SARA: Single Head Attention-based Random Matrix Adaptation

Anonymous ACL submission

Abstract

Fully fine-tuning large language models by up-
dating all parameters is both computationally
expensive and storage-intensive, particularly
when deploying multiple task-specific models.
Existing parameter-efficient fine-tuning (PEFT)
methods, such as LoRA, reduce the number
of trainable parameters via low-rank adapta-
tions, yet they still face scalability challenges
as model sizes increase. In this work, we in-
troduce SARA (Single-Head Attention-based
Random Matrix Adaptation), a novel PEFT ap-
proach that leverages random matrices com-
bined with a single-head attention mechanism
to further minimize trainable parameters while
preserving competitive performance. By in-
tegrating with frozen pretrained weights and
fine-tuning only a minimal set of additional
parameters, SARA offers significant memory
savings without compromising accuracy. We
validate our method through experiments on
two standard benchmarks: the GLUE bench-
mark for natural language understanding and
the E2E challenge for natural language gen-
eration. Our results demonstrate that SARA
achieves competitive performance with a sub-
stantially reduced parameter footprint, making
it a promising solution for resource-constrained
model adaptation.

1 Introduction

Despite their impressive capabilities, modern pre-
trained language models remain challenging to
adapt to new tasks due to the heavy computational
and storage demands of full fine-tuning. Early work
by Aghajanyan et al. (2021) revealed that these
models have low intrinsic dimensionality, meaning
that task-specific knowledge can be encoded within
a small subspace of the full parameter space. This
insight inspired methods like prefix tuning (Li and
Liang, 2021), which optimize soft prompts in a
compressed subspace before projecting them to the
original dimension. Building on this idea, low-rank

N

Figure 1: Architecture of the proposed SARA method.
SARA trains only the Single-Head Attention (SHA) and
the scale vector A\, while freezing and sharing low-rank
matrices across layers. The scale vector A is learnable,
and SARA reduces trainable parameters significantly.
Like LoRA, the low-rank matrices, attention mecha-
nism, and A can be merged into the weight matrix W
without added latency. The figure shows input x, hidden
states h, and frozen matrices U (up-projection) and D
(down-projection).

X

adaptation (LoRA) (Hu et al., 2022) introduces
trainable low-rank matrices into transformer layers
to significantly reduce the number of parameters.

Despite LoRA’s impressive parameter reduction,
the intrinsic dimensionality insight suggests that
even fewer parameters may suffice. Recent ad-
vances like VeRA (Kopiczko et al., 2024) further
address scalability by replacing layer-specific ma-
trices with shared random frozen projections and
trainable scaling vectors.

We propose SARA, Single-head Attention-based
Random matrix Adaptation, which combines the
efficiency of random projections with dynamic
interaction modeling. As illustrated in Figure 1,

SARA first projects inputs into a low-dimensional
space using frozen random matrices, then employs
a lightweight single-head attention (SHA) mecha-
nism (Vaswani et al., 2023) to capture task-relevant
relationships. Finally, the adapted representations
are scaled and projected back to the original space.
This approach reduces parameters significantly
compared to LoRA.

We evaluate SARA on GLUE and E2E bench-
marks using RoOBERTa and GPT-2 models. Our
experimental results show its effectiveness; de-
spite having fewer parameters, it achieves compa-
rable performance to LoRA. Our contributions are
summarized as follows: (i) We introduce a novel
PEFT method with no additional inference cost,
further reducing trainable parameters compared
to LoRA and VeRA while achieving comparable
performance. (ii) We validate SARA on two stan-
dard benchmarks (GLUE and E2E), applying to
RoBERTa and GPT-2 models, demonstrating its
effectiveness and scalability.

2 Related Work

We introduce a new PEFT method, broadly catego-
rized into four types:

Adapter-based Methods add small trainable
modules to frozen layers, as in Houlsby et al. (2019)
and He et al. (2022). While effective, they often
increase inference latency.

Prompt-based Approaches prepend learnable to-
kens to inputs, as in Lester et al. (2021), Li and
Liang (2021), and Razdaibiedina et al. (2023).
These methods avoid architectural changes but can
be sensitive to initialization.

Representation Editing Techniques modify hid-
den representations for task adaptation. For ex-
ample, Wu et al. (2024b) introduces ReFT and
LoReFT, while Wu et al. (2024a) proposes RED,
focusing on scaling and bias vectors for efficiency.

LoRA-based Methods Inject trainable low-rank
matrices into frozen layers. LoRA (Hu et al.,
2022) reduces parameters while maintaining per-
formance. Variants like DoRA (Liu et al., 2024),
VeRA (Kopiczko et al., 2024), and NoLA (Kooh-
payegani et al., 2024) further optimize this ap-
proach. Our work builds on these advancements.

3 Method

We introduce SARA (Single-Head Attention-based
Random Matrix Adaptation), a parameter-efficient
fine-tuning method that uses frozen pre-trained
weights and low-rank adaptations, similar to LORA
(Hu et al., 2022). SARA integrates a single-head
attention (SHA) mechanism (Vaswani et al., 2023)
in a low-dimensional space to capture task-specific
interactions dynamically. As shown in Figure 1,
SARA adapts a pre-trained linear layer with weight
matrix Wy € R?** by adding a lightweight adap-
tation AW, so that W’ = Wy + AW. The in-
put z € R? is projected into a lower-dimensional
space using a frozen matrix D € R%*". SHA cap-
tures interactions in this space, and the result is
mapped back to the original dimension with matrix
U € R™* and scaled by a trainable vector A € R<.
The adaptation is:

AW =\® U -SHA(D),
where © is element-wise multiplication.

3.1 Parameter Efficiency

SARA minimizes trainable parameters by freezing
pretrained weights and random matrices, training
only the SHA parameters and scaling vector. For
each layer, the trainable parameters include SHA
weights (Wq, Wk, Wy, Wp) and A. Assuming
h = r/2, the total trainable parameters per layer
are:
Paramsgara = 272 + d.

In contrast, LoRA uses trainable low-rank matrices
for Query and Value projections, resulting in:

Params; ora = 4rd.

SARA’s design reduces memory usage while main-
taining effective adaptation.

3.2 Initialization Strategies

Initialization is crucial for SARA’s performance
and stability. The down projection matrix D and up
projection matrix U are initialized using Kaiming
initialization (He et al., 2015) and remain frozen
during training, ensuring a consistent adaptation
basis. The attention mechanism parameters (W,
Wk, Wy, Wp) are also initialized with Kaiming
initialization to maintain balanced variance and sta-
ble training dynamics. The scaling vector A is set
to a small constant (0.001), allowing pre-trained

Model | Rank (r) | SARA Params | LoRA Params | SARA Memory (MB) | LoRA Memory (MB)
4 19,200 147,456 0.07 0.56
RoBERTa-base 8 25,504 294,912 0.08 1.13
16 30,720 589,824 0.12 2.25
4 50,688 393,216 0.19 1.50
RoBERTa-large 8 55,296 786,432 0.21 3.00
16 73,728 1,572,864 0.28 6.00

Table 1: Comparison of Trainable Parameters and Memory Usage for SARA and LoRA across Different Ranks for
RoBERTa-base, RoBERTa-large, PEFT modules are added to query and value layers.

weights to dominate initially while gradually in-
creasing task-specific influence. Ablation studies
confirm that Kaiming initialization outperforms
alternatives like uniform or standard normal distri-
butions.

4 Experiments

We evaluate SARA’s performance and efficiency
on both the GLUE benchmark (Wang et al., 2019)
for language understanding and the E2E bench-
mark (Novikova et al., 2017) for generation. For
language understanding, we fine-tune RoOBERTa
base and large models (Liu et al., 2019), and for
generation tasks, we fine-tune GPT-2 Medium and
Large models (Radford et al., 2019).

4.1 Baselines

To ensure a comprehensive evaluation of SARA,
we compare it with a range of established
parameter-efficient fine-tuning (PEFT) baselines:

¢ Fine-Tuning (FT): Fine-tuning (FT) involves
training models by updating all of their pa-
rameters. A variation of FT, introduced by
(Lee et al., 2019), selectively updates specific
layers while freezing others. This method
specifically adapts only the final two layers,
referred to as FTtop2.

* BitFit: Adjusts only bias parameters (Zaken
etal., 2022).

¢ Adapter: Inserts small trainable layers be-
tween transformer layers while keeping the
main model frozen (Houlsby et al., 2019).

* Adapter-FFN: Modifies only the feed-
forward components within adapters for en-
hanced efficiency (Pfeiffer et al., 2021).

* Prompt Tuning (PT): Tunes a set of prompt
tokens appended to the input without updating
core model weights (Lester et al., 2021).

* Prefix Tuning: Adjusts prepended prefix to-
kens to guide model behavior.

* LoRA: Uses low-rank updates for each trans-
former layer to reduce the number of trainable
parameters (Hu et al., 2022).

* VeRA: Shares low-rank matrices across lay-
ers with additional layer-specific scaling vec-
tors (Kopiczko et al., 2024).

* RED: Employs scaling and bias vectors to
efficiently control network outputs.(Wu et al.,
2024a)

* ReFT: Fine-tunes hidden representations in-
stead of full model weights.(Wu et al., 2024b)

4.2 GLUE Benchmark

Evaluation Strategy We evaluate SARA on
the GLUE benchmark (Wang et al., 2019) us-
ing RoBERTa-base (125M) and RoBERTa-large
(350M) for sequence classification tasks. Follow-
ing Wu et al. (2024a), we split the validation set
in half with a fixed seed, select the model with the
highest validation accuracy on one half, and report
test accuracy on the other.

Hyperparameter Tuning Hyperparameters are
tuned per task using a constant seed, with results
averaged over that seed and four additional unseen
seeds. Details are provided in the Appendix.

Results Analysis Table 2 shows SARA’s per-
formance on GLUE. For RoBERTa-base, SARA
achieves 83.7 (vs. FT’s 84.4) using only 0.015%
of trainable parameters, comparable to RED and
LoReFT (both 83.9). For RoBERTa-large, SARA
scores 87.7 (vs. FT’s 88.0), aligning with other
PEFT methods. As a LoRA-based approach,
SARA uses significantly fewer parameters than
representation editing methods while delivering
competitive results.

4.3 E2E Benchmark

Evaluation Strategy We evaluate SARA on the
E2E benchmark, which tests generation task by
converting structured data into coherent text. We

Method | Params(%) | SST-2 | MRPC | CoLA | QNLI | RTE | STS-B | Avg.

FT* 100% 94 .4 87.9 624 92.5 78.3 90.6 84.4

BitFit* 0.080% 94.0 88.0 54.0 91.0 69.8 89.5 81.1

= Adapter* 0.318% 93.3 88.4 60.9 92.5 76.5 90.5 83.7
Zé Adapter-FFN* 0.239% 93.0 88.8 58.5 92.0 77.7 90.4 83.4
~ LoRA* 0.239% 93.9 88.7 59.7 92.6 75.3 90.3 83.4
RED* 0.016% 93.9 89.2 61.0 90.7 78.0 90.4 83.9
DiReFT' 0.015% 92.6 88.3 58.6 91.3 76.4 89.3 82.8
LoReFT' 0.015% 934 89.2 60.4 91.2 79.0 90.0 83.9
SARA 0.015% 93.7 88.7 60.8 90.7 78.3 90.0 83.7

FT* 100% 96.0 91.7 68.2 93.8 85.8 92.6 88.0

= Adapter* 0.254% 95.2 90.5 65.4 94.6 85.3 91.5 87.1
E Adapter-FFN* 0.225% 96.1 90.5 64.4 94.3 84.8 90.2 86.7
< LoRA* 0.225% 96.0 89.8 65.5 94.7 86.3 91.7 87.3
— RED* 0.014% 96.0 90.3 68.1 93.5 86.2 91.3 87.6
DiReFT" 0.014% 95.4 88.5 66.7 93.9 86.9 91.2 87.1
LoReFT' 0.014% 96.0 90.1 68.0 94.1 87.5 91.6 87.9
SARA 0.015% 95.6 90.3 67.1 934 87.8 91.9 87.7

Table 2: Accuracy comparison of RoBERTa-base and RoBERTa-large against existing PEFT methods on the GLUE
benchmark.* Performance results of all baseline methods are taken from (Wu et al., 2024a) and performance results
of baselines taken from (Wu et al., 2024b). We report averaged performance of five runs with distinct random seeds

for our method.

Method [#Params [BLEU [MET [R-L
FT* 355M 659 | 459 | 69.1
FTop2* 25.2M 65.9 443 | 68.8
§ Adapter”* 0.9M 64.3 | 449 | 677
T LoRAP* 0.8M 67.4 46.0 | 69.6
= Adap-FFN* 0.8M 644 | 447 | 615
Prefix-Tune* 0.8M 63.9 41.8 66.9
IA3* 0.17M 63.6 | 405 | 66.4
RED* 0.05M 649 | 45.0 | 67.6
SARA 0.08M 644 | 439 | 675
FT* 774M 65.6 | 454 | 684
o Adapter” 1.8M 65.9 458 | 68.6
% LoRA* 1.5M 682 | 462 | 69.9
& Adap-FFN* 1.5M 65.5 456 | 685
Prefix-Tune* 1.5M 65.5 440 | 67.3
IA3* 0.32M 65.1 428 | 668
RED* 0.09M 65.8 46.1 | 69.0
SARA 0.15M 65.5 444 | 683

Table 3: Performance comparison of GPT-2 medium
and large models fine-tuned by SARA and other PEFT
baselines on the E2E NLG Challenge. *Baseline results
are from (Wu et al., 2024a). Adap-FFN: Adapter-FFN,
P-Tuning: Prefix Tuning

finetune GPT-2 Medium and GPT-2 Large on the
E2E dataset, selecting the best checkpoint based
on validation performance and reporting its test
accuracy. Each experiment is repeated over three
random seeds, with average performance reported.

Hyperparameter Tuning SARA'’s hyperparame-
ters are tuned using a fixed seed and then evaluated

on two additional seeds to ensure robustness. Final
results are averaged over all three seeds.

Results Table 3 summarizes SARA’s perfor-
mance on the E2E benchmark. We report standard
generation metrics along with the number of train-
able parameters for each method. Our experiments
show that SARA attains competitive scores relative
to established baselines, demonstrating its ability
to generate coherent and fluent text while signifi-
cantly reducing parameter counts. Notably, when
applied to GPT-2 Medium and GPT-2 Large mod-
els, SARA maintains a favorable balance between
performance and efficiency, validating its effec-
tiveness in parameter-efficient settings for natural
language generation.

5 Conclusion

We introduce SARA, a novel memory-efficient fine-
tuning method that reduces parameters compared
to LoRA and VeRA while achieving competitive
performance on benchmarks like GLUE, and E2E.
SARA combines random matrices with single-head
attention to capture task-specific information in
a low-dimensional space, enabling scalable adap-
tation for multi-task and personalized Al. Future
work will extend SARA to other architectures and
larger models, and further optimize parameter allo-
cation and initialization.

Limitations
This work has several limitations:

* While our experiments are comprehensive,
they are limited to smaller LMs compared to
the current SOTA LLMs. Evaluating our ap-
proach using larger models could strengthen
our work.

* Similarly, our datasets are also limited in
terms of input and output formats and types.
Evaluating on instruction following tasks like
different types of reasoning is something that
could help us understand how our SARA
method compares with other PEFT methods
in these settings.

* The language of our experiments is limited
to English. This also limits our experimental
findings.

References

Armen Aghajanyan, Luke Zettlemoyer, and Sonal
Gupta. 2021. Intrinsic dimensionality explains the
effectiveness of language model fine-tuning. In Pro-
ceedings of the 2021 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-
Kirkpatrick, and Graham Neubig. 2022. Towards a
unified view of parameter-efficient transfer learning.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2015. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification.
Preprint, arXiv:1502.01852.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski,
Bruna Morrone, Quentin de Laroussilhe, Andrea Ges-
mundo, Mona Attariyan, and Sylvain Gelly. 2019.
Parameter-efficient transfer learning for nlp.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. 2022. Lora: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Soroush Abbasi Koohpayegani, KL Navaneet, Parsa
Nooralinejad, Soheil Kolouri, and Hamed Pirsiavash.
2024. Nola: Compressing lora using linear combina-
tion of random basis. Preprint, arXiv:2310.02556.

Dawid J. Kopiczko, Tijmen Blankevoort, and Yuki M.
Asano. 2024. Vera: Vector-based random matrix
adaptation.

Jaejun Lee, Raphael Tang, and Jimmy Lin. 2019. What
would elsa do? freezing layers during transformer
fine-tuning. Preprint, arXiv:1911.03090.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. Preprint, arXiv:2104.08691.

Xiang Lisa Li and Percy Liang. 2021. Prefix-
tuning: Optimizing continuous prompts for gener-
ation. Preprint, arXiv:2101.00190.

Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo
Molchanov, Yu-Chiang Frank Wang, Kwang-Ting
Cheng, and Min-Hung Chen. 2024. Dora:
Weight-decomposed low-rank adaptation. Preprint,
arXiv:2402.09353.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. Preprint, arXiv:1907.11692.

Jekaterina Novikova, Ondfej Dusek, and Verena Rieser.
2017. The e2e dataset: New challenges for end-to-
end generation. Preprint, arXiv:1706.09254.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé,
Kyunghyun Cho, and Iryna Gurevych. 2021.
Adapterfusion: Non-destructive task composition for
transfer learning. Preprint, arXiv:2005.00247.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Anastasia Razdaibiedina, Yuning Mao, Rui Hou, Ma-
dian Khabsa, Mike Lewis, Jimmy Ba, and Amjad
Almabhairi. 2023. Residual prompt tuning: Improv-
ing prompt tuning with residual reparameterization.
Preprint, arXiv:2305.03937.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2023. Attention is all
you need. Preprint, arXiv:1706.03762.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
Glue: A multi-task benchmark and analysis plat-
form for natural language understanding. Preprint,
arXiv:1804.07461.

Muling Wu, Wenhao Liu, Xiaohua Wang, Tianlong Li,
Changze Lv, Zixuan Ling, Jianhao Zhu, Cenyuan
Zhang, Xiaoqing Zheng, and Xuanjing Huang. 2024a.
Advancing parameter efficiency in fine-tuning via
representation editing. Preprint, arXiv:2402.15179.

Zhengxuan Wu, Aryaman Arora, Zheng Wang, At-
ticus Geiger, Dan Jurafsky, Christopher D. Man-
ning, and Christopher Potts. 2024b. Reft: Repre-
sentation finetuning for language models. Preprint,
arXiv:2404.03592.

Elad Ben Zaken, Shauli Ravfogel, and Yoav Gold-
berg. 2022. Bitfit: Simple parameter-efficient
fine-tuning for transformer-based masked language-
models. Preprint, arXiv:2106.10199.

https://aclanthology.org/2021.naacl-main.208
https://aclanthology.org/2021.naacl-main.208
https://aclanthology.org/2021.naacl-main.208
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/2110.04366
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1502.01852
https://arxiv.org/abs/1902.00751
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://arxiv.org/abs/2310.02556
https://arxiv.org/abs/2310.02556
https://arxiv.org/abs/2310.02556
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/2310.11454
https://arxiv.org/abs/1911.03090
https://arxiv.org/abs/1911.03090
https://arxiv.org/abs/1911.03090
https://arxiv.org/abs/1911.03090
https://arxiv.org/abs/1911.03090
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2104.08691
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2101.00190
https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/2402.09353
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1706.09254
https://arxiv.org/abs/1706.09254
https://arxiv.org/abs/1706.09254
https://arxiv.org/abs/2005.00247
https://arxiv.org/abs/2005.00247
https://arxiv.org/abs/2005.00247
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://arxiv.org/abs/2305.03937
https://arxiv.org/abs/2305.03937
https://arxiv.org/abs/2305.03937
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/1804.07461
https://arxiv.org/abs/2402.15179
https://arxiv.org/abs/2402.15179
https://arxiv.org/abs/2402.15179
https://arxiv.org/abs/2404.03592
https://arxiv.org/abs/2404.03592
https://arxiv.org/abs/2404.03592
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199
https://arxiv.org/abs/2106.10199

Appendix
A Datasets

A.1 GLUE Benchmark

We follow (Wu et al., 2024a) for evaluating models
on the GLUE validation set. The validation set is
split into two subsets: one for in-training evalua-
tion and the other for testing. After each training
epoch, the model is evaluated on the in-training
subset, and the best-performing model across all
epochs is selected for testing. For datasets with
large validation sets like QNLI, we use 1,000 sam-
ples for in-training evaluation. For smaller datasets,
we use half of the validation samples. The eval-
uation metrics include the Matthews correlation
coefficient for CoLLA, the Pearson correlation coef-
ficient for STS-B, and accuracy for the remaining
datasets. Due to time constraints, we remove the
time-intensive MNLI and QQP tasks.

A.2 E2E Challenge

The E2E NLG Challenge, introduced by (Novikova
etal., 2017), was designed to train and evaluate end-
to-end, data-driven natural language generation
models. For our experiments, we utilized datasets
from Hugging Face Datasets. This benchmark con-
sists of 42.1K training instances, 4.67K validation
instances, and 4.69K test instances. Following
prior work, we used the official evaluation script
to make sure BLEU, NIST, METEOR, ROUGE-L,
and CIDEr scores.

B Hyperparameters

B.1 GLUE Benchmark

We conduct hyperparameter tuning with RoBERTa-
base and RoBERTa-large for each task individually,
selecting hyperparameters based on performance
on the held-out validation set with a fixed random
seed of 42. To ensure robustness, we further evalu-
ate our model using four additional unseen seeds
{43, 44, 45, 46}. We follow the evaluation setup of
(Wu et al., 2024a). As noted in (Wu et al., 2024a),
we also observe instability in evaluation results on
RTE and MRPC due to their small dataset sizes.
To ensure a fair comparison, we replace certain
random seeds following their methodology. The
hyperparameters used for RoBERTa-base are de-
tailed in Table 4, while those for ROBERTa-large
are provided in Table 5. Additionally, we conduct
further experiments on the GLUE benchmark fol-
lowing the methodology of (Hu et al., 2022). This

experiment is designed to compare our results with
VeRA. Specifically, we evaluate models using only
the validation set and record the best epoch’s per-
formance. To provide a reliable comparison, we
report the median performance after five runs with
distinct random seeds. Table 7 presents our results
alongside VeRA and the baseline numbers reported
in VeRA’s paper.

B.2 E2E Challenge

We conduct hyperparameter tuning with GPT-2
medium and GPT-2 large for e2e challenge, select-
ing hyperparameters based on performance on the
held-out validation set with a fixed random seed
of 42. To ensure robustness, we further evaluate
our model using two additional unseen seeds {43,
44}. We follow the evaluation setup of (Wu et al.,
2024a). The hyperparameters used in our exper-
iments for GPT-2 medium and GPT-2 large are
detailed in Table 6.

Table 4: Hyperparameters for RoOBERTa-base on the GLUE benchmark. Different learning rates were used for the
classifier head and SARA’s learnable parameters.

Hyperparameter STS-B RTE MRPC CoLA SST2 QNLI
Learning Rate (SARA) 1.00E-02 6.00E-03 3.00E-03 3.00E-03 4.00E-03 8.00E-03
Learning Rate (Classifier) 1.00E-02 6.00E-03 9.00E-03 3.00E-03 4.00E-03 8.00E-03
Max Seq. Len. 256 256 256 256 256 256
Warmup Ratio 0.06 0.06 0.06 0.06 0.06 0.06
LR-Scheduler linear linear linear linear linear linear
Batch Size 32 32 32 16 64 64
Epochs 80 80 20 80 60 25
Scale Vector (M) 0.001 0.001 0.001 0 0.001 0.001
Rank 8 8 8 8 8 8

« 8 8 16 8 8 8
Dropout 0.1 0.1 0.1 0.1 0.1 0.1

Table 5: Hyperparameters for RoOBERTa-large on the GLUE benchmark. Different learning rates were used for the
classifier head and SARA’s learnable parameters.

Hyperparameter STS-B RTE MRPC CoLA SST2 QNLI
Learning Rate (SARA) 3.00E-03 4.00E-03 3.00E-03 6.00E-03 3.00E-03 3.00E-03
Learning Rate (Classifier) 1.00E-04 4.00E-03 3.00E-03 1.00E-04 1.00E-04 3.00E-03
Max Seq. Len. 256 256 256 256 256 256
Warmup Ratio 0.06 0.06 0.06 0.6 0.06 0.06
LR-Scheduler linear linear linear linear linear linear
Batch Size 32 32 32 32 32 32
Epochs 20 40 20 40 10 10
Scale Vector (M) 0.001 0.001 0.001 0.001 0.001 0.001
Rank 8 8 8 8 8 8

« 8 8 8 8 8 8
Dropout 0.1 0.1 0.1 0.1 0.1 0.1

Table 6: Hyperparameter configurations for SARA on the E2E benchmark for GPT-2 Medium and Large models.

Hyperparameter Medium Large
Optimizer AdamW
Learning Rate Schedule Linear
Weight Decay 0.01
Batch Size 10
Epochs 5
Warmup Steps 500
Gradient Accumulation 16

Label Smoothing 0.1

Rank 8

e} 16
Learning Rate 3E-2 1E-2

Table 7: Accuracy comparison of RoOBERTa-base and RoBERTa-large against existing PEFT methods on the GLUE
benchmark. *Performance results of all baseline methods are taken from Kopiczko et al. [2024] and T performance
resullts of baselines taken from Wu et al.[2024]. To ensure a fair comparison, we report median performance of five
runs with distinct random seeds for our method.

Method Params(%) | SST-2 | MRPC | CoLA | QNLI | RTE | STS-B | Avg.

FT* 100% 94.8 90.2 63.6 92.8 | 78.7 91.2 85.2

BitFit* 0.080% 93.7 92.7 62.0 91.8 81.5 90.8 85.4

= AdptP* 0.239% 94.2 88.5 60.8 93.1 71.5 89.7 83.0
2 AdptP* 0.717% 94.7 88.4 62.6 93.0 | 759 90.3 84.2
R LoRA* 0.239% 95.1 89.7 63.4 93.3 86.6 91.5 86.6
VeRA* 0.034% 94.6 89.5 65.6 91.8 | 78.8 90.7 85.2
DiReFT' 0.015% 92.2 88.7 59.5 91.3 | 77.0 89.6 83.0
LoReFTT 0.015% 93.6 87.8 59.1 91.3 | 799 90.0 | 83.6
SARA 0.015% 93.8 89.2 62.0 91.3 | 794 89.6 84.2
Adpt"* 0.845% 96.1 90.2 68.3 94.8 83.8 92.1 87.6

= Adpt?* 0.225% 96.6 89.7 67.8 94.8 80.1 91.9 86.8
g Adptf* 1.690% 96.2 88.7 66.5 94.7 83.4 91.0 | 86.8
<« Adpt* 0.225% 96.3 87.7 66.3 94.7 | 729 91.5 84.9
- LoRA* 0.225% 96.2 90.2 68.2 94.8 85.2 92.3 87.8
LoRA-FA* 1.042% 96.0 90.0 68.0 944 | 86.1 92.0 | 87.8
VeRA* 0.017% 96.1 90.9 68.0 944 | 859 91.7 87.8
DiReFTf 0.014% 95.2 88.2 66.7 940 | 86.3 91.0 | 86.9
LoReFTf 0.014% 96.1 90.2 68.2 94.1 87.8 91.5 88.0
SARA 0.015% 96.2 90.5 67.4 93.7 85.9 914 87.5

	Introduction
	Related Work
	Method
	Parameter Efficiency
	Initialization Strategies

	Experiments
	Baselines
	GLUE Benchmark
	E2E Benchmark

	Conclusion
	Appendix
	Datasets
	GLUE Benchmark
	E2E Challenge

	Hyperparameters
	GLUE Benchmark
	E2E Challenge

