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ABSTRACT

Class-Incremental Learning (CIL) aims to learn new knowledge without forget-
ting the old knowledge. One of the popular approaches is to obtain transferable
representations, which would be general for learning incremental tasks without
expanding the representations. Recently, many works focus on making the final
representation more transferable across incremental tasks. However, researchers
rarely focus on shallow layer representations and utilize their properties to facili-
tate CIL, although they are shown to be more transferable than the final represen-
tation. In this paper, we investigate the properties of the shallow layer representa-
tions and utilize them to improve the performance in class-incremental learning.
Specifically, we show that shallow layer representations forget less than deeper
layers. Furthermore, we find that shallow layer representations have more stable
intra-class relations. Such intra-class relations reflect the task-agnostic informa-
tion that the deeper layer representations lack. Therefore, we propose Intra-class
Backward Distillation (IncBD) to make the deeper layers learn from the intra-
class relations of the shallow layer’s representations, making the final representa-
tion more stable in terms of the intra-class relations. To compensate for the loss
of class separability introduced by backward distillation, we also propose to train
auxiliary classifiers for each layer’s representation. Extensive experiments are
performed to show that the intra-class relations are important for the transferabil-
ity of the final representation and performance improvement in class-incremental
learning.

1 INTRODUCTION

Deep models are good at capturing the necessary features of images for various tasks to form a com-
pact representation. However, in real-world situations, new concepts and knowledge increase over
time. It is necessary to allow deep models to adapt to new knowledge while keeping the previously
learned knowledge. Class-Incremental Learning (CIL) is a scenario where new concepts incremen-
tally emerge as new classes. When applying deep neural networks in incremental scenarios, the
model usually forgets the previously learned knowledge, which is referred to as catastrophic for-
getting (McCloskey & Cohen, 1989). Therefore, there are challenges to balance the model between
stability (ability to resist changes) and plasticity (ability to adapt). To achieve this, researchers put
their effort on regularization (Kirkpatrick et al., 2017; Shi et al., 2022), rehearsal memory manage-
ment (Rebuffi et al., 2017; Liu et al., 2020), expandable block design (Yan et al., 2021; Douillard
et al., 2022; Wang et al., 2022a; Zhou et al., 2023b), etc. Recently, there are works focusing on the
final representation that the model has learned (Ramasesh et al., 2020; Zhu et al., 2021; Shi et al.,
2022; Guo et al., 2022). These works regularize or design the model to approach some nice prop-
erties for the final representation, in order to obtain better transferability across incremental tasks.
However, these works only focus on the final representation, ignoring the more transferable shallow
representation in the same model (Yosinski et al., 2014; Ramasesh et al., 2020). To the best of our
knowledge, the shallow layer representations are rarely utilized to facilitate the final representation
in class-incremental learning.

In this paper, we investigate the properties of the shallow layer representations in CIL. Besides the
better transferability, we show that the intra-class relations of the shallow layer representations are
more stable than deeper layer representations during the incremental learning process. Specifically,
we perform spectral analysis (Chen et al., 2019; Zhu et al., 2021) on each layer’s representation for
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Figure 1: The general ideas of our work. The shallow layer representations have stable intra-class
relational information, which contains the task-agnostic information the deeper layer representa-
tions lack. The proposed Intra-class Backward Distillation (IncBD, green lines) makes deeper layer
representations learn from shallow layer representations, carrying such task-agnostic information
directly into the task-specific deeper layer representations, making the final representation transfer-
able across incremental tasks. To compensate for the loss of class separability, we train auxiliary
classifiers (blue lines) with shallow layer representations.

each class, finding that shallow layer representations have more transferable directions. Also, we
use the intra-class relation distribution shift to investigate the relational information in each class
for each layer’s representation, showing that the relation distribution of shallow layer representa-
tions is more stable than deeper layer representations. Therefore, such intra-class relations reflect
the task-agnostic information that the deeper layer representations lack; thus, the intra-class rela-
tions are crucial for the transferability of the representation and alleviating the forgetting during the
incremental learning process.

To take advantage of the stable intra-class relations in shallow layer representations, we propose
to make the deeper layers learn from the shallow layers via the intra-class relational distillation,
which is what we call as Intra-class Backward Distillation (IncBD). However, although the shallow
layer representations show better transferability across tasks, they have less class separability, which
impairs the classification performance. To compensate for the loss of class separability introduced
by backward distillation, we propose to train auxiliary classifiers for each layer’s representation. The
general ideas are illustrated in figure 1. Extensive experiments are performed to show that the intra-
class relations are important for the transferability of the final representation. The proposed IncBD
improves the stability of the intra-class relations of deeper layer representations, also improving the
transferability and performance in various CIL scenarios.

Our contributions are summarized as follows: 1) We study the layer representations for each class
from two perspectives: the subspaces spanned by the representations of the whole class and the
intra-class relations for each sample in the class, finding that the shallow layer representations are
more stable in terms of both subspaces and intra-class relations. This analysis provides another per-
spective to understand catastrophic forgetting in CIL. 2) We propose IncBD and auxiliary classifiers
to utilize the transferability of shallow layer representations, carrying the task-agnostic information
directly into deeper layers. 3) Extensive experiments are performed to verify the effectiveness of our
proposed methods.

2 RELATED WORKS

Class-Incremental Learning (CIL) is an incremental learning scenario where the model is learned
task by task with a different set of classes. During inference, no task information about the samples
is available. Many techniques and frameworks are proposed to alleviate catastrophic forgetting and
improve the performance in CIL. They can be roughly categorized into several forms, such as model
expansion, rehearsal memory, model distillation and regularization. Many of them can be seen as
enhancing the learned representation for incremental tasks.

Model expansion comes from the idea of parameter isolation for each task. It expands the repre-
sentation space as the task goes on. DER (Yan et al., 2021) trains a separate backbone for each

2



Under review as a conference paper at ICLR 2024

task, aggregating all of the representations for classification. DyTox (Douillard et al., 2022) learns
a separate task token for each task. Rehearsal memory is used to store exemplars of previous tasks
and replay at follow-up tasks. It makes the learned representation less forgetful by adjusting the
input distribution towards the learned tasks. Many works focus on how to select exemplars (Rebuffi
et al., 2017; Wu et al., 2019; Tiwari et al., 2022; Liu et al., 2020). Exemplars can also be obtained
by generative models (Shin et al., 2017). Model distillation uses the model trained on previous tasks
as a teacher and distillation losses to keep the previously learned knowledge in the representation.
LwF (Li & Hoiem, 2017) proposes to use the response of the old model to guide the training of the
new model’s old tasks. PODNet (Douillard et al., 2020) uses the pooled intermediate feature maps
of the ResNet to be the distillation target in training. Regularization methods come from various
ideas, such as restricting the updates of important parameters (Kirkpatrick et al., 2017) to make the
representation scatter uniformly (Shi et al., 2022).

Other perspectives to boost CIL are also considered. Zhu et al. (2021) proposes a dual augmentation
framework to make the eigenvalues of the representation’s covariance matrix larger. In the parameter
space, Mirzadeh et al. (2020) studies the linear mode connectivity in CIL and proposes to enhance
the linear mode connectivity between learned models. Lin et al. (2022) also considers the linear
mode connectivity between learned models and proposes to combine two models learned in different
ways to get better linear mode connectivity.

Representation transferability in CIL. There are several works (Ramasesh et al., 2020; Zhou
et al., 2023b) find that shallow layer representations are much similar across tasks than deeper layer.
Similar conclusions can also be found in transfer learning (Yosinski et al., 2014). Guo et al. (2022)
uses contrastive learning to get holistic representations in online incremental scenarios.

However, these works only focus on the final representation, ignoring the more transferable shallow
representation in the same model. The shallow layer representations are rarely utilized to facilitate
the final representation in CIL to the best of our knowledge. In this paper, we further discover that
the intra-class relations in shallow layer representations are more stable and important for cross-task
transferability. The method proposed in our work is based on this observation and offers a new
perspective on learning transferable representations in CIL.

3 PROBLEM FORMULATION AND EXPERIMENTAL SETUPS

3.1 PROBLEM FORMULATION

In class-incremental learning scenarios, we have multiple tasks to learn sequentially (Rebuffi et al.,
2017). Let Dt be the tth task. (x(t)

i , y
(t)
i ) ∈ Dt is a sample. x(t)

i is the input, y(t)i is the label. Let
Ct =

⋃
i{y

(t)
i } be the class set of task t. In CIL, ∀t1 ̸= t2, Ct1 ∩ Ct2 = ∅. In each task, we only train

the model on Dt, but test on all the tasks the model has trained on, i.e., the presented tasks, without
any of the other information, such as the task number that each sample comes from. For example,
when the model is training on task ti, the presented tasks are tasks t (t ≤ ti), and they include all
of the classes in

⋃ti
t=0 Ct. The prevalent scenarios allow a fixed number of exemplars to be stored

across tasks and trained together with follow-up tasks, which is called rehearsal memory replay. The
final goal is to make the model get better performance on all of the presented tasks.

3.2 EXPERIMENTAL SETUPS

Datasets. Following most of the image classification benchmarks in CIL (Rebuffi et al., 2017; Wu
et al., 2019), we use CIFAR100 (Krizhevsky, 2009) and ImageNet100 (Deng et al., 2009) to train
the model. CIFAR100 has 50,000 training and 10,000 testing samples with 100 classes in total.
Each sample is a tiny image in 32 × 32 pixels. ImageNet100 has 1,300 training samples and 50 test
samples for each class.

Data Split. There are two common types of splits in CIL. The small base one equally divides all
of the classes in a dataset (Rebuffi et al., 2017). The large base one uses half of the classes in a
dataset as the base task (task 0), and equally divides the remaining classes (Hou et al., 2019; Yu
et al., 2020). For a dataset with 100 classes in total, B10-10 means 10 classes in the base task and
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Figure 2: Empirical analysis on layer representations. (a) Larger eigenvalues have more similar
eigenvectors across the incremental training. Shallow layers suffer less representation shift. (b)
The subspaces of shallow layer representations are more stable during the incremental training. (c)
Shallow layer representations have much more stable intra-class relations across tasks. Joint learning
scenario also shows less intra-class similarity distribution shift.

all of the following incremental tasks are also with 10 classes, B50-10 means 50 classes in the base
task and 10 classes in the incremental tasks.

Backbones and Baselines. In this paper, we use four common backbones in vision tasks, ResNet32,
ResNet18 (He et al., 2016), Convit (d’Ascoli et al., 2021), and PVTv2 (Wang et al., 2022b), which
cover convolutional networks and vision transformers (ViT) (Dosovitskiy et al., 2021). Except for
ResNet32, the parameter counts of the backbones are all around 11 million. The detailed descrip-
tions and configurations of the backbones can be found in Appendix A.1. For all of the analysis in
section 4 and 6.2, we use iCaRL (Rebuffi et al., 2017) with balanced classifier finetuning (Castro
et al., 2018) for incremental tasks, and use 2000 maximum rehearsal memory capacity, and PVTv2
as the backbone, making it a comprehensive baseline covering most of the classical non-expanding
incremental learning techniques. The representations at each layer are obtained by global average
pooling. More detailed descriptions of the baselines and implementation details can be found in
Appendix A.2 and A.3. Analysis results using other backbones and datasets can be found in Ap-
pendix B.2.

4 EMPIRICAL ANALYSIS ON LAYER REPRESENTATIONS

4.1 SPECTRAL ANALYSIS

In this section, we perform spectral analysis on each layer’s representation in class-incremental
scenarios. As mentioned in section 2, several works (Ramasesh et al., 2020; Zhou et al., 2023b) find
that shallow layer representations are much more similar across tasks than deeper layers. Both of
them use centered kernel alignment (CKA) (Kornblith et al., 2019) to measure the similarity between
representations. However, we measure the representation space from another perspective, revealing
the subspace spanned by the representations of each class. We then average the results across each
class and present the results for each layer.

We use the spectral decomposition of the representation’s covariance matrix to analyze the forgetting
of each layer’s representation for each class. To measure the similarity between representations, we
follow Zhu et al. (2021) to compare the similarity of the subspaces spanned by the representations
with corresponding angle (Chen et al., 2019) between the eigenvectors.

Specifically, suppose the representation of sample x for layer l after training task t is obtained
by f (l)t (x). We compute the covariance matrix for the representations of a group of samples and
decompose it to different spectral angles:

1

n

n∑
i=1

f
(l)
t (xi)f

(l)
t (xi)

⊤ =

d∑
j=1

u
(l,t)
j λ

(l,t)
j u

(l,t)⊤
j , (1)

where λj is the eigenvalue with index j and uj is its corresponding eigenvector. d is the number of
dimensions of the representation space. The indices of the eigenvalues are arranged from the largest
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to the smallest. To compare the subspaces of two representation spaces, we use the corresponding
angles of the eigenvectors:

cos(ψj) =
⟨u(1)

j ,u
(2)
j ⟩

∥u(1)
j ∥∥u(2)

j ∥
. (2)

The absolute value of this metric measures the similarity between two corresponding eigenvectors,
representing the similarity of spectral directions of the representation spaces. With high eigenvector
similarity between two representation spaces, the “shape” (i.e., covariance) is much similar. There-
fore, we can use it to measure the representation shift between two tasks for each class. We compare
the representation spaces of each class after each task with those after the task which the class is
from (i.e., task 0 for classes 0-9 in B10-10). Results are summarized in figure 2a and figure 2b.

Figure 2a shows the eigenvector similarity for each eigenvalue averaged across the whole incre-
mental training and each class. It shows that eigenvectors with larger eigenvalues are much similar
throughout the incremental training. More importantly, the layer-wise results show that the deeper
layer representations have less transferable directions compared to shallow layers, which means the
deeper layer suffers more representation shift.

Figure 2b shows the eigenvector similarity for representation spaces after training each task, aver-
aged across each class and each eigenvector with the largest 50 eigenvalues. It clearly shows that the
subspaces of shallow layer representations are more stable and thus suffer less representation shift
than deeper layers. Note that in this section, we show the summarized results of the PVTv2 back-
bone on CIFAR100. More detailed elaborations, plots, and results of other backbones and datasets
can be found in Appendix B.

4.2 INTRA-CLASS RELATIONS

The spectral analysis investigates the class representations altogether, revealing the subspaces
spanned by the whole class. To further study the properties of shallow layer representations, we
perform a more in-depth analysis that considers the intra-class relations for a single sample. In this
section, we investigate the intra-class relations for the representations of each sample. Formally,
for each representation r

(l)
i = f (l)(xi) of sample xi from class c at each layer, we compute the

dot product with other representations in the same class, and take the softmax to get the intra-class
similarity distribution for r(l)i within the class:

g
(l)
i = softmax

(
r
(l)
i R

(l)⊤
c

τ

)
, (3)

where r
(l)
i is the ith column of matrix R(l)

c , τ is the temperature hyperparameter of the softmax
operation, we use the same τ for each layer. To compare the intra-class similarity distribution
shift during the incremental training within the class for each layer, we compute the KL divergence
between two similarity distributions, then average across the samples from the class:

D(l,t1→t2)
c =

1

Nc

Nc∑
i=1

KL
(
g
(l,t1)
i ∥g(l,t2)i

)
. (4)

To measure the intra-class similarity distribution shift, we compare the representations after training
each task with those after the task which the class is from (i.e., t1 = 0, t2 = t for classes 0-9 in B10-
10). In addition to the incremental scenario, we also analyze the intra-class similarity distribution
shift in the joint learning scenario, where we train each task with all of the samples from previous
tasks to set a reference with upper bound performance. The results are summarized in figure 2c.

Figure 2c shows that the KL divergence for intra-class relation is much lower for shallow layer rep-
resentations, meaning that shallow layer representations suffer less intra-class similarity distribution
shift, and have much more stable intra-class relations across tasks. Also, the representations learned
by joint learning always have less KL divergence for intra-class relations at each layer. Since the
representation learned by joint learning is transferable to all of the tasks in the dataset, the results
show that the preservation of intra-class relations is an important characteristic for transferable rep-
resentations. Therefore, we can utilize this property to facilitate representation learning in CIL by
making the deeper layer representations learn from shallow layers about their more stable intra-class
relations to make the final representations more transferable.
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5 METHOD

5.1 INTRA-CLASS BACKWARD DISTILLATION

Motivated by the results of empirical analysis in section 4, in this section, we introduce a simple
yet effective technique called Intra-class Backward Distillation (IncBD), making the deeper layers
learn from the intra-class relations of the shallow layer’s representations, in order to make the final
representations more transferable. We can construct a similarity graph for each class and each layer’s
representation using equation 3. Then, the KL divergence loss can be applied to each layer and its
prior layer:

D(l)
c =

1

Nc

Nc∑
i=1

KL
(
g
(l−1)
i ∥g(l)i

)
, (5)

LBD =

L∑
l=2

D(l), D(l) =
1

C

C∑
c=1

D(l)
c , (6)

where C is the number of classes the model is training on, if there is a rehearsal memory buffer,
C equals the number of classes the model has seen so far; if there is no such buffer, C equals the
number of classes in the current task. Note that to avoid the inverse knowledge transfer, we stop
the gradient propagation for g(l−1)

i in equation 5. Equation 5 requires averaging across all of the
samples in the class, which is intractable in batch training. In practice, we only compute the average
in a batch to approximate the actual average. IncBD loss directly makes the deeper layers learn
from the prior layers about their intra-class relations, to alleviate the loss of task-agnostic intra-class
relational information in the final representation.

Additionally, to make the approximation of the actual average more accurate, we extend the IncBD
loss. We keep a queue to store the representations from the last several batches for each layer, so
that the IncBD loss can use more samples in the class to construct the similarity distribution for each
sample. However, since the model is constantly updating itself, the stored representations are not
up-to-date. The mismatch would be severe when the queue gets longer. Therefore, there is a trade-
off about the length of the queue. We investigate this in the hyperparameter analysis in section 6.3.
The detailed elaborations of this queue can be found in Appendix C.

5.2 AUXILIARY CLASSIFIER

Although IncBD alleviates the loss of task-agnostic intra-class relational information in the final
representation, it harms the class separability of the final representation in the current task, making
the adaption to the current task more difficult. To compensate for the loss of class separability
introduced by IncBD, we propose to train auxiliary classifiers for each layer’s representation.

Specifically, for the sample xi from class yi at layer l, its representation is r
(l)
i = f (l)(xi). Note

that we use global average pooling to get the representations at each layer. We train an auxiliary
classifier ϕ(l) : Rdl → RC for each layer representations, using cross entropy loss:

Laux =

L−1∑
l=1

1

B

B∑
i=1

C∑
c=1

−I(yi = c) logSc

(
ϕ(l) (ri)

)
, (7)

where Sc is a selection function selects the value at index c of the input vector. For each task, the
auxiliary classifiers are reset at the beginning of the task training. With the auxiliary classifiers, the
class separability of the shallow layer representations can be improved, and more importantly, the
side effects of IncBD can be alleviated. The effect of auxiliary classifiers and the trade-offs between
IncBD are investigated in the ablation study in section 6.3.

5.3 OVERALL LOSS

To summarize our method, we use IncBD to make deeper layers learn from the prior layers about
their intra-class relations, which is the backward distillation loss LBD. To make the approximation
of the actual average more accurate, we extend the IncBD with a representation queue for each layer.
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Table 1: Performance Results on CIFAR100 with 2000 rehearsal samples if the method requires.
Bold font represents our methods improve the baseline on the corresponding scenario.

Scenario B10-10 B2-2 B50-10 B50-5
Backbone Method Last Avg Last Avg Last Avg Last Avg

ResNet32

LwF (Li & Hoiem, 2017) 23.25 43.56 - - 40.40 49.59 40.19 46.98
BiC (Wu et al., 2019) 53.54 68.80 41.04 62.09 - 59.36 - 54.20
iCaRL (Rebuffi et al., 2017) 50.74 65.27 36.62 56.08 47.20 57.12 44.80 52.66
LUCIR (Hou et al., 2019) 43.39 58.66 37.09 56.86 54.30 63.17 50.30 60.14
PodNet (Douillard et al., 2020) 41.05 58.03 32.99 51.19 54.60 64.83 53.00 63.19
DER (Yan et al., 2021) 60.43 71.21 - - 61.56 68.67 59.71 67.51
w/ IncBD & auxcls 61.35 71.82 - - 62.71 69.23 60.56 68.17
FOSTER (Wang et al., 2022a) 61.20 73.14 - - 64.23 71.12 60.46 68.81
w/ IncBD & auxcls 62.24 74.54 - - 65.20 72.25 60.72 69.52

Convit

iCaRL w/ Convit 60.59 74.39 56.54 71.46 64.53 71.25 61.55 70.13
w/ IncBD & auxcls 64.54 76.16 57.12 72.84 65.16 72.69 62.01 70.37
DyTox+ (Douillard et al., 2022) 62.06 75.54 57.09 74.35 66.75 73.36 64.70 71.30
w/ IncBD & auxcls 66.41 76.79 57.62 74.42 68.03 74.78 65.22 72.83

PVTv2
iCaRL w/ PVTv2 66.71 78.28 59.79 74.31 65.06 74.62 60.54 71.63
w/ IncBD & auxcls 68.34 80.16 60.84 75.81 66.72 75.43 63.44 73.26
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Figure 3: Test accuracies for each task during CIL training with different scenarios. More plots can
be found in Appendix D.

To compensate for the loss of class separability introduced by IncBD, we propose to train auxiliary
classifiers for each layer representation, which is the auxiliary classifier loss Laux. We add LBD and
Laux with hyperparameter λBD and λaux to the loss function during each task training. The final loss
would be: L = Lorig+λBDLBD+λauxLaux, where Lorig is the original loss of the CIL methods. It
includes the final classification and distillation loss according to the specific CIL method. The effect
of the hyperparameters is investigated in section 6.3.

6 EXPERIMENTS

6.1 PERFORMANCE EXPERIMENTS

To verify the effectiveness of our proposed methods, we test our methods on five different baselines,
covering four different baseline methods: iCaRL Rebuffi et al. (2017), DER (Yan et al., 2021),
FOSTER (Wang et al., 2022a) and Dytox+ (Douillard et al., 2022), and four different backbones:
ResNet32 (for CIFAR100), ResNet18 (for ImageNet100) (He et al., 2016), Convit (d’Ascoli et al.,
2021) and PVTv2 (Wang et al., 2022b). We report the test accuracy after the final task training
(Last) and the average top-1 test accuracy across each task training (Avg), as shown in Table 1 for
CIFAR100, Table 2 for ImageNet100. The baselines are introduced in section 3.2, and more detailed
configurations and elaborations can be found in appendix A.1 and A.2. The experiments based on
DER and FOSTER are implemented with the open-source code PyCIL (Zhou et al., 2023a). The
experiments based on DyTox and ViT-based backbones are implemented with the open-source code
of DyTox (Douillard et al., 2022). We will release our code upon acceptance.

As we can see from the results, IncBD with auxiliary classifiers (auxcls) consistently improves the
CIL performance on three backbones in various scenarios. In some scenarios (e.g., DyTox+ in
CIFAR100 B10-10, iCaRL w/ PVTv2 in ImageNet100 B50-5), our IncBD with auxiliary classifiers
achieves around 4% performance improvement in the overall accuracy in the final task.
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Table 2: Performance Results on ImageNet100 with 2000 rehearsal samples if the method requires.
Bold font represents our methods improve the baseline on the corresponding scenario.

Scenario B10-10 B50-10 B50-5
Backbone Method Last Avg Last Avg Last Avg

ResNet18

iCaRL (Rebuffi et al., 2017) - 67.06 53.60 65.44 49.10 59.88
LUCIR (Hou et al., 2019) - - 60.00 70.84 57.10 68.32
PodNet (Douillard et al., 2020) - 63.96 67.60 76.96 65.00 73.70
CCIL-SD (Mittal et al., 2021) - - - 79.44 - 76.77
DER (Yan et al., 2021) 65.48 75.06 73.08 79.71 72.46 78.61
w/ IncBD & auxcls 66.06 75.31 73.86 79.92 73.08 79.10
FOSTER (Wang et al., 2022a) 65.68 76.74 71.60 77.37 68.20 76.00
w/ IncBD & auxcls 67.72 77.58 73.82 79.92 70.22 78.14

Convit

iCaRL w/ Convit 59.86 72.84 62.66 72.80 60.78 70.45
w/ IncBD & auxcls 60.76 74.19 64.28 73.11 63.46 71.26
DyTox+ (Douillard et al., 2022) 65.78 76.35 71.32 78.08 66.38 75.46
w/ IncBD & auxcls 65.96 76.90 71.64 78.43 66.94 76.02

PVTv2
iCaRL w/ PVTv2 62.78 77.01 60.52 71.68 59.80 70.51
w/ IncBD & auxcls 66.32 79.01 62.98 73.06 64.34 72.67
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Figure 4: KL-divergence for intra-class relations for each task. Results for baselines are in solid
lines, and results for our methods are in dashed lines. Shadowed areas are the gap between baselines
and our methods.

Test accuracies for each task during CIL training with different scenarios are shown in figure 3. As
we can see from the results, our methods have roughly the same test accuracy on the first task with
baselines. However, on the follow-up tasks, our methods perform consistently better than baselines,
showing that the model learns transferable representations from our methods. Test accuracies with
more scenarios and the performance table with 500 rehearsal samples can be found in Appendix D.

6.2 INTRA-CLASS RELATIONS

To verify that the model gets more stable intra-class relations with our methods, we show the KL
divergence for the intra-class relation as performed in section 4.2. We compare the similarity dis-
tribution for each sample in the same class after each task training with those after the first task
training, to measure the similarity distribution shift for intra-class relations. We report the results
averaged by each sample and class for each layer. The results are shown in figure 4 on CIFAR100
with PVTv2 backbone. We can clearly conclude that the intra-class relations are more stable with
our methods, especially for the final representations.

6.3 ABLATIONS AND HYPERPARAMETER ANALYSIS

Ablations. In section 5, we proposed IncBD with auxiliary classifiers. To investigate their effects
separately, we perform ablation experiments on CIFAR100 in B10-10 scenario with two backbones.
The results are shown in table 3, and the accuracy by task is shown in figure 5. From the results, we
conclude that in some of the CIL scenarios or backbones, IncBD or auxiliary classifiers alone do not
lead to performance improvement (e.g., Convit backbone with 2000 rehearsal samples). Baselines
with auxiliary classifiers get better accuracy in the first several tasks but worse accuracy in later tasks,
showing that with auxiliary classifiers alone, the model would overfit to the first several tasks and
forget more severely in follow-up tasks. However, we can get consistent performance improvement
when IncBD works together with auxiliary classifiers, since they are complementary to each other.
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Figure 5: Ablation accuracy by task. All of the three experiments are on CIFAR100 in B10-10
scenario. Baselines with auxiliary classifiers get better accuracy but forget more severely in follow-
up tasks. However, we can get consistent performance improvement when IncBD works together
with auxiliary classifiers.
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Figure 6: Hyperparameter analysis. a) The best combination is achieve at both λBD and λaux are
0.1. b) and c) The best feature queue length is always achieved at the double size of a batch.

Analysis on λBD and λaux. In the overall loss, we use λBD and λaux to combine IncBD and
auxiliary classifiers into the training. To see how these hyperparameters affect the performance of
CIL, we perform experiments with different combinations of a grid search. The results are shown
in figure 6a. We report the average accuracy across all of the task training on CIFAR100 in B10-10
scenario. The best combination in this scenario is λBD = 0.1 and λaux = 0.1.

Table 3: Ablation Study on CIFAR100 in B10-10.

Memory Size 2000 500
Last Avg Last Avg

iCaRL w/ PVTv2 66.71 78.28 30.82 54.88
w/ IncBD 67.52 79.14 32.35 56.48
w/ auxcls 66.80 79.34 31.20 56.71
w/ IncBD & auxcls 68.34 80.16 34.48 58.02
iCaRL w/ Convit 63.59 74.99 31.27 55.61
w/ IncBD 62.96 75.26 34.09 57.56
w/ auxcls 62.02 75.24 32.56 55.98
w/ IncBD & auxcls 64.54 76.16 37.70 60.37

Analysis on feature queue length. For IncBD,
we use a feature queue to make more samples
available to construct the similarity distribution
for each sample. To investigate how the length
of the feature queue affects the performance
of CIL, we perform experiments with different
feature queue lengths. The results are shown in
figure 6b and figure 6c. We study the feature
length as multiples of the training batch size,
and report the average accuracy across all of the
task training in B10-10 scenario. The results
show that the best feature queue length for both
CIFAR100 and ImageNet100 with two backbones is always double the batch size.

7 CONCLUSIONS

In this paper, we investigate the properties of transferable shallow layer representations in class-
incremental learning from empirical perspectives. We perform spectral analysis and investigate the
intra-class relations of layer representations. We find that the shallow layer suffers less representa-
tion shift in terms of the spanned subspaces. Also, we find that shallow layer representations have
more stable intra-class relations than deeper layers. To utilize these properties of shallow layer rep-
resentations, we propose IncBD to carry task-agnostic intra-class relations from shallow layers to
task-specific deeper layers. Additionally, we use auxiliary classifiers to compensate for the loss of
class separability. Extensive experiments are performed to verify the effectiveness of our methods
and our methods get consistent performance improvement on various scenarios in CIL.
Limitations. The analysis focuses on non-expanding representations. The properties of concate-
nated representations are yet to be discovered.
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Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás Guil, Cordelia Schmid, and Karteek Alahari.
End-to-end incremental learning. In Proceedings of the European conference on computer vision
(ECCV), pp. 233–248, 2018.

Xinyang Chen, Sinan Wang, Mingsheng Long, and Jianmin Wang. Transferability vs. discriminabil-
ity: Batch spectral penalization for adversarial domain adaptation. In International conference on
machine learning, pp. 1081–1090. PMLR, 2019.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 248–255. IEEE, 2009.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recogni-
tion at scale. In International Conference on Learning Representations, 2021. URL https:
//openreview.net/forum?id=YicbFdNTTy.

Arthur Douillard, Matthieu Cord, Charles Ollion, Thomas Robert, and Eduardo Valle. Podnet:
Pooled outputs distillation for small-tasks incremental learning. In Proceedings of the European
conference on computer vision (ECCV), pp. 86–102. Springer, 2020.
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Stéphane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and Levent
Sagun. Convit: Improving vision transformers with soft convolutional inductive biases. In Inter-
national Conference on Machine Learning, pp. 2286–2296. PMLR, 2021.

Yiduo Guo, Bing Liu, and Dongyan Zhao. Online continual learning through mutual information
maximization. In International Conference on Machine Learning, pp. 8109–8126. PMLR, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 770–778, 2016.

Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and Dahua Lin. Learning a unified classifier
incrementally via rebalancing. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 831–839, 2019.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Desjardins, Andrei A
Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska, et al. Overcom-
ing catastrophic forgetting in neural networks. Proceedings of the national academy of sciences,
114(13):3521–3526, 2017.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pp. 3519–
3529. PMLR, 2019.

Alex Krizhevsky. Learning multiple layers of features from tiny images. 2009.

Zhizhong Li and Derek Hoiem. Learning without forgetting. IEEE Trans. Pattern Anal. Mach.
Intell., 40(12):2935–2947, 2017.

Guoliang Lin, Hanlu Chu, and Hanjiang Lai. Towards better plasticity-stability trade-off in incre-
mental learning: A simple linear connector. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 89–98, 2022.

Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru Sun. Mnemonics training: Multi-
class incremental learning without forgetting. In Proceedings of the IEEE/CVF conference on
Computer Vision and Pattern Recognition, pp. 12245–12254, 2020.

10

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy


Under review as a conference paper at ICLR 2024

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychol. Learn. Motiv., volume 24, pp. 109–165. Elsevier, 1989.

Seyed Iman Mirzadeh, Mehrdad Farajtabar, Dilan Gorur, Razvan Pascanu, and Hassan
Ghasemzadeh. Linear mode connectivity in multitask and continual learning. In International
Conference on Learning Representations, 2020.

Sudhanshu Mittal, Silvio Galesso, and Thomas Brox. Essentials for class incremental learning.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
3513–3522, 2021.

Vinay Venkatesh Ramasesh, Ethan Dyer, and Maithra Raghu. Anatomy of catastrophic forgetting:
Hidden representations and task semantics. In International Conference on Learning Represen-
tations, 2020.

Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg Sperl, and Christoph H Lampert. icarl:
Incremental classifier and representation learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 2001–2010, 2017.

Yujun Shi, Kuangqi Zhou, Jian Liang, Zihang Jiang, Jiashi Feng, Philip HS Torr, Song Bai, and
Vincent YF Tan. Mimicking the oracle: An initial phase decorrelation approach for class incre-
mental learning. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 16722–16731, 2022.

Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim. Continual learning with deep generative
replay. Advances in Neural Information Processing Systems, 30, 2017.

Rishabh Tiwari, Krishnateja Killamsetty, Rishabh Iyer, and Pradeep Shenoy. Gcr: Gradient coreset
based replay buffer selection for continual learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 99–108, 2022.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
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A DETAILED EXPERIMENTAL SETUPS

A.1 BACKBONE CONFIGURATIONS

The detailed backbone configurations are listed in table 4. Convit (d’Ascoli et al., 2021) is a ViT-
based backbone featured with the gated positional self-attention (GPSA) layer, which introduces
the convolutional inductive bias into ViT in a soft way. The PVTv2 backbone we use in this paper
is PVTv2-B1-Li (Wang et al., 2022b), where “Li” means linear complexity attention layer, which
reduces the number of parameters of PVTv2-B1 from 13.1M to 12.4M. PVTv2 is featured with
pyramid-style vision transformer blocks, which extract the features of the image in different seman-
tic levels. Extensive experiments are performed in this paper, covering both convolutional neural
networks and ViT-based networks.

Table 4: Detailed backbone configurations.

backbone
input size

# of layers/stages # of parameters feature dimensions
for each layer/stageCIFAR ImageNet

ResNet32 32 - 3 stages 0.465M 16, 32, 64
ResNet18 - 224 3 stages 11.2M 128, 256, 512, 512

Convit 32 224 5 local layers,
1 non-local layer 11.0M 384, 384, 384,

384, 384, 384
PVTv2-B1-Li 128 224 4 stages 12.4M 64, 128, 320, 512

A.2 CIL BASELINES

iCaRL (Rebuffi et al., 2017) uses herding (Welling, 2009) to select prioritized exemplars, and logit
distillation between previously learned model and current training model for better representation
learning. In this paper, we also finetune the model at the end of each task with class-balanced re-
hearsal memory samples (Castro et al., 2018), making it a comprehensive baseline covering most of
the classical non-expanding incremental learning techniques. DER (Yan et al., 2021) trains a sep-
arate backbone model for each incremental task, and uses expanded representations for prediction.
FOSTER (Wang et al., 2022a) is based on feature boosting, which boosts the final representation for
prediction. Dytox+ (Douillard et al., 2022) expands a task token for each task, with Mixup (Zhang
et al., 2018) data augmentation to further improve the performance.

A.3 IMPLEMENTATION DETAILS

For all of the experiments with convolutional neural networks (CNN), which is implemented based
on the open-source code of PyCIL (Zhou et al., 2023a), the default experimental configurations for
DER and FOSTER are untouched. We train the model for 200 epochs in the initial task and 170
epochs in the incremental tasks.

For all of the ViT-based experiments in this paper, which is implemented based on the open-source
code of DyTox (Douillard et al., 2022), the base task and incremental tasks are trained for 500
epochs. In incremental tasks, we finetune the all of the classifiers with the balanced memory buffer
for 20 epochs at the end of each task training. The learning rate of each task is set to 0.0005 with the
cosine scheduler. For training, the standard DeiT (Touvron et al., 2021) augmentations are applied,
also with Mixup (Zhang et al., 2018).

B MORE ELABORATIONS AND RESULTS ON EMPIRICAL ANALYSIS

B.1 MORE ELABORATIONS ON EMPIRICAL ANALYSIS

As mentioned in section 4.1, we compare the representation spaces of each class after each task with
those after the first task, to measure the representation shift during CIL. Formally, denote the jth
eigenvector for the representations of class c at layer l after task t as u(l,t)

j , and class c is from task

13



Under review as a conference paper at ICLR 2024

tc, so class c first appears when training task tc. We can get the eigenvector similarity by:

S(c,l,t)
j = |cosψ(c,l,tc→t)

j | =
⟨u(c,l,tc)

j ,u
(c,l,t)
j ⟩

∥u(c,l,tc)
j ∥∥u(c,l,t)

j ∥
. (8)

The results in figure 2a are averaged across each task and class, which is:

S(l)
j =

1

T

T∑
t=1

1

|C0:t|
∑

c∈C0:t

S(c,l,t)
j , (9)

where C0:t is the set of class indices from task 0 to t. The results in 2b are averaged across each class
and the first 50 eigenvectors, which is:

S(l,t) =
1

50

50∑
j=1

1

|C0:t|
∑

c∈C0:t

S(c,l,t)
j . (10)

Similarly, the results of KL-divergence for intra-class relation in figure 2c are firstly obtained by
computing the KL-divergence between the averaged similarity distribution within class c at layer l
after task t, which is:

D(l,t)
c =

1

Nc

Nc∑
i=1

KL
(
g
(l,tc)
i ∥g(l,t)i

)
. (11)

The results in figure 2c are averaged across each class, which is:

D(l,t) =
1

Ct

Ct∑
c=1

D(l,t)
c . (12)

B.2 MORE RESULTS ON EMPIRICAL ANALYSIS

In this section, we show the eigenvector similarity for each eigenvalue by task in figure 7. Using
the notations defined in section B.1, figure 7 shows S(l,t)

j = 1
|Ct|
∑

c∈Ct
S(c,l,t)
j for each task t. The

figures show the eigenvector similarity for each eigenvector when we focus on the classes in only
one task. From the results, we conclude that 1) The eigenvectors with small eigenvalues shift much
quicker than larger ones, which is the layer-wise illustration of Zhu et al. (2021); 2) shallow layer
representations shift much slower than deeper layers.

Figure 8 shows the eigenvector similarity for each task by task. Using the notations defined in
section B.1, it shows S(l,t,t′) = 1

50

∑50
j=1

1
|Ct′ |

∑
c∈Ct′

S(c,l,t)
j , where t′ is the task we are focusing

on (i.e., task number in the subcaption), t are the tasks that task t′ appears to test on (i.e., task number
on the x-axis). The figures show how the eigenvector similarity evolves when we focus on the classes
in only one task. From the results, we can conclude that 1) the subspaces are less similar as the task
goes on, reflecting catastrophic forgetting in CIL; 2) shallow layer representations have much more
similar eigenvectors compared to deep layers, especially in the near subsequent incremental tasks.

We also perform empirical analysis on other backbones and datasets, which is shown in figure 9.
From the results, we can conclude that the observations in section 4 are ubiquitous in different
backbones. Thus, the conclusions are reliable.

C MORE ELABORATIONS ON FEATURE QUEUE

In section 5, we extend IncBD with a queue storing representations of the last several batches for
each layer. Formally, denote the queue for layer l by Q(l) ∈ R(nB,d), where n is the maximum
queue length (by multiples of the batch size), B is the batch size, d is the number of dimensions of
representation space. The queue Q(l) updates upon the forward pass of the model finishes for each
batch, adding the representations of the newest batch to the end of the queue, and popping out the
oldest batch if the maximum queue length exceeds, so that the queue contains the representations
of the newest batch. The queue resets to empty at the beginning of each task. When computing the
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Figure 7: Eigenvector similarity for each eigenvalue by task. The curves for each task are averaged
across its classes. The figures show the eigenvector similarity for each eigenvector when we focus
on the classes in only one task.

Table 5: Performance Results on CIFAR100 with 500 rehearsal samples.

Scenario B10-10 B2-2 B50-10 B50-5
Last Avg Last Avg Last Avg Last Avg

iCaRL w/ PVTv2 30.82 54.88 13.55 42.50 24.23 47.16 17.59 40.07
w/ IncBD & auxcls 34.48 58.02 21.50 49.35 24.32 47.43 18.86 40.52
iCaRL w/ Convit 31.27 55.61 13.01 38.98 26.94 48.63 22.13 40.60
w/ IncBD & auxcls 37.70 60.37 14.02 43.51 28.88 49.04 24.60 42.02

intra-class similarity distribution for r(l)i in a batch, use the queueQ(l) instead of the representations
in this batch R(l), which is:

g
(l)
i = softmax

(
r
(l)
i Q

(l)⊤
c

τ

)
, (13)

where Q(l)
c is a subset of Q(l) which only contains the representations of samples in class c (i.e., the

same class number with r
(l)
i ).
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(f) Task 5
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(h) Task 7
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(i) Task 8

Figure 8: Eigenvector similarity for each task by task. The curves for each task are averaged across
its classes. The figures show how the eigenvector similarity evolve when we focus on the classes in
only one task.

D MORE RESULTS FOR PERFORMANCE EXPERIMENTS

We also test our method with 500 rehearsal samples, shown in table 5. In some scenarios, our
methods achieve significant performance improvement (e.g., iCaRL w/ Convit in B10-10, iCaRL w/
PVTv2 in B2-2).

More test accuracies plots for each task during CIL training is shown in figure 10. We present the
results with various scenarios, including different backbones, memory sizes, and datasets.
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(a) Eigenvector similarity for each
eigenvalue with Convit on CI-
FAR100.
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(b) Eigenvector similarity for each
task with Convit on CIFAR100.
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(c) KL divergence for intra-class re-
lations for each task with Convit on
CIFAR100.
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(d) Eigenvector similarity for each
eigenvalue with ResNet18 on Ima-
geNet100.
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(e) Eigenvector similarity for
each task with ResNet18 on Ima-
geNet100.
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(f) KL divergence for intra-class re-
lations for each task with ResNet18
on ImageNet100.

Figure 9: Empirical analysis on layer representations with different backbones and datasets.
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(a) iCaRL w/ Convit on CIFAR100
in B10-10 with 500 mem. size.
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(b) iCaRL w/ Convit on CIFAR100
in B50-10 with 500 mem. size.
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(c) iCaRL w/ Convit on CIFAR100
in B50-5 with 500 mem. size.
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(d) iCaRL w/ PVTv2 on CIFAR100
in B10-10 with 500 mem. size.
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(e) iCaRL w/ PVTv2 on CIFAR100
in B2-2 with 500 mem. size.
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(f) iCaRL w/ PVTv2 on Ima-
geNet100 in B50-10 with 2000
mem. size.
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(g) iCaRL w/ PVTv2 on Ima-
geNet100 in B10-10 with 2000
mem. size.
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(h) iCaRL w/ PVTv2 on Ima-
geNet100 in B50-10 with 2000
mem. size.
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(i) iCaRL w/ Convit on Ima-
geNet100 in B50-5 with 2000
mem. size.

Figure 10: Test accuracies results for each task during CIL training with various scenarios.

18


	Introduction
	Related Works
	Problem Formulation and Experimental Setups
	Problem Formulation
	Experimental Setups

	Empirical Analysis on Layer Representations
	Spectral Analysis
	Intra-class Relations

	Method
	Intra-class Backward Distillation
	Auxiliary Classifier
	Overall Loss

	Experiments
	Performance Experiments
	Intra-class Relations
	Ablations and Hyperparameter Analysis

	Conclusions
	Detailed Experimental Setups
	Backbone Configurations
	CIL Baselines
	Implementation Details

	More Elaborations and Results on Empirical Analysis
	More Elaborations on Empirical Analysis
	More Results on Empirical Analysis

	More Elaborations on Feature Queue
	More Results for Performance Experiments

