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Abstract
Fully fine-tuning large language models by up-001
dating all parameters is both computationally002
expensive and storage-intensive, particularly003
when deploying multiple task-specific models.004
Existing parameter-efficient fine-tuning (PEFT)005
methods, such as LoRA, reduce the number006
of trainable parameters via low-rank adapta-007
tions, yet they still face scalability challenges008
as model sizes increase. In this work, we in-009
troduce SARA (Single-Head Attention-based010
Random Matrix Adaptation), a novel PEFT ap-011
proach that leverages random matrices com-012
bined with a single-head attention mechanism013
to further minimize trainable parameters while014
preserving competitive performance. By in-015
tegrating with frozen pretrained weights and016
fine-tuning only a minimal set of additional017
parameters, SARA offers significant memory018
savings without compromising accuracy. We019
validate our method through experiments on020
two standard benchmarks: the GLUE bench-021
mark for natural language understanding and022
the E2E challenge for natural language gen-023
eration. Our results demonstrate that SARA024
achieves competitive performance with a sub-025
stantially reduced parameter footprint, making026
it a promising solution for resource-constrained027
model adaptation.028

1 Introduction029

Despite their impressive capabilities, modern pre-030

trained language models remain challenging to031

adapt to new tasks due to the heavy computational032

and storage demands of full fine-tuning. Early work033

by Aghajanyan et al. (2021) revealed that these034

models have low intrinsic dimensionality, meaning035

that task-specific knowledge can be encoded within036

a small subspace of the full parameter space. This037

insight inspired methods like prefix tuning (Li and038

Liang, 2021), which optimize soft prompts in a039

compressed subspace before projecting them to the040

original dimension. Building on this idea, low-rank041

Figure 1: Architecture of the proposed SARA method.
SARA trains only the Single-Head Attention (SHA) and
the scale vector λ, while freezing and sharing low-rank
matrices across layers. The scale vector λ is learnable,
and SARA reduces trainable parameters significantly.
Like LoRA, the low-rank matrices, attention mecha-
nism, and λ can be merged into the weight matrix W
without added latency. The figure shows input x, hidden
states h, and frozen matrices U (up-projection) and D
(down-projection).

adaptation (LoRA) (Hu et al., 2022) introduces 042

trainable low-rank matrices into transformer layers 043

to significantly reduce the number of parameters. 044

Despite LoRA’s impressive parameter reduction, 045

the intrinsic dimensionality insight suggests that 046

even fewer parameters may suffice. Recent ad- 047

vances like VeRA (Kopiczko et al., 2024) further 048

address scalability by replacing layer-specific ma- 049

trices with shared random frozen projections and 050

trainable scaling vectors. 051

We propose SARA, Single-head Attention-based 052

Random matrix Adaptation, which combines the 053

efficiency of random projections with dynamic 054

interaction modeling. As illustrated in Figure 1, 055
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SARA first projects inputs into a low-dimensional056

space using frozen random matrices, then employs057

a lightweight single-head attention (SHA) mecha-058

nism (Vaswani et al., 2023) to capture task-relevant059

relationships. Finally, the adapted representations060

are scaled and projected back to the original space.061

This approach reduces parameters significantly062

compared to LoRA.063

We evaluate SARA on GLUE and E2E bench-064

marks using RoBERTa and GPT-2 models. Our065

experimental results show its effectiveness; de-066

spite having fewer parameters, it achieves compa-067

rable performance to LoRA. Our contributions are068

summarized as follows: (i) We introduce a novel069

PEFT method with no additional inference cost,070

further reducing trainable parameters compared071

to LoRA and VeRA while achieving comparable072

performance. (ii) We validate SARA on two stan-073

dard benchmarks (GLUE and E2E), applying to074

RoBERTa and GPT-2 models, demonstrating its075

effectiveness and scalability.076

2 Related Work077

We introduce a new PEFT method, broadly catego-078

rized into four types:079

Adapter-based Methods add small trainable080

modules to frozen layers, as in Houlsby et al. (2019)081

and He et al. (2022). While effective, they often082

increase inference latency.083

Prompt-based Approaches prepend learnable to-084

kens to inputs, as in Lester et al. (2021), Li and085

Liang (2021), and Razdaibiedina et al. (2023).086

These methods avoid architectural changes but can087

be sensitive to initialization.088

Representation Editing Techniques modify hid-089

den representations for task adaptation. For ex-090

ample, Wu et al. (2024b) introduces ReFT and091

LoReFT, while Wu et al. (2024a) proposes RED,092

focusing on scaling and bias vectors for efficiency.093

LoRA-based Methods Inject trainable low-rank094

matrices into frozen layers. LoRA (Hu et al.,095

2022) reduces parameters while maintaining per-096

formance. Variants like DoRA (Liu et al., 2024),097

VeRA (Kopiczko et al., 2024), and NoLA (Kooh-098

payegani et al., 2024) further optimize this ap-099

proach. Our work builds on these advancements.100

3 Method 101

We introduce SARA (Single-Head Attention-based 102

Random Matrix Adaptation), a parameter-efficient 103

fine-tuning method that uses frozen pre-trained 104

weights and low-rank adaptations, similar to LoRA 105

(Hu et al., 2022). SARA integrates a single-head 106

attention (SHA) mechanism (Vaswani et al., 2023) 107

in a low-dimensional space to capture task-specific 108

interactions dynamically. As shown in Figure 1, 109

SARA adapts a pre-trained linear layer with weight 110

matrix W0 ∈ Rd×k by adding a lightweight adap- 111

tation ∆W , so that W ′ = W0 + ∆W . The in- 112

put x ∈ Rd is projected into a lower-dimensional 113

space using a frozen matrix D ∈ Rd×r. SHA cap- 114

tures interactions in this space, and the result is 115

mapped back to the original dimension with matrix 116

U ∈ Rr×d and scaled by a trainable vector λ ∈ Rd. 117

The adaptation is: 118

∆W = λ⊙ U · SHA(D⊤x), 119

where ⊙ is element-wise multiplication. 120

3.1 Parameter Efficiency 121

SARA minimizes trainable parameters by freezing 122

pretrained weights and random matrices, training 123

only the SHA parameters and scaling vector. For 124

each layer, the trainable parameters include SHA 125

weights (WQ,WK ,WV ,WO) and λ. Assuming 126

h = r/2, the total trainable parameters per layer 127

are: 128

ParamsSARA = 2r2 + d. 129

In contrast, LoRA uses trainable low-rank matrices 130

for Query and Value projections, resulting in: 131

ParamsLoRA = 4rd. 132

SARA’s design reduces memory usage while main- 133

taining effective adaptation. 134

3.2 Initialization Strategies 135

Initialization is crucial for SARA’s performance 136

and stability. The down projection matrix D and up 137

projection matrix U are initialized using Kaiming 138

initialization (He et al., 2015) and remain frozen 139

during training, ensuring a consistent adaptation 140

basis. The attention mechanism parameters (WQ, 141

WK , WV , WO) are also initialized with Kaiming 142

initialization to maintain balanced variance and sta- 143

ble training dynamics. The scaling vector λ is set 144

to a small constant (0.001), allowing pre-trained 145
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Model Rank (r) SARA Params LoRA Params SARA Memory (MB) LoRA Memory (MB)

RoBERTa-base
4 19,200 147,456 0.07 0.56
8 25,504 294,912 0.08 1.13
16 30,720 589,824 0.12 2.25

RoBERTa-large
4 50,688 393,216 0.19 1.50
8 55,296 786,432 0.21 3.00
16 73,728 1,572,864 0.28 6.00

Table 1: Comparison of Trainable Parameters and Memory Usage for SARA and LoRA across Different Ranks for
RoBERTa-base, RoBERTa-large, PEFT modules are added to query and value layers.

weights to dominate initially while gradually in-146

creasing task-specific influence. Ablation studies147

confirm that Kaiming initialization outperforms148

alternatives like uniform or standard normal distri-149

butions.150

4 Experiments151

We evaluate SARA’s performance and efficiency152

on both the GLUE benchmark (Wang et al., 2019)153

for language understanding and the E2E bench-154

mark (Novikova et al., 2017) for generation. For155

language understanding, we fine-tune RoBERTa156

base and large models (Liu et al., 2019), and for157

generation tasks, we fine-tune GPT-2 Medium and158

Large models (Radford et al., 2019).159

4.1 Baselines160

To ensure a comprehensive evaluation of SARA,161

we compare it with a range of established162

parameter-efficient fine-tuning (PEFT) baselines:163

• Fine-Tuning (FT): Fine-tuning (FT) involves164

training models by updating all of their pa-165

rameters. A variation of FT, introduced by166

(Lee et al., 2019), selectively updates specific167

layers while freezing others. This method168

specifically adapts only the final two layers,169

referred to as FTtop2.170

• BitFit: Adjusts only bias parameters (Zaken171

et al., 2022).172

• Adapter: Inserts small trainable layers be-173

tween transformer layers while keeping the174

main model frozen (Houlsby et al., 2019).175

• Adapter-FFN: Modifies only the feed-176

forward components within adapters for en-177

hanced efficiency (Pfeiffer et al., 2021).178

• Prompt Tuning (PT): Tunes a set of prompt179

tokens appended to the input without updating180

core model weights (Lester et al., 2021).181

• Prefix Tuning: Adjusts prepended prefix to-182

kens to guide model behavior.183

• LoRA: Uses low-rank updates for each trans- 184

former layer to reduce the number of trainable 185

parameters (Hu et al., 2022). 186

• VeRA: Shares low-rank matrices across lay- 187

ers with additional layer-specific scaling vec- 188

tors (Kopiczko et al., 2024). 189

• RED: Employs scaling and bias vectors to 190

efficiently control network outputs.(Wu et al., 191

2024a) 192

• ReFT: Fine-tunes hidden representations in- 193

stead of full model weights.(Wu et al., 2024b) 194

4.2 GLUE Benchmark 195

Evaluation Strategy We evaluate SARA on 196

the GLUE benchmark (Wang et al., 2019) us- 197

ing RoBERTa-base (125M) and RoBERTa-large 198

(350M) for sequence classification tasks. Follow- 199

ing Wu et al. (2024a), we split the validation set 200

in half with a fixed seed, select the model with the 201

highest validation accuracy on one half, and report 202

test accuracy on the other. 203

Hyperparameter Tuning Hyperparameters are 204

tuned per task using a constant seed, with results 205

averaged over that seed and four additional unseen 206

seeds. Details are provided in the Appendix. 207

Results Analysis Table 2 shows SARA’s per- 208

formance on GLUE. For RoBERTa-base, SARA 209

achieves 83.7 (vs. FT’s 84.4) using only 0.015% 210

of trainable parameters, comparable to RED and 211

LoReFT (both 83.9). For RoBERTa-large, SARA 212

scores 87.7 (vs. FT’s 88.0), aligning with other 213

PEFT methods. As a LoRA-based approach, 214

SARA uses significantly fewer parameters than 215

representation editing methods while delivering 216

competitive results. 217

4.3 E2E Benchmark 218

Evaluation Strategy We evaluate SARA on the 219

E2E benchmark, which tests generation task by 220

converting structured data into coherent text. We 221
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Method Params(%) SST-2 MRPC CoLA QNLI RTE STS-B Avg.
BA

SE
FT* 100% 94.4 87.9 62.4 92.5 78.3 90.6 84.4

BitFit* 0.080% 94.0 88.0 54.0 91.0 69.8 89.5 81.1
Adapter* 0.318% 93.3 88.4 60.9 92.5 76.5 90.5 83.7

Adapter-FFN* 0.239% 93.0 88.8 58.5 92.0 77.7 90.4 83.4
LoRA* 0.239% 93.9 88.7 59.7 92.6 75.3 90.3 83.4
RED* 0.016% 93.9 89.2 61.0 90.7 78.0 90.4 83.9

DiReFT† 0.015% 92.6 88.3 58.6 91.3 76.4 89.3 82.8
LoReFT† 0.015% 93.4 89.2 60.4 91.2 79.0 90.0 83.9

SARA 0.015% 93.7 88.7 60.8 90.7 78.3 90.0 83.7

L
A

R
G

E

FT* 100% 96.0 91.7 68.2 93.8 85.8 92.6 88.0
Adapter* 0.254% 95.2 90.5 65.4 94.6 85.3 91.5 87.1

Adapter-FFN* 0.225% 96.1 90.5 64.4 94.3 84.8 90.2 86.7
LoRA* 0.225% 96.0 89.8 65.5 94.7 86.3 91.7 87.3
RED* 0.014% 96.0 90.3 68.1 93.5 86.2 91.3 87.6

DiReFT† 0.014% 95.4 88.5 66.7 93.9 86.9 91.2 87.1
LoReFT† 0.014% 96.0 90.1 68.0 94.1 87.5 91.6 87.9

SARA 0.015% 95.6 90.3 67.1 93.4 87.8 91.9 87.7

Table 2: Accuracy comparison of RoBERTa-base and RoBERTa-large against existing PEFT methods on the GLUE
benchmark.∗Performance results of all baseline methods are taken from (Wu et al., 2024a) and † performance results
of baselines taken from (Wu et al., 2024b). We report averaged performance of five runs with distinct random seeds
for our method.

Method #Params BLEU MET R-L

M
ed

iu
m

FT∗ 355M 65.9 45.9 69.1
FTtop2∗ 25.2M 65.9 44.3 68.8
AdapterD∗ 0.9M 64.3 44.9 67.7
LoRAD∗ 0.8M 67.4 46.0 69.6
Adap-FFN∗ 0.8M 64.4 44.7 67.5
Prefix-Tune∗ 0.8M 63.9 41.8 66.9
IA3∗ 0.17M 63.6 40.5 66.4
RED∗ 0.05M 64.9 45.0 67.6
SARA 0.08M 64.4 43.9 67.5

L
ar

ge

FT∗ 774M 65.6 45.4 68.4
Adapter∗ 1.8M 65.9 45.8 68.6
LoRA∗ 1.5M 68.2 46.2 69.9
Adap-FFN∗ 1.5M 65.5 45.6 68.5
Prefix-Tune∗ 1.5M 65.5 44.0 67.3
IA3∗ 0.32M 65.1 42.8 66.8
RED∗ 0.09M 65.8 46.1 69.0
SARA 0.15M 65.5 44.4 68.3

Table 3: Performance comparison of GPT-2 medium
and large models fine-tuned by SARA and other PEFT
baselines on the E2E NLG Challenge. ∗Baseline results
are from (Wu et al., 2024a). Adap-FFN: Adapter-FFN,
P-Tuning: Prefix Tuning

finetune GPT-2 Medium and GPT-2 Large on the222

E2E dataset, selecting the best checkpoint based223

on validation performance and reporting its test224

accuracy. Each experiment is repeated over three225

random seeds, with average performance reported.226

Hyperparameter Tuning SARA’s hyperparame-227

ters are tuned using a fixed seed and then evaluated228

on two additional seeds to ensure robustness. Final 229

results are averaged over all three seeds. 230

Results Table 3 summarizes SARA’s perfor- 231

mance on the E2E benchmark. We report standard 232

generation metrics along with the number of train- 233

able parameters for each method. Our experiments 234

show that SARA attains competitive scores relative 235

to established baselines, demonstrating its ability 236

to generate coherent and fluent text while signifi- 237

cantly reducing parameter counts. Notably, when 238

applied to GPT-2 Medium and GPT-2 Large mod- 239

els, SARA maintains a favorable balance between 240

performance and efficiency, validating its effec- 241

tiveness in parameter-efficient settings for natural 242

language generation. 243

5 Conclusion 244

We introduce SARA, a novel memory-efficient fine- 245

tuning method that reduces parameters compared 246

to LoRA and VeRA while achieving competitive 247

performance on benchmarks like GLUE, and E2E. 248

SARA combines random matrices with single-head 249

attention to capture task-specific information in 250

a low-dimensional space, enabling scalable adap- 251

tation for multi-task and personalized AI. Future 252

work will extend SARA to other architectures and 253

larger models, and further optimize parameter allo- 254

cation and initialization. 255
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Limitations256

This work has several limitations:257

• While our experiments are comprehensive,258

they are limited to smaller LMs compared to259

the current SOTA LLMs. Evaluating our ap-260

proach using larger models could strengthen261

our work.262

• Similarly, our datasets are also limited in263

terms of input and output formats and types.264

Evaluating on instruction following tasks like265

different types of reasoning is something that266

could help us understand how our SARA267

method compares with other PEFT methods268

in these settings.269

• The language of our experiments is limited270

to English. This also limits our experimental271

findings.272
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Appendix360

A Datasets361

A.1 GLUE Benchmark362

We follow (Wu et al., 2024a) for evaluating models363

on the GLUE validation set. The validation set is364

split into two subsets: one for in-training evalua-365

tion and the other for testing. After each training366

epoch, the model is evaluated on the in-training367

subset, and the best-performing model across all368

epochs is selected for testing. For datasets with369

large validation sets like QNLI, we use 1,000 sam-370

ples for in-training evaluation. For smaller datasets,371

we use half of the validation samples. The eval-372

uation metrics include the Matthews correlation373

coefficient for CoLA, the Pearson correlation coef-374

ficient for STS-B, and accuracy for the remaining375

datasets. Due to time constraints, we remove the376

time-intensive MNLI and QQP tasks.377

A.2 E2E Challenge378

The E2E NLG Challenge, introduced by (Novikova379

et al., 2017), was designed to train and evaluate end-380

to-end, data-driven natural language generation381

models. For our experiments, we utilized datasets382

from Hugging Face Datasets. This benchmark con-383

sists of 42.1K training instances, 4.67K validation384

instances, and 4.69K test instances. Following385

prior work, we used the official evaluation script386

to make sure BLEU, NIST, METEOR, ROUGE-L,387

and CIDEr scores.388

B Hyperparameters389

B.1 GLUE Benchmark390

We conduct hyperparameter tuning with RoBERTa-391

base and RoBERTa-large for each task individually,392

selecting hyperparameters based on performance393

on the held-out validation set with a fixed random394

seed of 42. To ensure robustness, we further evalu-395

ate our model using four additional unseen seeds396

{43, 44, 45, 46}. We follow the evaluation setup of397

(Wu et al., 2024a). As noted in (Wu et al., 2024a),398

we also observe instability in evaluation results on399

RTE and MRPC due to their small dataset sizes.400

To ensure a fair comparison, we replace certain401

random seeds following their methodology. The402

hyperparameters used for RoBERTa-base are de-403

tailed in Table 4, while those for RoBERTa-large404

are provided in Table 5. Additionally, we conduct405

further experiments on the GLUE benchmark fol-406

lowing the methodology of (Hu et al., 2022). This407

experiment is designed to compare our results with 408

VeRA. Specifically, we evaluate models using only 409

the validation set and record the best epoch’s per- 410

formance. To provide a reliable comparison, we 411

report the median performance after five runs with 412

distinct random seeds. Table 7 presents our results 413

alongside VeRA and the baseline numbers reported 414

in VeRA’s paper. 415

B.2 E2E Challenge 416

We conduct hyperparameter tuning with GPT-2 417

medium and GPT-2 large for e2e challenge, select- 418

ing hyperparameters based on performance on the 419

held-out validation set with a fixed random seed 420

of 42. To ensure robustness, we further evaluate 421

our model using two additional unseen seeds {43, 422

44}. We follow the evaluation setup of (Wu et al., 423

2024a). The hyperparameters used in our exper- 424

iments for GPT-2 medium and GPT-2 large are 425

detailed in Table 6. 426
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Table 4: Hyperparameters for RoBERTa-base on the GLUE benchmark. Different learning rates were used for the
classifier head and SARA’s learnable parameters.

Hyperparameter STS-B RTE MRPC CoLA SST2 QNLI

Learning Rate (SARA) 1.00E-02 6.00E-03 3.00E-03 3.00E-03 4.00E-03 8.00E-03
Learning Rate (Classifier) 1.00E-02 6.00E-03 9.00E-03 3.00E-03 4.00E-03 8.00E-03
Max Seq. Len. 256 256 256 256 256 256
Warmup Ratio 0.06 0.06 0.06 0.06 0.06 0.06
LR-Scheduler linear linear linear linear linear linear
Batch Size 32 32 32 16 64 64
Epochs 80 80 20 80 60 25
Scale Vector (λ) 0.001 0.001 0.001 0 0.001 0.001
Rank 8 8 8 8 8 8
α 8 8 16 8 8 8
Dropout 0.1 0.1 0.1 0.1 0.1 0.1

Table 5: Hyperparameters for RoBERTa-large on the GLUE benchmark. Different learning rates were used for the
classifier head and SARA’s learnable parameters.

Hyperparameter STS-B RTE MRPC CoLA SST2 QNLI

Learning Rate (SARA) 3.00E-03 4.00E-03 3.00E-03 6.00E-03 3.00E-03 3.00E-03
Learning Rate (Classifier) 1.00E-04 4.00E-03 3.00E-03 1.00E-04 1.00E-04 3.00E-03
Max Seq. Len. 256 256 256 256 256 256
Warmup Ratio 0.06 0.06 0.06 0.6 0.06 0.06
LR-Scheduler linear linear linear linear linear linear
Batch Size 32 32 32 32 32 32
Epochs 20 40 20 40 10 10
Scale Vector (λ) 0.001 0.001 0.001 0.001 0.001 0.001
Rank 8 8 8 8 8 8
α 8 8 8 8 8 8
Dropout 0.1 0.1 0.1 0.1 0.1 0.1
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Table 6: Hyperparameter configurations for SARA on the E2E benchmark for GPT-2 Medium and Large models.

Hyperparameter Medium Large

Optimizer AdamW
Learning Rate Schedule Linear
Weight Decay 0.01
Batch Size 10
Epochs 5
Warmup Steps 500
Gradient Accumulation 16
Label Smoothing 0.1
Rank 8
α 16
Learning Rate 3E-2 1E-2

Table 7: Accuracy comparison of RoBERTa-base and RoBERTa-large against existing PEFT methods on the GLUE
benchmark. ∗Performance results of all baseline methods are taken from Kopiczko et al. [2024] and † performance
resullts of baselines taken from Wu et al.[2024]. To ensure a fair comparison, we report median performance of five
runs with distinct random seeds for our method.

Method Params(%) SST-2 MRPC CoLA QNLI RTE STS-B Avg.

BA
SE

FT∗ 100% 94.8 90.2 63.6 92.8 78.7 91.2 85.2
BitFit∗ 0.080% 93.7 92.7 62.0 91.8 81.5 90.8 85.4
AdptD∗ 0.239% 94.2 88.5 60.8 93.1 71.5 89.7 83.0
AdptD∗ 0.717% 94.7 88.4 62.6 93.0 75.9 90.3 84.2
LoRA∗ 0.239% 95.1 89.7 63.4 93.3 86.6 91.5 86.6
VeRA∗ 0.034% 94.6 89.5 65.6 91.8 78.8 90.7 85.2

DiReFT† 0.015% 92.2 88.7 59.5 91.3 77.0 89.6 83.0
LoReFT† 0.015% 93.6 87.8 59.1 91.3 79.9 90.0 83.6

SARA 0.015% 93.8 89.2 62.0 91.3 79.4 89.6 84.2

L
A

R
G

E

AdptP ∗ 0.845% 96.1 90.2 68.3 94.8 83.8 92.1 87.6
AdptP ∗ 0.225% 96.6 89.7 67.8 94.8 80.1 91.9 86.8
AdptH∗ 1.690% 96.2 88.7 66.5 94.7 83.4 91.0 86.8
AdptH∗ 0.225% 96.3 87.7 66.3 94.7 72.9 91.5 84.9
LoRA∗ 0.225% 96.2 90.2 68.2 94.8 85.2 92.3 87.8

LoRA-FA∗ 1.042% 96.0 90.0 68.0 94.4 86.1 92.0 87.8
VeRA∗ 0.017% 96.1 90.9 68.0 94.4 85.9 91.7 87.8

DiReFT† 0.014% 95.2 88.2 66.7 94.0 86.3 91.0 86.9
LoReFT† 0.014% 96.1 90.2 68.2 94.1 87.8 91.5 88.0

SARA 0.015% 96.2 90.5 67.4 93.7 85.9 91.4 87.5
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