrics t-SNE P7-SNE
AUC-Log-RNX 0.5281 0.6739

DSC 0.9588 0.9271
DC 0.9985 0.9969

Table 1. Scores of the three metrics for both t-SNe and P7-SNE on the Digits dataset.

Results in Table 1 indicate that the P7-SNE method as a better AUC-Log-
RNX on the Digits dataset while the other metrics are alike for both methods.
Visually we can see that the visualization produced by the P7-SNE algorithm is
easier to read than the one produced by the t-SNE’s.

6 Discussion and Conclusion

Adjusting the tail of the distribution in SNE variants modifies the balance be-
tween attraction and repulsion, leading to different embedding structures. Our
work demonstrates that rethinking the underlying distribution law in t-SNE
can improve visualization quality. Further research is needed to establish precise
connections between force dynamics, distribution parameters, and performance
metrics.
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