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Abstract

Most modern probabilistic generative models,
such as the variational autoencoder (VAE), have
certain indeterminacies that are unresolvable even
with an infinite amount of data. Different tasks
tolerate different indeterminacies, however recent
applications have indicated the need for strongly
identifiable models, in which an observation cor-
responds to a unique latent code. Progress has
been made towards reducing model indetermina-
cies while maintaining flexibility, and recent work
excludes many—but not all—indeterminacies. In
this work, we motivate model-identifiability in
terms of task-identifiability, then construct a theo-
retical framework for analyzing the indetermina-
cies of latent variable models, which enables their
precise characterization in terms of the generator
function and prior distribution spaces. We reveal
that strong identifiability is possible even with
highly flexible nonlinear generators, and give two
such examples. One is a straightforward modifi-
cation of iVAE (Khemakhem et al., 2020a); the
other uses triangular monotonic maps, leading to
novel connections between optimal transport and
identifiability.

1 INTRODUCTION

In generative models, indeterminacy refers to the situation
where the latent values underlying observations cannot be
uniquely inferred from any amount of empirical evidence. It
is a structural issue occurring in generative models such as
the variational auto-encoder (VAE) (Kingma and Welling,
2013) or independent component analysis (ICA) (Comon,
1994; Hyvirinen and Pajunen, 1999). For example, it is well
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known that even linear Gaussian models are plagued by a
rotational indeterminacy, where arbitrary rotations of the
latent space result in equivalent observation distributions.
Modern nonlinear (deep) generative models inherit such
indeterminacies and many more.

Characterizing and reducing the indeterminacies of gen-
erative models has been referred to as identifiability, and
has been motivated as a way to address a variety of prob-
lems in representation learning such as disentangelment
(Locatello et al., 2019; Hilvi et al., 2021; Yang et al., 2021;
Klindt et al., 2021), posterior collapse (Wang et al., 2021),
and causal representation learning (Wang and Jordan, 2021;
Scholkopf et al., 2021; Lu et al., 2022). Compared to linear
models, which restrict indeterminacies to linear transforma-
tions of the latent space, nonlinear identifiability is more
challenging, and has been the subject of much recent work.

Consider a prototypical generative model,

Zi~P,, ¢~N0,0%, X;=f(Z)+e,

where P, € P, is a distribution on latent variables, f € F
is an injective generator function, and X is an observation.
Indeterminacies arise when more than one ( f, P, ) pair give
rise to the same marginal distribution on observations, due
to transformations of the latent space. Despite the seemingly
disparate approaches taken in recent work to reduce inde-
terminacy, an intuitive trade-off appears: as more structure
is added to the model through F and P,, indeterminacy
is reduced and hence stronger identifiability results are ob-
tained. Our first contribution is a framework for analyzing
indeterminacy that abstracts away model specifics and for-
malises the trade-off as a general phenomenon, described by
separating indeterminacy transformations into two possible
sources. The first source is the set of transports that turn one
distribution in P, into another; denote this set by A(P,).
The second source, A(F), is the set of automorphisms of
the latent space formed from two functions in F as f,~ Lo f,
(See Section 2.3 for details). The main result of the analysis
is that model indeterminacies must belong to both sets.

Theorem (Informal Statement of Theorem 2.2). The set

of indeterminacy transformations of a generative model
(F,P,) is precisely A(F) N A(P,).
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This reduces the identifiability analysis for any suitable gen-
erative model to a well-defined mathematical problem. It
also categorizes various methods to reduce indeterminacies
in the model class—either constrain F, as in linear models;
constrain P, e.g., non-Gaussians; or constrain both. Any
of these approaches will reduce the size of the intersection.
This describes many recent methods for nonlinear identifia-
bility. Generator constraints include restrictions to certain
optimal transport maps (Wang et al., 2021), sparsity (Moran
et al., 2022; Zheng et al., 2022) and restrictions on the Ja-
cobian (Gresele et al., 2021; Buchholz et al., 2022). Many
methods also assume a diffeomorphic or analytic generator,
which further reduces A(F). Direct constraints on P, in-
clude non-Gaussianity (Stithmer et al., 2020) and mixture
distributions (Kivva et al., 2022). More commonly, latent
distribution constraints are formulated in terms of depen-
dence on an auxiliary variable (Hyvirinen and Morioka,
2016, 2017; Hyvérinen et al., 2018; Khemakhem et al.,
2020a,b; Hilva et al., 2021; Klindt et al., 2021), multi-
ple views (Locatello et al., 2020), when latent variables
are perturbed via interventions (Brehmer et al., 2022) or
sparse mechanism shifts (Lachapelle et al., 2022; Ahuja
et al., 2022b). As an application of our framework, we show
explicitly in Section 4 how multiple environments (e.g., Khe-
makhem et al., 2020a) and multiple views (e.g., Locatello
et al., 2020) can yield stronger identifiability, simply by
reducing the set of indeterminacy transformations.

Despite the progress in the references above, each of the
identifiability results contained therein are weak, in the
sense that non-trivial indeterminacies remain. An unan-
swered question is what constraints are required for strong
identifiability, that is, pointwise uniqueness of the latent
representation. It has long been seen as unattainable without
major sacrifices to model flexibility. For example, permuta-
tion and scaling indeterminacies are considered fundamental
in ICA models (Comon, 1994). Our second main contri-
bution is to use our framework in a few different ways to
specify strongly identifiable nonlinear models, without re-
strictive sacrifices in flexibility. The simplest is to freeze
the latent distribution before training the generator, as is
typically done in a VAE. Specifically, we show that freez-
ing the priors in iVAE (Khemakhem et al., 2020a), either
from the outset or after some initial training, yields strong
identifiability—with no further constraints on the genera-
tor class—when data from distinct environments (auxiliary
information) are used (Section 4). We also show that mono-
tonic triangular flow generators (Huang et al., 2018; Jaini
etal., 2019; Wehenlkel and Louppe, 2019; Irons et al., 2022),
which are universal transports between fully supported dis-
tributions, are strongly identifiable even with a single envi-
ronment, and with any latent distribution (Section 5).

Even when strong identifiability is unachievable, weakly
identifiable models may be useful for tasks that tolerate the
remaining indeterminacies. Our third main contribution is

to formally relate model identifiability to task identifiability
in Section 3, providing precise conditions for when weak
identifiability is good enough for identifiability of a partic-
ular downstream task, including some examples from the
recent literature. One obvious conclusion is that strongly
identifiable models are acceptable for any task based on the
latent variables.

Before proceeding, we note that any notion of model identi-
fiability is an asymptotic property not achievable with finite
data. However, model identifiability is an important quality
for statistical inference, and in particular is necessary for
the typical consistency guarantees (van der Vaart, 1998).
Though future work is required to assess the finite-sample
properties of identifiable models, empirical evidence shows
that even weak identifiability can recover ground truths in
simulation studies (Khemakhem et al., 2020a; Sorrenson
et al., 2020; Lu et al., 2022).

Outline In the rest of this section, we motivate our frame-
work with two classical linear examples, and discuss iden-
tifiability at a high level from a downstream task-specific
point of view, outlining when and what degree of identifia-
bility is required. In Section 2, we define our mathematical
framework and present our main technical results on model
identifiability. After revisiting the task-specific view in de-
tail in Section 3, we then apply the framework to analyze
the auxiliary information setting in Section 4, showing in
detail how the iVAE fits into the framework, and how it can
be easily adapted for strong identifiability. In Section 5 we
describe properties of triangular flows that yield strongly
identifiable models, which can then be generalized to flows
based on certain optimal transports.

1.1 Factor Analysis and Linear ICA

Factor analysis (Lawley and Maxwell, 1962) is a linear
generative model,
ZiNN(O7Idz)7 qw/\/’(,u,ldx), X, =FZ;+¢;,

where ¢; 1l Z;, and F is a full-rank d, X d, matrix of so-
called factor loadings. Here, F' is the only learnable pa-
rameter and P, = {N(0,1,,)}, a singleton. Linear ICA
(Comon, 1994) is structurally identical, but relaxes the as-
sumption that Z has a Gaussian distribution. Instead, it is
parametrized by (F, P.), where F is again full rank, and P,
is required to have independent components and is learned
along with F' from data. In other words, P, is some col-
lection of fully supported distributions with independent
components, typically excluding Gaussians.

It is well known that factor analysis suffers from a rotational
indeterminacy due to the Gaussian P,. On the other hand,
Hastie et al. (2009) note that ICA is identical in form to
factor analysis, but avoids the rotational indeterminacy via
its non-Gaussian assumption. However, if scaling indeter-
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minacies are fundamental to ICA (Hyvarinen et al., 2001),
why are they ignored in factor analysis?

Factor analysis does not suffer from scaling indeterminacy
due to a fundamental difference in how indeterminacies arise
in these two models. The factor model fixes its Gaussian P,,
and the rotational indeterminacies in factor analysis can be
characterized precisely as linear measure-preserving auto-
morphisms of the standard Gaussian. Since scaling does not
preserve the standard Gaussian, it is not an indeterminacy.
On the other hand, ICA does not fix P,. Due to this, any
linear transformation of P, € P, to another P, € P, is an
indeterminacy, and a result of Comon (1994, Thm. 10) is
that only scalings and permutations are possible when P,
contains all independent distributions excluding Gaussians.

Our Theorem 2.2 below generalizes these special cases. It
can be used to show that indeterminacies are completely
characterized as measure-preserving automorphisms for
fixed latent distributions (as in factor analysis), and as
measure-transporting isomorphisms within P, otherwise
(as in ICA). One takeaway is that strong identifiability ap-
pears to be much easier to obtain in the factor analysis
setting. We investigate this further in Sections 4 and 5.

1.2 Why and How Much Identifiability

In the recent literature on generative model identifiability,
the question of why we care about identifiability typically ap-
peals to recovering ground truth latent factors (Khemakhem
et al., 2020a; Ahuja et al., 2022a; Yang et al., 2021; Lu et al.,
2022). Besides requiring a philosophical position that as-
serts the objective reality of the latent variables and that the
model contains the “true” data generating distribution, the
use of an unidentifiable model—unable to be uniquely re-
solved from any amount of empirical evidence—makes the
recovery of “true” latent factors impossible without further,
untestable assumptions about the model. Another perspec-
tive is to consider when model indeterminacies preserve cer-
tain observable quantities, for example distances between
observations (Arvanitidis et al., 2018). More generally, we
might judge the importance of model identifiability in terms
of whether or not a model can be used for its intended pur-
pose. This opens the possibility that in some cases, weak
identifiability may be sufficient; in others, it may not. To
our knowledge, a characterization of the distinction has not
been formalized in this setting.

To address these questions, we take a pragmatic approach
based on downstream tasks that use the inferred latent vari-
ables. Informally, a task ¢ is a function of the model param-
eters (f, P,), of data, x,,, = (21,...,2m), and of a finite
collection of points in the latent space, z,, = (21, ..., 2n)-
There must be some procedure for selecting the latent points
z,, represented by a selection function z,, = s(f, P.,Xm ),
e.g., s(f, P.,xm) ~ f~1(X,,). The entire task is given by
t(f, Pz Xm, s(f, Py Xim))-
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Figure 1: Rotational indeterminacy is fundamental in Gaus-
sian i.i.d. models, where each point on the above orbits
represent an equivalent solution. If a task gives constant
output on each orbit, the task is identifiable even in the
presence of model indeterminacies.

Some examples are generating synthetic or counterfactual
data by shifting inferred latent variables (Higgins et al.,
2017), or causal discovery through independence tests
(Monti et al., 2020; Khemakhem et al., 2020a; Lu et al.,
2022). Both of these examples are studied in detail in Sec-
tion 3. For a model to be useful for a task, the resulting
task output should be the same for all generative model
parameters (f, P,) that yield the same marginal distribution
for the observations (this is made precise in Section 3). For
example, Fig. 1 illustrates a task that is constant on each
set of points induced by the indeterminacy transformations
(rotations). That guarantees that two fits of the same model
to the same (infinite) data yield the same task values; weak
model identifiability can be sufficient when the relevant task
is insensitive to all model indeterminacies. Strongly identifi-
able models make all tasks trivially insensitive and therefore
identifiable.

2 IDENTIFIABILITY IN GENERATIVE
MODELS

Conceptually, our results are relatively simple, but some care
is required to establish them rigorously. See Appendix C
and Appendix D for technical background and proofs.

A Borel space (X, B(X)) is a topological space X equipped
with the o-algebra generated by its open sets, denoted B(X).
All measurable spaces in this paper will be Borel spaces,
and for convenience we leave the o-algebra implicit in the
notation, referring to the Borel space (X, B(X)) simply
as X. Let Z and X be two Borel spaces and f: Z — X
a measurable function. If f is bijective with measurable
inverse then it is called a Borel isomorphism of Z and X. If
X = Z then f is a Borel automorphism. We denote the set
of Borel automorphisms of Z as Aut(Z).

We will use the notation X and Z to represent the observable
space and latent space, respectively. In practice, typically
X =R% and Z = R?, d, < d,. For clarity, we will usu-
ally refer to these specific spaces, where almost everywhere
statements and probability densities are with respect to the
Lebesgue measure; our results in Section 2 and Section 3
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apply to generic Borel measure spaces. We write f, = f;
for measurable functions as shorthand for equality almost
everywhere on their domain. The main objects of study in
our theory are certain elements of Aut(Z), as follows.

Let 1 and v be two measures on Z, and A € Aut(Z). Ais
called a (y1, v)-measure isomorphism whenever A4y = v
(equiv. A;l v = 1), and a y-measure preserving automor-

phismif = Ayp = A;llu.l

2.1 Model Definition

We model observations denoted x; as i.i.d. realizations of
a random variable X with distribution P, on X. Define a
latent random variable Z with corresponding realizations
z;, with distribution P, on the latent space Z. We further
assume the presence of some noise realization €; with some
fixed distribution P, applied by some noise mechanism g.
Let f: Z — X be a measurable function, which we call the
generator. We define a generative model as,

Zi~P,, ¢~P., Xi=g(f(Z),e&), 1)
with Z; 1l ¢;. For example, in a VAE or factor analysis, X
and Z are Euclidean spaces, and g(f(z),€) = f(z) + € is
additive noise. We will not be concerned with inferring the
noise. Instead, we work with the assumption that the noise
distribution and mechanism are fixed and have null effect
on the probabilistic properties of the model.

Assumption 1. Assume that g and P, are such that, with
e = e, 9(f(Za)ea) £ g(f(Zy),€) if and only if
f(Za) = f(Z).

This assumption includes, for example, the noiseless case,
and additive noise for a suitable noise distribution (e.g.,
Hilvd et al., 2021). It means that, for identifiability purposes,
it is sufficient to analyze the noiseless case. We note that it
rules out the possibility of discrete observations except in
very limited cases; see Appendix B for a brief discussion of
this point. Designing a generative model involves specifying
parameter spaces for the generator and the prior. We denote
these as F, a set of measurable mappings Z — X; and P,
a set of probability measures on Z. For example, P, could
be a singleton, as in factor analysis. In ICA, P, contains
only distributions that factorize over its components.

We will also assume that the generators are bijective on their
range, which is required to make the inverse problem of re-
covering latents well-defined, and is a standard assumption
in the identifiability literature.

Assumption 2. Assume that any f € F is injective, and has
the same image: for any f,, fy € F, fo(Z) = fo(Z) =
F(Z) CX.

' Ay 11 (A pushforward 1) can also be denoted A.. 1, or o A™*
(the image measure), and is defined by Ay u(B) = u(A~(B)),
B € B(Z).

2.2 Model Indeterminacies
A generative model (1) induces a statistical model as
M(F,P.) ={PyonX |0 =(f,P.) € F xP:}. (2)

Classical parameter identifiability can be defined via an
equivalence relation ~ on parameter space, § ~ 6/ <=
Py = Py. The equivalence classes of parameters induced
by ~ are denoted by [0] := {6': Py = Py}, and a model is
identifiable up to [#]. Some authors refer only to the previ-
ous case as partial or set identifiability (Tamer, 2010), and
reserve the term identifiability for the case that [0] = {6}.
We refer to this latter case as strong identifiability. Parame-
ter identifiability does not appear to contain any information
about the latent values. We take classical parameter iden-
tifiability as our starting point to formulate an alternative
definition tailored to latent variable indeterminacy. Specif-
ically, we work with transformations of the latent space
that yield different generators but that leave the marginal
distribution of the data unchanged.

Definition 1. For a model M(F,P,), Aqp is an inde-
terminacy transformation at 6,,0;, if Py, = P, and
fo o A,y = f,. The indeterminacy set of a model
M(F,P.). denoted A(M), is the collection of all inde-
terminacy transformations of the model.

Definition 1 describes latent variable indeterminacy; it im-
plies that if A(M) contains non-trivial transformations, any
latent z that generates © = f(z) has an equivalent counter-
part A(z) for some A € A(M). The identity map on Z,
id,, is always (trivially) an indeterminacy transformation
by taking 6, = 6. A simple way to construct non-trivial
candidate indeterminacy transformations at 6, # 0, is by
“pushing forward” and “pulling back™ along the generators,
Aap(2) = [ (fa2)) . 2€2. 3)
It is possible to show that ffa,b € Aut(Z), and thus if trans-
forming Z in this way results in Py, = P, , then /Ya,b is an
indeterminacy transformation. We refer to Aaaﬁb: Z — 7 as
the generator transform between 6, and 6. It turns out
that generator transforms characterize all the possible inde-
terminacy transformations of a model—though not every
generator transform is an indeterminacy transformation.

Lemma 2.1. Let 0, = (fo, P:.a) and 0y, = (fo, P.p) be
two parametrizations of a generative model with resulting
marginal distributions Py, and Py,. Then, Py, = Py,
if and only iff_l‘mb is a (P,,q, P, )-measure isomorphism.
Furthermore, any A € Aut(Z) is an indeterminacy trans-
formation at 0, 0y, (Definition 1) if and only if A = /Ya,b,
and therefore all indeterminacy transformations A, p must
be (P, q, P, v)-measure isomorphisms.

Lemma 2.1 is the technical foundation for the rest of the
paper, and can be interpreted as an existence and uniqueness
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result, as follows. A'a,b is a distinguished indeterminacy
transformation at 6, 6, that always exists; it is probabilisti-
cally equivalent to all other indeterminacy transformations,
making it essentially unique. It implies that two parame-
terizations 6, 8, induce the same marginal distribution on
observations if and only if one can transport between the
two latent measures in P, by pushing and pulling along
the generators. Not only are there no other non-equivalent
indeterminacy transformations, but A, ; cannot be an inde-
terminacy transformation for any other parameters 6., 6,4
unless Aaa_’b = f;l of, = f(jl ofe= /Yc’d. Both of these
properties follow directly from the injectivity of the genera-
tors; relaxing Assumption 2 would require a substantially
different theory than the one developed here.

2.3 Characterizing Model Identifiability

Let id, denote the set of all Borel automorphisms that are
equal a.e. to the identity mapping on Z. If A(M) = id,,
then f, = f, for all 0, 0, with P, = P,,. We use this to
define the appropriate notion of identifiability.

Definition 2. A generative model M(F,P,) is weakly
identifiable up to A(M), or A(M)-identifiable, if its in-
determinacy transformations are A(M). If A(M) = id.,
then the model is strongly identifiable.

Strong identifiability means that f,(z) = fy(z) for all
z € Z outside of a set of measure zero. If f,, f; are continu-
ous functions, this implies that f,(z) = f,(z) forall z € Z,
assuming the reference measure has full support. This defi-
nition is in correspondence to the classical definition, in the
sense that the equivalence classes [] correspond to subsets
of A(M) (see Proposition A.2 for details). Note that when
the generator is further parameterized (for example via deep
neural networks), this identifiability does not necessarily
pass to the generator parameters (network weights). Rather,
we use this as a proxy to make the notion of latent variable
recoverability precise.

Lemma 2.1 gives a necessary and sufficient condition for
two parameterizations to correspond to the same marginal
distribution on observations. It also documents the cases in
which Py, cannot be equal to Pp,, and allows us to construct
the set of model indeterminacies A(M) as indeterminacies
generated by F and P,. To that end, define the following
subsets of Aut(Z) induced by the generative model,

A(F) = {A € Aut(Z) | Ifu, fr € Fst. A% flo f,}

A(P,) = {A € Aut(Z) | IP,, Py € P, st. AP, = Py} .

A(F) consists of all possible indeterminacy transforms con-
structed from JF, which are a.e. equivalent to the generator
transforms. A(P,) consists of all possible isomorphisms
between measures in P,. Both sets always include id. by
taking f, = f, and P, = P,. The indeterminacies of the
model are precisely their intersection.

Theorem 2.2. The generative model M(F,P,) is identi-
fiable up to A(M) = A(F) N A(P,). In particular, it is
strongly identifiable if and only if A(F) N A(P,) = id,.

This expresses the identifiability of a generative model in
terms of the indeterminacy transforms induced by its param-
eter spaces. In particular, all model indeterminacies must
be transports between distributions in P, that can be con-
structed by pushing and pulling along generators from F as
Iy 15 f,. These are the scaling and permutation matrices
in the linear ICA example from Section 1.1. When P, is a
singleton { P, } as in factor analysis, they are P,-measure-
preserving automorphisms, such as the rotation matrices
preserving the standard Gaussian.

2.4 Beyond Linear Generators

Theorem 2.2 exposes the structure of unidentifiability and in-
dicates that there may be approaches to specifying strongly
identifiable non-linear generative models. It suggests that
model identifiability strengthens as we increase the num-
ber of constraints on F, P,, or both, until the intersection
A(F) N A(P.) contains only the identity. We demonstrate
examples of leaving the generator unconstrained and only
constraining A(P,), as well as a triangular constraint on
A(F) in Sections 4 and 5, respectively.

3 TASK IDENTIFIABILITY

In the literature on model identifiability, practical impli-
cations are often ignored. How does model identifiability
relate to the intended uses of a model after it is fit to data? In
practice, one may have a model that is only weakly identifi-
able but that still allows some tasks to be identified. That is,
an unidentifiable model may still be useful for some tasks.
For example, a causal estimand may still be identified with-
out identification of the full causal model. For other tasks,
an unidentifiable model is not useful. We make this idea
precise before giving some examples from the literature.

Let x,, = (z1,. .., %) be a finite collection of points in X
(e.g., m observations), and recall that = (f, P.). Define a
task as a pair of functions (s, t): the function s(0, x,,,) € Z"
selects a set of n points in the latent space to use for the task,
e.g., estimates of f~(x;);andt: Fx P, x XmxZ" — T
generates the task output as ¢(6, x,,, (0, x,,)). Here, T is
the task output space, such as T = X for sample generation.
We consider a task to be identifiable if two equivalent model
fits produce the same task output.

Definition 3. A task (s, t) is identifiable at [0] if, for all
0 ~ 0 and x,,, € X™,

t(97xma S(G,Xm)) = t((g/)XT’“ 8(9/7)(771)) . (4)

A task is (globally) identifiable if it is identifiable at all [6)].
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This captures the idea that two different research groups
may obtain different but equivalent model fits (6 and ")
from the same data, and still reach the same conclusion for
a task. Before proceeding, we give some examples.

Tasks Without Reference to Observations Consider two
labs with different but equivalent models, 6, ~ 6,. Now
both labs set s(6, x,,) = ¢, without reference to observa-
tions. This could, for example, correspond to a ‘do’ in-
tervention when Z is endowed with a causal model (Yang
et al., 2021; Shen et al., 2022; Lu et al., 2022). As the task
output, each lab generates a synthetic observation, f,(c)
and f;(c). Without strong model identifiability, in general
fa(c) # fp(c) and the task is unidentifiable due to the fact
that the value ¢ has no inherent meaning in either model.
Tasks ¢(6, x,, ¢) will not be identifiable in general: the se-
lection of latent points must incorporate the transformation
of Z that occurs when 6, — 6;; only if the task output is
constant across all equivalent 6 will it be identifiable.

Disentanglement and Latent Shifts A common demon-
stration of disentanglement is to select a latent variable
s(6, ;) = f~*(x;) corresponding to an observation x;, ap-
ply a shift J along a latent dimension & (with unit vector
er), and then generate synthetic data ¢;., (0, z;, s(0,z;)) =
f(der + f~1(x;)) for a sequence of different values of §
(e.g., Higgins et al., 2017; Lu et al., 2022). For most models,
this task is not identifiable. To see why, observe that task
identifiability requires

fa(er + 2 (@) = folber + f; (@)
= falAL}(Oer + Aap(fi(2)))) -

In general, this will not be the case unless

A (Ser + Aap(fy (@) = der + £, () -

That is, /Ta,b must commute with dey. If that property is to
hold for all 6, ey, and x then Aaa_’b must be itself a translation.

Independence Testing and Causal Discovery In appli-
cations of (nonlinear) ICA to causal discovery, tests for
independence between observed variables and components
of latent variables are conducted (Monti et al., 2020; Khe-
makhem et al., 2020a). In the simplest case, the goal is
to determine the causal direction between two observed
variables, X7, Xo. After fitting a model with independent
latent components, pair-wise independence tests are con-
ducted; if X is a cause of X5 and not vice versa, then
X, will be independent of the second component of the
corresponding latent variable, f~!(X1, X3)2. The task,
based on observations (z;)Y, = (z;1,2;2), is then
500, (@)X) = (£ (@)X, and

t(eav(xi)filﬂ 8(907 (wZ)i\Ll))
= IndTest((xm)iA;l, (f;l(xi,hxm)z)fvzﬁ .

If the model is identifiable up to component-wise transfor-
mations then f;l(a:i,l,xm)g = h(fbil(.%‘i’l,l’i}g)g), for
some function 2: R — R. Since two real-valued random
variables U, V' are independent if and only if all transforma-
tions k(U), k' (V') are independent, this task remains identi-
fiable under component-wise indeterminacies.’

Define a local subset of indeterminacy transformations as
AM)|p = {A € A(M): Py = Pag}, and 40 = (f o
A~' A4 P,). Our main result on task identifiability is an
application of Proposition A.2.

Proposition 3.1. A task (s,t) is identifiable at [0] if and
only if, for each x,, € X™,

t(0,Xm, $(0,%xm)) = t(A0, %X, $(A0,%x)) ,  (5)

for each A € A(M)|g. A sufficient condition for (s,t) to
be identifiable at [0] is hence if the following holds for each
A€ A(M)|g and x,,, € X™:

t(0,Xm,2Zn) = t(A0, X, A(2zy,)) (6)
and s(A0,x,,) = A(s(0, %)) -

Clearly, any task is identifiable if M is strongly identifiable:
AM)|p = A(M) = id,. Weak identifiability may be
enough depending on the task, Proposition 3.1 gives suffi-
cient conditions based on the symmetries implied by A(M).
In the next two sections, we apply the theory of Section 2 to
obtain strongly identifiable models.

4 GENERATIVE MODELS IN MULTIPLE
ENVIRONMENTS

Suppose data arise from environments indexed by e € E,
where F is an arbitrary set, and the environment label is
assumed to be deterministic (i.e., known, or observed with-
out noise). Each environment corresponds to a different
observation random variable X“ ~ P¢ on a shared observa-
tion space X. This is reflected in the generative model as
| E| distinct distributions on latent variables, Z¢ ~ P¢ on a
shared latent space Z. Crucially, each environment shares
the same generator f. We denote the generative model
M(F,{P:}eck) specified as, foreach e € E,
ZiNPevepreva:g(f(Zf)36¢)7 @)

z K2

with Z; Il € in each environment. In general, we do not
assume that observations from different environments are
paired in any way besides sharing a generator, e.g., they
may be from separate datasets.

We use the multiple environments set-up in the same way
as auxiliary information in iVAE. The definition of identifia-
bility is subtly different here, but its implications for latent

ICA-type models also have permutation indeterminacy; how-
ever, there is a “correct” permutation that can be distinguished
within causal discovery (Shimizu et al., 2006).
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variable indeterminacy remain the same (see Appendix D.4
for details).

Corollary 4.1. The generative model M(F,{P:}eck) is
identifiable up to

A(F) N (NeepA(P?)) - ®)

We note that permutations of the environments are ruled out
because the environments are assumed to be known. Clearly,
the indeterminacy set shrinks with each environment added,
formalizing why auxiliary information has such significant
benefits for identifiability. As a demonstration, we recast
iVAE under this framework and present the necessary mod-
ification for strong identifiability in Sections 4.2 and 4.3
(see Appendix D.10 for a similar exercise for the results of
Ahuja et al. 2022a).

4.1 Multiple Views

A result similar to Corollary 4.1 can be obtained under
different modelling assumptions similar to those made by
Gresele et al. (2019); Locatello et al. (2020). Specifically,
we assume here finitely many observed views of each latent
variable, indexed by the finite set £. We study the following
model, denoted by M({F*}cecp, P.): fore € E,

Zi~ P, Xi=9(f(Z),€), 9

with Z; 11 5. Here, for fixed ¢, each observed view X7, e €
FE, is generated by a shared latent variable Z;, and hence the
observations are necessarily grouped across environments
(unlike the multiple environments setting). Each view X?
can have a different observation space X¢ with its own
generator f¢ € F°¢, e.g., an image and its caption.

e €
e ~ P7,

Again, the definition of identifiability here changes, but the
implications for latent variable indeterminacy are identi-
cal. Intuitively, identification in any of the views yields
identification of the generating latent (Appendix D.5).

Corollary 4.2. The generative model M({F}cck, P.) is
identifiable up to

(meeE‘A(]:e)) ﬂA(Pz) (10)

This can be useful when, for example, when we have access
to a lower-dimensional view (e.g., clinical data) which we
might fit using an identifiable triangular flow (as developed
in Section 5), in addition to a higher-dimensional view (e.g.,
genomics data), which can be reconstructed using a VAE.

4.2 (Weakly) Identifiable VAE

In the iVAE model (Khemakhem et al., 2020a), the latent
variable distribution varies via an auxillary variable u, for
example a time index (Hyvirinen et al., 2018). The prior is
parameterized as an exponential family density on Z = R9=,

p(zin(w)) = m(z) exp(n(u) ' T(2) — a(n(u)), (1)

with functional parameters 7, T taking values in R¥. We de-
note this distribution as &, (n(u), T'). Note that this means
the prior is explicitly inferred from the data, contrary to
a standard VAE. The remainder of the model design fol-
lows (7) with additive noise. We note that Khemakhem
et al. (2020a) assumed the distribution to factorize over di-
mensions of Z (as in ICA), but that is not necessary, an
observation also made recently in Lu et al. (2022).

The main identifiability result of Khemakhem et al. (2020a)
(their Thm. 1) says that for two parametrizations ( f, T4, 74)
and (fp, T, mp), if there exist points ug, u1, . . . ux such that
{na(u;) =14 (uo) } £, are linearly independent and span the
latent space (and likewise for 7)), then there are an invertible
matrix L and offset vector ¢ such that for all x,

To(fy () = LTT,(f, "(2)) +c. (12)

Our framework allows us to show that this is purely a result
of the following property of exponential families.

Proposition 4.3. Suppose that A € Aw(Z) is a
(Em(Ma(ui), To), Em (Mo (uy), Ty)-measure isomorphism for
eachi=0,1,..., K. Suppose that both {n,(u;)}£, and
{np(u;) Y ) are linearly independent. Then,

Ty(A(2)) = LTT,(2) +d, (13)

almost everywhere, where L is a K x K invertible matrix
and d is a K-dimensional vector not depending on .

Although the arguments made in the proof of the proposi-
tion are similar to those originally presented in Khemakhem
et al. (2020a), our framework indicates that identifiability is
a result purely of the exponential family form of the prior—
neither diffeomorphic decoders nor independent compo-
nents are needed. Further assuming that f is diffeomorphic
reduces A(F), leading to the stronger identifiability results
of Theorems 2 and beyond in (Khemakhem et al., 2020a).

4.3 (Strongly) Identifiable VAE

In this section, we show how fixed priors, i.e., a nonlinear
factor analysis take on VAEs, can lead to strong identifiabil-
ity. By definition, with fixed latent distribution P,, A({P,})
is the set of P,-preserving automorphisms. However, con-
structing distributions such that the only automorphism is
the identity is in general very difficult; non-trivial measure
automorphisms, such as via the Darmois construction, al-
most always exist (see Gresele et al., 2021, for an example).
On the other hand, we show that multiple environments
provide a simple solution to this problem.

We denote a set of full-rank exponential family densities
indexed by € R¥ as

Emr = {py(2) =m(2)exp (n' T(z) — al(n)) | n € RF} .
(14)
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z

T(A(2))—T(z)Espan(n1,m2) "

kx ’ span(71,12)

Figure 2: The indeterminacy set (under the sufficient statis-
tic) in red for parameter vectors 7y, 1.

We refer to a particular distribution in such a set as &, (7).
Compared to the isomorphisms in Proposition 4.3, there
is a stronger result characterizing the automorphisms of
collections of exponential families.

Proposition 4.4. Let &, 1 be as in (14), with m strictly
positive. Let n; € RE fori =0,1,..., K and suppose A €
Aut(R4) is a £, 1(n;)-measure preserving automorphism
for each ;. Then, arranging n; into the rows of a matrix M,
we have

(T(z) — T(A(2))) € kerM, a.e. (15)

Figure 2 illustrates (15). The proposition provides a char-
acterization that can be specialized in several ways. Firstly,
the only shared automorphism for each distribution from
a suitably fixed exponential family &,, 7 whose parame-
ters form a basis of R¥ is the identity (under 7'). Strong
identifiability follows when these are fixed as the priors.

Theorem 4.5. Let M(F,{P}cck) be the multiple envi-
ronments model described in (7), with Z = R%. For a
subset of environments E* C E, with |E*| = K + 1, fix
P¢ = &, v(ne) with m strictly positive and T injective in
at least one dimension, and such that the corresponding
parameters {n.}ecp- span R, Then M(F,{P¢}cck) is
strongly identifiable.

In fact, we do not require a spanning set of environments
for a useful characterization of the indeterminacy. A second
specialization of Proposition 4.4 is in the case of Gaussian
priors. In such a setting, assuming common covariances
across environments, the model is identifiable up to arbi-
trary transformations on the dimensions not spanned by the
environment means fi.; see Appendix D.9 for details.

4.4 Fixed versus Learned Distributions

In ICA compared to factor analysis (Section 1.1), and now
iVAE compared to a strongly identifiable version, learning
the latent distributions adds indeterminacies. It is not appar-
ent to us that that source of indeterminacies can be addressed
without either: (i) fixing the latent distributions before fit-
ting the generator; or (ii) cleverly constructing F, P, to

ensure that any generator transform f,~ Yo f, applied to
any P, € P, transports P, to a different distribution not
contained in P, . The latter seems difficult to do in a flexible
and general way, though it poses an interesting question for
future research. Fixing the latent distributions, on the other
hand, is easy, but it comes with questions about flexibility
and interpretation. We briefly discuss these here, and note
that more work is required.

Fixing the latent distributions before fitting the generator is
one way to achieve strong identifiability, though how the
distributions ought to be specified depends on the desired
use of the model, and the framework for doing so remains
unresolved. A task-driven approach, as in Section 3, is one
avenue for exploration. The use of auxiliary data, for exam-
ple u in iVAE, also appears to be a useful way to structure
the latent space. In all of the “fixed distribution” identifiabil-
ity results in this paper, a mapping u — P, can be learned
from data (as in iVAE), as long as it is frozen at some point
during training. These frozen parameters should be pub-
lished alongside any results for reproducibility. We note this
does not hinder efforts to generalize to new environments—
the fixed environments F£* (as in Theorem 4.5) may act
as “anchors” that shape the latent space for the remaining
distributions in E \ E*.

S IDENTIFIABILITY VIA TRANSPORTS

In Section 4.3, F was left unconstrained; strong identifi-
ability was achieved through multiple environments and
restricting the environment latent variable distributions to
be fixed members of an exponential family. In this section
we construct strongly identifiable models in which the la-
tent distributions can be any fixed distributions with strictly
positive density, and without requiring observations from
multiple environments (i.e., auxiliary information). This
is achieved by restricting the class of generators, with the
additional condition that Z = X = R¢. For simplicity of
presentation, results are stated for a single environment, but
the results also apply in multiple environments or views.

We approach the problem indirectly, by considering what
properties of A(F) would yield strong identifiability. We
aim to specify F such that when /Ya,b = fy Lo f, transports
one latent distribution to another, it is unique in a suitable
sense so that, in particular, when it transports a distribution
to itself, it must be (equivalent to) the identity map.

5.1 Knothe-Rosenblatt Transports

Triangular monotone increasing (TMI) maps are of grow-
ing interest in generative modelling (Kingma et al., 2016;
Papamakarios et al., 2017; Jaini et al., 2019; Irons et al.,
2022). In particular, they can be used to approximate any
fully supported distribution, and can be parametrized via
deep neural networks (Huang et al., 2018; Wehenlkel and
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Louppe, 2019). Given two probability measures P,, P, on
R<, there always exists a (P,, P,)-measure isomorphism
with an explicit construction as a TMI map in terms of one
dimensional conditional CDF transforms. This is known as
the Knothe—Rosenblatt (KR) transport.

The KR transport has several appealing properties. 1) It is
the unique (up to a.e. equivalence) TMI map that transports
between P, and P,. 2) The class of TMI maps are closed
under composition and inversion. 3) Due to its construction,
if P, = P, then it is almost everywhere equal to the identity
map. These properties are ideal for specifying identifiable
generative models: 1) gives us a criterion (TMI maps); 2)
ensures that the resulting generator transforms are also TMI
maps; and 3) says that the resulting measure preserving
automorphisms are trivial (akin to triangular matrices in
factor analysis). For more details, see Appendix E.

Theorem 5.1. Let Z = X = R? with fixed latent distribu-
tion P, with strictly positive density. If F is the set of all
TMI maps, then M(F,{P.}) is strongly identifiable.

This is a generalization of linear factor models with triangu-
lar F' (Geweke and Zhou, 1996; Aguilar and West, 2000).
Such a generator class also provides identifiability in the
ICA sense—we thus believe the following result may also
be of independent interest to the [CA community.

Proposition 5.2. Ler Z = X = R® The nonlinear ICA
model where F are TMI maps and P, are fully supported
distributions with independent components is identifiable
up to invertible, component-wise transformations.

5.2 Optimal Transport Indeterminacies

Though the KR transport is not an optimal transport map
itself, it is the limit of optimal transport maps for a sequence
of appropriately weighted quadratic costs (Santambrogio,
2015, Ch. 2.4), and the properties that yield identifiability
may apply to some optimal transport maps more generally.

Given two probability measures P, and P, on R¢, the
Monge formulation of the optimal transport problem with
respect to the cost function c: Z x Z — R is to find a map
T:7Z — Z such that Ty P, = P, and that minimizes the
total cost (Santambrogio, 2015),

/ c(z,T(z))dP,(z) . (16)
Rd

We call T' an optimal transport (OT) map with respect to
c if it minimizes (16) for transporting between some pair
of probability distributions on R?. Let 7 be the set of OT
maps with respect to a cost c. Most OT cost functions are
derived from metrics, and thus typically ¢(z1, 22) = 0 <~
z1 = 29, in which case we say that c is separating. This has
the implication that the unique OT map from a distribution
P, to itself must be equal to the identity map P,-almost
everywhere, as it incurs the minimal cost 0. We use this to
formulate a sufficient condition for strong identifiability.

Theorem 5.3. Let Z = X = R, with fixed latent distri-
bution P, with full support on R%. If A(F) C T. for a
separating cost, then M(F,{P,}) is strongly identifiable.

We are unaware of any general and flexible function classes
that satisfy this property. In particular, properties 1) and 3)
that yield strong identifiability in TMI maps are generally
true for optimal transport maps, but property 2), the closure
property, typically does not hold. Detailed specification of
such models is left for future work.

6 CONCLUSION

We have developed a general formal framework for analyz-
ing the sources of indeterminacy in a broad class of gener-
ative models. The framework brings seemingly disparate
approaches to the problem together: if a model satisfies our
assumptions then any identifiability result must be a special
case of Theorem 2.2. The theory is descriptive rather than
constructive, in the sense that proving identifiability results
for specific models still requires the non-trivial work of
characterizing A(F) and A(P,). To that end, Theorem 2.2
also makes the sources of indeterminacy visible, enabling
more straightforward reasoning during model design. That
visibility was crucial to our strong identifiability results,
particularly for the transport-based models in Section 5.
Those models are far from exhaustive, and we believe that
our framework can be useful in developing novel strongly
identifiable generative models.

6.1 Limitations and Societal Implications

As with much of the identifiability literature, our results
require that the generator is injective with ignorable noise;
this is a technical limitation that must be overcome in order
to have a theory that is applicable to the full array of models
in use. We also note that incorporating inference from finite
data into the framework is an important unsolved problem;
our framework is limited in that respect. Finally, generative
models with stronger identifiability properties can be used
to the benefit of society (e.g., latent causal models for drug
development), or to its detriment (e.g., better control over
harmful synthetic data generation). The present work does
not specifically address either, as it is purely theoretical; the
potential impact depends on the application.
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A INDETERMINACIES AND PARAMETER IDENTIFIABILITY

In this section, we justify the study of indeterminacy transformations, which are mappings on Z, as a proxy for identifiability
in parameter space. For any A € Aut(Z) and 0 = (f, P.) € F x P,, define A0 = (fo A=, A4 P,). We say that A, = 6,
if AyP,, = P,pand f,0 A1 = f,. Finally, let A(M)|p = {A € A(M): Py = Pag}—we can show that this is a local
set of indeterminacy transformations “originating” at # (Lemma A.1).

Lemma A.1. A(M)lg, consists exactly the collection of indeterminacy transformations at 0, and all 64 ~ 0,,.

Proof. Let A’ denote the set of indeterminacy transformations at 6, and some arbitrary 6, ~ 6,. We show that A" =

A(M)lg,

We first show that A" C A(M)|g,. Let 04 ~ 0, 1., Py, = Py, . Then A, . € A’ is an indeterminacy transformation at
0q,0.. By Lemma 2.1, A, ¢ # P, o = P, ., and by definition of an indeterminacy transformation, f, o A;l, =< f.. Hence
Ay, o0 = 0+, which shows that A, « € A(M)|g,.

We now show that A(M)|g, C A'. Let A € A(M)]p, and denote A0 = 0, so that Py = P49 = Py, . By definition of
A, we have f, 0 A~ = f, . Hence, A is an indeterminacy map at 6, 0, , i.e., A € A’ O

We are now ready to prove Proposition A.2.

Proposition A.2. The equivalence class of each 8 € F X P, is generated by A(M)|g. That is, [0] = {A0: A € A(M)|g}.

Proof of Proposition A.2. For notational purposes, we denote an arbitrary 6 by 0.

We wish to show that [0,] = {A6,: A € A(M)]e,}. Note that by Lemma A.1, A(M)]|, consists of indeterminacy
transformations at 6 and some arbitrary 6, ~ 6,,.

We first show that [0,] C {A46,: A € A(M)]p,}. Let 8. € [0,]. Then, Py, = Py, which by Lemma 2.1 implies
that ffa’. 0, = 0,. Clearly, /_fa,. is an indeterminacy transformation at 6,6, , and so A e A(M)p,, implying that
fe € {Al,: A€ AM)]y,}.

We now show that {A6,: A € A(M)|g,} C [0,]. Let 0, € {A0,: A € A(M)]g,}. Then, 0, = A, .0, for some
indeterminacy transformation A, .. Since A, . is an indeterminacy transformation, Py, = Py, by definition and hence
Oe € [04]. O

a?

The above result states that the indeterminacy transforms (mappings on Z) can be used to generate the equivalence classes
of parameters. This justifies the study of indeterminacy transformations of Z (and their extension to the parameter space),
rather than studying the parameter space directly, and puts identifiability up to indeterminacy transformations (Definition 2)
in correspondence with parameter identifiability.

B DISCRETE OBSERVATIONS

In this section, we discuss models with discrete observations, e.g., Bernoulli with probability parameter given by f(z), or
Poisson with mean parameter f(z) (such models were briefly discussed in iVAE (Khemakhem et al., 2020a), as well as
in follow-up work such as the pi-VAE (Zhou and Wei, 2020)). In short, the framework developed in this paper rests on
bijective generators which enable the recovery of unique latent codes for each observed value. As noted in a correction in
Khemakhem et al. (2020a), this task seems fundamentally impossible for example when the latent space is uncountable and
the outcome is discrete, due to the lack of an bijective map between spaces of different cardinality. However, generative
models do not typically send a latent variable to the outcome, but rather to a parameter value of a conditional distribution.
This allows us to reformulate the assumptions required for our theory, although as we will see shortly, most discrete outcome
models do not satisfy these assumptions. Formally, suppose X is either finite or countable. Let X be a random variable
on X and denote by P, := P(X = z) : X — [0, 1] the probability mass function, which satisfies ) | x P:(z) = 1. Two
random variables X, X are said to be equal in distribution if and only if their respective PMFs satisfy P, ,(z) = Py ()
forall z € X.

The observation model is then described by a conditional PMF P(X = z|z). We assume this model has a topological
parameter space © and also pair it with the Borel o-algebra, e.g., © = [0, 1]™ for an n-dimensional Bernoulli. Let f : Z — ©
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be an injective generator (note this implies © has cardinality at least that of Z). Then the generative model is as follows:
Z~P,, PX=zl2)=g(f(2), (17)
where g,,(6) is the PMF of the observation model with parameter 6 at z.

Recall Assumption 1 of the main text. We now introduce its discrete analogoue, which would be required for the theory
developed in this paper to apply in the discrete formulation. First, note that the marginal PMF on X is given as follows:

Py(x) = / 02 (f(2))Pa(dz) = /O 02 (0)P.(f1(d0)) = Eg [9.(6)], (18)

where as a random variable, 8 = f(Z). The assumption is then as follows:

Assumption 3 (Discrete analogue to main text: Assumption 1). Assume that By, [9,(0,)] = Eg, [9.(0p)] for each 2 € X if
and only if 6, < 6.

In other words, the distribution of § = f(Z) must be characterized by the moments E[g,.(6,)], for each 2 € X. Indeed, for
observational equivalence to imply anything about the latent spaces, such an assumption would be needed. However, it
appears that this assumption is rarely satisfied for any reasonable models. For example, the Bernoulli observation model
with P(X = 1]z) = ¢1(0) = f(z), © = [0, 1], requires that the distribution of § be characterized by just its first moment,
E[6]. Of course, this is highly unlikely unless very strict restrictions are placed on f and P,, such as fx P, being Gaussian,
indicating that identifiability in this case may be restricted to linear generators.

More generally, the core of the issue remains the cardinality mismatch between Z and X. A necessary condition for 6, = 6,
is that E[g(6,)] = E[g(6p)] for all bounded continuous g : © — R (test functions). For © uncountable, there are clearly
uncountably many test functions, while in our discrete assumption above, there are countably many test functions at best.
Though we do not make this notion precise here, we believe this makes the discrete assupmtion above unlikely to be satisfied,
and hence any notion of identifiability, at least under our framework (which we believe to be reasonably general), is highly
unlikely for discrete outcomes with uncountable latent spaces.

C DEFINITIONS AND PRELIMINARIES

The rest of this Appendix takes place in the mathematical setting of measure-theoretic probability. This section will review
some relevant definitions. Our standard reference here will be Cinlar (2011), though we will sometimes refer to other texts
depending on the specific topic (Kechris, 1995; Schilling, 2005; Bogachev, 2007).

C.1 Basic Definitions

Let (E, 7) be a topological space with E' a set and 7 its collection of open sets.

Definition 4 (o-algebras, Cinlar, 2011, Eq. 1.3). A collection & of subsets of F is called a o-algebra on FE if it is closed
under complements and countable unions:

Bef — E\Beé&, B1,B,---€& = U,A, €. (19)

Note that a o-algebra always contains the empty set and E itself. The pair (F, £) defines a measurable space. The elements
of £ in this context are called measurable sets. When the o-algebra is insignificant, or obvious by context, we will simply
refer to the space by E.

Definition 5 (Generated o-algebras, Cinlar, 2011, Sec. 1). The o-algebra generated by a collection of subsets £’, denoted
o(€’) is the smallest o-algebra that contains £’.

In this work, we will always work with what is known as the Borel o-algebra.

Definition 6 (Borel o-algebras, Cinlar, 2011, Sec. 1). Let (E,7) be a topological space. The Borel o-algebra of E is
generated by the collection of open sets, o (7). We denote it by B(E).

An element B € B(E) is then said to be a Borel set.

Let (E, &), (F, F) be two measurable spaces, and f : E' — F' a mapping between them. The image of A C F is defined as
f(A) ={f(a)[ac A} C F. (20)
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Similarly, the preimage of B C F'is defined as
fYB)={x€ E| f(x) € B} CE. 1)

Most mappings we will be concerned with will be assumed to be measurable.

Definition 7 (Measurable Mappings, Cinlar, 2011, Sec. 2). A mapping f : E — F' is said to be (£, F)-measurable if
f~1(B) € & for each B € F.

If (E,&) = (F,F), we will refer to f as simply £-measurable.
Definition 8 (Measures, Cinlar, 2011, Sec. 3). Given a measurable space (F, £), amapping i : € — [0, 00] is a measure if
it satisfies

w(@ =0, plU,Ay,) = Z,u(An), (A,,) a disjoint sequence in £. (22)

In particular, if 4(E) = 1, then p is said to be a probability measure.

The triplet (E, &, 1) is known as a measure space, and, if 4 is a probability measure, as a probability space. When there is
no risk for confusion, we simply identify a measure space by its measure ;. Two measures ¢ and v on the same measurable
space are equal whenever

w(B) =v(B), forall B € £. (23)

C.2 Random Variables, Pushforward measures

(Cinlar, 2011, Ch. 2) covers probability spaces in depth. Here, we only review the relevant notion pertaining to random
variables and their distributions. A random variable X on (E, ) is associated to a probability measure p, called its
distribution, defined as’

uw(B) = P(X € B), forall B € £. (24)

Random variables X, Y defined on the same measurable space with distributions x, v are said to be equal in distribution if
@ = v as probability measures, denoted X < V.

Any (&£, F)-measurable function f : E — F applied to X, denoted f(X), defines a random variable on (F, F) with
distribution zz o f~1, where f~! denotes the preimage of f as a set function F — £. Whenever it is convenient, we will use
the more streamlined pushforward notation for the distribution of f(X), as follows:

fam=po fh (25)

Finally, we define the notion of a pushforward o-algebra.

Definition 9 (Pushforward o-algebras, Cinlar, 2011, Sec. 2). Let (E, ) be a measurable space, F' be a set, and f be a
mapping f : E — F. The pushforward o-algebra of f is defined as

o(f)y={BCF;f'(B)e¢} (26)

It is easily shown that o (f) is a o-algebra on F, and that f is measurable with respect to o (f) (Cinlar, 2011, Exercise 2.20).
In fact, it is the smallest o-algebra that makes f measurable.

C.3 Null sets and absolute continuity

Definition 10 (Null Sets, Cinlar, 2011, Sec. 3). Given a measurable space (F, £), a measurable set A € £ is said to be null
with respect to a measure p, or p-null, if p(A) = 0.

3Technically, we require a background measure space (€2, F, P), and a random variable is defined as a measurable function
X:Q—FE.
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The empty set is always a null set by the definition of a measure, but there can be many more null sets, depending on the
measure. Any countable union of null sets is again null. For example, the Lebesgue measure A on R assigns null measure to
a singleton {z} for z € R, and so both the set of natural numbers and rational numbers are A-null sets.

For a measure space (E, £, i), most properties that are consequences of measure-theoretic manipulations can only hold
w-almost everywhere. This is a weaker notion than a property holding pointwise, and the strength of a result can depend on
the measure .

Definition 11 (Almost Everywhere, Cinlar, 2011, Sec. 3). Given a measure space, a property that is stated for z € E'is said
to hold p-almost everywhere if there exists a measurable set N with p(/N) = 0 such that P holds forall x € E'\ N.

Furthermore, two measures are often compared with respect to their null sets.

Definition 12 (Absolute Continuity, Cinlar, 2011, p. 31). A measure 4 is said to be absolutely continuous with respect to v
defined on the same measurable space, denoted p < v, if for any A € £ such that v(A) = 0, we also have p(A) = 0.

An equivalent property is given by the Radon-Nikodym theorem.

Theorem C.1 (Radon-Nikodym, Cinlar, 2011, Thm. 5.11). u < v on (E, &) if and only if there exists a measurable
Sunction p : E — [0, 00), uniquely defined v-almost everywhere, such that for any measurable set A € £ and measurable
function f, we have

/ f(@)u(de) = / p() f (@) (dz). @7)
r€EA €A

We call p the density of | with respect to v.

Typically, when discussing a probability measure P on R?, p is the density of P with respect to the Lebesgue measure )\,
implicitly assuming that P < . In this work, we will also be working in this context, referring to p as a probability density,
unless stated otherwise.

Definition 13 (Equivalence, Schilling, 2005, Problem 19.5). Two measures u, v are said to be equivalent if ;1 < v and
v .

Clearly, equivalent measures assign the exact same null sets, and imply the same “almost everywhere” statements. There is
again an analogous definition in terms of densities.

Lemma C.2. [Schilling, 2005, Exercise 19.5] If u and v are two measures defined on the same measurable space, then any
density p of one with respect to the other satisfies p(x) > 0 p-almost everywhere (equiv. v-almost everywhere) if and only if
they are equivalent.

When working on Euclidean spaces, we will simply write almost everywhere (or a.e.) to mean A-almost everywhere—if a
probability measure P, is equivalent to A, then P,-almost everywhere is equivalent.

Finally, it should be intuitively obvious that if f and g are p-almost-everywhere equal, then pushing forward p by either f
or g results in the same measure.

Proposition C.3. Let (E, &, 1) be a measure space and (F, F) a measurable space. Let f,g : E — F be measurable.
Suppose f = g p-almost everywhere. Then, we have fujn = g4 on F.

Proof. Let B € F, and 1 be the indicator function for B. Clearly, 15 o f = 15 o g u-almost everywhere. Then,

fan(B) = [ La@n(s de) = [ 150 fe)n(d) 28)
— [nog@n(da) = [ 1n@nto ™ (dn) = gpn(B). (29)
since [ fdu = [ gdu for f = g p-almost everywhere. O

C.4 Bijective Mappings, Borel Isomorphisms

This section reviews relevant facts about Borel isomorphisms, the main reference is (Kechris, 1995, Ch. 15). In this section,
we refer to the Borel spaces measurable spaces (F, B(E)) and (F, B(F')) simply by F and F'.
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Bijective mappings f : £ — F can enjoy some additionally nice properties. First, it can be easily shown that
f(f71(A)) = A, forall A C E. (30)

Furthermore, the image f(A) defines the pre-image of the inverse mapping f~1. This is not necessarily true for non-bijective
mappings.
We now define the notion of isomorphism between Borel measurable spaces.

Definition 14 (Borel Isomorphism, Kechris, 1995, Ch. 10.B). Let f : E — F be a bijective mapping. If f and f~! are
both measurable, it is known as an Borel isomorphism, and F, F are said to be isomorphic. If £ = F, f is called an Borel
automorphism.

We denote the space of Borel automorphisms of £ as Aut(E).
Lemma C.4 (Kechris, 1995, Corollary 15.2). For f : E — F Borel and injective, f(B) € B(F) for any B € B(E).

Since compositions of measurable functions remain measurable, the composition of Borel isomorphisms is again a
Borel isomorphism of the appropriate spaces. Borel-measurable bijections are particularly nice to work with—they are
automatically Borel isomorphisms.

Lemma C.5. Let E, F be Borel spaces and f : E — F be bijective. Then, f is measurable if and only if it is a Borel
isomorphism.

Proof. We only prove the forward direction, i.e., showing f~! is measurable if f is measurable. The reverse direction is
identically proved. By (Kechris, 1995, Theorem 15.1), for f Borel-measurable and injective, f(B) is a Borel set of F for
any Borel set B of E. Since f(B) defines the pre-image of f~! for any Borel set B of F, it immediately follows that f~!
is also Borel-measurable. O

Finally, we define the notion of a measure auto/isomorphism.
Definition 15 (Measure Isomorphism, Bogachev, 2007, Sec 9.2). Let (F, &, 1) and (F, F, ) be two Borel measure spaces.

A Borel isomorphism f : E — F is called a (u, v)-measure isomorphism if
fan=v, fz'lv=np. 31
It is called a p-measure-preserving automorphism if (E, &, u) = (F, F,v).

Furthermore, by Proposition C.3, if f is a measure auto/isomorphism and f = g pu-almost everywhere, then g is also a
measure auto/isomorphism.

D PROOFS

Before proceeding into the proofs of any specific result, we first state a useful technical fact.
Lemma D.1. Let f,, f, € F. Then, /Ta)b = fb_1 o fo € Aut(Z).

Proof. The pre-image of /Ya,b is f; 1 o fy, since F is a family of injective functions. By definition of measurability, it
suffices to show that f, !(f,(B)) C Z is still Borel for any Borel set B € B(Z). By Lemma C.4, f,(B) C X is Borel.
Then, by measurability of f,., it follows that f;!(f,(B)) is Borel and hence A, ; is measurable. O

D.1 Proof of Lemma 2.1

The proof of Lemma 2.1 is conceptually simple, but requires some careful book-keeping to make the measure theoretic
arguments precise. Specifically, we are required to analyze A, p, involving f,~ ! which is only well-defined on F (Z). As a
result, we need to first establish a measurable space on F(Z).

Recall the definition of a pushforward o-algebra of f (Definition 9). This defines a o-algebra on F(Z), and by construction,
fis (B(Z),F(Z))-measurable. Further, all generators in F induce the same pushforward o-algebra.

Lemma D.2. For f,, fp in F, o(fo) = o(fp)-
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Proof. To see that o(f,) C o(fy), suppose C' € o(f,). By Lemma D.3, C' is Borel, which means that f, '(C) is
Borel by measurability. Hence, C' € o(f;). We have o(f,) C o(f,) by the exact same argument, which implies that

o(fa) = o (fo). O

We denote this shared o-algebra by o(F). Importantly, o(F) is a subset of the Borel sets of X.
Lemma D.3. o(F) contains only Borel sets. In other words, o(F) C B(X).

Proof. Let C € o(F), and let f € F be any generator. By definition, f~1(C) is Borel. Since f is injective, we have
f(f~1(C)) = C. By Lemma C.4, C must be Borel. O

We are now ready to construct the measurable space (F(Z), o(F)). Note the following facts about (F(Z), o(F)):

e Forany f € F, f: Z — F(Z) is bijective, and f~' : F(Z) — Z is well defined.

 For any f € F and a Borel set B € B(Z), its image f(B) C JF(Z) is also the pre-image of f~'—that is,
(f~H~1(B) = f(B).

* Since o(F) C B(X), if any measures are equal on B(X), then they are also equal on o (F).

We are now ready to prove Lemma 2.1. Recall that to say A, is a (P;,q4, P, p)-measure isomorphism is to say that
AappP..o = P.,—equivalently, for each B € B(Z), P, .(A_;(B)) = P, 4(B).

a,b
Proof of Lemma 2.1. 'We first show the claim that Py, = P, if and only if A'a,b isa (P, q, P, »)-measure isomorphism.

= Recall that A, , € Aut(Z), by Lemma D.1. By Assumption 1 in the main text, Py, = Py, implies that f,4 P, , =
fv#P-p as measures on B(X). By Lemma D.3, this implies f,4 P, o = fo4 P, also as measures on o (F). Now, let
B € B(Z). Then,

P. oA (B)) = Poa(fo 1 (fs(B) = Poy(fy ' (fo(B)) = Poy(B), 32)

where the first equality is by definition (working on o(F)), the second equality is due to fox P, o = fyP: . and
the third equality is due to injectivity (on the measurable space (F(Z), o (F)). Since B was arbitrary, this shows that
Pz,aOA:ll, :Pz,b-

< We show the contrapositive statement, i.e.,

—

AgpppPra # Py = Py, # Py, (33)
Note that by Assumption 1, the hypothesis is equivalent to f,4 P, o # fp4P- . This means that there exists B € B(X)
such that
P.o(fa ' (B)) # Pes(fy ' (B))- (34)
To show that A 44 P, , # P, is to find B* € B(Z) such that
Pea(fa (fo(BY)) # Pep(BY). (35)
Now, f, '(B) € B(Z) by measurability, and hence taking B* = f, ' (B), we obtain
P.o(f 7 (fo(fy N (B) = Pea(fa ' (B)) # Pou(fy '(B)), (36)

and hence /Ta’b#Pz_,a # P, p, as required.
Now, note that by definition of 151'%;,, it is the unique such map that f, (E;i(z)) = fp(z) pointwise. Therefore, all

possible indeterminacy transformations must be equivalent almost everywhere to A, ;. By Proposition C.3, almost
everywhere equivalence preserves measure isomorphisms, and hence any indeterminacy transformation A, ; must be a
P, 4, P, »)-measure isomorphism.
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D.2 Proof of Theorem 2.2

As a result of Lemma 2.1, the proof of Theorem 2.2 is straight forward.

Proof of Theorem 2.2. Recall that, for the generative model to be identifiable up to a set of measurable functions A(M) is to
say that, for all (fa, Ps.0), (f5, Psp) € F x P, such that Py, = Pp,, there exists some A € A(M) such that A = f, ' o f,.

We first show that for any parameter spaces F and P,, we have that A(M) C A(F) N .A(P,). Suppose A € A(M). That
is, A= fb_l o f, for some P, ,, P, such that Py, = Py,, where 6, = (f,, Ps.0), 06 = (fv, Psb). By definition of A, we
have A € A(F). By Lemma 2.1, we must have that A € A(P,) also.

We now show that A(F) N A(P,) C A(M). Suppose A € A(F) N A(P,). Since A € A(F), we can write A = f, ' o f,
for some f,, f, € F,e.g, A= ffa’b. Since A € A(P,), there exist P, o and P, , such that A, P, , = P, ;. By Lemma 2.1,
0o = (fa, P:.a)s 06 = (fv, Psp) are such that Py, = Py,, and hence A € A(M). O

D.3 Proof of Proposition 3.1

Proof of Proposition 3.1. Equation (5) is just the definition of task identifiability (Definition 3) with §’ = A#, along with
[0] = {Af: A € A(M)|g} from Proposition A.2. Now, assume that both equations in (6) hold. Then

t(A0, %, (A0, x,,)) = (A, X, A(s(0,%,1)))
t(0, Xm, s(0,%xm)) -

D.4 Proof of Corollary 4.1

We first define an appropriate notion of identifiability in the multiple environments model indexed by e € FE,
M(F,{P:}eck). Since the environments are known deterministically, we view the overall model as a statistical model
over each environment with parameter 6°. We have 0° = (f, P?) € F x Pg, where P¢ is not necessarily the same for each
e € E. We will denote § = {6°}.cg, and denote the marginal distribution over X in environment e as P§ (recall that each
of these are over X). We adapt the definition of an indeterminacy transform as follows.

Definition 16 (Multiple Environments Analogue to Main Text: Definition 1). A, ; is an indeterminacy transformation at
0a, 0, if P§ = Pg foreache € Eand fo0 ALy = fo.

That is, A, 5 should be an indeterminacy transformation for the model in each environment. The indeterminacy set is again
the collection of all indeterminacy transforms, and weak and strong identifiability remain as in Definition 1 and Definition 2
in this setting. Since there are more constraints on 6, and 6, compared to the single environment case, it should be intuitively
clear that the indeterminacy set is smaller in this case. Since the generator and hence the generator transforms do not
change across environments, Theorem 2.2 applies in each environment. This forms the basic idea of the following proof of
Corollary 4.1.

Proof of Corollary 4.1. Fix an environment e € F. Recall that an indeterminacy transformation at 6, 6} in each environ-
ment is an automorphism A, , € Aut(Z) such that Pj = Pg and f, o Aa’}) = fy. By Theorem 2.2, any A, , satisfying

the above lies in A(F) N A(PE).

Now, by definition, the indeterminacy transformations as defined in Definition 16 are necessarily also indeterminacy
transformations for each environment e € E. Hence, for any indeterminacy transformation A, ;, we have

Aap € [ (AF) NA(PS)) = A(F) N (NA(PY)) (37)
ecE
and hence the indeterminacy set is at most A(F) N (N.A(PS)). O

D.5 Proof of Corollary 4.2

In the multiple environments setting, the model could be viewed | E| separate models which jointly identify the generator. In
the multiple views case, M({F}ccr, P.), we assume E = (eq,...,e,) and combine all views into one unifying model,
on which we apply our previously developed theory.
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Suppose we have the observation spaces X and generator classes F ¢ (all of which are injective), which may be different
across views (indeed, this should be the case for the result to be interesting). Our model is then parametrized in each view
by 0% = (f¢, P,), where f¢ € F¢ and P, € P,.

Note that each observation {x., }? ; is assumed to be generated by the same latent point z, i.e., the noiseless views are
{f¢ (%)} ,. We can equivalently state this assumption by stacking the views into a multivariate function:

f(z)
f(z) = I (38)
fer(2)

where we have f : Z — X?Z X¢. Note the image of f is significantly smaller than the product of the respective images.
Writing F to denote the implied parameter space of the stacked f, we can write the shared image as:

F(Z)={(z1,...,2,) € >n<X€i

i=1

(F) ™M) = (f9) "M (ay), foralld,j =1,...,n}. (39)

As an example, consider f : R — R? defined by f(z) = (2, 2%). Writing z = z,y = 2°, the image is defined by the graph
of the function y = 22 in R?. Now, f is invertible as a mapping Z — F(Z), and we have

F N @, ) = (f) (@) = - = (F) ). (40)

Clearly, identifying f in the usual sense is equivalent to identifying each underlying generator. Hence, we follow Definition 1
and Definition 2 in the main text, and do not need any additional definitions. For an f € F, f4 P, is the joint distribution on
X?:l X with marginals f;g’ P..* Now, let § = (f = {f¢}cer, P.), we denote the resulting distribution over )(?:1 Xe¢i
by Py, and the corresponding marginals by P5. Note that if 6, and ¢, result in the same joint distribution, then their
corresponding marginals match also. We now prove Corollary 4.2 (for the case E' = (e, ..., ep)).

Proof of Corollary 4.2. Suppose A, p is an indeterminacy transform at 0, 6,. By Lemma 2.1, A, = ffmb. The generator
transform /Ya,b = fy Lo f, is given by, for any z € Z

F M Fe ) for(2)) = () H(Fe (@) = - = () TH(far (@) (41

In other words, letting /YZ , denote the generator transform for each view, we have

—

Ay = HZTb — .= EZ%_ (42)

3

Since the marginals match at 6, 6, also, A5", S ffzb = gu,b S A p for any indeterminacy transform in each view e;, i.e.,
since the generator transforms characterize the indeterminacy transforms, A, ; must be an indeterminacy transformation for
each e;. By Theorem 2.2, we have A%, € A(F*)) N A(P.) for each e;, which implies that

Aap € ([ TAF) NAP.)] = (Nee s AF®) N A(P)). 43)
eck

O

D.6 Proof of Proposition 4.3

This section makes heavy use of probability densities and absolute continuity. Refer to Appendix C for precise definitions.
We will reproduce the following Lemma for convenience.

Lemma C.2. [Schilling, 2005, Exercise 19.5] If i and v are two measures defined on the same measurable space, then any
density p of one with respect to the other satisfies p(x) > 0 p-almost everywhere (equiv. v-almost everywhere) if and only if
they are equivalent.

Now, we may state an intermediate result.

*It is sufficient for this section to characterize f4 P, up to a coupling of its marginals.
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Lemma D.4. Suppose probability measures P, ,, P, , admits strictly positive densities p,, py. Suppose A is a (P, 4,
P, y,)-measure isomorphism. Then,

po(A(z))ka(z) = pa(z) ace., (44)

where kA depends only on A and is strictly positive a.e..

Proof. Since Ais a (P, 4, P, ;)-measure isomorphism and P, ,, P, ; are equivalent to )., we have that for a Borel set B,
A:(B)=0 < P,,(B)=0 < P,;,(A(B))=0 < X, (A(B)) =0, (45)

where the first and third equivalences are because P, , and P, j are equivalent to A,. This shows that A, o A is equivalent to
Az, and hence it has an a.e.-strictly positive density k4. Then, by the definition of the density (Theorem C.1), we have for a
Borel set B,

Pz,a(B) = Pz,b(A(B)) (46)
— /B Pa(@) s (dz) = /A PRICISCEE /B P (A@)A-(Adr)), “7)

where the last equality is by the standard change of variables formula, noting that B = A~ (A(B)) since A is invertible.
Now, we have that

[ palontdn) = [ pa)Ea@A (o), (48)
B B
by invoking the definition of the density again. Since the above holds for any B, we have

po(A(x))ka(x) = pa(z) ae., (49)
where k 4 (z) is strictly positive a.e.. O

Corollary D.5. Suppose four probability measures Py o, P> o, P1y, P2, have strictly positive densities D1 ,q, P2 a,D1,b, P2,b-
For A both a (P 4, Py p)-measure isomorphism and a (Ps, o, P2 )-measure isomorphism, we have

Pi,a Pip
d ==(A .e.. 50
pz’a(x) pz’b( (z)) ae (50)

Proof. This follows immediately from Lemma D.4 from the fact that k 4 is strictly positive a.e. and depends only on A. [
We are now ready to prove Proposition 4.3.

Proof of Proposition 4.3. Let A € Aut(Z) be (£ (a(wi), To), Em(np(ui), Ty)-measure isomorphisms for all ¢ =
0,1,...,K. Suppose that both {n,(u;)}X, and {n,(u;)}}X, are linearly independent. Fix j arbitrarily and note that
{na(wi) — nalu;)bizs and {np(u;) — mp(u ) }iz; both still span RE. From Corollary D.5 and by taking logarithms, we
have for each i # j,

1a(ui) ' Ta(2) = a(na(ui)) = (na(us)  Ta(2) = a(na(uy))) (5D
= (i) "Ty(A(2)) = a(np(ui)) — (m(uy) " To(A(2)) — a(mp(uy))), (52)

almost everywhere, which simplifies to
(na(ui) = na(1;)) " Ta(2) = ca(wi) = (mo(wi) — mo(u;)) " To(A(2)) — e (wi), (53)

almost everywhere. c,, ¢, are differences in the normalizing constants a(7,), and do not depend on z—we suppress the
dependency on u for convenience. Written in matrix form, we have

T T

Mb(uo) — 1y (uy)
: To(2) = : Ty(A(2)) +c, (54)
Na(ur) — 1a(u;y) ny(ur) — np(uy)

Ma(u0) = 1a(u;)
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almost everywhere, where c is the vector of differences ¢, — ¢;. Following (Khemakhem et al., 2020a), we will call these
two matrices L, and L, noting that they are invertible since their rows are linearly independent by assumption. Then, we
obtain

LIT,(z) = L] Ty(A(2)) + ¢ (55)

= Ty(A(2)) = (L, ' La) "Ta(2) = (L, ' La) Te (56)

= Ty(A(2)) = LT Tu(2) +d, (57)

almost everywhere, where L = L;lLa is invertible andd = —L "c. O

For completeness, we will state the iVAE identifiability result within these terms.

Proposition D.6. Suppose a generative model is described by (7) with latent distributions described by (11), and that m is
strictly positive. Suppose we observe at least K + 1 distinct values of u; such that the corresponding natural parameters
{n(u;)} £, are linearly independent. Then, any indeterminacy transformation satisfies

Ty(Aap(x)) = LT T,(x) +d, (58)

almost everywhere, where L is an invertible K x K matrix and d is a K-dimensional vector.

Proof. By Corollary 4.1 and since we do not constrain J, the generator is identifiable up to the transformations described in
Proposition 4.3. O

D.7 Proof of Proposition 4.4

Here, we present proofs for the automorphism version of Proposition 4.3. These results are simply special cases of the theory
developed above by setting P = P, , = P, ; and where (P, ,, P, ;)-measure isomorphisms are replaced with P-measure
automorphisms. We begin with an intermediate result.

Lemma D.7. Let &, v be as in (14), with m strictly positive. Suppose A is simultaneously a &, v(m) and &, v(n2)-
measure preserving automorphism. Then, we have

(m —n2) ' T(z) = (m —m2) "T(A(2)) aee. (59)

Proof. Denote the densities for £, 7(n1) and &, 7(12) as p1, p2. The expression is a direct consequence of Corollary D.5
by plugging in the exponential family densities p; , = p1,, = p1 and likewise for ps. Taking logarithms on both sides, we
have

m T(z) —ny T(2) — a(m) + a(nz) = n/ T(A(2)) — 13 T(A(2)) — a(m) + a(ne) (60)
= (m —m) ' T(2) = (m —n2) ' T(A(2)) ae. (61)
O

This result implies Proposition 4.4.
Proof of Proposition 4.4. Lemma D.7 applies to the K contrast vectors (1; — 1)), so we have foreachi =1,..., K,:
(i —mo) (T(2) = T(A(2)) =0 a.e.. (62)
Any vector v € span{(n; — 1o) } XX, is of the form v = Zfil ai(n; — no). Clearly,
v (T(2) = T(A(z)) =0 a.e.. (63)

Since span{(n; — 10) }£, is the row space of M, we have (T(z) — T(A(2))) € kerM, almost everywhere. O
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D.8 Proof of Theorem 4.5

A more useful adaptation of Proposition 4.4 for strong identifiability is the following result.

Proposition D.8. Let &, v be a fixed exponential family, with dimension K, such that m is strictly positive and T is
injective. Suppose thatn; € RE, i =0,1,..., K span REX. Suppose A : R? — R% is a simultaneously a &, 1(n;)-measure
automorphism for each n;. Then, A(z) = z, almost everywhere.

Proof. Without loss of generality, assume that 79 is such that {n; — 70} forms a basis of R¥. By Proposition 4.4,
(T(z) — T(A(z))) € kerM = {0}, since M is full rank. This shows that T'(A(z)) = T'(z) almost everywhere. If T is
injective, then we have

A(z) =z a.e. (64)

O
Strong identifiability of our proposed method then follows.

Proof of Theorem 4.5. In this model, we have P¢ = {&,, r(n.)}. By Corollary 4.1, the generator is identifiable up to
A(F) N (NeA({Em.1r(ne)})). By Proposition D.8, Ne A({&m,1(ne) }) contains only functions that are equal to the identity
almost everywhere, and hence the model is strongly identifiable. O

D.9 Geometric characterization of iVAE indeterminacies

We can further characterize the indeterminacy set geometrically in terms of the orthogonal complements of the subspace
spanned by the natural parameter vectors; this is the Gaussian specialization of Proposition 4.4. See Fig. 3 for a visualization.

Proposition D.9. In the multiple environments model described in Theorem 4.5 (with Z = RY), fix a base environment
with distribution N'(0, %) and a subset E* of environments where |E*| = d’ < d, with distributions N (pi., 2). Suppose
{tte }ec p+ are linearly independent, and (y.); = 0 for each e and i & d* for some collection of dimensions d*. Then, for
any indeterminacy transformation A,y it holds that

(Aa,b(x))iGd* = (f)ied* a.e. (65)

Proof. Similarly to the previous identifiability proofs, we appeal to Corollary 4.1 and analyze the shared automorphisms.
For Gaussian distributions with a fixed covariance matrix varying by its mean, we have T(x) = z, and 1; = p.. Using

the base environment we have 119 = 0. Now, arrange {1; } X, into the rows of a matrix M. By Proposition 4.4, we have
(z — A(2)) € kerM.

M has columns of 0 corresponding to d* and linearly independent rows. Together, standard Gaussian elimination reveals

A

A(z)—axespan(p ,/1,2)L :

span(p1,p2) ﬂli b2
z l

~

Figure 3: The Gaussian specialization (Proposition D.9) of Proposition 4.4. The indeterminacy set (in red) concentrates

entirely on the z-axis, with means p; = (1,0,0), 42 = (0,1,0). The kernel of a plane in R? is the perpendicular line

through the origin.
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that the reduced row echelon form of M has the following form:

jeds jé¢d* jed*

1 0 0 el
0 0 1 N
. . . (66)
0 0 0 ool g

The corresponding kernel is the space of vectors with 0 entries for the indices d*. Hence, (z — A(z)) € kerM implies
(A(2))icar = (2)ica=-
O

D.10 Identifiability of Equivariant Stochastic Mechanisms

In this section, we repeat the exercise of iVAE for the equivariant stochastic mechanisms model (Ahuja et al., 2022a). In
(Ahuja et al., 2022a), weak identifiability of a temporal generative model is established. Adapted to our notation (note that
the time indices represent environments), the model can be described:

Xe=f(Z), Zig1=m(Z,Uy), Ze LUy, t=1,2,..., (67)

where m; € M : Z x [0, 1] — Z are unknown mechanisms and U, are auxiliary noise variables. Note that this is in fact a
noiseless generative model at the level of the observations, but where the underlying latent variable evolves according to a
determinstic, but unknown mechanism m, and random noise U;. To be clear, this means that F is fully flexible, while ’P; is
parametrized by an initial condition P, the distributions for Uy, and the mechanisms m;. In what follows, we will assume a
fixed Py and Uy ~ U0, 1] as in (Ahuja et al., 2022a), and leave P! parametrized purely by the mechanisms ;.

Denote the marginal distribution of Z; as P;. In (Ahuja et al., 2022a), identifiability of the generator f is established up to
pre-composition of some transformation A such that A o m,(z,U) = my(A(z),U) for U ~ U[0, 1], for all possible values
of z, and m,, m;, € M. Using our framework, we are able to show the following stronger identifiability result, using only
observations from two time points ¢ = 1, 2.

Proposition D.10. The model described by (67) is identifiable up to Aqp € A(M) satisfying
Aap(ma(Z,U)) = my(Aap(2).0), (68)
Sfor any mg,mp € M, U ~ U|0, 1] and any random variable Z independent of U.

Proof. We can analyze this model in our framework using just two time-points, t = 1, 2. We work on an augmented latent
space Z = Z x [0, 1] and treat the random variables U; as additional latent variables (i.e., as a “noiseless” case under our
framework). For a generator f : Z — X, we extend f : Z — X x [0,1], f(z,u) = (f(2),u). The identity extension
ensures that f is still injective, and is unique to f. Now suppose f, and f; are such that the distribution of X; and X5| X
match. Note the marginal and conditional uniquely determine the joint, and hence we simply assume that the joint and hence
marginal distributions of X; and X5 match.

Let the joint distribution of Z; and U be denoted 7z, . Since they are independent, we have that 7z, v = P1 @ U|0, 1].5
We also extend the mechanism m as m(z,u) = (m(z,u),u), implying that m (B, x B,) = m~'(B,) x B,. Since
Zy = m(Zy,Uy), this then implies that P, = 7z, y o ™' = (P om™) ® (U[0,1]) (note the standard m in the
right-hand-side). The same applies to an extended indeterminacy transformation, i.e., P o fl;i = (P o A;})) ® (U0, 1]).

We now apply Lemma 2.1 to t = 1, where Z has fixed distribution P; (i.e., it is a singleton), and to ¢ = 2, where the latent
distribution may vary with the mechanism m,, or m;, denoted P» o, P> 3. As a result, we obtain

P =Aupu P, Pop=AqpuPoq. (69)

Applying these identities simultaneously to P, ; gives
Py = (mpgePr) @ (U[0,1]) = (mpgAapxPr) ® (U[0,1]) (70)
Pyy = Aup Pra = (AappmanPr) ® (U[0,1]), (1)

>This means that for a Borel product B, x B, where B., B,, are Borel sets in their respective domains, we have 7x, v (B, x B,) =
(P1(B:))(U[0,1](Bu)).
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which by the properties of a product measure, means that

My Ag o P1 = AgppmanPr. (72)

Writing the above in terms of their random variables, we have m, (A, (Z), U) = Ay p(ma(Z,U)) for Z with any fixed

distribution P; independent of U. 0

Compared to the original proof, we are able to strengthen the result while weakening the assumptions due to our measure-
theoretic framework as follows:

 Letting P, be any point mass recovers the original identifiability result in (Ahuja et al., 2022a).

* Our proof structure, which can be found in the Appendix, follows the intuition originally laid out in (Ahuja et al.,
2022a), but we do not assume a diffeomorphic generator.

E TRIANGULAR TRANSPORT MAPS

This section describes the triangular maps in Section 5 in more detail, and proves the results therein. First, we define
f : R? — R to be a monotone increasing triangular map. This means that:

fi(z1)
Fa) = f2($?$2) |
fa(z, cyZqd)
where each z4 — f4(21.4-1,%q) is monotone increasing (hence invertible) for any x1.4—1. The inverse of f is as follows:
ft ()

J (7 () )

Fr U @), £ N @), @2), - wa)

This is also a monotone increasing triangular map—the inverses of monotone increasing maps are also monotone increasing.
Note the map described above is lower-triangular—upper-triangular maps are analogously defined. For the purposes of
this section, a triangular map refers to a lower-triangular map. As long as all maps considered are either lower, or upper
triangular, the same closure properties apply.

@) =

E.1 Proofs of Theorem 5.1 and Proposition 5.2, and Knothe-Rosenblatt transports

It is well-known that if z = v o f~1, where p, v have strictly positive density and f is a monotone increasing triangular
map, then f is equivalent to the Kndthe—Rosenblatt (KR) transport almost everywhere (see Jaini et al. 2019, Theorem 1, for
example). The KR transport is described recursively as follows. Let F), (2, |%1.m—1) be the conditional CDF of the m—th
component of ;. on the preceding components. Because . has strictly positive density, £}, is monotone increasing. Then, the
m-th component of the KR transport is as follows:

Km(xl:m—lax'm) = F;l{Fu(x'rn|x1:nL—1) ‘ K1($1)7 .. aK’rn—l(xl:'m—l)}

That is, K, sends x,, through the conditional CDF of y on 1.,,,—1, and back through the inverse conditional CDF of v on
Y1:m—1 = (K1(x1), ..., Kp—1(21.m—1)). This CDF transform is the unique (almost everywhere) monotone increasing
transport map between the 1-dimensional unique (almost everywhere) regular conditional probabilities.

It is clear that the map K defined by its components K, is monotone increasing triangular. Since it is the unique such map
transporting p to v, and triangular monotone increasing maps are closed under inverses and compositions, it must be that:

* For K the KR transport from p to v, K ! is the KR transport from v to .
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» For measures u, v, 7, if K7 is the KR transport from p to v, K5 is the KR transport from v to 7, then K; o K is the
KR transport from p to 7.

Now, it is clear that if f,, f; are KR transports, their generator transformation ffab and hence all indeterminacy transforma-
tions, are also KR transports. This drives our results from the main paper—the proofs of our results are trivial given the
observations above.

Proof of Theorem 5.1. A(F) is the set of functions equal almost everywhere to KR maps transporting between measures in
P.. Since P, = {P.}, A(F) is the set of functions equal almost everywhere to the KR transport from P, to itself—the
identity map. By Theorem 2.2, A(M) = id,. O

Proof of Proposition 5.2. A(X) is the set of functions equal almost everywhere to KR transports between measures in P..
Let P, , and P, ; be two such measures, which by assumption have independent components. By its construction, it is
clear that K, depends only on z,, in any KR transport K between P, , and P, ;. Such a map is monotone increasing and
diagonal—hence by Theorem 2.2, A(M) consists of invertible, component-wise transformation. O

F LINEAR EXAMPLES

We conclude the appendix by analyzing the identifiability of the linear examples of Section 1.1 in detail. The factor analysis
example provides intuition on why multiple environments reduces the indeterminacy set, and the ICA example provides
intuition on how the two intersecting sets in Theorem 2.2 can be manipulated in synergy.

F.1 Example: Linear-Gaussian

We present a simple example of using multiple environments, and a basis of priors, to obtain identifiability, using only linear
algebra concepts. This example also provides intuition for the minimality of the number of environments. That is, for this
2-d latent space, three environments is enough to obtain strong identifiability, while two environments is insufficient.

Suppose two competing linear generative models for a random vector 2 € R1? with latent vector z € R2, for data arising
from three environments indexed by e = 1,2, 3:

2®) ~ N, I2x2) 2©) ~ N(fte, I2x2)
€ ~ N(u, Iiox10) e~ N(u,Iox10)
Yy =a+F29 4 (73) 2 =a+ Fz®) +e 74)

The left model is a single environment model, while in the right model, two of the . are linearly independent, i.e., a
multiple environment model. Note that the generator function here is

9(z) = a+ Fz, (75)

where F'is a full rank 10 x 2 matrix, and « is an offset vector in data space, fixed for all environments. For each environment
we have the marginal distribution under the multiple environment model:

2(®) NN(Oz-i-F/leaFFT'i‘Iloxlo) (76)

Recall the Gaussian distribution is characterized entirely by its mean and covariance—that is, for marginal distributions
parametrized by 01 = (a1, F1), 02 = (aa, Fb):

Py o=Poo < a1+ Fipte = o+ Fop., FF =FRF. 77

To say that this model is strongly identifiable means that the right-hand-side equalities for each e imply oy = a and
F = F.

In the single environments model, there are the following constraints:

ay + Fip = as + Fou (78)
F\F' = /hF,) (79)
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The single environments model is not identifiable. For example, let R be an orthogonal (rotation) matrix, then, let F» = F}1 R
and g = oy — F1 Ry + Fipu. We have

ar+Fuy=a01 —FRu+Fip+ iRy =o1+ Fiu (80)

FF = FRR'FE) = I F,, 81

where the last equality is due to R being an orthogonal matrix. This is a classical case of exploiting the rotational invariance

of the Gaussian to construct a non-identifiable example.

Now, we analyze the multiple environment model. To be explicit, the three environments impose the following constraints
in the multiple environments model:

a1+ Fip = as + Fop (82)
a1 + Fipe = oo + Fopo (83)
ay + Fiuz = as + Fous (34)

FF = KF), (85)

We can show directly that these constraints imply that a; + Fy 2 = ae + F5z. First, assume that ;17 and po are the linearly
independent pair. Then, taking differences,

Fi(p — ps) = Fa(pu — ps3) (86)
Fi(po — ps) = Fa(po — p13) (87)
FF = BF) . (88)

Written in matrix form, the first two constraints read
M =FKM = F; :FQ, (89)

since 1 — 3 and pe — pg remain linearly independent, and hence M is invertible. It immediately follows from the original
constraints that oy = o also.

The above analysis showed that, for identifiability, a single environment was insufficient, while three environments was
adequate. This begs the question, what about two environments? In other words, is the three environment constraint
minimal?

Consider a model with two environments with means p1, to. By the arguments above, it imposes the following constraints:

oy + Fipn = ag + Fyp (90)
o1+ Fipe = as + Fops (C2Y)
F\F = /KF,) . (92)

Can we construct an non-identifiable example? Let F» = F1 R, as = a3 — F1 Rpug + Fip as in the single-environment
case. Clearly, these satisfy the first and third constraint for any orthogonal matrix R. We aim to find a specific rotation
matrix that also satisfies the second constraint. Observe that:

ag + Fops = a1 — F1Ruy + Fipn + FiRps 93)
= a1+ Fipn + FiR(p2 — ). (94)
Let x be a vector orthogonal to o — ji1, standardized such that ||z||? = ||u2 — u1]|?. Consider
o N’
1 1 0 }
=W 2 |H2— M1 T M2 —H1 T - 95)
2 — pa [0 -1

This is the eigendecomposition of an orthogonal matrix (it is the product of orthogonal matrices) with eigenvalues 1 and —1,
and corresponding eigenvectors yp — g1 and 2. Since it is an eigenvector, we have R(pa — 1) = po — p1.° Then, we have

g + Fopo = ay + Fipg + Fipe — Frpg = ap + Frpe, (96)

®R is essentially a rotation matrix with axis (p2 — fi1).



Quanhan Xi, Benjamin Bloem-Reddy

which satisfies the second constraint as desired. This shows that three environments are required, and hence minimal for
strong identifiability of this model.

Note that such a construction will not work for the three-environment model. For three environments, the rotation has to
satisfy both
R(psz — p1) = ps — O7)
R(p2 — 1) = p2 — pua, (98)

that is, the eigenspace of R associated to the eigenvalue 1 spans R2, i.e., it is the identity.

F.2 Linear, non-Gaussian ICA

Consider a generative model (Equation (1)) with Z = R% and X = R% . Assume d, > d.. Let the generator parameter
space be F = {A € R%*%=:rank(A) = d,}. Thatis, the generators are full-rank linear transformations, and hence
injective. Let the prior parameter space be

d.
P. = {p(z) = Hpi(z);pi are non-Gaussian, and not a point mass}, (99)
=1

i.e., probability distributions on R%- with a density, and the density factorizes as independent, non-Gaussian components.

The identifiability of this problem was first studied in (Comon, 1994). In their analysis, identifiability is established up
to pre-multiplication of a diagonal matrix and a permutation. That is, for generators Fy,, F, € F with P, o, P, , € P, if
the marginal distributions on X match, then F,, = F, AP, where A is an invertible diagonal matrix and P is a permutation
matrix.

Under our framework, i.e., Lemma 2.1, we must have that P, j, = P, , o Ag}), where F,, = F}, 0 A, 3. Using our framework,

we now show that ffa’b = AP as above. The identifiability result obtained in (Comon, 1994) rests on the following result
(restated and re-proved to match our notation):

Theorem F.1 (Theorem 10, (Comon, 1994)). Let z be a random vector with factorized density. Let x = C'z, such that x©
also has factorized density. Then, z; is non-Gaussian if the j-th column has at most one non-zero entry.

Proof. We require Theorem 19 from (Comon, 1994).

Lemma F.2 ((Comon, 1994), Darmois’ Theorem). Define two random variables Z1 and Zs as
Zi=) az  Za=) bz, (100)

where z; are independent random variables, i.e., their joint distribution factorizes. Then, if Z1 and Z5 are independent, all
variables z; for which a;b; # 0 are Gaussian.

Now, let z be a random vector with factorized density and x = C'z, where x has factorized density also. Note that this
implies any x;, xj, are independent for 7 # k. We have that

Ty = Zciij T = Z ijZj, (101)
J J

and hence by Lemma F.2, if z; is non-Gaussian, it must be that C;;C},; = 0. This holds for each ¢ # &, and hence, the j-th
column has at most one non-zero entry. O

Recall the definition of P, is such that any prior must factorize and be non-Gaussian. Then, Theorem F.1 implies that

A(P.) NR4*4= — {4 € R%*4= | A has no column with more than one nonzero element}. (102)

"In the original analysis, the model is fit according to a criteria maximizing the independence between components, and also one
component of the prior is allowed to be Gaussian. For simplicity, we will simply study the implications of matching observational
marginal distributions (i.e., maximum likelihood) and where all prior components are non-Gaussian.
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That is, any linear isomorphisms between two priors must have no column with more than one nonzero element. Now, note
that for any A, € A(F), we have

Aoy = fy Lo F, (103)

where f,~ ! is the restriction of the linear map represented by the pseudoinverse F J to the range of 7. By Lemma D.1, Iéi’a,b
is an invertible linear map and hence full rank. Finally, we conclude that for any A, ; € A(F) N A(P), A, , must have
exactly one nonzero element in each column. We can then apply a permutation P such that P/_l'a’b = A, where A is diagonal.
Finally, we obtain f_fa b= PTA, where P is a permutation matrix and A is diagonal and invertible.
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