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ABSTRACT

Recent years have witnessed remarkable progress in the development of large
vision-language models (LVLMs). Benefiting from the strong language back-
bones and efficient cross-modal alignment strategies, LVLMs exhibit surprising
capabilities to perceive visual signals and perform visually grounded reasoning.
However, the capabilities of LVLMs have not been comprehensively and quanti-
tatively evaluated. Most existing multi-modal benchmarks require task-oriented
input-output formats, posing great challenges to automatically assess the free-
form text output of LVLMs. To effectively leverage the annotations available in
existing benchmarks and reduce the manual effort required for constructing new
benchmarks, we propose to re-formulate existing benchmarks into unified LVLM-
compatible formats. Through systematic data collection and reformulation, we
present the ReForm-Eval benchmark, offering substantial data for evaluating var-
ious capabilities of LVLMs. Based on ReForm-Eval, we conduct extensive exper-
iments, thoroughly analyze the strengths and weaknesses of existing LVLMs, and
identify the underlying factors. Our benchmark and evaluation framework will be
open-sourced as a cornerstone for advancing the development of LVLMs.

1 INTRODUCTION

With the trend led by ChatGPT (OpenAI, 2023a), LLMs (Large Language Models) (OpenAI, 2023b;
Touvron et al., 2023a; Chiang et al., 2023) have ushered in revolutionary advancements in Natural
Language Processing (NLP). Inspired by these efforts, researchers attempt to extend the success of
LLMs to the realm of vision language. By equipping LLM with visual encoders and aligning multi-
modal representations through generative pre-training, large vision language models (LVLMs) (Li
et al., 2023b; Liu et al., 2023b; Zhu et al., 2023; Ye et al., 2023) possess the capability to comprehend
visual information and engage in multi-modal conversations with users.

However, the reliability of such LVLMs remains a mystery. On the one hand, these models demon-
strate surprising abilities like OCR (Liu et al., 2023d), meme understanding (Zhu et al., 2023), and
visual commonsense reasoning (Li et al., 2023b). On the other hand, LVLMs suffer from funda-
mental issues, such as object hallucination (Li et al., 2023d). Meanwhile, due to the lack of suitable
benchmarks, there is a shortage of quantitative analysis and comparison of LVLMs.

The main reason for this situation is the structural gap between existing task-oriented multi-modal
benchmarks and LVLMs. Most existing benchmarks are designed for specific tasks and demand
highly structured input-output formats (Lin et al., 2014). For instance, VQA v2 (Goyal et al., 2017)
requires concise answers, typically in the form of single words or short phrases. Previously evaluated
vision-language pre-trained models (Chen et al., 2020; Zhang et al., 2021) need to be fine-tuned and
learn task-specific parameters to fit the structures of such benchmarks. On the contrary, LVLMs are
flexible and tend to provide detailed responses, even for yes-or-no questions. As depicted in the
flowchart in the upper part of Figure 1, such gap poses the greatest obstacle to accurate automated
evaluation, particularly when assessing the desired zero-shot capabilities.

To bridge the structure gap, we explore ways of re-formulating existing benchmarks into unified
formats that are compatible with LVLMs. Referring to Figure 1, we adapt the evaluation process
to the unified form shown in the lower part. Multi-modal benchmark datasets are re-formulated as
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Unified         Re-Formulation

Original Dataset: VQA v2
Q: Where is skateboarder looking?
GT: down
Original Dataset: Visual Entailment
Claim:  The player is well-skilled.
GT: entailment
Original Dataset: Object Counting
Q: How many persons are there?
GT: 17
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Original Formulation: Open-Ended QA
Prediction:  He is looking down at the board.
Judgment: False [EM] / True [Human]
Original Formulation: Classification
Prediction:  The image support the claim. 
Judgment: False [EM] / True [Human]
Original Formulation: Number-Related QA
Prediction:  There are more than 17 persons.
Judgment: True [Contain] / False [Human]

Unified Benchmark: ReForm-Eval
Q1: Answer the question “Where is skateboarder looking?” 
with the options. Options: (A) Down; (B) Up; (C) Right.
Q2: Does the image indicate that the player is well-skilled? 
Select the correct option. Options: (A) No; (B) Yes; (C) Maybe.
Q3: How many persons are there? Make your choice from the 
provided options. Options: (A) 17; (B) 7; (C) 15; (D) 20.

Unified Formulation: Multiple-Choice
Prediction:  The answer is (A) Down.
Judgment: True  [Option Matching]
Prediction:  The selected answer is (B) Yes. 
Judgment: True  [Option Matching]
Prediction:  The correct answer is (B) 7.
Judgment: False [Option Matching]

Unified       Evaluation

Figure 1: Illustration of the unified re-formulation of existing benchmarks into multiple-choice prob-
lems. The text within square brackets indicates the evaluation methods, with red and green denoting
incorrect and correct judgment, respectively. “EM” is short for exact match.

multiple-choice problems or specialized text generation problems. Datasets for tasks with specific
text generation requirements, like OCR and image captioning, are re-formulated as specialized text
generation problems. Other datasets are restructured into multiple-choice problems.

The unified formulation enables universal and comprehensive evaluation. For each formulation,
we design a consistent and reliable evaluation method. As mentioned in (Fu et al., 2023), cur-
rent LVLMs may struggle to follow multiple-choice instructions, we propose both black-box and
white-box approaches to assist: (1) Guiding LVLMs to output in desired formats through in-context-
learning; (2) Directly calculating the generation probability for options and selecting the one with
the highest value. Considering the sensitivity of LVLMs to the input prompts (Zeng et al., 2023), we
design an instability-aware evaluation strategy and introduce a metric to characterize such instability.

Based on the re-formulation framework, we present our unified multi-modal benchmark, ReForm-
Eval. For a comprehensive evaluation, we re-formulate 61 benchmark datasets based on existing
data resources, the evaluation dimensions range from basic visual perception to high-level visual
reasoning and dialog. Compared with recent LVLM benchmarks that require manual annotation (Fu
et al., 2023; Liu et al., 2023c), ReForm-Eval fully utilizes publicly open resources and provides sig-
nificantly more data, almost 100 times the size of MMBench. Meanwhile, unlike LVLM-ehub (Xu
et al., 2023), which requires designing complex and dataset-specific evaluation strategies, ReForm-
Eval offers greater scalability and a more universally applicable and efficient evaluation approach.

Based on ReForm-Eval, we conduct a comprehensive evaluation of 16 open-source LVLMs across
various capability dimensions. We hope ReForm-Eval and the associated findings can constitute a
valuable augmentation to the ongoing efforts in LVLM research and development.

2 RELATED WORKS

2.1 LARGE VISION LANGUAGE MODELS

Inspired by the advancements of LLMs and the multi-modal understanding abilities demonstrated
by GPT-4 (OpenAI, 2023b), developing open-source LVLMs currently dominates the multi-modal
research. Visual signals encoded by visual encoders (Radford et al., 2021) are incorporated in LLMs
through linear projection (Tsimpoukelli et al., 2021), Q-former (Li et al., 2023b), or cross-attention
layers (Alayrac et al., 2022). To enable multi-modal instruct tuning, MiniGPT4 (Zhu et al., 2023)
bootstraps high-quality data by refining the previous output, LLaVA (Liu et al., 2023b) proposes to
employ GPT-4 to generate image-involved dialogs while other works construct instruct tuning data
from existing vision-language benchmarks (Xu et al., 2022; Dai et al., 2023; Li et al., 2023c).

To seamlessly adapt LLMs for multi-modal scenarios, many efforts are paid including designing
strategies for parameter freezing (Ye et al., 2023), introducing light-weight trainable modules into
the backbone (Gong et al., 2023; Gao et al., 2023), incorporating continuous output (Peng et al.,
2023; Chen et al., 2023), and enhancing the visual representations (Zeng et al., 2023; Hu et al.,
2023; Li et al., 2023a). Benefiting from the aligned representations from ImageBind (Girdhar et al.,
2023), LVLMs can be further extended to more modalities (Han et al., 2023; Su et al., 2023).
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However, the capabilities of existing LVLMs are mainly demonstrated by qualitative examples (Zhu
et al., 2023; Su et al., 2023; Gong et al., 2023). To our knowledge, few benchmarks are suitable for
evaluating the capabilities of LVLMs, hindering quantitative analysis and comparison of LVLMs.

2.2 MULTI-MODAL BENCHMARKS

Task-Oriented Benchmarks Most existing multi-modal benchmarks can not be directly uti-
lized to evaluate LVLMs since they are designed for specific tasks and rely on structured input-
output formats for evaluation. VQA v2 (Goyal et al., 2017) requires concise answers, retrieval
benchmarks (Lin et al., 2014; Young et al., 2014) demand dense scores for all image-text pairs,
VCR (Zellers et al., 2019) provides coordinates to refer visual object in the question, and bounding
box output is necessary for RefCOCO (Kazemzadeh et al., 2014). This characteristic makes it chal-
lenging to utilize such benchmarks to evaluate the free-form text outputs of LVLMs unless complex
post-processing and evaluation methods are designed specifically (Xu et al., 2023; Yin et al., 2023).

Benchmarks for LVLMs To facilitate reliable and efficient automated evaluation of LVLMs, ef-
forts are paid to construct LVLM-compatible benchmarks, such as yes-or-no problems in MME (Fu
et al., 2023) and multiple-choice problems in MMBench (Liu et al., 2023c). A portion of the bench-
marks are designed to assess specific capabilities (Liu et al., 2023d; Wang et al., 2023) or diagnose
particular issues (Li et al., 2023d; Zhao et al., 2023), while others aim for comprehensive evalua-
tion (Fu et al., 2023; Liu et al., 2023c). However, limited manual annotation (around 100 samples
per dimension in MME and MMBench) could potentially introduce evaluation bias into the results.

3 REFORM-EVAL BENCHMARK

In this section, we describe how to construct ReForm-Eval by re-formulating existing task-oriented
multi-modal benchmarks. Section 3.1 introduces the general framework of re-formulation. Sec-
tion 3.2 summarizes the capability dimensions assessed in ReForm-Eval and corresponding datasets.
Section 3.3 illustrates the methods and strategies used to evaluate LVLMs based on ReForm-Eval.

3.1 UNIFIED RE-FORMULATION FRAMEWORK

Existing LVLMs primarily adopt LLMs as backbones and use free-form text to interact with users.
This paradigm makes the output more flexible and aligned with human needs. However, the gap
between these models and existing highly structured benchmarks poses challenges for evaluation.
In order to effectively reuse the annotations in existing benchmarks, these benchmarks need to be re-
formulated into appropriate formats. Motivated by benchmarks for LLMs (Hendrycks et al., 2020;
Srivastava et al., 2022; Huang et al., 2023), ReForm-Eval considers two formats that are compatible
with LVLMs, namely multiple-choice problems and text-generation problems.

Multiple-choice problem is the primary format in ReForm-Eval. By providing options for the
questions, models are guided to produce responses in a constrained format. The key in multiple-
choice problem construction is how to prepare meaningful negative options. Generally, for close-
vocabulary classification tasks, we build relationships between categories based on which hard neg-
ative options are selected. For open-ended tasks, based on the question and the correct answer,
negative options can be obtained with the help of task-specific strategies or LLMs like ChatGPT.

For OCR and image captioning that involves text generation, corresponding benchmarks are for-
mulated as text-generation problems tailored to various scenarios. We curate the input prompts to
describe the tasks and requirements. For OCR tasks, responses should contain the target tokens in
the image. For description tasks, models should provide concise depictions of the visual content.

3.2 EVALUATION DIMENSIONS

To address the wide range of questions posed by users, LVLMs need to possess diverse capabilities.
For a comprehensive evaluation, we curate 61 benchmark datasets from existing resources, summa-
rizing the assessed capabilities into 2 major categories and 8 sub-categories which are illustrated in
Figure 2. To avoid information overload, details about the re-formulation procedures and dataset
statistics are provided in Appendix A.
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3.2.1 VISUAL PERCEPTION TASKS

Perception

Cognition

Image
Classif.

Figure 2: Assessed capability dimensions
and tasks in ReForm-Eval. “Desc” and
“Classif” are respectively short for descrip-
tion and classification.

Coarse-Grained Perception (CG) Coarse-grained
perception is the ability to recognize the overall lay-
out and main objects at the image level. We eval-
uate this capability through image classification us-
ing Flowers102 (Nilsback & Zisserman, 2008), CI-
FAR10 (Krizhevsky et al., 2009), ImageNet-1K (Deng
et al., 2009), Pets37 (Parkhi et al., 2012), and
MEDIC (Alam et al., 2023) benchmarks, and scene
recognition using TDIUC (Kafle & Kanan, 2017) and
VizWiz (Gurari et al., 2018) benchmarks. The samples
are re-formulated as multiple-choice questions.

Fine-Grained Perception (FG) Fine-grained per-
ception requires detailed sensing at the object
level. We set up the object perception task (using
TDIUC (Kafle & Kanan, 2017) and MSCOCO (Lin
et al., 2014) benchmarks) and the object grounding
task (using MSCOCO (Lin et al., 2014) and Ref-
COCO (Yu et al., 2016) benchmarks) for evaluation. Object perception measures how well a LVLM
can identify local semantics, while object grounding assesses the ability to localize fine-grained
objects. All tasks are formulated as multiple-choice questions.

Scene Text Perception (STP) Scene text perception enables LVLMs to identify, understand, and
perform inference based on text in images. This evaluation is conducted through optical char-
acter recognition (OCR) using 6 benchmarks (including CUTE80 (Risnumawan et al., 2014),
IC15 (Karatzas et al., 2015), IIIT5K (Mishra et al., 2012), COCO-Text (Mishra et al., 2012), Wor-
dArt (Xie et al., 2022), TextOCR (Singh et al., 2021)), key information extraction (KIE) using 3
benchmarks (including SROIE (Huang et al., 2019), POIE (Kuang et al., 2023) and FUNSD (Jaume
et al., 2019)) and OCR-based VQA using 3 benchmarks (including TextVQA (Singh et al., 2019),
DocVQA (Mathew et al., 2021) and OCR-VQA (Mishra et al., 2019)). We consider STP as a spe-
cialized text-generation problem that requires output to contain exactly matched words.

3.2.2 VISUAL COGNITION TASKS

Visually Grounded Reasoning (VGR) A reliable LVLM is supposed to perform reasoning based
on multi-modal contextual information. In order to assess such capability, we adopt the com-
monly applied visual question answering (VQA) task and its variant, knowledge-based visual
question answer (K-VQA), which further requires models to utilize internally stored knowledge.
For vanilla VQA, we adopt VQA v2 (Goyal et al., 2017), GQA (Hudson & Manning, 2019),
and Whoops (Bitton-Guetta et al., 2023). As for KVQA, we consider 6 benchamrks including
OK-VQA (Marino et al., 2019), ScienceQA (Lu et al., 2022), VizWiz (Gurari et al., 2018), Vi-
QuAE (Lerner et al., 2022), A-OKVQA (Schwenk et al., 2022) and ImageNetVC (Xia et al., 2023).
The aforementioned benchmarks are re-formulated into multiple-choice questions.

Spatial Understanding (Spatial) Spatial understanding is the key to the real-life application of
LVLMs on robots. This task requires a comprehensive understanding of both the object-object and
object-observer relationship so as to make reasonable behaviors. We access such capability through
spatial relation judgment (SRJ) using VSR (Liu et al., 2023a) and MP3D-Spatial, a benchmark
designed for embodied tasks in real-world environments, constructed from Matterport3D (Chang
et al., 2017). Additionally, we employ Space-Based Reasoning (SBR) through the CLEVR (John-
son et al., 2017) benchmark. The SRJ task aims to accurately identify spatial relationships, forming
a concept of where the ego is in space. The SBP task entails complex reasoning ability based on the
understanding of spatial relationships. All samples are re-formulated as multiple-choice questions.

Cross-Modal Inference (CMI) A thorough comprehension of both modalities is required to per-
form cross-modal inference on the relationship between images and texts. We consider two tasks:
image-text matching (ITM) requires models to measure the cross-modal similarities and visual
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entailment (VE) demands models to check whether the information is entailed across modalities.
MSCOCO (Lin et al., 2014), WikiHow (Koupaee & Wang, 2018), Winoground (Thrush et al., 2022)
are adopted for ITM while VE considers SNLI-VE (Xie et al., 2019) and MOCHEG (Yao et al.,
2023). Both tasks are re-formulated as multiple-choice questions.

Visual Description (Desc) Visual description is an inherent capability of LVLMs as generative
models. We adopt the image captioning task on MSCOCO (Lin et al., 2014), TextCaps (Sidorov
et al., 2020), NoCaps (Agrawal et al., 2019), and Flickr30K (Young et al., 2014) for evaluation.
These datasets are formulated as text-generation problems with the requirement of concise outputs.

Multi-Turn Dialogue (Dialog) Existing benchmarks primarily focus on single-turn conversation.
ReForm-Eval evaluates the performance of LVLMs in multi-turn dialogues. We consider the multi-
turn VQA task using VisDial (Das et al., 2017) and VQA-MT, the latter is constructed by reorganiz-
ing questions in VQA v2. Both benchamrks are formulated as multiple-choice questions.

3.3 EVALUATION STRATEGY

3.3.1 EVALUATION METHODS AND METRICS

With the unified problem formulation, the performance of LVLMs can be universally evaluated. For
specialized text-generation problems, the evaluation method depends on the scenario. For visual
description, we follow Li et al. (2023b) to use CIDEr (Vedantam et al., 2015) as the evaluation
metric. Since the adopted datasets mainly provide concise references, we craft the prompt to require
concise responses and restrict the maximum number of tokens a model can generate. As for STP,
input prompts are well-designed to instruct models to identify the scene texts. The evaluation metric
is word-level accuracy: the proportion of ground-truth words that appear complete in the output.

Considering multiple-choice problems, the model performance is assessed using accuracy. We label
the answer options with markers like “(A)” and then determine correctness by checking the markers
in the output of models. The challenge with this approach is that current LVLMs may not always
adhere well to multiple-choice instructions, i.e. the output may not include the required marker.

To assist in the evaluation of multiple-choice problems, ReForm-Eval provides both a black-box
method and a white-box method. The black-box method provides in-context samples to guide
LVLMs to generate responses in desired formats. Here is an example of the input prompt:

Xsystem-message
Human: Can you see the image? Options: (A) Yes; (B) No; (C) Not Sure; (D) Maybe.
Assistant: The answer is (A) Yes.
Human: Xquestion Options: Xoptions
Assistant: The answer is

where XSystemMessage is the system message required by most LVLMs, Xquestion and Xoptions are re-
spectively the question and the answer options described in text, the text in red is the in-context
sample provided to the model. Notice that the in-context sample provides no information about the
image. The effectiveness of the black-box strategy is demonstrated in Section 4.3.3.

The white-box approach is based on the inherent attribute of current LVLMs as generative models.
Given the visual context v, the question q, and N answer options C = {ci}Ni=1, the answer prediction
can be determined by the generation likelihood predicted by the evaluated model:

ĉ = argmax
ci∈C

Pθ(c
i|v, q) = argmax

ci∈C

tc∑
t=1

Pθ(c
i
t|v, q, ci<t) (1)

where Pθ(c
i
t|v, q, ci<t) is parameterized by the causal-LLM-based LVLMs and {ci1, ..., citc} is the

tokenized sequence of ci. For multiple-choice problem assessment, we provide both the black-box
generation evaluation results and the white-box likelihood evaluation results.

3.3.2 INSTABILITY-AWARE EVALUATION

As demonstrated in previous work (Xu et al., 2022; Zeng et al., 2023), LLM-based models are
sensitive to the different but equivalent instructions. In ReForm-Eval, instability-aware evaluation
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Generation Evaluation Likelihood Evaluation
Model Perception Cognition

R̄
Perception Cognition

R̄
CG FG STP Spatial VGR Dialog CMI Desc CG FG Spatial VGR Dialog CMI

BLIP-2F 69.4 76.6 38.1 43.2 73.3 61.8 66.9 74.3 2 60.7 74.4 51.1 69.8 62.6 58.9 4
InstructBLIPF 71.2 78.1 41.2 46.1 73.9 60.6 71.4 43.8 2 60.4 75.6 51.2 71.0 67.2 55.5 4
InstructBLIPV 69.1 70.8 40.7 44.4 63.0 48.6 53.8 27.3 4 58.5 77.8 52.3 73.5 68.7 55.4 3

LLaVAV 28.7 34.4 18.4 28.7 44.0 35.6 47.3 36.8 11 61.0 70.3 42.4 58.9 52.3 48.0 8
LLaVAL2

48.3 59.8 21.5 41.2 59.7 46.3 49.9 39.5 6 49.9 65.6 47.4 56.7 48.6 49.7 11
MiniGPT4 46.2 53.2 33.0 34.6 45.6 39.5 45.4 47.5 7 54.9 70.6 49.2 57.3 54.1 50.9 8

mPLUG-Owl 42.0 37.2 39.8 26.8 37.5 35.2 40.4 44.7 11 57.9 66.1 48.6 54.3 45.5 49.8 10
PandaGPT 28.2 34.6 4.5 33.3 41.9 34.1 36.6 1.6 14 42.3 47.4 39.4 43.3 41.5 37.0 16
IB-LLM 29.2 32.7 8.2 35.6 36.7 35.3 36.6 27.6 13 49.6 54.4 46.1 50.3 39.5 45.6 15
LA-V2 33.2 30.8 24.2 23.8 36.3 35.4 41.1 36.0 13 42.7 61.4 48.6 54.1 43.4 49.9 12

mmGPT 30.4 30.3 16.7 26.9 33.0 31.8 38.2 27.7 14 52.6 62.4 47.2 56.2 43.1 44.1 13
Shikra 47.2 47.5 8.3 33.3 41.2 35.2 44.5 31.8 11 60.9 66.8 45.5 58.5 59.5 59.3 7
Lynx 59.5 62.6 18.6 40.2 58.4 47.0 53.0 60.7 5 66.1 76.2 53.9 69.9 60.0 57.4 3

CheetorV 52.0 50.3 25.9 30.6 49.9 40.3 47.4 61.6 7 56.1 69.0 48.4 58.7 57.6 50.6 8
CheetorL2

46.5 51.4 18.8 34.5 54.4 40.6 44.0 43.9 8 61.6 56.1 48.7 57.5 46.8 47.2 11
BLIVA 41.7 43.4 40.8 33.3 42.4 39.8 45.2 52.5 8 64.9 78.2 51.7 72.9 68.1 53.7 2

Table 1: General evaluation results of LVLMs across different capability dimensions. “CG”, “FG”,
“CMI”, and “Desc” are respectively short for coarse-grained perception, fine-grained perception,
cross-modal inference, and description. “R̄” represents the average rank across dimensions.

is thus introduced. For each task, multiple (more than five) instruction templates are manually
designed. Each sample is tested multiple times with different templates and shuffled options if it is
a multiple-choice question. The final result is based on the average of the multiple tests.

To directly characterize the instability of models, we further introduce a metric. For a multiple-
choice problem with answer options C = {ci}Ni=1, the empirical prediction distribution of a model
can be calculated from the M tests as pi = 1

M

∑M
j=1 1(ĉj = ci) where ĉj is the prediction of

the j-th test. Then the instability is measured by the entropy of the prediction distribution: e =

−
∑N

i=1 pi log(pi). Larger e indicates higher uncertainty in the predictions for that sample. For text-
generation tasks, instability is not accessible as the prediction distribution is not directly measurable.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Based on ReForm-Eval, we evaluate 16 models with around 7B parameters that are trained with 13
different methods, including BLIP-2 (Li et al., 2023b), InstructBLIP (Dai et al., 2023), LLaVA (Liu
et al., 2023b), MiniGPT4 (Zhu et al., 2023), mPLUG-Owl (Ye et al., 2023), PandaGPT (Su et al.,
2023), ImageBind-LLM (IB-LLM) (Han et al., 2023), LLaMA-Adapter V2 (LA-V2) (Gao et al.,
2023), multimodal-GPT (mmGPT) (Gong et al., 2023), Shikra (Chen et al., 2023), Lynx (Zeng et al.,
2023), Cheetor (Li et al., 2023a), BLIVA (Hu et al., 2023). Details of the methods are introduced
in Appendix B.2. All experiments are conducted in the same software and hardware environment to
ensure fairness. For specific parameter settings, please refer to Appendix B.1.

Notations For models with multiple variants based on different backbones, we use subscripts to
denote the backbone used: F , V , L, and L2 represent FlanT5, Vicuna, LLaMA, and LLaMA2,
respectively. For multiple-choice problems, “Generation Evaluation” and “Likelihood Evaluation”
are respectively based on the black-box and white-box strategies. For each task under different
strategies, the best result is marked in bold while the runner-up is underlined.

4.2 GENERAL PERFORMANCE

Table 1 presents the comprehensive performance of each model across dimensions, from which sev-
eral insights can be gleaned. (1) BLIP-2 and InstructBLIP continue to hold the top-2 positions in
most dimensions, but in some individual dimensions, Lynx, BLIVA, and Shikra also take the lead.
(2) It’s worth noting that the effectiveness of models like BLIVA and Lynx only becomes apparent
when using likelihood evaluation. We suspect this is attributed to the instruction-following ability
of models, please refer to Section 4.3.4 for a detailed analysis. (3) Compared to models based on
CLIP visual encoders, PandaGPT and IB-LLM, which are based on the ImageBind encoder, exhibit
relatively poorer performance in image-text tasks. Meanwhile, most top-performing models utilize
Vicuna and FlanT5 as the backbone. Further analysis is available in Section 4.3.1 regarding the

6



Under review as a conference paper at ICLR 2024

(a) Generation (b) Likelihood
Figure 3: The influence of different language and visual backbones. For generation evaluation, we
average the results of various models based on the backbone used. To better visualize the results, we
selected heatmaps across six dimensions (dialog and desc are omitted). For likelihood evaluation,
we further compute the average score across dimensions since the performance trend is consistent.
Note that “ImgBD” is short for ImageBind in this figure.

Visual Backbone ImageBind ViT-G ViT-L
Connection Arch BindNet+Gate Linear Perceiver Q-Former Adapter Linear Perceiver

Generation Perception 23.4 22.4 46.9 50.4 29.4 34.9 32.7

Cognition 34.3 29.5 51.9 49.3 34.5 41.0 34.2

Likelihood Perception 31.0 31.4 61.1 58.6 32.0 44.3 35.0

Cognition 36.0 36.5 49.7 49.1 34.2 42.3 33.7

Table 2: Average evaluation performance categorized by connection modules (see Table 7 for more
details) and visual backbones under generation and likelihood strategy.

impact of model architecture and backbones. (4) Apart from the architecture, a common character-
istic among BLIP-2, InstructBLIP, Lynx, and BLIVA is the use of relatively high-quality data during
pre-training. For data-related analysis, please refer to Section 4.3.2.

4.3 COMPREHENSIVE ANALYSIS

4.3.1 EXPLORE THE MODEL ARCHITECTURE

Model Backbone To gain a better insight into the backbone influence, we group models based
on the backbone, as illustrated in Figure 3. For language backbones, Vicuna-based models outper-
form LLaMA-based models, whereas LLaMA2 and Vicuna excel in different dimensions. Under
likelihood evaluation, Vicuna consistently performs better. FlanT5 seems the best, as the related
models are BLIP-2 and InstructBLIP. Regarding visual backbones, ViT-G (from EVA-CLIP (Sun
et al., 2023)) generally outperforms ViT-L (from CLIP (Radford et al., 2021)), which in turn outper-
forms ImageBind. Furthermore, LLaMA2 tends to favor smaller visual encoders like ViT-L, while
Vicuna performs better when paired with larger visual encoders like ViT-G.

Connection Module We further analyze the effect of connection modules in Table 2. Image-
Bind appears to perform subpar regardless of the choice of connection module. For larger visual
backbones like ViT-G, both Perceiver and Q-Former show decent performance. For smaller visual
backbones (ViT-L), Linear connection module is consistently better.

In summary, language backbones are supposed to possess strong instruction-following capabil-
ities. As for visual backbones, it’s advisable to choose ViT-G and carefully select a connection
module compatible with the corresponding visual backbone. Besides, different model architec-
tures result in varying parameter quantities. We discuss the impact in Appendix C.3.

4.3.2 EXPLORE THE DATASET

High-Quality Pre-training Dataset MSCOCO (Lin et al., 2014) is a typical high-quality human-
annotated dataset that is commonly used during pre-training. To quantitatively assess its impact,
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Figure 4: The influence of datasets in the pre-training and instruct-tuning stages. (a) compares
the average rank of models pre-trained with and without the MSCOCO dataset. (b) shows the
relationship between the scale of pre-training data and the average performance score of models
grouped by data quality. (c) shows the relations between the number of instruct-tuning samples and
the average score. The shaded area represents the 95% confidence interval.

Backbone LLaMA-7B Vicuna-7B Vicuna-7B+ FlanT5-xl Vicuna-7B+LoRA
Model LA-V2 mPLUG-Owl MiniGPT4 Cheetor Shikra LLaVA BLIP-2 InstructBLIP PandaGPT

Hit Rate 85.14 62.86 100 99.97 65.42 85.32 100 99.99 99.41
Hit Rate+ 100 100 100 100 100 100 100 100 99.97

Table 3: Instruction-following ability of LVLMs in multiple-choice problems. “Vicuna-7B+” in-
dicates the LLM backbone is fine-tuned. “Hit Rate” and “Hit Rate+” represent the format hit rate
without and with in-context samples, respectively.

we compare the average performance between models pre-trained with and without MSCOCO. As
shown in Figure 4 (a), MSCOCO not only helps with in-domain tasks but also enhances generaliza-
tion results on out-domain tasks. Therefore, to effectively align cross-modal representations during
pre-training, it is crucial to include such high-quality pre-training data.

Scaling Up Pre-Training Dataset To scale up the LVLM training, it is necessary to utilize image-
text pairs crawled from the web. Figure 4 (b) compares two groups of models: the red-marked group
uses data filtered based on rules or CLIP, such as CC (Sharma et al., 2018) and LAION (Schuhmann
et al., 2021), while the blue-mark utilizes relatively high-quality data including aforementioned
annotated data and synthetic captions from BLIP (Li et al., 2022). Results show that it is more
effective to scale up utilizing synthetic data, resulting in a desired increasing curve. We believe the
reason behind this is that synthetic captions are cleaner and more associated with images. While the
diversity of data may be impaired, the generalizable backbones mitigate the negative impact.

Instruct-Tuning Dataset We also explore the impact of the number of instruct-tuning samples.
The fitted curve in Figure 4 (c) demonstrates that increasing the number of instruct-tuning samples
leads to improved performance of LVLMs.

In general, the quality of pre-training data and the scale of instruct-tuning samples are crucial
factors for improving LVLMs. Appendix C.4 provides the complete data used in this section.

4.3.3 EFFECT OF IN-CONTEXT SAMPLE

To demonstrate the effectiveness of the black-box evaluation strategy introduced in Section 3.3.1.
We assess LVLMs’ ability to follow multiple-choice instructions under different strategies. The
experiments are conducted in the re-formulated VQA v2, a response is considered as hitting the
format if it includes the option mark like “(A)”. Some results are listed in Table 3. It is obvious
that the ability is tightly related to the backbone. LVLMs based on raw LLaMA inherit the weak
instruction-following ability of the backbone. At the same time, fine-tuning the full backbone results
in catastrophic forgetting of the capability, while LoRA-based fine-tuning does not. However, in-
context samples can effectively provide format information and guide LVLMs to respond in
the desired format, facilitating automated evaluation. The complete results are in Table 22.
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Figure 5: Performance gap of models under different evaluation strategies, grouped and averaged
based on the language backbone. The vertical axis indicates how much the likelihood evaluation
surpasses the generation evaluation, truncated for simplicity. “+” indicates fine-tuned backbones.

4.3.4 GENERATION V.S. LIKELIHOOD EVALUATION

For generation evaluation, the results reflect the coupling of the multi-modal understanding capa-
bility and the instruction-following capability. Meanwhile, likelihood evaluation directly probes the
generative models and relaxes the requirement for instruction following.

As shown in Figure 5, likelihood evaluation yields better results than generation evaluation in
most cases, even when LVLMs are guided through in-context learning. This indicates that most
LVLMs have limited instruction-following capability, further hindering downstream perfor-
mance. We believe the primary factor behind this is the LLM backbone, as models based on FlanT5
and LLama2-Chat have the least performance gap between likelihood and generation evaluation in
all the dimensions, FlanT5-based models even perform better using generation evaluation in CG,
FG, VGR, and CMI. To address the issue, LVLMs should leverage stronger backbones or introduce
sufficiently diverse data for instruct tuning, as done in FlanT5. Besides, the comparison between
Vicuna and Vicuna+ demonstrates that multi-modal instruct tuning the backbone currently can
not improve the instruction-following capability of LVLMs.

4.3.5 BEHIND THE INSTABILITY

Instability
Source Generation Likelihood

Instruction 0.1607 0.0492
Option Order 0.5523 NA
Option Mark 0.3295 NA

Table 4: Average instability by three types
of random perturbations across all models.

To investigate the source of instability, we conduct ex-
periments on ScienceQA by applying three types of
perturbations separately to LVLMs, including random
instructions, shuffling option orders, and random op-
tion marks (uppercase, lowercase, or numeric).

As illustrated in Table 4, shuffling the option order re-
sults in the highest instability, highlighting a misun-
derstanding of the option contents. Similar to MM-
Bench (Liu et al., 2023c), we observe that most models exhibit some degree of preference for spe-
cific options (refer to Appendix C.6 for more details). Our in-depth finding is that option preference
reduces the instability from random instructions and random option marks, but increases the insta-
bility from random option orders. The randomness of instruction has the least effect, suggesting that
LVLMs can reasonably comprehend the carefully crafted instructions. With likelihood evaluation,
the instability is significantly lower because it is a white-box method that directly probes generative
models without the need for random sampling during generation. These phenomenons are common
to all models, the complete results are in Appendix C.5. In summary, current LVLMs are unstable
and sensitive to subtle changes in the prompt, especially during black-box evaluations.

5 CONCLUSION

In this paper, we propose to re-formulate task-oriented multi-modal benchmarks to evaluate LVLMs.
By systematically collecting and efficiently re-formulating 61 benchmarks into unified formats that
are compatible with LVLMs, we construct a benchmark, ReForm-Eval, which covers 8 capability
dimensions. Compared with recently constructed benchmarks for LVLMs, ReForm-Eval provides
more data without the need for manual annotation. Additionally, we design dependable automated
evaluation methods based on the unified formats, ensuring an impartial assessment of different
LVLMs. Leveraging ReForm-Eval, we conduct an exhaustive evaluation of various LVLMs and
delve into the factors influencing their performance. Generally, ReForm-Eval serves as a reliable
tool for quantitative analysis of LVLMs, aiding in the research and development of LVLMs.
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A BENCHMARK CONSTRUCTION

In this section, we introduce the collected datasets and the corresponding re-formulation procedures
in detail. The statistics of the re-formulated datasets are provided in Table 5 and Table 6.

A.1 COARSE-GRAINED PERCEPTION

For the Flowers102 dataset, we employ the complete validation set for evaluation purposes. How-
ever, for CIFAR10, ImageNet-1K, Pets37, and VizWiz, we perform random subsampling of 10%.
Concerning the TDIUC dataset, given that certain models in their training phase utilized a portion
of the TDIUC dataset originating from the Visual Genome, we initially exclude this subset of data
to prevent potential data leakage. Subsequently, we apply a shuffling operation to the entire TDIUC
dataset and perform equidistant sampling, resulting in the selection of 2.5% of the sport recognition
data (TDIUCsport) and 1% of the scene recognition data (TDIUCscene). In the case of MEDIC(Alam
et al., 2023), we sample an equal number of samples from each label to balance the answer distribu-
tion.

For Flowers102 and Pets37, we randomly select three incorrect class labels, in addition to the correct
label, from their original set of categories to form multiple-choice question options. For the TDIUC,
we aggregate all answers for the same task to create an answer pool, and then utilize the same
approach above to construct four answer options for multiple-choice questions.

For ImageNet-1K, we calculate similarities within its own set of 1000 categories using WordNet and
selected the four options with the highest similarity to the correct class as choices (the highest one
must be the right answer, and we need to get them out of order).

For CIFAR10, we initially employ WordNet to identify synonyms of the answers that are seman-
tically related but not synonymous. These synonyms are then ranked based on their similarity.
Subsequently, we manually adjust some of the less common candidate options. Finally, we likewise
select the top four options with the highest similarity as all choices.

As for VizWiz, we re-formulate it into two benchmarks: VizWiz2 as a binary classification task
to determine whether there is any quality issue with the image. VizWiz4 as a 4-choice question,
requiring the model to determine the exact reason for the quality issue. We sort the issues related
to image quality based on the number of votes in the annotations, the top one is considered the true
label while the second to fourth options serve as negative choices.

For MEDIC (Alam et al., 2023), it is re-formulated to MEDICdts, a benchmark for disaster type
selection (dts), we directly use all seven classification labels as choice options.

A.2 FINE-GRAINED PERCEPTION

For TDIUC (Kafle & Kanan, 2017), we initially exclude the subset sourced from Visual
Genome (Krishna et al., 2017) to prevent evaluation on the training data. Then, we shuffle the
entire dataset and conducted an equidistant sampling strategy for task sample balance. Specifically,
we sample 1% of the data for color (TDIUCcolor), detection(TDIUCdetection), and counting tasks
(TDIUCcounting), and 2.5% for position tasks. As for the utility task (TDIUCutility), we retain and
utilized all 171 data samples. For answer options, we uniformly count all answers within the data
and randomly selected three options other than the correct answer to form all four choices.

Regarding RefCOCO (Yu et al., 2016), we re-formulate the referring expression selection
(RefCOCOres) task, in which the LVLMs are supposed to select the correct referring expression
from the options based on the image region in the bounding box. We sample an equal number of
samples from each object category, in order to balance the correct referring expression categories ap-
pearing in the questions. As for negative options in each question, we sample the negative referring
expression from a distinct subcategory within the same category as the positive sample.

For MSCOCO (Lin et al., 2014), we re-formulate four tasks: object counting (counting), multiple
class identification (MSCOCOmci), grounded object identification (MSCOCOgoi) and missing object
selection (MSCOCOmos) for object-level evaluation. The multiple class identification task aims to
evaluate the LVLM’s ability of object classification. Further, the grounded object identification and
missing object selection tasks concentrate on object perception within a specified region of interest.
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Task Name Dataset Name Data Source Datset Split # of Images # of Samples

Coarse-grained
Perception

Flowers102 Flowers102 val 818 818
CIFAR10 CIFAR10 test 10000 10000
ImageNet-1K ImageNet-1K val 50000 50000
Pets37 Pets37 test 3669 3669
VizWiz2 VizWiz val 4049 4049
VizWiz4 VizWiz val 2167 2167
TDIUCsport TDIUC val 6001 8696
TDIUCscene TDIUC val 9219 21320
MEDICdts MEDIC test 15688 15688

Fine-grained
Perception

MSCOCOmci MSCOCO val2017 2323 3600
MSCOCOgoi MSCOCO val2017 2404 3600
MSCOCOmos MSCOCO val2017 2479 2479
TDIUCcolor TDIUC val 18808 38267
TDIUCutility TDIUC val 162 171
TDIUCpostiion TDIUC val 7131 9247
TDIUCdetection TDIUC val 21845 29122
TDIUCcounting TDIUC val 26166 41991
RefCOCOres RefCOCO val 9397 34540
MSCOCOcount MSCOCO val2014 513 513

Scene Text
Perception

CUTE80 CUTE80 all 288 288
IC15 IC15 test 1811 1811
IIIT5K IIIT5K test 3000 3000
COCO-Text COCO-Text val 9896 9896
WordArt WordArt test 1511 1511
TextOCR TextOCR val 3000 3000
Grounded IC15 IC15 val 221 849
Grounded COCO-Text COCO-Text val 1574 3000
Grounded TextOCR TextOCR val 254 3000
FUNSD FUNSD test 47 588
POIE POIE test 750 6321
SROIE SROIE test 347 1388
TextVQA TextVQA val 3023 4508
DocVQA DocVQA val 1286 5312
OCR-VQA OCR-VQA test 3768 3944

Table 5: Dataset statistics of visual perception tasks in ReForm-Eval.

The former allows models to assess which object exists within the given bounding box of the image,
while the latter asks models to judge which object disappears within all the given bounding boxes
of the image.

For the multiple class identification and grounded object identification tasks, we randomly sample
300 object annotations from each super-category in the valid split to ensure balance. This results
in a total of 3600 evaluation data samples for each task. For the mos task, we filter out the objects
with the height and width of their bounding boxes smaller than 50 and finally get 2479 samples. As
for options generation, we employ a hierarchical strategy. For the multiple class identification task,
we begin by randomly selecting the object class from within the super-category of the target object.
If there are insufficient options, we broaden our selection to all object categories. In tasks related
to region, our initial step is to randomly choose object categories present in the image but do not
meet the requirement specified in the question. In cases where this is not possible, we follow the
sampling procedure used in the multiple-class identification task. The examples of these grounded
fine-grained tasks as shown in Table 6. The counting task has the same setting as the counting task
in the TDIUC dataset.

A.3 SCENE TEXT PERCEPTION

For OCR, we use 6 original OCR benchmarks (including CUTE80 (Risnumawan et al., 2014),
IC15 (Karatzas et al., 2015), IIIT5K (Mishra et al., 2012), COCO-Text (Mishra et al., 2012), Wor-
dArt (Xie et al., 2022) and TextOCR (Singh et al., 2021)) as the evaluation tasks. Current OCR
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Task Name Dataset Name Data Source Datset Split # of Images # of Samples

Spatial
Understanding

CLEVR CLEVR val 5726 6900
VSR VSR test 1074 1811
MP3D-Spatial MP3D - 3341 4735

Cross-Modal
Inference

COCOitm MSCOCO caption val2017 5000 25014
COCOits MSCOCO caption val2017 5000 25014
WikiHow WikiHow val 32194 32194
Winoground Winoground all 800 800
SNLI-VE SNLI-VE test 1000 17901
MOCHEG MOCHEG test 1452 3385

Visually Grounded
Reasoning

VQA v2 VQA v2 val2014 15638 21441
GQA GQA testdev 398 12578
Whoops Whoops all 498 3362
OK-VQA OK-VQA val 5032 5045
ScienceQA ScienceQA test 2017 2017
VizWiz VizWiz val 4319 4319
ViQuAE ViQuAE test 1105 1257
K-ViQuAE ViQuAE test 1094 1245
A-OKVQA A-OKVQA val 1122 1145
A-OKVQRA A-OKVQA val 1122 1145
A-OKVQAR A-OKVQA val 1122 1145
ImageNetVC ImageNetVC all 3916 4076

Multi-Turn
Dialogue

VQA-MT VQA v2 val2014 1073 1073
VisDial VisDial val2018 2064 2064

Visual Description

COCO MSCOCO caption val2017 5000 5000
TextCaps TextCaps val 3166 3166
NoCaps NoCaps val 4500 4500
Flickr30K Flickr30K test 1000 1000

Table 6: Dataset statistics of visual cognition tasks in ReForm-Eval.

Question: Which object does the red bounding box 

of this image contain among the following options?

Options: 

(A) person; (B) potted plant; 

(C) mouse; (D) tv.

Answer: (C)

Grounded Object Identification

Question: Which object from the options that does 

not exist in bounding boxes of the image?

Options: 

(A) book; (B) bicycle; 

(C) vase; (D) chair.

Answer: (B)

Missing Object Selection

Figure 6: Examples of grounded fine-grained tasks.

benchmarks utilize cropped images containing only target text as visual input sources (Xu et al.,
2023; Liu et al., 2023d). To further assess text identification in complex visual contexts, we propose
grounded OCR tasks (including gIC15, gCOCO-Text, and gTextOCR). Specifically, we filter out
the bounding boxes containing target texts larger than 40x40 for better evaluation. The image, along
with the bounding box annotations and the corresponding instruction, will be fed into the model for
evaluation, which is similar to the grounded fine-grained tasks (i.e. MSCOCOgoi).

For KIE, we utilize the test splits of 3 benchmarks (including SROIE (Huang et al., 2019),
POIE (Kuang et al., 2023) and FUNSD (Jaume et al., 2019)) as the evaluation tasks.
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And for OCR-based VQA, we use 3 benchmarks (including TextVQA (Singh et al., 2019),
DocVQA (Mathew et al., 2021) and OCR-VQA (Mishra et al., 2019)) as the evaluation tasks. We
filter out the question-answer pairs that need to be inferred based on the scene texts.

A.4 VISUALLY GROUNDED REASONING

For VQAv2 (Goyal et al., 2017), we sample 10% for reformulation owing to the extremely large
population. Besides, since ViQuAE (Lerner et al., 2022) provides relevant knowledge information
for each question, we additionally construct K-ViQuAE with knowledge as context, which assesses
models’ reasoning ability hierarchically with ViQuAE (Lerner et al., 2022). For ScienceQA (Lu
et al., 2022), only 2017 questions of all the 4241 test set are paired with an image, which are se-
lected in our benchmark. Besides, original A-OKVQA (Schwenk et al., 2022) gives rationales for
answering each question, therefore we construct A-OKVQRA and A-OKVQAR for hierarchical
evaluation.

For VQAv2 (Goyal et al., 2017), GQA (Hudson & Manning, 2019), OK-VQA (Marino et al., 2019),
VizWiz (Gurari et al., 2018), ViQuAE (Lerner et al., 2022) and Whoops (Bitton-Guetta et al., 2023),
ChatGPT is employed to generate appropriate negative options, and the prompt template for query-
ing is:

You are a multiple-choice generator. Given a question and an answer, you need to generate
three additional incorrect options while ensuring their plausibility and confusion.
Question: {question}
Answer: {correct answer}

Note that for yes or no questions, the negative option is directly derived as no or yes, and ChatGPT
is not employed.

While ImageNetVC (Xia et al., 2023) randomly selects 3 candidate options from the correspondent
answer set with the commonsense type of each question. As for ScienceQA (Lu et al., 2022) and
A-OKVQA (Schwenk et al., 2022), they adopt their original options because of the original single-
choice formulation.

As for A-OKVQAR, the prompt template for querying ChatGPT to generate negative rationales is:

You are a multiple-choice generator. Given a question and an answer, along with a rationale for
that answer, you need to generate 3 counterfactual rationales. These counterfactual rationales
should be contextually relevant while also being sufficiently distinct from the correct rationale.
Question: {question}
Answer: {correct answer}
Rationale: {rationale}

A.5 SPATIAL UNDERSTANDING

For CLEVR (Johnson et al., 2017), we filter out the question types that do not involve spatial re-
lations and randomly select 300 samples from each question type related to spatial relations. For
different question types, we randomly select false options from their corresponding answer sets. In
cases where some question types have insufficient options, we add ’Not sure’ and ’Unknown’ as
false options to maintain the number of four options.

For VSR (Liu et al., 2023a), the original dataset comprises captions that describe true or false spatial
relations among objects in the corresponding images. We select image-caption pairs from the test
split where the spatial descriptions are right and use them for our evaluation tasks. The false options
are generated by randomly sampling different spatial relations from the test split.

MP3D (Chang et al., 2017) also known as Matterport3D, comprises a large-scale collection of RGB-
D images captured from nearly 10,800 real indoor viewpoints with 50,811 object instance annota-
tions. Based on this dataset, we extract two types of spatial relations to re-formulate our benchmark
MP3D-Spatial: object-object level relations (left, right, above, under, on top of, and next to) and
object-observer level relations (far and close). For spatial relations ’on top of’ and ’next to,’ we use
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Question: Describe the spatial connection between 

vase and mantel within the image. 

Options: 

(A)The vase is inside the mantel; 

(B) The vase is right of the mantel; 

(C) The vase is next to the mantel; 

(D)The vase is on the top of the mantel.

Answer: (D)

Question: In the image, point out the object that 

has the greatest distance from you.

Options:

(A)picture; 

(B) refrigerator; 

(C) stairs; 

(D)unknown. 

Answer: (B)

Figure 7: Examples of spatial relation judgment in MP3D-Spatial.

1,135 annotated samples for our task. For other relations, we utilize both bounding box information
and depth to determine the spatial relationships and extract 600 samples for each type of relation. As
for false options, we randomly select non-matching spatial relations to serve as the incorrect options
for our reformulated task. The examples of the re-formulated data are shown in Figure 7

A.6 CROSS-MODAL INFERENCE

In this section, we consider two kinds of tasks, including image text matching and visual entailment.

For MSCOCO (Lin et al., 2014), we re-formulate two tasks, including COCO image text matching
(COCOitm) and COCO image text selection (COCOits). The matching task requests LVLMs to
determine whether the given image and text are matched. The selection task instructs LVLMs to
select the best-matched caption for the given image. We randomly sample image and text pairs as
positive samples. For each image, we first find the negative images that have distinct but similar
object categories. For each negative image, we find the most similar captions with the positive
caption according to the object appearing in the sentence.

WikiHow (Koupaee & Wang, 2018) provides introductions to common skills. Within each skill,
there are multiple crucial tasks, and each task is composed of several steps. We re-formulate the
Wikihow image text selection task, in which given the task name, the LVLMs are supposed to
choose the matching step description. We randomly sample visual and textual descriptions of the
steps to form multiple-choice questions. To mine the hard negative options, we try to randomly take
three samples from the same task as the positive sample. If the negative samples from the task level
are insufficient, we then select some from the skill level and dataset level in turn.

For Winoground (Thrush et al., 2022), we re-formulate a caption selection task, which requires
models to choose the correct caption. Since Winoground has captions for each image pair that have
exactly the same words but in a different order, the options are the captions for every image pair.

For SNLI-VE (Xie et al., 2019), we re-formulate the visual entailment task, in which the LVLMs
are required to determine whether the text can be inferred based on the image clues and should give
answer of uncertainty when the evidence is insufficient. The options of multiple-choice question
comprise “yes”, “not sure” and “no”. To balance the correct answer distribution, for each image, we
sample an equal number of samples from each label.

For MOCHEG (Yao et al., 2023), we re-formulate the visual and textual entailment task, in which the
LVLMs are supposed to determine whether the claim can be infered based on the visual and textual
evidence and judge out whether the evidences are insufficient. The options consist of “supported”,
“refuted” and “not enough information”.

A.7 VISUAL DESCRIPTION

We re-formulate the image captioning task from four dataset including MSCOCO (Lin et al., 2014),
TextCaps (Sidorov et al., 2020), NoCaps (Agrawal et al., 2019) and Flickr30K (Young et al., 2014).
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In this task, the LVLMs are expected to generate a brief description for given image. Among these
dataset, TextCaps additionally examines the optical character recognition capability of LVLMs by
requesting models to pointing out the text in the image. We randomly sample these datasets for
evaluation.

A.8 MULTI-TURN DIALOGUE

To mimic a naive setup, we construct VQA-MT (VQA Multi-Turn) by considering multiple ques-
tions for the same image and gathering them into a multi-turn conversation. For VQA-MT, different
images are accompanied by different amounts of questions in the re-formulated VQA v2 (Goyal
et al., 2017), only the images with more than 2 questions are kept. For images with more than 10
questions, only the first 10 questions are kept. All questions for the same image are arranged into
a dialogue without inter-round dependencies. In the filtered dataset, there are 1073 image-dialogue
pairs. The negative options are directly adopted from the re-formulated VQA v2.

As for VisDial (Das et al., 2017), there is a 10-turn QA dialogue for each image. the original datasets
provide 100 options for each question while. The prompt template for querying GPT-3.5 to generate
negative options is:

I will provide a question with the correct answer, please give me 3 incorrect options to help me
get a single-choice question.
Question: {question}
Answer: {correct answer}

Different from the original VisDial to perform offline dialogue (the history contains correct answers),
we perform online dialogue (the history contains the previous output of the models). To further
investigate whether the performance of LVLMs changes with an increasing number of dialogue
turns, we calculate the correlation coefficient between the accuracy and the number of dialogue
turns.

B EVALUATION DETAILS

B.1 IMPLEMENTATION DETAILS

Our benchmark and the evaluation framework are PyTorch-based. All experiments are conducted
on 8 Tesla V100 GPUs. During the evaluation, half precision is used to accelerate the process.

To ensure fair comparisons between LVLMs, we try our best to keep the parameter setting aligned
with the demo code provided by the original codebase. However, we limit the maximum number
of tokens a model can generate for all LVLMs. It is set to 30 for most questions except the image-
caption task where it is set to the upper quartile (the 75th percentile) of the reference caption length in
the corresponding datasets. all input texts are formulated into conversations as required by different
models, using the same system messages, roles, and separators. As for the image input, we only
consider single-image inputs, we use the same preprocess method mentioned in the original paper
except for Lynx, which utilizes 420 × 420 input resolution and we still use 224 × 224 for a fair
comparison.

It is worth noting that ReForm-Eval comprises a total of over 500,000 evaluation instances across
over 300,000 images, and considering the need for multiple tests for each instance, this results in
significant computational cost. To this end, we further construct a subset by sub-sampling 10% data
from the whole ReForm-Eval. All experiments conducted in this paper are based on the subset. We
will open-source both the subset we use and the complete data for the research community.

B.2 MODELS

In this section, we introduce the evaluated LVLMs in detail. For each method, we identify the
version assessed in this paper if multiple variants are provided by the method. Additionally, we
summarize the architecture of LVLMs in Table 7 and the datasets they use in Table 8.
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Model Model Architecture
Vis Encoder LLM Connection Module #oP #oTP #oVT

BLIP-2 ViT-G/14 FlanT5-XL Q-Former 3.94B 106.7M 32
InstructBLIPF ViT-G/14 FlanT5-XL Q-Former 4.02B 187.2M 32
InstructBLIPV ViT-G/14 Vicuna-7B Q-Former 7.92B 188.8M 32
LLaVAV ViT-L/14 Vicuna-7B Linear 7.05B 6.74B 256
LLaVAL2

ViT-L/14 LLaMA2-7B Linear 7.05B 6.74B 256
MiniGPT4 ViT-G/14 Vicuna-7B Q-Former+Linear 7.83B 3.1M 32
mPLUG-Owl ViT-L/14 LLaMA-7B Perceiver 7.12B 384.6M 65
PandaGPT ImageBind Vicuna-7B+LoRA Linear 7.98B 37.8M 1
IB-LLM ImageBind LLaMA-7B+LoRA+BT BindNet+Gate 8.61B 649.7M 1
LA-V2 ViT-L/14 LLaMA-7B+BT Linear+Adapter+Gate 7.14B 63.1M 10
mmGPT ViT-L/14 LLaMA-7B+LoRA Perceiver+Gate 8.37B 23.5M 64
Shikra ViT-L/14 Vicuna-7B Linear 6.74B 6.44B 256
Lynx ViT-G/14 Vicuna-7B+Adapter Perceiver 8.41B 688.4M 64
CheetorV ViT-G/14 Vicuna-7B Query+Linear+Q-Former 7.84B 6.3M 32
CheetorL2

ViT-G/14 LLaMA2-Chat Query+Linear+Q-Former 7.84B 6.3M 32
BLIVA ViT-G/14 Vicuna-7B Q-Former+Linear 7.92B 194.6M 32
PS: Underlined represents a trainable component. “BT” represents bias-tuning . “BindNet” represents bind network.

Table 7: Model architecture of different LVLMs. “#oP”, “#oTP”, and “#oVT” are number of total
parameters, number of trainable parameters, and number of visual tokens, respectively.

BLIP-2 BLIP-2 (Li et al., 2023b) is pre-trained in two stages: the representation learning stage
and the generative learning stage, where the image encoder and the LLM are frozen and only a
lightweight Q-Former is trained for bridging the modality gap. “blip2-pretrain-flant5xl” is evaluated
in our experiment.

InstructBLIP InstructBLIP (Dai et al., 2023) further extends BLIP-2 with task-oriented instruct
tuning, pre-trained with Vicuna using the same procedure as BLIP-2. Additionally, an instruction-
aware Q-Former module is proposed in InsturctBLIP, which takes in the instruction text tokens as
additional input to the Q-Former. During instruction tuning, only parameters of Q-Former are fine-
tuned based on pre-trained checkpoints, while keeping both the image encoder and the LLM frozen.
We take “blip2-instruct-vicuna7b” and “blip2-instruct-flant5xl” as evaluation versions.

MiniGPT-4 MiniGPT4 (Zhu et al., 2023) adds a trainable single projection layer based on BLIP-2
and also adopts a two-stage training approach, where the first stage is pre-training the model on large
aligned image-text pairs and the second stage is instruction tuning with a smaller but high-quality
image-text dataset with a designed conversational template. During training, the image encoder, the
LLM, and the Q-Former are all frozen. “pretrained-minigpt4-7b” is used in our setup.

LLaVA LLaVA (Liu et al., 2023b) employs a linear layer to convert visual features into the lan-
guage embedding space, with a pre-training and instruction tuning stage. During pre-training, both
the visual encoder and LLM weights were frozen. Then, keeping only the visual encoder weights
frozen, the weights of the projection layer and LLM in LLaVA are updated with generated instruc-
tion data. In our experiment, “liuhaotian/LLaVA-7b-delta-v0” and “liuhaotian/llava-llama-2-7b-
chat-lightning-lora-preview” are used for evaluation.

mPLUG-Owl mPLUG-Owl (Ye et al., 2023) proposes a novel training paradigm with a two-stage
fashion. During pre-training, mPLUG-Owl incorporates a trainable visual encoder and a visual
abstractor, while maintaining the LLM frozen. In the stage of instruction tuning, language-only and
multi-modal instruction data are used to fine-tune a LoRA module on the LLM. “MAGAer13/mplug-
owl-llama-7b” is used in our experiment, but LoRA is not implemented in this version.

ImageBind-LLM (IB-LLM) ImageBind-LLM (Han et al., 2023) adopts a two-stage training
pipeline. In the pre-training stage, a learnable bind network and a gating factor are updated. The
bind network transforms image features, while the gating factor weights the transformed image fea-
tures to determine the magnitude of injecting visual semantics and the result is added to each word
token for each layer. In the instruction tuning stage, a mixture of language instruction data and visual
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Model Pre-training Data Instruction Data

Dataset Size Dataset Size

BLIP-2 MSCOCO+VG+CC3M+
CC12M+SBU+L400M 129M - -

InstructBLIP Following BLIP-2 129M

COCO Caption+
WebCapFilt+
TextCaps+VQAv2+
OKVQA+A-OKVQA+
OCR-VQA+LLaVA

16M

LLaVA CC3M 595K LLaVA 158K

MiniGPT4 CC3M+SBU+L400M 5M CC3M
formatted by ChatGPT 3.5K

mPLUG-Owl L400M+COYO+
CC3M+MSCOCO 104B tokens Alpaca+Vicuna+

Baize+LLaVA
102K+90K+
50K+158K

PandaGPT - - MiniGPT4+LLaVA 160K

IB-LLM CC3M+SBU+L2B+
COYO+MMC4 940M

Alpaca+GPT4LLM+
ShareGPT+
MiniGPT4+LLaVA

NA

LA-V2 COCO Caption 567K GPT4LLM 52K

mmGPT - -

Dolly15K+GPT4LLM+
LLaVA+MiniGPT4+
A-OKVQA+
COCO Caption+
OCR VQA
formatted by ChatGPT

15K+52K+
158K+3.5K
5K+0.5K+0.5K

Shikra

LLaVA-Pretraining+
Flickr30K+
VG+RefCOCO+
VQAv2+PointQA+
Visual7W+VCR

∼ 4.3M LLaVA+Shikra-RD 158K+5.9K

Lynx

BlipCapFilt+
CC12M+CC3M+SBU+
more 26 datasets
(listed in Table 9 in Lynx)

14B tokens

text-only+image-text+
video-text data
(all 32 datasets are listed
in Table 9 in Lynx)

3B tokens

Cheetor pre-training image-text data 5M CAGIT+image-text data 64K+700K

BLIVA L400M+CC3M+
SBU 558K Following InstructBLIP ∼ 2.4M

Table 8: Pre-training data and instruction tuning data used by different LVLMs. In Lynx, the training
data size is represented by “tokens” and these tokens are considered as consumed samples rather than
data volume, which is also the case for the pre-training data in mPLUG-Owl. “L400M” and “L2B”
refer to LAION-400M and LAION-2B, repectively. GPT4LLM is a GPT4 version of Alpaca with
higher quality. “∼” denotes that the value is approximated by multiplying the batch size with the
training steps of one epoch. “NA” denotes that the specific size is not mentioned in the corresponding
paper.

instruction data is used to update partial parameters in LLaMA by LoRA and bias-norm tuning. We
utilize “Cxxs/ImageBind-LLM/7B” for evaluation and call it “IB-LLM”.

LLaMA-Adapter V2 In LLaMA-Adapter V2 (Gao et al., 2023), a joint training paradigm is pro-
posed, where only the visual projection layers and early zero-initialized attention with gating are
pre-trained using image-text data, while the late adaptation prompts with zero gating, the unfrozen
norm, newly added bias, and scale factors are implemented for learning from the language-only
instruction data. “LLaMA-Adapter-V2-BIAS-7B” is applied for evaluation.
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Multimodal-GPT (mmGPT) Multimodal-GPT (Gong et al., 2023) is fine-tuned from Open-
Flamingo, where the whole open-flamingo model is frozen and the LoRA module is added and
updated to the self-attention, cross-attention, and FFN part in the LLM, using language-only and
multimodal instruction data. “mmgpt-lora-v0-release” is used for evaluation. To simplify, we refer
to it as “mmGPT”.

PandaGPT PandaGPT (Su et al., 2023) utilizes a one-stage training method using a combina-
tion of 160k image-language instruction-following data from MiniGPT-4 and LLaVA, where only
two components are trained: a linear projection matrix connecting the visual representation gener-
ated by ImageBind to Vicuna, and additional LoRA weights applied to Vicuna attention modules.
“openllmplayground/pandagpt-7b-max-len-1024” is evaluated as our implemented version.

Shikra Shikra (Chen et al., 2023) consists of a vision encoder, an alignment layer, and an LLM.
This model is trained in two stages, where both the fully connected layer and the entire LLM are
trained and the visual encoder is frozen. We select “shikras/shikra-7b-delta-v1” for our evaluation
in this experiment.

Cheetor Cheetor (Li et al., 2023a) is initialized from BLIP-2 and pre-trains Q-Former that matches
Vicuna and LLaMA2. A lightweight CLORI module is introduced that leverages the sophisticated
reasoning ability of LLMs to control the Q-Former to conditionally extract specific visual features,
and further re-inject them into the LLM. During training, only a set of query embeddings and two lin-
ear projection layers need to be updated. “cheetah-llama2-7b” and “cheetah-vicuna-7b” are specifi-
cally used for assessment.

Lynx Lynx (Zeng et al., 2023) leverages the method of pre-training and instruction tuning, where
lightweight trainable adapters are added after some layers in the frozen LLMs and a resampler
mechanism is adapted to reduce the vision token sequence, using learnable latent queries. Dur-
ing pre-training, the newly added layers are trained to build connections of different modalities.
“finetune-lynx” is opted for evaluation.

BLIVA BLIVA (Hu et al., 2023) is initialized from a pre-trained InstructBLIP and merges learned
query embeddings output by the Q-Former with projected encoded patch embeddings. Demonstrat-
ing a two-stage training paradigm, the patch embeddings projection layer is pre-trained and both the
Q-Former and the project layer are fine-tuned by instruction tuning data. “mlpc-lab/BLIVA-Vicuna”
is employed under evaluation in our experiment.

C COMPLEMENTARY RESULTS AND ANALYSIS

C.1 PER-DIMENSION RESULTS AND ANALYSIS

In this section, we will provide the complete results and corresponding analysis of all capability
dimensions.

C.1.1 RESULTS ON COARSE-GRAINED PERCEPTION

Tabel 9 and Table 10 provide results of coarse-grained perception tasks, including image classifi-
cation and scene recognition. For generation evaluation, BLIP-2 and InstructBLIP take the lead in
most tasks except the image quality assessment in VizWiz. We speculate that this is because the
training data primarily consists of text describing the visual content, with very little description of
the image quality, which may result in models not understanding the image quality. However, this
challenge is also faced by most LVLMs, some of them act worse than random guesses.

For likelihood evaluation, the situation is slightly different. Most models perform better across
different datasets while BLIP-2 and InstructBLIP struggle in Flowers102, ImageNet-1K, Pets37,
and MEDIC. We hypothesize this is due to the fact that the category names of these datasets are
not common, the calculated likelihood may not be as effective as those for common tokens. As
mentioned in Section C.4, the diversity of the pre-training data used by BLIP-2 and InstructBLIP
is limited, while mPLUG-Owl utilizes diverse pre-training data. This explains why mPLUG-Owl
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Model
Image Classification

Flowers102 CIFAR10 ImageNet-1K Pets37 VizWiz4 VizWiz2
Acc Instby Acc Instby Acc Instby Acc Instby Acc Instby Acc Instby

Generation Evaluation
BLIP-2F 75.57 0.07 87.32 0.03 73.07 0.11 75.19 0.06 24.44 0.25 46.68 0.00

InstructBLIPF 77.75 0.04 83.72 0.02 77.06 0.07 83.28 0.02 27.59 0.15 47.43 0.01
InstructBLIPV 72.81 0.06 86.28 0.03 71.78 0.06 80.77 0.06 48.00 0.05 49.37 0.41

LLaVAV 35.92 0.45 14.38 0.69 19.48 0.60 25.90 0.20 14.91 0.93 45.20 0.43
LLaVAL2

50.07 0.23 41.42 0.21 50.74 0.15 41.42 0.21 27.31 0.28 46.44 0.02
MiniGPT4 43.89 0.20 43.06 0.44 48.85 0.31 43.06 0.44 31.30 0.39 45.89 0.27

mPLUG-Owl 37.56 0.52 37.30 0.29 37.54 0.30 42.19 0.41 31.85 0.75 46.09 0.49
PandaGPT 34.43 0.61 26.32 0.06 27.63 0.05 29.07 0.02 31.11 0.31 29.75 0.84
IB-LLM 26.99 0.13 23.42 0.00 22.45 0.12 24.59 0.48 26.02 0.29 49.90 0.24
LA-V2 25.89 0.44 25.96 0.42 18.08 0.64 29.07 0.02 33.05 0.29 54.21 0.03

mmGPT 26.21 0.64 25.92 0.27 25.60 0.25 27.48 0.25 28.24 0.69 50.59 0.32
Shikra 41.54 0.11 50.72 0.11 47.99 0.10 42.62 0.11 21.48 0.21 47.72 0.13
Lynx 56.19 0.30 77.20 0.11 57.82 0.26 60.98 0.32 26.30 0.19 54.60 0.01

CheetorV 55.26 0.27 59.12 0.11 46.51 0.25 44.86 0.28 33.98 0.23 49.90 0.16
CheetorL2

37.80 0.23 70.82 0.15 43.64 0.15 36.39 0.21 31.11 0.24 46.88 0.06
BLIVA 30.71 0.22 37.52 0.21 36.68 0.20 35.57 0.25 32.78 0.19 48.71 0.20

Likelihood Evaluation
BLIP-2F 56.31 0.05 89.40 0.03 51.40 0.07 54.10 0.07 12.78 0.01 48.12 0.04

InstructBLIPF 55.23 0.04 81.62 0.02 53.32 0.06 56.34 0.05 12.96 0.03 49.45 0.05
InstructBLIPV 50.44 0.04 88.40 0.03 44.04 0.06 51.20 0.06 14.91 0.02 51.09 0.08

LLaVAV 48.78 0.04 92.56 0.01 51.16 0.05 47.98 0.05 14.35 0.00 54.21 0.06
LLaVAL2 48.51 0.04 48.52 0.06 42.12 0.06 48.52 0.06 13.33 0.02 48.91 0.02
MiniGPT4 52.27 0.03 55.41 0.04 52.03 0.05 55.41 0.04 36.02 0.03 46.88 0.01

mPLUG-Owl 59.98 0.02 88.66 0.02 51.86 0.03 75.08 0.02 20.09 0.05 46.53 0.00
PandaGPT 48.78 0.06 76.86 0.06 43.89 0.08 24.21 0.11 27.03 0.11 48.02 0.00
IB-LLM 48.66 0.03 83.8 0.02 43.18 0.05 48.31 0.04 14.63 0.03 46.53 0.00
LA-V2 30.83 0.09 62.14 0.08 24.49 0.00 47.27 0.08 12.96 0.04 46.53 0.00

mmGPT 41.78 0.04 93.34 0.04 45.02 0.08 41.53 0.06 13.70 0.05 46.53 0.00
Shikra 50.86 0.01 89.70 0.02 47.99 0.10 53.77 0.04 28.70 0.03 57.48 0.04
Lynx 67.73 0.03 87.86 0.03 56.47 0.07 75.85 0.04 20.09 0.07 47.23 0.01

CheetorV 49.36 0.05 87.30 0.03 47.88 0.09 43.06 0.11 22.22 0.10 50.30 0.05
CheetorL2 45.35 0.07 96.88 0.02 38.13 0.09 39.07 0.10 18.89 0.06 46.58 0.02

BLIVA 59.36 0.04 94.78 0.01 58.27 0.04 67.10 0.04 19.35 0.03 48.02 0.03

Table 9: Evaluation results on coarse-grained perception. “Acc” and “Instby” are short for accuracy
and instability, respectively.

performs well on these tasks while BLIP-2 and InstructBLIP perform relatively poorly. However,
BLIP-2 and InstructBLIP are able to distinguish these categories if provided in the question, enabling
them to perform well under generation evaluation.

C.1.2 RESULTS ON FINE-GRAINED PERCEPTION

Tabel 11 and Table 12 provide results of fine-grained perception tasks, including Object Percep-
tion and Object Grounding. For object perception, BLIP-2 and InstructBLIP dominate most tasks,
especially when evaluated with the generation evaluation strategy. Under likelihood evaluation, the
effectiveness of BLIVA is demonstrated, indicating that incorporating patch features helps the model
to perceive fine-grained information. Additionally, Lynx is a strong competitor in object-perception
tasks benefiting from its enhanced visual representations. Considering the results of MSCOCOgoi,
most models are able to solve a part of the questions, indicating that LVLMs are able to understand
the bounding boxes in images and the grounded questions. Bounding box labeling can be an optional
method to provide locality information without the need for understanding continuous input. As for
object grounding, the task is quite difficult for most models. Only BLIP-2 and InstructBLIP perform
well under generation evaluation, but they still struggle under likelihood evaluation. We speculate
that this is because there are only subtle differences between options in these questions, such as “the
person on the left” and “the person on the right”. In generation evaluation, all options are provided
in the context, helping the models with strong instruct understanding abilities to distinguish between
them. As for likelihood evaluation, options are provided to the model separately, models may not be
able to distinguish them effectively.

25



Under review as a conference paper at ICLR 2024

Model
Scene Recognition Avg.

TDIUCsport TDIUCscene MEDICdts
Acc Instability Acc Instability Acc Instability Acc Instability

Generation Evaluation
BLIP-2F 93.75 0.12 88.66 0.04 60.29 0.25 69.44 0.10

InstructBLIPF 93.79 0.12 89.27 0.05 60.76 0.15 71.18 0.07
InstructBLIPV 90.62 0.20 69.78 0.09 52.00 0.13 69.06 0.12

LLaVAV 39.29 1.17 28.47 1.00 34.67 0.48 28.69 0.66
LLaVAL2

74.13 0.51 67.29 0.16 36.00 0.28 48.31 0.23
MiniGPT4 65.41 0.68 58.04 0.40 36.19 0.44 46.19 0.40

mPLUG-Owl 59.54 0.85 58.79 0.64 26.67 0.81 41.95 0.56
PandaGPT 22.39 1.35 38.04 0.86 14.95 0.66 28.19 0.53
IB-LLM 24.59 1.33 45.70 0.59 19.43 0.77 29.23 0.44
LA-V2 42.94 1.11 48.69 0.54 20.76 0.79 33.18 0.48

mmGPT 28.81 1.29 45.23 0.64 15.25 0.87 30.37 0.58
Shikra 78.26 0.43 60.56 0.53 34.00 0.27 47.21 0.22
Lynx 85.69 0.29 69.07 0.15 47.52 0.26 59.49 0.21

CheetorV 76.33 0.47 59.63 0.35 42.38 0.49 52.00 0.29
CheetorL2

53.58 0.92 68.6 0.15 29.71 0.29 46.50 0.27
BLIVA 65.87 0.68 56.73 0.41 30.95 0.41 41.72 0.31

Likelihood Evaluation
BLIP-2F 96.32 0.05 89.90 0.02 48.00 0.05 60.70 0.04

InstructBLIPF 96.9 0.05 91.21 0.01 46.10 0.09 60.35 0.04
InstructBLIPV 97.2 0.04 90.98 0.01 38.57 0.52 58.54 0.10

LLaVAV 92.67 0.11 89.53 0.08 57.62 0.20 60.98 0.07
LLaVAL2 76.33 0.32 80.47 0.19 42.76 0.40 49.94 0.13
MiniGPT4 87.52 0.19 68.88 0.12 39.62 0.37 54.89 0.10

mPLUG-Owl 80.91 0.28 64.02 0.27 34.19 0.28 57.92 0.11
PandaGPT 41.28 0.88 55.98 0.35 14.76 0.67 42.31 0.26
IB-LLM 78.53 0.35 55.61 0.33 26.95 0.25 49.58 0.12
LA-V2 71.28 0.42 63.93 0.22 24.57 0.49 42.67 0.16

mmGPT 82.11 0.27 71.87 0.07 37.24 0.36 52.57 0.11
Shikra 92.11 0.12 85.14 0.06 42.19 0.39 60.88 0.09
Lynx 96.24 0.07 96.63 0.03 46.86 0.31 66.11 0.07

CheetorV 88.81 0.18 77.29 0.08 38.48 0.36 56.08 0.12
CheetorL2 78.90 0.31 72.24 0.06 38.10 0.29 52.68 0.11

BLIVA 96.33 0.05 93.83 0.10 47.14 0.19 64.91 0.06

Table 10: Supplement of Table 9

C.1.3 RESULTS ON SCENE TEXT PERCEPTION

Table 13 and Table 14 provide results of scene text perception, which consists of OCR, Grounded
OCR, KIE and OCR-based VQA tasks. Since the scene text perception task requires the model out-
put to contain the target tokens in the image, only generation evaluation is conducted. InstructBLIP
consistently dominates the OCR task, while mPLUG-Owl and BLIVA take the lead on GroundOCR,
KIE and OCR-based VQA tasks. mPLUG-Owl also performs well on OCR task. OCR-related tasks
depend heavily on the image comprehension capability of visual backbones, hence we attribute the
stable performance of mPLUG-Owl to its special pre-training procedure, as it is the only LVLM that
trains the visual backbone during pre-training. Similarly, BLIVA utilizes additional encoded patch
embeddings to improve the understanding of text within images. Therefore, enhancing the under-
standing and utilization of visual content is key to promoting improvements in scene text perception.

C.1.4 RESULTS ON VISUALLY GROUNDED REASONING

Table 15 and Table 16 provide results of visually grounded reasoning, which consists of VQA and
KVQA. For generation evaluation, BLIP-2F and InstructBLIPF achieve top-2 performance on nearly
all the datasets for VGR tasks. While in likelihood evaluation, InstructBLIPV, Lynx and BLIVA
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Model
Object Perception

TDIUCcolor TDIUCutility TDIUCposition TDIUCdetection TDIUCcounting
Acc Instability Acc Instability Acc Instability Acc Instability Acc Instability

Generation Evaluation
BLIP-2F 73.90 0.45 92.40 0.09 91.55 0.19 99.38 0.02 71.00 0.54

InstructBLIPF 78.22 0.39 95.56 0.03 90.26 0.22 98.77 0.03 73.05 0.50
InstructBLIPV 69.19 0.58 89.01 0.09 81.29 0.42 97.26 0.07 61.76 0.77

LLaVAV 8.25 1.46 57.89 0.80 30.60 1.33 53.29 0.97 23.43 1.43
LLaVAL2

57.02 0.83 85.85 0.20 68.70 0.69 91.78 0.20 43.14 1.10
MiniGPT4 46.48 1.03 72.16 0.51 56.21 0.95 83.77 0.39 42.38 1.12

mPLUG-Owl 28.20 1.32 55.67 0.83 40.86 1.23 60.41 0.89 28.10 1.32
PandaGPT 30.18 1.27 57.19 0.79 27.59 1.38 61.99 0.85 26.52 1.33
IB-LLM 25.17 1.36 42.69 1.04 31.12 1.37 39.93 1.26 28.10 1.33
LA-V2 26.48 1.33 40.58 1.08 29.66 1.40 43.90 1.19 25.10 1.35

mmGPT 27.10 1.32 38.71 1.11 26.29 1.43 38.63 1.27 25.33 1.35
Shikra 39.43 1.15 61.64 0.69 50.43 1.00 61.23 0.85 27.67 0.43
Lynx 68.93 0.61 84.91 0.19 64.31 0.76 91.85 0.2 33.95 1.22

CheetorV 47.10 1.01 78.01 0.34 49.91 1.05 85.34 0.34 35.71 1.22
CheetorL2

54.57 0.84 81.52 0.29 57.76 0.90 84.72 0.37 31.29 1.26
BLIVA 44.28 1.06 61.75 0.68 45.09 1.14 63.49 0.82 41.95 1.13

Likelihood Evaluation
BLIP-2F 79.83 0.34 91.35 0.10 94.66 0.12 98.84 0.03 82.43 0.31

InstructBLIPF 90.46 0.16 93.80 0.07 94.91 0.11 99.45 0.01 82.95 0.29
InstructBLIPV 91.64 0.15 91.35 0.14 95.78 0.10 99.11 0.02 79.86 0.33

LLaVAV 70.44 0.48 83.27 0.12 77.59 0.46 97.05 0.06 62.23 0.59
LLaVAL2

55.72 0.72 82.81 0.21 71.90 0.59 91.10 0.20 74.71 0.44
MiniGPT4 69.92 0.49 86.90 0.13 76.12 0.49 96.37 0.09 73.19 0.46

mPLUG-Owl 57.75 0.68 90.41 0.10 75.69 0.52 93.22 0.15 71.00 0.49
PandaGPT 45.07 0.87 67.95 0.45 47.59 1.02 76.16 0.51 45.19 0.97
IB-LLM 36.14 0.92 82.22 0.25 63.53 0.73 81.16 0.39 23.95 1.09
LA-V2 55.72 0.72 88.70 0.15 69.57 0.64 83.84 0.35 54.33 0.7

mmGPT 44.96 0.85 86.32 0.14 74.74 0.54 95.82 0.10 63.81 0.62
Shikra 58.07 0.67 86.67 0.16 73.10 0.55 88.22 0.25 74.24 0.43
Lynx 82.61 0.31 87.37 0.15 92.84 0.16 98.36 0.04 81.33 0.34

CheetorV 72.74 0.46 82.69 0.16 80.60 0.42 98.08 0.05 70.90 0.49
CheetorL2

61.15 0.64 66.32 0.55 75.43 0.50 92.05 0.18 50.48 0.76
BLIVA 89.87 0.18 92.05 0.07 95.17 0.11 99.25 0.02 82.57 0.29

Table 11: Evaluation results on fine-grained perception.

also exhibit some outstanding performance. As discussed in Section 4.3.4, likelihood evaluation
performances of many models are significantly better than generation.

We also conducted a hierarchical evaluation of LVLMs’ external knowledge incorporation and rea-
soning abilities. Comparing the results of ViQuAE and K-ViQuAE, as well as A-OKVQA and
A-OKVQRA, it is evident that, with the provision of external knowledge, the performance of most
models has significantly improved.

In addition, it can be observed that, except for models based on FlanT5 and LLaMA2-Chat, the
generation performance of other models on the A-OKVQAR dataset is significantly lower than
the likelihood performance. This may be attributed to the fact that the rationale options are often
longer, and for language models with weaker instruction-following capabilities (as mentioned in
Section 4.3.4), memory lapses may occur during generation, thereby affecting performance.

C.1.5 RESULTS ON SPATIAL UNDERSTANDING

Table 17 provides results of the spatial understanding capability dimension, which includes relation
judgment and space-based perception tasks. For generation evaluation, BLIP-2 and InstructBLIP
dominate in most tasks. For likelihood evaluation, although BLIP-2 and InstructBLIP still perform
well, Lynx and BLIVA start to hold leadership positions. We attribute this to the fact that BLIP-2,
InstructBLIP, Lynx and BLIVA uses relatively high-quality MSCOCO data. As the images in VSR
dataset are retrieved from COCO 2017, models tend to have better performance on this dataset.

For the spatial relation judgment task, the performance on the MP3D-Spatial dataset is relatively
poor. We believe the reason for this is that MP3D-Spatial is sampled from real navigation environ-
ments, which are inherently more complex. For space-based perception tasks, likelihood evalua-
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Model
Object Perception Object Grounding Avg.

MSCOCOcount MSCOCOmci MSCOCOgoi MSCOCOmos RefCOCOres
Acc Instability Acc Instability Acc Instability Acc Instability Acc Instability Acc Instability

Generation Evaluation
BLIP-2F 87.48 0.26 82.22 0.09 59.50 0.09 39.11 0.21 69.58 0.20 76.61 0.21

InstructBLIPF 87.25 0.26 84.72 0.08 63.05 0.11 37.65 0.28 72.75 0.12 78.13 0.20
InstructBLIPV 64.02 0.76 83.17 0.17 64.94 0.24 39.27 0.55 57.58 0.24 70.75 0.39

LLaVAV 18.60 1.48 44.88 0.91 29.56 1.14 34.66 0.94 42.41 0.38 34.36 1.08
LLaVAL2

40.78 1.16 64.67 0.48 53.33 0.36 41.54 0.64 50.75 0.30 59.76 0.60
MiniGPT4 35.95 1.24 58.50 0.66 53.06 0.61 41.94 0.68 41.00 0.29 53.15 0.75

mPLUG-Owl 28.07 1.33 31.00 1.02 30.94 1.04 36.60 0.91 32.08 0.78 37.19 1.07
PandaGPT 22.92 1.40 25.11 1.03 25.16 1.01 41.54 0.70 28.08 0.47 34.63 1.02
IB-LLM 28.54 1.32 32.06 0.90 30.67 0.85 40.24 0.89 28.75 0.62 32.73 1.09
LA-V2 26.43 1.34 22.33 1.06 21.11 1.11 42.02 0.72 30.75 0.76 30.84 1.13

mmGPT 22.34 1.40 30.33 1.00 27.56 1.01 41.38 0.75 25.58 0.93 30.33 1.16
Shikra 29.04 1.31 70.50 0.44 54.61 0.57 28.91 0.57 51.75 0.22 47.52 0.72
Lynx 51.07 1.00 73.56 0.37 60.78 0.30 42.19 0.42 54.67 0.40 62.62 0.55

CheetorV 29.63 1.29 49.67 0.78 45.11 0.72 38.78 0.70 43.75 0.52 50.30 0.80
CheetorL2

30.57 1.29 52.16 0.66 43.16 0.66 40.32 0.67 37.42 0.46 51.35 0.74
BLIVA 37.93 1.20 39.94 0.82 32.22 0.89 40.00 0.67 27.58 0.35 43.42 0.88

Likelihood Evaluation
BLIP-2F 77.31 0.41 81.77 0.02 60.39 0.02 39.27 0.02 38.58 0.15 74.44 0.15

InstructBLIPF 73.14 0.48 82.94 0.04 60.44 0.05 42.27 0.06 36.08 0.09 75.64 0.14
InstructBLIPV 89.98 0.17 84.72 0.02 64.94 0.02 43.89 0.04 37.17 0.11 77.84 0.11

LLaVAV 91.07 0.16 76.22 0.12 62.50 0.15 39.92 0.15 43.00 0.15 70.33 0.24
LLaVAL2 89.01 0.20 64.44 0.17 47.44 0.12 40.24 0.13 38.33 0.09 65.57 0.29
MiniGPT4 87.56 0.22 77.11 0.06 58.22 0.06 41.62 0.07 38.50 0.10 70.55 0.22

mPLUG-Owl 89.04 0.20 56.61 0.13 49.56 0.14 38.38 0.10 39.33 0.10 66.10 0.26
PandaGPT 66.04 0.60 32.22 0.29 26.94 0.31 42.11 0.28 24.50 0.13 47.38 0.54
IB-LLM 87.06 0.22 48.61 0.09 41.78 0.13 43.72 0.09 35.92 0.10 54.41 0.40
LA-V2 87.45 0.22 49.83 0.08 46.83 0.16 41.21 0.09 36.67 0.11 61.42 0.32

mmGPT 69.12 0.56 61.56 0.11 52.19 0.37 43.08 0.10 32.33 0.08 62.39 0.35
Shikra 90.21 0.17 51.56 0.10 54.67 0.10 41.70 0.08 49.92 0.11 66.84 0.26
Lynx 88.97 0.18 80.22 0.08 65.28 0.09 42.02 0.12 43.42 0.09 76.24 0.16

CheetorV 77.66 0.40 74.67 0.08 55.67 0.12 43.07 0.14 33.42 0.16 68.95 0.25
CheetorL2 80.16 0.36 67.88 0.09 51.56 0.11 39.92 0.12 32.00 0.13 61.70 0.34

BLIVA 94.04 0.10 84.00 0.03 66.72 0.04 42.35 0.06 35.75 0.13 78.18 0.10

Table 12: Supplement of Table 11

Model OCR Grounded OCR

CUTE80 IC15 IIIT5K COCO-Text WordArt TextOCR gIC15 gCOCO-Text gTextOCR
Generation Evaluation

BLIP-2F 80.07 64.75 72.27 50.54 72.32 68.40 61.43 16.27 32.60
InstructBLIPF 84.17 75.36 83.40 56.66 75.76 74.27 55.24 17.33 32.60
InstructBLIPV 81.60 73.15 77.20 53.00 74.17 70.60 53.33 18.93 32.13

LLaVAV 26.11 23.65 25.73 13.00 34.44 36.00 40.24 17.33 30.00
LLaVAL2 32.15 25.75 27.20 15.83 40.13 39.87 43.57 17.93 32.07
MiniGPT4 71.39 58.90 71.67 40.36 72.45 60.27 44.05 11.00 28.60

mPLUG-Owl 73.68 60.77 74.67 46.39 73.25 64.27 64.52 20.27 34.67
PandaGPT 1.60 1.88 3.13 0.14 5.03 26.87 0.24 0.40 22.73
IB-LLM 11.94 8.95 8.60 2.41 11.66 29.73 6.19 3.33 23.80
LA-V2 36.53 31.82 35.33 17.82 40.13 42.13 47.86 18.07 33.20

mmGPT 26.94 23.09 18.80 13.43 31.13 36.20 26.43 12.73 28.80
Shikra 2.57 4.75 5.07 4.33 9.54 31.13 29.76 5.93 27.53
Lynx 34.03 25.08 20.93 11.51 37.22 36.00 32.86 10.60 30.80

CheetorV 52.50 39.01 53.87 29.73 56.16 52.27 40.00 11.20 28.20
CheetorL2

42.78 31.38 39.20 20.36 34.83 45.40 16.67 6.67 25.13
BLIVA 77.29 68.40 72.47 51.49 71.26 66.93 64.76 21.67 37.27

Table 13: Evaluation results on scene text perception.

tion yields better results than generation evaluation, especially for LLaVA, mPLUG-Owl, LA-V2,
mmGPT, Shikra and Cheetor. This might be attributed to the high demand for spatial reasoning
skills for this task, thereby placing a greater emphasis on the image comprehension abilities of vi-
sual backbones. Most of these models use ViT-L, which lacks robust spatial semantic understanding.

C.1.6 RESULTS ON CROSS-MODAL INFERENCE

Table 18 provides results of the cross-modal inference capability dimension, which includes image-
text matching tasks and visual entailment tasks. For the image-text matching task in MSCOCO, we
consider a one-to-one setup of the naive image-text matching and a one-to-four selection setup of
image-text selection. BLIP-2 and Instruct BLIP perform well in both setups under the generation
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Model KIE OCR-based VQA Avg.
SROIE POIE FUNSD TextVQA DocVQA OCR-VQA

Generation Evaluation
BLIP-2F 1.30 0.76 1.72 21.47 5.39 21.62 38.06

InstructBLIPF 0.87 0.44 2.07 26.76 4.78 28.07 41.19
InstructBLIPV 3.48 0.82 1.72 30.22 6.21 34.37 40.73

LLaVAV 0.00 0.44 1.72 19.02 3.13 5.74 18.44
LLaVAL2 0.00 1.21 1.72 26.31 6.52 12.13 21.49
MiniGPT4 0.29 0.85 2.07 17.29 3.95 12.49 33.04

mPLUG-Owl 4.06 1.58 1.72 30.71 8.40 37.87 39.79
PandaGPT 0.00 0.09 1.72 0.80 2.22 0.00 4.46
IB-LLM 0.00 0.06 1.72 10.09 3.62 0.91 8.20
LA-V2 0.72 3.16 1.72 30.40 8.06 16.40 24.22

mmGPT 0.00 1.33 1.72 21.07 4.78 4.47 16.73
Shikra 0.00 0.82 1.72 1.56 0.19 0.25 8.34
Lynx 0.00 1.58 1.72 24.71 4.11 7.61 18.58

CheetorV 0.14 0.79 1.72 13.16 3.62 7.26 25.90
CheetorL2 0.00 0.57 1.72 11.02 4.11 3.05 18.83

BLIVA 2.61 3.04 3.45 29.69 6.18 34.97 40.77

Table 14: Supplement of Table 13.

Model
VQA KVQA

GQA VQA v2 Whoops OK-VQA ScienceQA VizWiz
Acc Instability Acc Instability Acc Instability Acc Instability Acc Instability Acc Instability

Generation Evaluation
BLIP-2F 62.66 0.18 69.86 0.19 81.96 0.10 68.97 0.23 63.78 0.27 82.13 0.12

InstructBLIPF 66.11 0.19 74.31 0.16 80.04 0.08 70.87 0.15 62.19 0.26 74.90 0.18
InstructBLIPV 59.09 0.31 62.59 0.32 71.96 0.27 63.73 0.36 58.01 0.42 49.37 0.41

LLaVAV 37.26 0.80 46.01 0.55 50.48 0.69 41.59 0.78 46.57 0.63 31.37 0.80
LLaVAL2 52.36 0.43 51.65 0.40 57.14 0.43 54.09 0.57 57.91 0.49 40.32 0.54
MiniGPT4 44.57 0.66 46.49 0.64 47.08 0.78 38.65 0.88 43.78 0.71 35.22 0.83

mPLUG-Owl 34.56 0.89 35.48 0.88 37.44 0.93 33.45 0.97 41.39 0.80 30.63 0.96
PandaGPT 38.07 0.67 37.28 0.68 24.64 0.85 29.80 0.90 44.48 0.69 24.87 0.89
IB-LLM 38.63 0.75 38.56 0.77 27.86 0.95 31.67 0.96 41.49 0.73 26.22 0.97
LA-V2 40.21 0.68 39.27 0.67 34.17 0.94 29.52 1.00 41.59 0.76 28.63 0.93

mmGPT 35.12 0.85 34.47 0.85 27.20 1.01 27.34 1.00 40.10 0.78 23.67 0.95
Shikra 41.69 0.73 44.93 0.67 50.48 0.73 41.15 0.86 38.61 0.72 41.81 0.81
Lynx 55.88 0.47 60.14 0.43 67.02 0.41 55.75 0.55 53.63 0.49 49.65 0.61

CheetorV 46.17 0.58 48.17 0.56 55.71 0.64 43.49 0.78 47.06 0.63 37.59 0.78
CheetorL2

48.39 0.42 45.62 0.43 42.26 0.51 44.64 0.61 56.12 0.50 32.76 0.65
BLIVA 43.40 0.58 50.06 0.01 46.31 0.76 36.75 0.76 42.09 0.65 35.64 0.80

Likelihood Evaluation
BLIP-2F 62.70 0.06 69.37 0.06 70.95 0.04 66.83 0.07 53.93 0.03 76.71 0.08

InstructBLIPF 66.65 0.06 79.67 0.05 68.99 0.04 76.35 0.03 56.32 0.03 62.92 0.04
InstructBLIPV 67.76 0.04 82.92 0.02 72.32 0.02 82.82 0.02 57.91 0.02 57.17 0.03

LLaVAV 54.14 0.12 58.94 0.09 65.36 0.06 62.18 0.11 54.03 0.08 40.28 0.07
LLaVAL2

52.68 0.09 51.81 0.10 60.06 0.06 48.77 0.15 55.22 0.09 47.05 0.09
MiniGPT4 56.10 0.06 56.04 0.06 63.15 0.05 55.08 0.10 51.74 0.04 49.00 0.05

mPLUG-Owl 50.95 0.06 50.53 0.07 60.89 0.05 49.80 0.10 50.25 0.04 44.32 0.09
PandaGPT 41.35 0.20 37.86 0.25 28.69 0.20 36.11 0.24 43.88 0.13 19.12 0.17
IB-LLM 46.86 0.03 47.06 0.03 48.93 0.04 45.52 0.05 54.03 0.03 32.71 0.05
LA-V2 50.29 0.06 47.36 0.05 60.71 0.06 44.60 0.10 50.05 0.03 41.21 0.08

mmGPT 52.86 0.06 48.54 0.06 49.64 0.06 56.43 0.10 49.25 0.03 38.93 0.06
Shikra 57.07 0.09 64.38 0.07 65.83 0.06 59.72 0.08 51.54 0.06 42.00 0.04
Lynx 69.21 0.12 73.82 0.10 73.21 0.05 68.97 0.11 55.52 0.05 79.44 0.04

CheetorV 58.71 0.09 59.70 0.09 62.86 0.08 58.81 0.11 48.26 0.08 44.73 0.13
CheetorL2

53.03 0.08 50.13 0.10 56.55 0.09 50.63 0.13 55.42 0.06 35.96 0.11
BLIVA 67.37 0.05 81.36 0.03 69.88 0.03 78.53 0.03 60.70 0.02 51.32 0.04

Table 15: Evaluation results on visually grounded reasoning.

evaluation. However, the performance is not satisfactory under the likelihood evaluation for image-
text selection, we attribute this to the same reason that is mentioned in the analysis of referring
expression selection in Appendix C.1.2. Unlike MSCOCO, WikiHow considers the scenarios to
match images and abstract instructions, while Winogroud uses negative options with only minor
word-level modifications. These pose significant challenges for the models, resulting in a noticeable
decrease in accuracy. However, InstructBLIP maintains a lead. Regarding the visual entailment task,
apart from the two models based on FlanT5, the performance of the other models is not promising. In
summary, we believe that current LVLMs still have relatively weak capabilities in logical reasoning
and understanding fine-grained textual details.
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Model
KVQA Avg.

ViQuAE K-ViQuAE A-OKVQA A-OKVQRA A-OKVQAR ImageNetVC
Acc Instability Acc Instability Acc Instability Acc Instability Acc Instability Acc Instability Acc Instability

Generation Evaluation
BLIP-2F 44.32 0.37 87.26 0.10 71.40 0.18 85.61 0.07 80.00 0.17 81.72 0.14 73.31 0.18

InstructBLIPF 43.68 0.36 87.10 0.09 77.02 0.17 89.82 0.05 81.23 0.16 79.07 0.14 73.86 0.17
InstructBLIPV 49.76 0.41 80.32 0.26 71.58 0.28 79.47 0.24 47.72 0.61 62.56 0.30 63.01 0.35

LLaVAV 39.52 0.77 50.00 0.73 42.56 0.78 62.11 0.62 31.58 0.83 48.94 0.49 44.00 0.71
LLaVAL2 47.20 0.50 85.00 0.17 60.18 0.47 81.93 0.24 61.93 0.40 66.58 0.30 59.69 0.41
MiniGPT4 32.48 0.91 65.81 0.56 39.65 0.85 59.30 0.67 40.18 0.82 53.81 0.57 45.59 0.74

mPLUG-Owl 31.04 0.99 51.29 0.81 35.26 1.01 41.58 0.88 35.61 0.90 42.65 0.79 37.53 0.90
PandaGPT 39.84 0.74 74.68 0.37 29.82 0.94 63.16 0.62 39.82 0.76 56.81 0.55 41.94 0.72
IB-LLM 29.28 0.97 46.13 0.86 29.65 0.96 54.56 0.76 32.28 1.01 44.32 0.70 36.72 0.87
LA-V2 27.20 1.00 40.32 0.90 31.75 0.99 47.02 0.86 31.93 0.90 43.78 0.56 36.28 0.85

mmGPT 31.04 0.99 45.81 0.90 24.39 1.00 38.42 0.93 25.26 0.95 43.14 0.73 33.00 0.91
Shikra 29.92 0.95 38.71 0.86 41.93 0.83 40.53 0.86 37.19 0.78 47.13 0.65 41.17 0.79
Lynx 39.68 0.65 72.42 0.41 65.09 0.46 79.30 0.28 37.54 0.85 64.08 0.37 58.35 0.50

CheetorV 40.48 0.80 70.00 0.48 41.05 0.76 63.33 0.59 48.42 0.68 56.81 0.51 49.86 0.65
CheetorL2

44.16 0.57 82.26 0.22 48.42 0.54 82.28 0.22 57.37 0.50 68.50 0.26 54.40 0.45
BLIVA 33.92 0.76 45.16 0.85 44.21 0.71 54.74 0.74 31.05 0.77 45.70 0.56 42.42 0.66

Likelihood Evaluation
BLIP-2F 38.72 0.10 87.26 0.01 64.74 0.08 81.58 0.03 84.04 0.01 80.34 0.07 69.76 0.05

InstructBLIPF 33.12 0.05 88.71 0.02 70.88 0.06 79.82 0.03 83.86 0.01 84.47 0.05 70.98 0.04
InstructBLIPV 46.88 0.05 82.26 0.01 78.25 0.01 86.67 0.04 81.40 0.03 85.70 0.02 73.51 0.03

LLaVAV 39.20 0.10 75.00 0.07 59.30 0.09 73.51 0.12 61.40 0.05 63.34 0.07 58.89 0.09
LLaVAL2

35.36 0.17 80.48 0.06 48.25 0.14 64.74 0.09 68.95 0.01 67.17 0.10 56.71 0.10
MiniGPT4 27.68 0.08 73.23 0.03 57.72 0.07 70.35 0.06 64.21 0.03 62.80 0.05 57.26 0.06

mPLUG-Owl 30.24 0.09 78.87 0.08 42.98 0.10 63.51 0.09 67.89 0.02 61.03 0.06 54.27 0.07
PandaGPT 24.64 0.26 77.26 0.07 31.75 0.25 59.30 0.14 61.93 0.05 57.44 0.17 43.28 0.18
IB-LLM 32.80 0.05 67.42 0.08 44.39 0.04 58.42 0.10 66.32 0.04 58.92 0.02 50.28 0.05
LA-V2 39.20 0.05 70.00 0.08 43.51 0.07 70.88 0.07 66.49 0.03 64.28 0.05 54.05 0.06

mmGPT 33.44 0.10 82.58 0.07 49.47 0.09 69.47 0.10 77.54 0.01 66.19 0.05 56.20 0.07
Shikra 35.20 0.10 65.65 0.04 57.72 0.07 64.74 0.11 75.26 0.00 62.56 0.09 58.47 0.07
Lynx 41.92 0.15 80.32 0.05 64.56 0.10 77.02 0.16 78.42 0.01 76.86 0.12 69.94 0.09

CheetorV 34.40 0.10 70.81 0.07 59.12 0.11 70.88 0.09 70.18 0.02 66.29 0.06 58.73 0.09
CheetorL2

37.12 0.13 82.26 0.06 53.33 0.10 73.51 0.08 74.91 0.02 66.78 0.11 57.47 0.09
BLIVA 51.84 0.06 83.87 0.02 80.53 0.03 87.72 0.01 79.12 0.02 82.95 0.04 72.93 0.03

Table 16: Supplement of Table 15.

C.1.7 RESULTS ON VISUAL DESCRIPTION

Table 19 and Table 20 provides image captioning results of the visual description capability dimen-
sion. We choose CIDEr metric to estimate visual description capability while providing BLEU-4,
METEOR and ROUGE-L results for additional references. As mentioned in previous work (Xu
et al., 2023), these datasets require concise captions while most LVLMs tend to generate detailed
descriptions. Therefore, the performance of most models is not satisfying enough. For this task,
PandaGPT always generates a sentence starting with “the image features” and the performance is
limited. At the same time, BLIP-2 dominates the task because BLIP-2 is able to provide short cap-
tions. To adapt to the development of LVLMs, there is a strong need for a benchmark for evaluating
detailed description capabilities.

C.1.8 RESULTS ON MULTI-TURN DIALOGUE

Table 21 provides results of the multi-turn Dialogue task. BLIP-2 and InstructBLIP perform the
best in this task while BLIVA takes second place under likelihood evaluation. For VQA-MT, there
is no inter-turn dependency, and there is no obvious common relationship between the performance
and the number of dialogue turns. However, for VisDial where strong dependencies exist between
the proceeding and following questions, LVLMs generally perform worse in multi-turn dialogues
where models face more complex contexts. Moreover, the performance of LVLMs deteriorates
with the increase in dialogue turns. We hypothesize the reason is that single-turn image-text pairs
dominate the training data of LVLMs. Multi-turn data should be incorporated during training to
further improve existing LVLMs. Additionally, the advantages of some models like BLIVA and
Shikra are only demonstrated with the likelihood evaluation method, this phenomenon has been
discussed in Section 4.3.4

C.2 EFFECT OF IN-CONTEXT SAMPLE

Table 22 provides the complete results for Section 4.3.3. The models that are not previously men-
tioned already possess strong abilities to follow single-choice instructions, either through the intro-
duction of language-only instruction-following data during training (ImageBind-LLM) or through
the inherent abilities of the frozen backbones like Vicuna (Chiang et al., 2023), LLaMA2-Chat (Tou-
vron et al., 2023b), and OpenFlamingo. These models are able to generate option marks for most
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Model
Space-based Perception Spatial Relation Judgment Avg.

CLEVR VSR MP3D-Spatial
Acc Instability Acc Instability Acc Instability Acc Instability

Generation Evaluation
BLIP-2F 42.67 0.28 46.95 0.21 39.87 0.32 43.16 0.27

InstructBLIPF 44.84 0.39 52.37 0.25 41.01 0.37 46.07 0.34
InstructBLIPV 46.32 0.51 52.37 0.49 34.59 0.50 44.43 0.50

LLaVAV 19.01 1.24 40.00 0.88 27.19 1.13 28.73 1.08
LLaVAL2 36.52 0.61 52.54 0.21 34.67 0.64 41.24 0.49
MiniGPT4 33.74 0.84 36.44 0.81 33.62 0.84 34.60 0.83

mPLUG-Owl 27.48 1.01 28.81 0.97 24.23 1.04 26.84 1.01
PandaGPT 29.65 0.90 35.76 0.86 34.50 0.80 33.30 0.85
IB-LLM 31.45 0.96 40.00 0.94 35.22 0.83 35.56 0.91
LA-V2 21.39 1.05 23.05 1.04 27.06 1.01 23.83 1.03

mmGPT 22.26 1.13 28.98 1.01 29.30 0.98 26.85 1.04
Shikra 23.82 0.77 46.27 0.60 29.77 0.84 33.29 0.74
Lynx 40.58 0.68 45.76 0.66 34.38 0.78 40.24 0.71

CheetorV 24.72 1.03 35.76 0.77 31.21 0.88 30.56 0.89
CheetorL2 29.10 0.77 40.85 0.69 33.53 0.73 34.49 0.73

BLIVA 30.64 0.85 35.25 0.61 34.12 0.59 33.34 0.68

Likelihood Evaluation
BLIP-2F 48.78 0.05 61.36 0.11 43.21 0.13 51.12 0.10

InstructBLIPF 48.29 0.08 60.51 0.17 44.82 0.12 51.21 0.12
InstructBLIPV 53.19 0.06 59.15 0.19 44.40 0.16 52.25 0.14

LLaVAV 38.96 0.24 52.54 0.21 35.81 0.31 42.44 0.25
LLaVAL2

45.73 0.22 59.66 0.16 36.66 0.22 47.35 0.20
MiniGPT4 49.37 0.39 57.12 0.17 41.18 0.21 49.22 0.26

mPLUG-Owl 46.14 0.18 59.15 0.17 40.59 0.22 48.63 0.19
PandaGPT 36.67 0.31 52.03 0.29 29.60 0.33 39.43 0.31
IB-LLM 43.39 0.20 54.07 0.16 40.89 0.20 46.12 0.19
LA-V2 42.92 0.14 60.85 0.15 42.16 0.18 48.64 0.16

mmGPT 49.91 0.15 50.85 0.23 40.85 0.20 47.20 0.19
Shikra 42.72 0.11 57.12 0.25 36.62 0.23 45.49 0.20
Lynx 51.77 0.12 66.27 0.13 43.63 0.25 53.89 0.17

CheetorV 48.61 0.20 60.00 0.19 36.49 0.33 48.37 0.24
CheetorL2

47.33 0.20 58.31 0.18 40.34 0.20 48.66 0.19
BLIVA 46.52 0.05 63.39 0.20 45.20 0.18 51.70 0.14

Table 17: Evaluation results on spatial understanding.

questions, however, the in-context samples still assist in addressing issues on the remaining samples.
For qualitative analysis, we provide some examples in Figure 11, the questions are from VQA v2.

C.3 EFFECT OF MODEL PARAMETERS

We also examine the effect of model parameters on different evaluations, and these model parameters
are categorized into four types, including number of total parameters (#oP), number of trainable
parameters (#oTP), number of trainable LLM parameters (#oLTP), and number of visual tokens
(#oVT). According to evaluation results, we consider the score of each model in a single task as an
individual sample. These samples are partitioned into multiple groups based on different parameter
scales and we generate boxplots for each group, shown in Figure 8 and Figure 9.

For the impact of total parameters on evaluation results, we round the parameters into three groups,
including “4B”, “7B”, and “8B”. BLIP-2 and InstructBLIP achieve superior results with fewer pa-
rameters, utilizing FlanT5-XL LLM. Except that, in the range from 7B to 8B, the score exhibits an
increasing tendency with growth in total parameters.

For the effect of trainable parameters, it is observed that trainable parameters range of 100M to 1B
may be an ideal scenario. Further, by analyzing different scales of trainable parameters from 0 to
1B, we conclude that: (1) For models with trainable parameters scales of 0-10M, primarily linear
layers are trained but still achieve competitive results on these evaluation tasks. (2) For models with
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Model
ITM VE Avg.

MSCOCOitm MSCOCOits WikiHow Winoground SNLI-VE MOCHEG
Acc Instability Acc Instability Acc Instability Acc Instability Acc Instability Acc Instability Acc Instability

Generation Evaluation
BLIP-2F 96.40 0.04 97.53 0.02 33.67 0.26 55.25 0.32 72.20 0.15 46.33 0.02 66.90 0.14

InstructBLIPF 97.63 0.02 98.27 0.01 46.87 0.20 64.50 0.25 74.80 0.11 46.09 0.24 71.36 0.14
InstructBLIPV 63.73 0.24 96.33 0.04 33.13 0.17 55.00 0.51 32.33 0.00 42.07 0.19 53.76 0.19

LLaVAV 51.40 0.10 77.67 0.23 29.47 0.47 46.00 0.55 35.87 0.33 43.37 0.31 47.30 0.33
LLaVAL2 52.17 0.01 87.20 0.11 34.00 0.29 49.00 0.42 33.13 0.07 44.02 0.56 49.91 0.24
MiniGPT4 52.20 0.00 61.87 0.26 27.87 0.36 53.00 0.57 37.33 0.29 40.36 0.65 45.44 0.36

mPLUG-Owl 51.63 0.19 42.00 0.68 26.20 0.79 49.50 0.56 36.60 0.62 36.33 0.65 40.38 0.58
PandaGPT 52.10 0.00 22.47 0.36 23.47 0.32 51.50 0.57 34.40 0.06 38.46 0.64 37.06 0.33
IB-LLM 51.87 0.13 29.20 0.43 21.53 0.54 48.75 0.54 32.07 0.54 35.92 0.66 36.56 0.47
LA-V2 52.20 0.00 42.00 0.73 25.93 0.83 48.00 0.54 37.00 0.69 41.24 0.14 41.06 0.49

mmGPT 51.73 0.29 32.00 0.87 24.47 0.86 50.25 0.59 32.33 0.59 38.34 0.57 38.19 0.63
Shikra 30.20 0.13 81.40 0.26 37.07 0.23 51.75 0.58 34.47 0.20 32.35 0.73 44.54 0.36
Lynx 51.13 0.08 91.33 0.12 33.27 0.43 55.25 0.51 50.07 0.41 36.92 0.67 53.00 0.37

CheetorV 53.60 0.08 71.47 0.33 31.40 0.62 53.00 0.52 35.13 0.49 39.88 0.63 47.41 0.45
CheetorL2

52.27 0.02 52.67 0.32 30.40 0.31 50.50 0.49 32.80 0.01 45.44 0.50 44.01 0.28
BLIVA 50.50 0.55 67.27 0.29 30.47 0.33 47.00 0.58 33.80 0.22 42.25 0.47 45.22 0.41

Likelihood Evaluation
BLIP-2F 96.37 0.04 62.07 0.14 32.47 0.06 58.50 0.04 57.73 0.08 46.33 0.09 58.91 0.08

InstructBLIPF 90.97 0.10 50.00 0.09 30.80 0.10 62.75 0.08 54.57 0.12 43.91 0.23 55.50 0.12
InstructBLIPV 87.37 0.19 61.33 0.10 29.67 0.13 68.00 0.04 49.73 0.39 36.27 0.13 55.40 0.16

LLaVAV 48.30 0.01 72.40 0.09 30.47 0.17 63.75 0.06 39.13 0.39 33.96 0.16 48.00 0.15
LLaVAL2

64.13 0.17 66.67 0.07 31.60 0.13 58.00 0.03 37.60 0.07 39.88 0.21 49.65 0.11
MiniGPT4 78.27 0.18 60.13 0.10 30.27 0.11 65.00 0.01 40.73 0.47 31.18 0.41 50.93 0.21

mPLUG-Owl 53.50 0.02 68.53 0.07 31.13 0.09 65.75 0.03 36.87 0.12 42.78 0.34 49.76 0.11
PandaGPT 49.13 0.47 26.27 0.15 26.40 0.21 47.25 0.13 33.80 0.52 38.88 0.40 36.96 0.31
IB-LLM 52.13 0.00 61.87 0.07 29.53 0.11 55.00 0.03 33.60 0.03 41.42 0.04 45.59 0.05
LA-V2 64.50 0.26 60.20 0.07 29.80 0.11 64.00 0.03 39.27 0.42 41.36 0.02 49.86 0.15

mmGPT 52.17 0.00 51.93 0.08 28.53 0.09 58.25 0.10 32.33 0.00 41.54 0.00 44.13 0.05
Shikra 90.63 0.14 78.13 0.08 31.87 0.08 64.25 0.03 49.40 0.10 41.36 0.00 59.27 0.07
Lynx 96.23 0.04 72.73 0.06 33.00 0.09 63.75 0.05 43.00 0.15 35.98 0.17 57.44 0.09

CheetorV 79.07 0.26 58.07 0.17 29.93 0.21 62.00 0.05 40.67 0.54 34.08 0.10 50.64 0.22
CheetorL2

56.13 0.08 63.33 0.10 29.80 0.16 58.50 0.06 34.40 0.05 41.12 0.17 47.21 0.10
BLIVA 83.30 0.27 59.33 0.14 31.40 0.12 63.75 0.10 42.40 0.19 42.25 0.25 53.74 0.18

Table 18: Evaluation results on cross-modal inference.

Model Image Captioning Avg.
COCO TextCaps NoCaps Flickr30K

BLIP-2F 97.48 41.56 83.57 74.63 74.31
InstructBLIPF 54.79 16.38 45.31 58.63 43.78
InstructBLIPV 30.97 17.16 30.18 30.77 27.27

LLaVAV 47.16 21.79 42.43 35.78 36.79
LLaVAL2 50.74 24.49 45.44 37.45 39.53
MiniGPT4 57.20 29.19 58.71 44.71 47.45

mPLUG-Owl 59.36 24.25 48.43 46.61 44.66
PandaGPT 2.24 0.95 1.12 1.93 1.56
IB-LLM 38.15 16.45 32.83 23.14 27.64
LA-V2 44.60 22.10 41.06 36.08 35.96

mmGPT 35.50 18.68 33.20 23.45 27.71
Shikra 41.01 19.76 37.42 28.91 31.78
Lynx 80.04 34.43 77.31 51.04 60.71

CheetorV 86.90 32.70 73.99 52.88 61.62
CheetorL2 72.80 21.64 44.39 36.63 43.86

BLIVA 62.23 36.72 64.21 46.90 52.51

Table 19: Evaluation results on visual description based on CIDEr.

10-100M trainable parameters, all of them implement LoRA or bias-tuning, and these parameter-
efficient fine-tuning approaches even have negative impacts on generation and likelihood tasks. (3)
For models with 100M-1B trainable parameters, Q-Former or Perceiver are trained and applied as
connection modules, which enhance the capacity of models across various tasks.

In the context of LLM trainable parameters, fine-tuning all the parameters of LLMs or adding an
additional small amount of trainable parameters to the LLMs does not contribute to the overall per-
formance of LVLMs. However, adding a sufficient and appropriate number of trainable parameters
to the LLM may have the potential to improve models’ performances on visual language tasks.

With regard to the number of visual tokens shown in Figure 9, the model’s performance shows a
decline with a visual token count of 1 and 10, performs optimally at 32 but deteriorates when further
increased to 64 or 256, which still outperforms models with only 1 or 10 visual tokens. This indi-
cates that a marginal increase in the number of visual tokens may be beneficial for enhancing model
performance. However, the observed outcomes that poor performance exhibited by models with
1-10 VT are attributed to the joint influence of two factors: the use of ImageBind visual encoder and
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Model
Image Captioning

COCO TextCaps NoCaps Flickr30K
BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L

BLIP-2F 30.14 26.71 49.57 16.84 18.95 34.26 37.18 27.09 49.34 23.63 23.37 44.24
InstructBLIPF 14.24 18.85 34.98 2.74 10.63 18.58 15.59 17.60 32.94 19.07 20.51 38.34
InstructBLIPV 5.91 13.09 23.96 3.30 10.51 18.19 7.71 13.48 25.13 6.26 12.09 24.90

LLaVAV 14.48 20.47 34.87 6.86 15.34 25.99 17.39 21.67 36.27 11.76 21.87 33.10
LLaVAL2

14.85 21.26 37.98 8.25 16.32 28.33 18.31 22.50 39.15 13.93 22.22 35.90
MiniGPT4 18.31 22.47 37.65 9.66 17.34 29.22 22.84 24.99 40.83 13.82 22.28 34.48

mPLUG-Owl 18.30 21.55 40.19 7.32 15.56 27.21 17.35 21.68 37.66 16.57 23.34 39.93
PandaGPT 1.31 8.77 21.34 1.38 7.85 20.89 1.74 8.98 22.38 0.00 7.44 17.62
IB-LLM 11.27 18.76 32.30 5.14 13.79 24.66 12.53 18.79 32.56 6.91 17.10 27.73
LA-V2 13.06 19.78 33.51 6.82 15.47 25.59 15.45 21.32 35.61 10.93 21.82 32.29

mmGPT 9.08 16.89 29.89 4.66 13.74 23.89 10.90 18.29 31.44 7.61 18.19 27.91
Shikra 12.47 19.30 31.65 6.25 14.92 23.35 13.68 20.51 32.70 9.47 20.77 28.40
Lynx 24.00 24.80 44.37 13.08 18.25 33.45 30.52 26.26 47.30 18.96 22.31 37.72

CheetorV 28.12 26.01 50.55 12.51 17.88 33.34 31.96 26.66 49.99 22.71 25.23 43.47
CheetorL2

23.03 23.44 46.47 8.53 15.13 28.66 17.87 20.34 39.27 14.33 21.45 39.13
BLIVA 11.57 20.76 35.67 12.04 18.73 30.67 21.89 23.06 40.63 8.40 19.32 33.10

Table 20: Evaluation results on visual description based on BLEU-4, METEOR and ROUGE-L.

Model VQA-MT VisDial Avg.
Acc Instability Corr Acc Instability Corr Acc Instability

Generation Evaluation
BLIP-2F 67.97 0.20 -0.26 55.53 0.24 -0.93 61.75 0.22

InstructBLIPF 68.67 0.19 -0.57 52.51 0.24 -0.84 60.59 0.22
InstructBLIPV 56.58 0.48 -0.65 40.68 0.61 -0.97 48.63 0.55

LLaVAV 40.06 0.76 0.16 31.15 0.77 -0.92 35.61 0.77
LLaVAL2 50.47 0.54 -0.68 42.11 0.46 -0.82 46.29 0.50
MiniGPT4 43.98 0.23 -0.31 35.05 0.66 -0.89 39.52 0.45

mPLUG-Owl 38.66 0.77 0.71 31.85 0.80 -0.83 35.23 0.79
PandaGPT 34.73 0.64 0.22 33.44 0.63 -0.68 34.09 0.64
IB-LLM 37.24 0.66 0.14 33.26 0.69 -0.78 35.25 0.68
LA-V2 38.88 0.72 -0.04 32.00 0.76 -0.85 35.44 0.74

mmGPT 34.92 0.80 0.86 28.75 0.90 -0.57 31.84 0.85
Shikra 43.33 0.67 0.68 27.12 0.91 -0.93 35.23 0.79
Lynx 54.59 0.38 -0.71 39.43 0.60 -0.84 47.01 0.49

CheetorV 44.40 0.55 -0.57 36.14 0.59 -0.89 40.27 0.57
CheetorL2 41.36 0.49 -0.72 39.80 0.39 -0.74 40.58 0.44

BLIVA 48.83 0.57 -0.08 30.80 0.75 -0.95 39.82 0.66

Likelihood Evaluation
BLIP-2F 71.52 0.04 -0.10 53.62 0.04 -0.06 62.57 0.04

InstructBLIPF 77.06 0.06 0.23 57.34 0.04 -0.67 67.20 0.05
InstructBLIPV 78.06 0.04 -0.21 59.30 0.04 -0.66 68.68 0.04

LLaVAV 61.32 0.05 0.47 43.24 0.04 -0.83 52.28 0.05
LLaVAL2

56.24 0.06 0.65 40.97 0.03 -0.46 48.61 0.05
MiniGPT4 63.97 0.06 0.67 44.14 0.05 -0.54 54.06 0.06

mPLUG-Owl 52.38 0.04 0.68 38.57 0.03 -0.69 45.48 0.04
PandaGPT 43.71 0.18 0.91 39.21 0.09 0.42 41.46 0.14
IB-LLM 43.11 0.03 0.50 35.86 0.02 -0.61 39.49 0.03
LA-V2 47.29 0.08 0.55 39.49 0.04 -0.30 43.39 0.06

mmGPT 47.52 0.06 -0.55 38.57 0.03 -0.69 43.05 0.05
Shikra 69.15 0.06 0.29 49.76 0.03 -0.65 59.46 0.05
Lynx 67.75 0.08 0.29 52.22 0.05 -0.70 59.99 0.07

CheetorV 66.01 0.06 0.53 49.22 0.06 0.29 57.62 0.06
CheetorL2

51.86 0.10 -0.69 41.82 0.05 -0.78 46.84 0.08
BLIVA 77.92 0.05 0.18 58.24 0.04 -0.65 68.08 0.05

Table 21: Evaluation results on multi-turn Dialogue. “Corr” represents the correlation coefficient
between the model performance and the number of dialogue turns.

the restricted number of visual tokens. Since there are only three models in this range and two of
them utilize the ImageBind encoder, distinguishing whether the observed degradation is primarily
attributable to the suboptimal performance of the ImageBind encoder or limited visual tokens re-
mains uncertain. Moreover, increasing the number of visual tokens from 32 does not inherently lead
to augmented model capability.

C.4 EFFECT OF DATASET

High-Quality Pre-training Dataset To quantitatively assess the impact of the COCO dataset dur-
ing the pre-training stage, we conduct an evaluation using two groups of models, one group includes
three models (BLIP2, mPlug-Owl, and Lynx), while the other group consists of two models (LLaVA
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Backbone FlanT5-xl LLaMA-7B Vicuna-7B
Model BLIP-2 InstructBLIP ImageBind-LLM LA-V2 mPLUG-Owl Cheetor BLIVA InstructBLIP

Hit Rate 100.0 99.99 99.94 85.14 62.86 99.97 99.77 99.99
Hit Rate+ 100.0 100.0 100.0 100 100 100.0 100.0 100.0

Backbone Vicuna-7B Vicuna-7B+ Vicuna-7B+∆ LLaMA2-7B-Chat OpenFlamingo
Model MiniGPT-4 LLaVA Shikra Lynx PandaGPT LLaVA Cheetor mmGPT

Hit Rate 100.0 85.32 65.42 94.41 99.41 100.0 99.31 95.71
Hit Rate+ 100.0 100.0 97.72 100.0 99.97 100.0 100.0 99.97

Table 22: Complete results for Table 3. “+∆” represents delta tuning with parameter-efficient mod-
ules like LoRA and adapters.
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Figure 8: Performance under different numbers of total parameters (#oP), trainable parameters
(#oTP), and LLM trainable parameters (#oLTP). Note that, regarding the “# of Total Parameters
(#oP)”, models around 4B parameters include only BLIP2-FlanT5-XL and InstructBLIP-FlanT5-
XL.

and MiniGPT4) not trained with COCO. For fair evaluation, we choose 6 in-domain tasks (con-
taining images from COCO) and 6 out-domain tasks (not containing images from COCO) across
perception and cognition capacity. To mitigate the influence of score fluctuations across tasks, we
utilize the average rank within each group as a metric to evaluate their collective performance on
particular tasks. The selected tasks and the average rank for each group are listed in Table 23.

Scaling Up Pre-Training Dataset To explore the influence of high-quality pre-training data, we
select two groups of models: one group (including LLaVAV , MiniGPT4, ImageBind-LLM, and
mPLUG-Owl) utilizes data filtered based on rules or CLIP like CC (Sharma et al., 2018) and
LAION (Schuhmann et al., 2021), while the other group (including LA-V2, Shikra, BLIP2, and
Lynx) is pre-trained using relatively high-quality data like COCO (Chen et al., 2015) and BlipCap-
Filt (Li et al., 2022) as indicated in Table 8.

Instruct-Tuning Dataset Based on the data in Table 8, we calculate the number of instruction-
tuning samples for each model and plot the relationship between the number of instruction-tuning
samples and the average rank.
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Figure 9: Performance under different numbers of visual tokens (#oVT). It is noteworthy that the
group of 1-10VT consists of only two models with 1 visual token (1VT) and one model with 10
visual tokens (10VT). Specifically, 1VT models encompass PandaGPT and IB-LLM, where both of
them apply an ImageBind visual encoder.

Model Group In-Domain Task
MSCOCOmci MSCOCOgoi COCO-Caption Flickr30K MSCOCOitm MSCOCOits

Pre-Training w. COCO 6 5.67 8 7.33 6.33 5
Pre-Training w.o. COCO 6.5 5.5 8.5 9 12 7

Model Group Out-Domain Task
Pets37 Flowers102 Visdial NoCaps Wikihow Winoground

Pre-Training w. COCO 3.67 3.33 7.33 7.67 6.67 3.33
Pre-Training w.o. COCO 8 7 10.5 7.5 8.5 4.5

Table 23: Average rank of model groups in in-domain and out-domain tasks.

C.5 INSTABILITY

Table 24 provides the complete results of models’ instability caused by different perturbations. Un-
der the generation evaluation, all models are most sensitive to the order of options, followed by
the option marks, and lastly, random instructions. FlanT5 models are the most stable models under
the generation evaluation, showing that FlanT5 can well comprehend the multiple-choice questions.
For likelihood evaluation, all models are stable since the evaluation strategy directly utilizes the
characteristics of generative models.

To further perceive the influence of instruction perturbation on the answer accuracy, we analyze the
above instruction perturbation results. As we employ different instructions to describe the same task,
the accuracy of samples that follow each instruction can be calculated. For the accuracy of each in-
struction, we adopt the difference between the maximum and minimum accuracies to represent the
model’s instability level towards the instruction. The results are shown in Table 25. We discover
that all models exhibit some fluctuations in accuracy, illustrating that LVLMs are sensitive to de-
signed prompts. However, the fluctuations in accuracy under generation and likelihood evaluation
of most LVLMs are both within an acceptable range. There are still models exhibiting fluctuations
in accuracy exceeding 10%, indicating the restricted instruction-following capabilities of LVLMs.
In general, LVLMs require further improvements to enhance its ability to understand and follow
diverse instructions.
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Model Generation Likelihood

Instruct Option
Order

Option
Mark Instruct

BLIP2F 0.029 0.276 0.107 0.037
InstructBLIPF 0.028 0.242 0.105 0.028
InstructBLIPV 0.038 0.414 0.182 0.018

LLaVAV 0.197 0.606 0.299 0.105
LLaVAL2 0.141 0.464 0.178 0.090
MiniGPT4 0.113 0.647 0.194 0.043

mPLUG-Owl 0.330 0.706 0.406 0.046
PandaGPT 0.125 0.592 0.198 0.117
IB-LLM 0.159 0.702 0.498 0.024
LA-V2 0.382 0.682 0.518 0.032

mmGPT 0.578 0.763 0.601 0.030
Shikra 0.028 0.617 0.206 0.054
Lynx 0.069 0.375 0.195 0.052

CheetorV 0.177 0.666 0.356 0.076
CheetorL2 0.051 0.476 0.163 0.058

BLIVA 0.128 0.610 0.204 0.023

Average 0.161 0.552 0.276 0.049

Table 24: Instability of models caused by different random perturbations.

Model Generation Likelihood
BLIP2F 6.47 6.96

InstructBLIPF 3.48 5.97
InstructBLIPV 4.48 5.97

LLaVAV 3.48 6.47
LLaVAL2

1.99 7.46
MiniGPT4 3.48 5.97

mPLUG-Owl 4.98 6.47
PandaGPT 5.47 6.47
IB-LLM 7.46 3.98
LA-V2 3.48 3.98

mmGPT 10.45 4.48
Shikra 12.94 2.99
Lynx 6.97 9.95

CheetorV 3.48 5.97
CheetorL2

6.47 7.46
BLIVA 1.99 9.95

Average 5.44 6.28

Table 25: The difference between the maximum and minimum accuracies of all instruction groups.
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C.6 OPTION PREFERENCE

Option preference is a phenomenon in our benchmark that when uncertain about the answer, LVLMs
prefer a particular option regardless of options’ content. We verify the option preference inside the
LVLMs in Figure 10. It has been observed that ImageBind-LLM, Shikra, and BLIVA exhibit a
preference for option “A” when confronted with uncertainty. MiniGPT4, mPLUG-Owl, PandaGPT,
LA-V2 and mmGPT show a strong preference for option “B”. Other LVLMs show no obvious
preference in this task. It’s worth noting that predicted choice distribution under the likelihood
evaluation method has no preference, as all options are considered in an unordered state.

The phenomenon of option preference contributes to the instability from random option order but
reduces that from random instruction and option mark (as mentioned in Section 4.3.5). Concretely,
when LVLMs are uncertain about answers, they select the ceratin option repeatedly for the essen-
tially identical questions. As the option contents have been shuffled in random option mark mode,
the LVLMs are regarded as selecting distinct answers. Regarding random instruction and option
mark situations, LVLMs are firm in their answers regardless variation of question form.
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Figure 10: The choice distribution of ground-truth answers and prediction of all LVLMs in COCO
image text selection task under generation method.
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What color is the wall? Options: (A) 
yellow; (B) red; (C) green; (D) pink.

D: pink

(D) pink

+ in-context 
sample

Are these planes parked? Options: 
(A) yes; (B) no.

No. The planes are 
not parked. They …

(B) no. The plane 
are flying in …

+ in-context 
sample

What is above the fireplace? 
Options: (a) bookshelf; (b) painting; 
(c) clock; (d) tv.

d. There is a flat-
screen tv …

(d) tv. The fireplace
has a flat-screen …

+ in-context 
sample

Is it daytime? Options: 
(A) no; (B) yes

no

(A)

+ in-context 
sample

Which decade were these devices 
made in? Options: (A) 2000; (B) 
1970; (C) 1960; (D) 1990

1960, as the image 
shows a book from 
1960 with picture…

(A) 2000

+ in-context 
sample

How many people are wearing 
glasses? Options: (A) 4; (B) 3; 
(C) 2; (D) 5

The answer is 3. The 
image shows 3 

people wearing…

The answer is (C) 2

+ in-context 
sample

(a) mPLUG-Owl (b) LA-V2

(c) Shikra (d) Lynx

(e) LLaVA (f) mmGPT

Figure 11: Case study of the effect of in-context samples, the instruction used is “Take a close look
at the image and question, and then choose the correct option” which is omitted for simplicity.
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Model
Generation Evaluation Likelihood Evaluation

Perception Cognition
R

Perception Cognition
R

CG FG STP Spatial VGR Dialog CMI Desc CG FG Spatial VGR Dialog CMI

BLIP-2F 74.6 67.1 43.4 43.2 71.8 55.5 45.1 83.6 2 62.0 64.7 51.1 66.2 53.6 45.8 5
InstructBLIPF 76.4 68.2 46.2 46.1 70.4 52.5 52.5 45.3 2 59.8 64.7 51.2 66.3 57.3 45.8 4
InstructBLIPV 73.0 62.9 44.9 44.4 64.5 40.7 43.4 30.2 4 57.2 70.9 52.3 69.0 59.3 44.7 3

LLaVAV 27.7 31.9 19.9 28.7 47.1 31.2 39.6 42.4 12 61.7 67.4 42.4 59.4 43.2 42.7 8
LLaVAL2

42.2 50.1 22.6 41.2 62.8 42.1 42.3 45.4 5 47.1 60.3 47.4 59.7 41.0 43.2 10
MiniGPT4 41.6 47.4 38.4 34.6 48.6 35.1 40.4 58.7 7 50.7 66.1 49.2 55.7 44.1 42.2 9

mPLUG-Owl 35.9 31.7 43.0 26.8 40.8 31.9 37.3 48.4 11 64.5 58.4 48.6 56.3 38.6 46.6 9
PandaGPT 26.2 28.7 4.8 33.3 48.1 33.4 37.8 1.1 13 41.2 41.8 39.4 46.4 39.2 37.5 16
IB-LLM 23.6 32.9 8.9 35.6 37.8 33.3 35.4 32.8 13 51.9 55.3 46.1 52.4 35.9 42.0 14
LA-V2 25.4 28.0 25.2 23.8 37.4 32.0 38.4 41.1 13 41.2 56.3 48.6 56.9 39.5 45.1 11

mmGPT 23.7 30.4 18.0 26.9 37.5 28.8 37.7 33.2 14 53.5 56.5 47.2 56.2 38.6 42.8 12
Shikra 42.2 45.8 9.0 33.3 41.0 27.1 40.4 37.4 11 59.1 59.5 45.5 56.2 49.8 45.8 9
Lynx 60.5 56.9 20.0 40.2 59.4 39.4 41.8 77.3 5 69.6 69.1 53.9 65.6 52.2 44.2 4

CheetorV 50.4 40.8 30.0 30.6 54.0 36.1 41.4 74.0 7 54.6 62.8 48.4 56.5 49.2 42.0 10
CheetorL2

43.7 41.6 22.2 34.5 58.7 39.8 42.1 44.4 7 54.9 59.9 48.7 59.6 41.8 43.1 9
BLIVA 33.7 37.5 44.6 33.3 42.6 30.8 39.9 64.2 9 67.1 71.8 51.7 69.9 58.4 45.8 2

Table 26: General zero-shot evaluation results of LVLMs across capability dimensions. “CG”, “FG”,
“CMI”, and “Desc” are respectively short for coarse-grained perception, fine-grained perception,
cross-modal inference, and description. “R̄” represents the average rank across dimensions.

D ASSESSMENT OF ZERO-SHOT CAPABILITIES

D.1 SUB-BENCHMARK CONSTRUCTION

In addition to evaluating with the complete data in ReForm-Eval, we introduce two data selection
strategies to construct sub-benchmarks from the complete data. This allows users to assess LVLMs
from specific perspectives to meet different evaluation requirements.

The first strategy is model-oriented, designed to assess the zero-shot capabilities of models. Specif-
ically, given the models and their corresponding training datasets, we filter out the overlapping parts
in ReForm-Eval, retaining only the commonly held-out benchmark datasets for assessment.

The second strategy is user-oriented. Users can select one or more of the 61 benchmarks included
in ReForm-Eval to construct a specific sub-benchmark based on the dimensions of abilities, tasks,
or other requirements. For example, a biologist might select Flowers102 and Pets37 to construct a
sub-benchmark for animal and plant recognition.

D.2 EXPERIMENTAL SETUP

In order to assess the zero-shot capabilities of LVLMs, we follow the first strategy introduced in Ap-
pendix D.1 to automatically construct a sub-benchmark based on ReForm-Eval, excluding held-in
datasets used in the training processes of the 16 compared models. Specifically, we exclude the fol-
lowing benchmarks: ImageNet, TDIUC, TextVQA, SNLI-VE, GQA, VizWiz, and Flickr30K (used
by Lynx); refCOCO (used by Shikra); OK-VQA, VQA v2, OK-VQA, A-OKVQA, A-OKVQRA,
A-OKVQAR, VQA-MT, and TextCaps (used by InstructBLIP, Lynx, and BLIVA); COCO image
captioning, COCO-ITM, and COCO-ITS that are based on the caption data in MS-COCO (used
for pre-training most LVLMs). Benefiting from the richness and ample data in ReForm-Eval, the
constructed sub-benchmark still provides sufficient evaluation data for each dimension.

D.3 GENERAL PERFORMANCE

Table 26 presents the comprehensive zero-shot performance of LVLMs. compared to results pro-
vided in Table 1, the average ranks of models show little difference and similar trends can be ob-
served. (1) In the black-box generation evaluation, InstructBLIP and BLIP-2 show clear advan-
tage and hold the top-2 positions in most dimensions, followed by Lynx and LLaVAL2

, which also
perform well. In the white-box likelihood evaluation, BLIVA excels in many dimensions and the
average rank, while InstructBLIP, BLIP-2, and Lynx emerge as strong competitors. (2) Some mod-
els exhibit performance differences under the two evaluation strategies, particularly noticeable for
LLaVAL2

and BLIVA. We also investigate the phenomenon from the perspective of the models’
instruction-following abilities in Appendix D.4. (3) Compared to models based on CLIP visual
encoders, PandaGPT and IB-LLM, which are based on the ImageBind encoder, exhibit relatively
poorer performance in image-text tasks. Meanwhile, most top-performing models utilize Vicuna
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(a) Generation (b) Likelihood
Figure 12: The influence of different language and visual backbones. For generation evaluation, we
average the results of various models based on the backbone used. To better visualize the results, we
selected heatmaps across six dimensions (dialog and desc are omitted). For likelihood evaluation,
we further compute the average score across dimensions since the performance trend is consistent.
Note that “ImgBD” is short for ImageBind in this figure.

Visual Backbone ImageBind ViT-G ViT-L
Connection Arch BindNet+Gate Linear Perceiver Q-Former Adapter Linear Perceiver

Generation Perception 21.8 19.9 45.8 49.0 26.2 32.4 30.5

Cognition 35.0 30.8 51.6 47.8 34.5 40.1 34.9

Likelihood Perception 28.2 27.4 58.7 54.2 26.7 40.0 30.4

Cognition 35.5 38.2 45.2 45.5 32.9 39.7 33.4

Table 27: Average evaluation performance categorized by connection modules (see Table 7 for more
details) and visual backbones under generation and likelihood strategy.

and FlanT5 as the backbone. (4) Apart from the architecture, a common characteristic among BLIP-
2, InstructBLIP, Lynx, and BLIVA is the use of relatively high-quality data during pre-training.

D.4 COMPREHENSIVE ANALYSIS

Model Architecture Since the performance of most models on the held-out datasets is consistent
with that on the complete datasets, the conclusions in this part do not change. Figure 12 and Table 27
demonstrate that, language backbones are supposed to possess strong instruction-following capabil-
ities. As for visual backbones, it’s advisable to choose ViT-G and carefully select a connection
module compatible with the corresponding visual backbone.

Effect of Dataset Figure 13 analyzes the influence of datasets in the pre-training and instruct-
tuning stages. We conclude that the usage of high-quality pre-training data like human-annotated
MSCOCO (Lin et al., 2014) and synthetic captions from BLIP (Li et al., 2022) benefits the perfor-
mance. Moreover, the more instruction-tuning data used, the better the model performance is.

Generation v.s. Likelihood Evaluation As shown in Figure 14, likelihood evaluation yields bet-
ter results than generation evaluation in most cases, even when LVLMs are guided through in-context
learning. This indicates that most LVLMs have limited instruction-following capability, further hin-
dering downstream performance. To address the issue, LVLMs should leverage stronger backbones
or introduce sufficiently diverse data for instruct tuning, as done in FlanT5. Besides, the comparison
between Vicuna and Vicuna+ demonstrates that multi-modal instruct tuning the backbone currently
can not improve the instruction-following capability of LVLMs.

D.5 COMPLETE v.s HELD-OUT DATA

To directly investigate the differences in model performance evaluated with the complete ReForm-
Eval benchmark and with only commonly held-out datasets, we present the average scores and
ranks of each model in Table 28 under both scenarios. Firstly, we observe that after removing the
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Figure 13: The influence of datasets in the pre-training and instruct-tuning stages. (a) compares
the average rank of models pre-trained with and without the MSCOCO dataset. (b) shows the
relationship between the scale of pre-training data and the average performance score of models
grouped by data quality. (c) shows the relations between the number of instruct-tuning samples and
the average score. The shaded area represents the 95% confidence interval.
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Figure 14: Performance gap of models under different evaluation strategies, grouped and averaged
based on the language backbone. The vertical axis indicates how much the likelihood evaluation
surpasses the generation evaluation, truncated for simplicity. “+” indicates fine-tuned backbones.

held-in dataset, the average scores of all models have decreased. This overall trend indicates that
the commonly held-out datasets tend to be more challenging. For a relative comparison between
LVLMs, we find that the average ranks of each model do not change significantly. Models like
BLIVA, Lynx, and InstructBLIP have slightly higher ranks with the complete dataset, reflecting the
impact of instruct tuning, but the differences are not substantial. The relative ranking trends of the
compared models are not significantly affected. In conclusion, we believe that the evaluation results
with the complete data and zero-shot evaluation show strong consistency. We attribute this to (1) data
in ReForm-Eval has been re-formulated into different formats, weakening the correlation between
evaluation data and instruct tuning data; (2) the rich and diverse datasets covered by ReForm-Eval,
with a sufficiently large volume of data, preventing the results from being heavily influenced by
individual parts. Hence, Reform-Eval benchmark is versatile and fair for evaluating LVLMs.

E IN-DEPTH ANALYSIS OF REFORM-EVAL BENCHMARK

E.1 INFLUENCE OF SAMPLING METHODS

Here we clarify the sampling method used in this paper. Since the Reform-Eval covers 61 bench-
marks and contains more than 500,000 evaluation samples, we employ a balanced sampling strategy
to ensure the sampled subsets maintain similar characteristics of original benchmarks, thereby en-
hancing the robustness of the evaluation. Within each benchmark, we perform a balanced sampling
based on the distribution of the original data, at a rate of 10% except for three cases: (1) when the
size of the original benchmark is less than 1000, we keep the whole benchmark for a stable evalua-
tion; (2) when the original benchmark has more than 10,000 evaluation samples, we filter the data
and then conduct the sampling process; (3) for benchmarks used in Multi-turn Dialogue dimension,
we retain all evaluation samples as the total sample volume is moderate in this dimension (∼3000).
It is worth noting that our calculation method is to first compute the scores of the models on each
evaluation benchmark and then average across the benchmarks to obtain the final score, rather than
mixing all the evaluation benchmarks together and then computing the overall score on the mixed
dataset. Therefore, such sampling methods guarantee that the results on each evaluation benchmark
are stable and reliable, leading to relative fairness and balance across all benchmarks.
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Model Held-Out Data Complete Data

Avg. Rank Avg. Score Avg. Rank Avg. Score

BLIP-2F 2.00 56.10 2.25 62.94
InstructBLIPF 2.13 57.20 2.00 60.77
InstructBLIPV 4.38 50.48 4.38 52.20

LLaVAV 11.63 33.56 11.13 34.24
LLaVAL2 5.38 43.60 5.88 45.78
MiniGPT4 7.13 43.08 7.25 43.12

mPLUG-Owl 11.13 36.98 10.63 37.95
PandaGPT 12.63 26.68 13.88 26.84
IB-LLM 12.75 30.03 13.00 30.24
LA-V2 13.00 31.41 12.50 32.60

mmGPT 14.13 29.51 14.38 29.38
Shikra 11.13 34.52 11.00 36.14
Lynx 5.38 49.44 5.00 50.00

CheetorV 7.13 44.67 6.75 44.74
CheetorL2 7.13 40.86 7.88 41.75

BLIVA 9.00 40.84 7.88 42.40

Table 28: General black-box evaluation results of LVLMs with different data. Ranks and scores are
averaged across all evaluation dimensions.

Dataset Metric Generation Likelihood
1% 2% 10% 20% 100% 1% 2% 10% 20% 100%

VQAv2 ρ 0.9861 0.9948 0.9989 0.9996 1 0.9689 0.9857 0.9970 0.9991 1

d̄ 3.15 1.71 0.56 0.37 0 2.65 2.12 0.87 0.50 0

Flowers102 ρ 0.9575 0.9559 0.9794 0.9336 1 0.7984 0.7861 0.9131 0.9727 1

d̄ 8.57 9.03 4.38 1.70 0 12.18 10.69 3.25 2.93 0

Table 29: Evaluation results under different sampling ratios on the VQAv2 and Flowers102 bench-
mark. We derive the results of different models on test sub-benchmarks under each sampling ratio,
and calculate the correlation coefficient ρ and average absolute deviation d̄ of these results compared
to the results on the complete test benchmark.

We further analyze whether the shrink or expansion of the dataset size will change the evaluation
results. We conduct several experiments on the VQAv2 benchmark and Flowers102 benchmark
(the evaluation sample size is 21441 and 818, respectively) in the Coarse-Grained Perception and
Visually Grounded Reasoning dimensions. Table 29 demonstrates that the more data sampled, the
better the stability of the results, and the more consistent they are with the evaluation on the com-
plete dataset. A 10% sampling ratio can achieve a good balance between evaluation efficiency and
consistency.

Moreover, for larger datasets, the sampling ratio has little impact on the results; for smaller datasets,
the sampling ratio greatly affects the results (see Table 30). Therefore, we generally perform bal-
anced distribution sampling for larger datasets and retain the entire dataset for smaller datasets.

E.2 INFLUENCE OF NEGATIVE OPTIONS

As we mentioned in Section 3.1, how to efficiently and effectively construct negative options is the
key aspect in creating reasonable multiple-choice questions. In ReForm-Eval, different approaches
are adopted for classification tasks and open-ended QA tasks. In this section, we elaborate on the
rationale behind each construction method for these two types of tasks.

E.2.1 THE NUMBER OF NEGATIVE OPTIONS

As for classification tasks, each dataset provides a fixed set of labels, restricting the output space.
In order to maintain consistency with the original formulation, we do not generate new candidate
options. Instead, for each question in datasets with an excess of candidate options, we apply hard
negative sampling to select N categories most semantically similar to the correct label as distractors.
We take Flowers102 as an example to investigate the impact of the N value on the evaluation results.
The results are illustrated in Figure 15.
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Dataset Size Generation Likelihood
1% 2% 10% 20% 100% 1% 2% 10% 20% 100%

VQAv2 21441 5.22 2.90 0.44 0.19 0 8.63 5.06 0.81 0.26 0

Flowers102 818 169.79 85.60 18.83 6.62 0 243.01 174.59 17.79 10.66 0

Table 30: Variance of accuracy(%) under different sampling ratios. We repeatedly sample a
certain percentage of the data for 10 times. We derive the accuracy each time and then compute the
variance for each model. The final variance value is averaged across the models.

Benchmark Size
Annotation

Scalability
Evaluation Instability Instability

Human ChatGPT ChatGPT Unified Form Instruction Option Mark Option Order Measure
LAMM 186,000 ✓ high ✓ None

MME 2,374 ✓ low ✓ None

LVLM-eHub 1,242,830 high ✓ ✓ None

MMBench 2,974 ✓ low ✓ ✓ ✓ ∆acc

ReForm-Eval 521,712 ✓ high ✓ ✓ ✓ ✓ entropy

Table 32: Comparison of evaluation benchmarks. The term “unified form” denotes a standardized
evaluation format. In MMBench Liu et al. (2023c), the option order instability is measured by the
difference between the accuracy ∆acc from CircularEval and VanillaEval. While in Reform-Eval,
we propose to measure the instability by the entropy of the prediction distribution (see Section 3.3.2).
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Figure 15: Performance of models with
different numbers of options. “G” and “L”
are respectively short for generation evalu-
ation and likelihood evaluation.

It can be observed that as the number of options in-
creases, the questions become more challenging. N =
4 is a turning point, where the impact of increasing N
diminishes. Additionally, the computational cost rises
with the increase of N , and the four-option question
is the most common format for multiple-choice ques-
tions, facilitating comprehension by language back-
bones. Therefore, we set N to 4.

E.2.2 SOURCE OF DISTRACTORS

In terms of open-ended QA tasks, it is necessary to au-
tomatically generate negative options. We considered
two sources of distractors: answers from other ques-
tions in the dataset and ChatGPT. In Table 31, we con-
struct distractors in VisDial through 3 methods: ran-
domly selecting from the answers in the dataset, hard
negative sampling from the answers in the dataset based on text similarities, and generating from
ChatGPT. We estimate the false-negative rate among the distractors based on human evaluation and
measure the impact on evaluation results with the average score of all models.

Distractors FN Rate Avg. Score

Random in Dataset 0.09 45.3
HN in Dataset 0.37 *
From ChatGPT 0.01 36.9

Table 31: Comparison between different
sources of distractors in VisDial. “FN”
and “HN” are respectively short for false
negative and hard negative. “*” indicates
that the corresponding experiment is omit-
ted due to the false-negative issues.

The results indicate that the main issue with selecting
distractors from the answer pool within the dataset is
the high likelihood of generating false negatives. For
instance, when the correct answer is ”yes, it is,” ”yes”
might also be selected as a distractor, especially in the
case of hard negative sampling, resulting in a false-
negative rate of 37%. Therefore, we did not evaluate
models with those unreliable data. In contrast, dis-
tractors generated by ChatGPT are more reasonable,
as they are less likely to be false negative and more
challenging than randomly selected distractors. Over-
all, we believe that for open-ended QA tasks, ChatGPT
is the most suitable source for distractors.
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E.3 COMPARISON WITH OTHER BENCHMARKS

We compare our ReForm-Eval with several previously proposed evaluation benchmarks from the
following five perspectives: (1) The dataset size; (2) During the data annotation stage, whether
manual annotation is required and whether external ChatGPT-like services are needed; (3) During
the evaluation phase, whether external ChatGPT-like services are required to assist the scoring,
whether a unified evaluation format is used; (4) Whether the benchmark considers the instability of
models with regard to prompts, and if so, whether a quantitative analysis of instability is conducted;
(5) Scalability: the ability to expand the size of the dataset at a low cost. As illustrated in Table 32,
ReForm-Eval has a large scale and wide coverage of data; it requires no manual efforts during
the annotation stage and has strong scalability; based on the unified evaluation format, it does not
require external services to assist the evaluation, making it simple and easy to use; it considers the
instability of models to prompts and provides quantitative measurements, making it comprehensive
and reliable. We believe that ReForm-Eval has clear superiority over previous benchmarks.
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