
Published as a conference paper at ICLR 2025

PROBLEM-PARAMETER-FREE FEDERATED LEARNING

Wenjing Yan1, Kai Zhang2, Xiaolu Wang3, Xuanyu Cao4∗
1The Chinese University of Hong Kong 2The Hong Kong University of Science and Technology
3East China Normal University 4Washington State University
{wjyan}@ie.cuhk.edu.hk, {kzhangbn}@connect.ust.hk,
{xiaoluwang}@sei.ecnu.edu.cn, {xuanyu.cao}@wsu.edu

ABSTRACT

Federated learning (FL) has garnered significant attention from academia and in-
dustry in recent years due to its advantages in data privacy, scalability, and com-
munication efficiency. However, current FL algorithms face a critical limitation:
their performance heavily depends on meticulously tuned hyperparameters, par-
ticularly the learning rates. This manual tuning process is challenging in feder-
ated settings due to data heterogeneity and limited accessibility of local datasets.
Consequently, the reliance on problem-specific parameters hinders the widespread
adoption of FL and potentially compromises its performance in dynamic or diverse
environments. To address this issue, we introduce PAdaMFed, a novel algorithm
for nonconvex FL that carefully combines adaptive stepsize and momentum tech-
niques. PAdaMFed offers two key advantages: 1) it operates autonomously with-
out relying on problem-specific parameters, and 2) it manages data heterogeneity
and partial participation without requiring heterogeneity bounds. Despite these
benefits, PAdaMFed provides several strong theoretical guarantees: 1) it achieves
state-of-the-art convergence rates with a sample complexity of O(ε−4) and com-
munication complexity of O(ε−3) to obtain an accuracy of ‖∇f(θ)‖ ≤ ε, even
using constant learning rates; 2) these complexities can be improved to the best-
known O(ε−3) for sampling and O(ε−2) for communication when incorporating
variance reduction; 3) it exhibits linear speedup with respect to the number of local
update steps and participating clients at each global round. These attributes make
PAdaMFed highly scalable and adaptable for various real-world FL applications.
Extensive empirical evidence validates the efficacy of our approach.

1 INTRODUCTION

Federated learning (FL) has emerged as a promising paradigm for machine learning, allowing mul-
tiple clients to collaboratively train a model without sharing raw data. Since its introduction by
McMahan et al. (2017), FL has garnered substantial attention from both academia and industry. Ma-
jor conferences such as NeurIPS, ICML, and ICLR have witnessed a proliferation of FL-related re-
search, addressing critical challenges including communication efficiency (Chen et al., 2021; Sattler
et al., 2019), privacy preservation (Wei et al., 2020; Mothukuri et al., 2021), heterogeneity manage-
ment Li et al. (2020); Karimireddy et al. (2020b); Wang et al. (2020), and partial and asynchronous
participation (Wang et al., 2024; Xu et al., 2023).

Despite significant advancements, current FL algorithms face a critical limitation: their performance
heavily depends on meticulously tuned hyperparameters, particularly the learning rates. This tun-
ing process typically requires extensive computational resources and problem-specific knowledge,
such as smoothness parameters, heterogeneity bounds, stochastic gradient variances, and initial op-
timality gaps. For instance, MIME (Karimireddy et al., 2020a) relies on smoothness constants and
data heterogeneity bounds for stepsize determination, FedProx (Li et al., 2020) requires careful ad-
justment of a proximal term based on data heterogeneity, and FedDyn (Acar et al., 2021) demands
tuning of a regularization parameter contingent on problem characteristics. Furthermore, algorithms
such as FedADT (Gao et al., 2023) and FedAMS (Chen et al., 2020) necessitate problem-specific
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parameters to establish minimum communication rounds, which must exceed thresholds associated
with smoothness constants and other problem characteristics.

This reliance on problem-specific parameters poses several critical challenges. First, it impedes the
widespread adoption of FL by complicating deployment and requiring expertise for hyperparameter
tuning (Mostafa, 2019; Deng et al., 2020). Second, it potentially compromises the performance of
FL in dynamic or diverse environments where data distributions may evolve (Reddi et al., 2020;
Koloskova et al., 2020). Last, accurately estimating these parameters is often infeasible due to the
distributed nature of data and the inherent privacy constraints of FL (Konečnỳ et al., 2016).

Recent research has attempted to address this issue through adaptive stepsize methods. FedOpt
(Reddi et al., 2020) incorporates adaptive optimization techniques like AdaGrad, Adam, and Yogi
into FL, demonstrating improved convergence compared to FedAvg (McMahan et al., 2017). Fed-
Nova (Wang et al., 2020) introduces a normalization technique that effectively mitigates objective
inconsistency caused by partial client participation and data heterogeneity. FedBN (Li et al., 2021)
employed local batch normalization to alleviate feature shift before averaging models, outperform-
ing both classical FedAvg (McMahan et al., 2017) and FedProx (Li et al., 2020) for non-IID data.
While these approaches show promise, they still require careful tuning of global learning rates.

Momentum is a technique that mitigates data heterogeneity and accelerates gradient descent by
maintaining a velocity vector of gradient history. Recent studies have investigated the combination
of adaptive methods with momentum to leverage both advantages. Hsu et al. (2019) proposed Fe-
dAvgM, which incorporates a server-side momentum term into the FedAvg algorithm, demonstrating
enhanced convergence rates and robustness against data heterogeneity. Wang et al. (2019) developed
SlowMo, a momentum-based method that employs two nested loops to facilitate faster convergence
in distributed optimization. FedAMS (Chen et al., 2020) utilizes adaptive moment methods on both
the server and client sides to address data heterogeneity. MIME (Karimireddy et al., 2020a) com-
bines client and server momentum to enhance convergence. Wu et al. (2023) introduced FAFED,
a momentum-based variance reduction scheme integrated with an adaptive matrix, achieving the
best-known sample and communication complexity when utilizing diminishing stepsizes. Never-
theless, these methods still necessitate fine-tuning multiple hyperparameters, limiting their practical
applicability.

A very recent contribution, FedSPS (Sohom Mukherjee, 2024), claims to be the first fully locally
adaptive method for FL with minimal hyperparameter tuning. While promising, this approach relies
on stringent assumptions of bounded gradients and bounded data heterogeneity. Moreover, it fails to
converge to optima with constant stepsizes and requires adjustment of a maximum stepsize threshold
based on the smoothness parameter, maintaining a degree of hyperparameter dependence. Therefore,
there is a critical need for more robust and adaptive FL algorithms capable of operating effectively
across diverse scenarios without relying on problem-specific parameters.

1.1 MAIN CONTRIBUTIONS

This paper addresses these critical limitations of FL by proposing a novel approach that eliminates
the need for problem-specific hyperparameter tuning while effectively handling arbitrary heteroge-
neous data. Our method is based on a careful combination of adaptive stepsize and momentum
techniques. The adaptive stepsize mechanism dynamically adjusts local learning rates against client
update heterogeneity, while the momentum component provides stability under partial participation
and accelerates convergence in the nonconvex landscape. To the best of our knowledge, this is the
first algorithm to achieve such parameter-agnostic adaptation in nonconvex FL with a state-of-the-art
convergence guarantee. Our main contributions are summarized as follows.

1) We introduce PAdaMFed, a problem-specific Parameter Agnostic algorithm for nonconvex FL
based on adaptive stepsizes and client-side Momentum. PAdaMFed offers several significant
advantages:

• Independent of problem-specific parameters: PAdaMFed operates autonomously without
relying on any problem-specific parameters such as smoothness constants or stochastic gra-
dient variance. All stepsizes in our approach are explicitly determined by system-defined
constants, including the number of participating clients, local updates, and communication
rounds.
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• Robustness to arbitrary heterogeneous data: PAdaMFed inherently manages data hetero-
geneity without requiring any heterogeneity bounds among clients while accommodating
partial client participation. This feature enhances its scalability and adaptability in real-
world scenarios where client data can be highly diverse and unpredictable, and full partici-
pation may not always be feasible due to resource constraints or device availability.

2) We provide a rigorous theoretical analysis of PAdaMFed, demonstrating its state-of-the-art per-
formance:

• PAdaMFed achieves a sample complexity of O(ε−4) and communication complexity of
O(ε−3) to obtain a ‖∇f(θ)‖ ≤ ε accuracy for nonconvex FL problems, even using constant
learning rates.

• The complexities are further improved to the best-known sample complexity ofO(ε−3) and
communication complexity of O(ε−2) when incorporating variance reduction.

• PAdaMFed exhibits linear speedup with respect to the numbers of local update steps and
participating clients in each global round.

Notably, these theoretical results are obtained under minimal assumptions, requiring only L-
smoothness of loss functions and unbiased stochastic gradients with bounded within-client vari-
ance. This represents a significant advancement over existing FL algorithms, which typically
necessitate constraints such as data heterogeneity bounds (Li et al., 2021; Wu et al., 2023), di-
minishing stepsizes (Wu et al., 2023; Sohom Mukherjee, 2024), or fail to achieve the best-known
convergence rates (Liang et al., 2019; Alghunaim, 2024).

3) We conduct empirical evaluations to validate our theoretical findings and the efficacy of our
algorithms. Our methods are compared against several established baselines, including FedAvg
(McMahan et al., 2017), SCAFFOLD (Karimireddy et al., 2020b), and SCAFFOLD-M (Cheng
et al., 2024) . Extensive numerical evidence demonstrates the superiority of our approaches in
not only runtime efficiency but also stepsize robustness.

2 PROBLEM SETUP

We consider an FL system where N clients collaboratively train a common learning model θ ∈ Rd
under the coordination of a parameter server. Let ξi represent a random sample of client i drawn
from its local data distribution Di. The loss function associated with client i is given by fi(θ) :=
Eξi∼Di [F (θ; ξi)], where F (θ; ξi) is the stochastic loss of client i over sample ξi. The objective of
the FL system is to minimize the global loss function across all clients, defined as:

minθ∈Rd f(θ) := 1
N

∑N
i=1 fi(θ) where fi(θ) := Eξi∼Di [F (θ; ξi)] .

In a federated setting, clients collaboratively train a global model, but the raw data of each client is
never shared with the server and other clients.

Denote by ‖ · ‖ the `2 norm. We make the following standard assumptions.
Assumption 1 (Sample-Wise Smoothness). Each sample-wise loss function F (θ; ξi) is L-smooth,
i.e., ‖∇F (θ; ξi)−∇F (δ; ξi)‖ ≤ L‖θ − δ‖ for all θ, δ ∈ Rd, i ∈ {1, . . . , n}, and ξi ∼ Di.

The Sample-Wise Smoothness Assumption 1 implies the following standard smoothness condition.
Assumption 2 (Standard Smoothness). There exists L > 0, such that each loss function fi is L-
smooth, i.e., ‖∇fi (θ)−∇fi (δ)‖ ≤ L‖θ − δ‖ for all θ, δ ∈ Rd and i ∈ {1, . . . , N}.

We emphasize that our original PAdaMFed algorithm is based on the Standard Smoothness As-
sumption 2. The slightly more stringent Assumption 1 is required when using variance reduction to
further accelerate convergence.
Assumption 3 (Stochastic Gradient). There exists σ ≥ 0 such that for any θ ∈ Rd and i ∈
{1, . . . , N}, Eξi [∇F (θ; ξi)] = ∇fi(θ) and Eξi ‖∇F (θ; ξi)−∇fi(θ)‖2 ≤ σ2, where ξi ∼ Di.

Assumption 3 ensures that the stochastic gradient ∇F (θ; ξi) is unbiased and has bounded within-
client variance, which is standard in stochastic optimization.

We consider nonconvex FL problems with data heterogeneity among clients, where the local data
distributions Di 6= Dj for any i 6= j. When addressing heterogeneous data, most existing ap-
proaches, such as SCAFFOLD (Karimireddy et al., 2020b), FedProx (Li et al., 2020), FedAMS
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(Chen et al., 2020), and MIME (Karimireddy et al., 2020a), require an upper bound on gradient
dissimilarity, i.e., there exist constants B, σ2

h > 0 such that

1
N

∑N
i=1 ‖∇fi(θ)‖2 ≤ B ‖∇f(θ)‖2 + σ2

h for all θ ∈ Rd. (1)

This assumption simplifies the mathematical analysis of those FL approaches and ensures their al-
gorithmic performance. However, it may not hold in scenarios where data across clients exhibit
significant and unpredictable variations, thus compromising the robustness of FL.

Additionally, existing FL algorithms typically rely on problem-specific parameters to determine their
stepsizes, including the smoothness constant L, gradient variance σ2, and heterogeneity bounds B
and σ2

i . The smoothness constant, which characterizes the Lipschitz continuity of gradients, is
generally a global property requiring knowledge of the entire dataset. Similarly, quantifying data
heterogeneity across clients necessitates a comprehensive understanding of the differences between
local data distributions. However, in FL settings where raw data sharing is prohibited and only
model updates are exchanged, obtaining precise measurements of these parameters is computation-
ally prohibitive and may compromise FL’s privacy guarantees.

In the subsequent section, we present an algorithm that is independent of problem-specific parame-
ters and capable of handling arbitrarily heterogeneous data, thereby eliminating the requirement of
the heterogeneity bound (1).

3 ALGORITHM DEVELOPMENT

Algorithm 1 PAdaMFed: A Problem-Parameter-Agnostic Algorithm for Nonconvex FL

1: Require: initial model θ0, control variates c−1
i = 1

K

∑K−1
k=0 ∇F

(
θ0; ξ−1,k

i

)
for any i, c−1 =

1
N

∑
i c
−1
i , momentum g−1 = c−1, global learning rate γ, local learning rate η, and momentum

parameter β
2: for t = 0, · · · , T − 1 do
3: Central Server: Uniformly sample clients St ⊆ {1, · · · , N} with |St| = S
4: for each client i ∈ St in parallel do
5: Initialize local model θt,0i = θt

6: for k = 0, · · · ,K − 1 do
7: Compute gt,ki = β

(
∇F

(
θt,ki ; ξt,ki

)
− ct−1

i + ct−1
)

+ (1− β)gt−1

8: Update local model θt,k+1
i = θt,ki − η

gt,ki

‖gt,ki ‖
9: end for

10: Update control variate cti = 1
K

∑K−1
k=0 ∇F

(
θt,ki ; ξt,ki

)
( set cti = ct−1

i for i /∈ St)

11: Upload θt,Ki and cti to central server
12: end for

Central server:
13: Aggregate local updates gt = 1

ηSK

∑
i∈St

(
θt − θt,Ki

)
14: Update global model θt+1 = θt − γgt
15: Aggregate control variate ct = ct−1 + 1

N

∑
i∈St

(
cti − c

t−1
i

)
16: Aggregate momentum gt = β

(
1
S

∑
i∈St

(
cti − c

t−1
i

)
+ ct−1

)
+ (1− β)gt−1

17: Download θt+1, βct + (1− β)gt to all clients
18: end for

In this section, we propose PAdaMFed, a problem-parameter-agnostic algorithm for nonconvex FL
based on adaptive stepsizes and client-side momentum. PAdaMFed is designed to operate indepen-
dently of any problem-specific parameters, handle arbitrarily heterogeneous data, and accommodate
partial client participation.
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3.1 ALGORITHM DEVELOPMENT OF PADAMFED

Our approach builds upon the well-established SCAFFOLD algorithm (Karimireddy et al., 2020b),
which was designed to address “client drift” in FL, where local models significantly deviate from
the global model due to partial participation and data heterogeneity. The core concept of SCAF-
FOLD is the utilization of control variates to correct the drift between client updates and the global
model. Specifically, the server maintains a global control variate, denoted ct, to represent the av-
erage model update direction, while each client maintains a local control variate, denoted by cti for
all i ∈ {1, . . . , N}, to track individual update directions. Client updates are subsequently adjusted
using the difference between local and global control variates. SCAFFOLD demonstrates faster and
more stable convergence compared to the seminal FedAvg algorithm (McMahan et al., 2017).

In this paper, we extend the original SCAFFOLD framework by incorporating client-side momentum
and local adaptive stepsizes, as outlined in Algorithm 1. Specifically, in Step 7 of Algorithm 1, the
local descent direction of client i at global round t and local step k is computed as:

gt,ki = β
(
∇F

(
θt,ki ; ξt,ki

)
− ct−1

i + ct−1
)

+ (1− β)gt−1.

In this expression, the term ∇F
(
θt,ki ; ξt,ki

)
represents the stochastic gradient at the current local

model θt,ki with the sample ξt,ki . The term ct−1 − ct−1
i adjusts the difference between the global

and local control variates, helping to mitigate client drift. The term gt−1 denotes the current global
momentum, essential for stabilizing and accelerating the convergence across clients.

In Step 8 of Algorithm 1, the local model for each client i is updated by: θt,k+1
i = θt,ki − η

gt,ki

‖gt,ki ‖
.

Here, an adaptive stepsize η/‖gt,ki ‖ is utilized by normalizing the descent direction vector gt,ki . This
normalization guarantees that the progresses from all clients have a uniform magnitude, preventing
the disproportionate impact of any individual client on the global model update. It also provides us
the convenience on quantifying the distance between consecutive models in our theoretical analysis,
maintaining that

∥∥∥θt,k+1
i − θt,ki

∥∥∥ = η
∥∥∥gt,ki /‖gt,ki ‖

∥∥∥ = η for all i, k, t.

Additionally, since cti = 1
K

∑K−1
k=0 ∇F

(
θt,ki ; ξt,ki

)
for all i, the momentum update in Step 16 of

Algorithm 1 can be expressed as:

gt = β
(

1
S

∑
i∈St

(
1
K

∑K−1
k=0 ∇F

(
θt,ki ; ξt,ki

)
− ct−1

i

)
+ ct−1

)
+ (1− β)gt−1. (2)

This equation accumulates the descent directions across clients and iterations that we have gt =∑
i,k g

t,k
i . With gt, the optimization trajectories at each client are smoothed by the descent di-

rections of other clients, enhancing the robustness of the optimization process against variability
in local updates caused by data heterogeneity. Notably, our PAdaMFed algorithm maintains the
communication workload of the SCAFFOLD for both uplink and downlink.

3.2 ACCELERATING PADAMFED WITH VARIANCE REDUCTION

Variance reduction is an effective technique to accelerate convergence and enhance the stability of
FL, particularly when dealing with heterogeneous data and limited client participation. In this sub-
section, we enhance PAdaMFed by integrating a variance reduction component into each client’s de-
scent direction, resulting in our PAdaMFed-VR algorithm. The detailed procedures of PAdaMFed-
VR are provided in Appendix B.

PAdaMFed-VR differs from PAdaMFed primarily in its computation of the local gradient. Specifi-
cally, Step 7 of Algorithm 1 is replaced with:

gt,ki = ∇F
(
θt,ki ; ξt,ki

)
+ β

(
ct−1 − ct−1

i

)
+ (1− β)

(
gt−1 −∇F

(
θt−1; ξt,ki

))
,

where ∇F
(
θt−1; ξt,ki

)
represents the variance reduction component. Our variance reduction de-

sign follows the principle of STORM (Cutkosky & Orabona, 2019) to make more efficient sample
utilization. For each local update, the sample ξt,ki is used twice: 1) to compute the gradient based on
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the current local model θt,ki ; and 2) to evaluate the gradient at the previous global model θt−1. This
dual usage of each sample mitigates the influence of within-client gradient noise, enabling more
accurate estimation of gradient directions.

4 THEORETICAL RESULTS AND COMPARISONS WITH PRIOR WORK

4.1 THEORETICAL RESULTS

Theorem 1. Suppose that Assumptions 2 and 3 hold. Let the local and global learning rates of

PAdaMFed be η = 1
K
√
T

and γ = (SK)1/4

T 3/4 , respectively, the momentum parameter be β =
√

SK
T ,

and {θt}t≥0 be the iterates generated by Algorithm 1. Then, it holds for all T ≥ 1 that

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ ≤ O(∆ + L+ σ +

√
Lσ

(SKT )
1
4

+

√
SKσ + L√

T

)
,

where ∆ := f
(
θ0
)
−minθ f(θ).

Theorem 2. Suppose that Assumptions 1 and 3 hold. Let the local and global learning rates of
PAdaMFed-VR be η = 1

KT and γ = (SK)1/3

T 2/3 , respectively, the momentum parameter be β =
(SK)1/3

T 2/3 , and {θt}t≥0 be the iterates generated by Algorithm 2. Then, it holds for all T ≥ 1 that

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ ≤ O(∆ + L+ σ

(SKT )
1
3

+
(L+ σ)(SK)

1
3

T
2
3

)
.

Remark 1. According to Theorem 1, PAdaMFed converges to an ε-stationary point 1 in expectation
within O

(
1

SKε4

)
communication rounds. This convergence rate is improved to O

(
1

SKε3

)
when in-

corporating variance reduction, as shown in Theorem 2. Furthermore, both algorithms demonstrate
linear speedup with respect to the number of participating clients S and local update steps K.

Remark 2. In PAdaMFed, setting SK = O(T
1
3 ) yields a sample complexity2 of O(ε−4) with

communication complexity O(ε−3). Similarly, by setting SK = O(
√
T ), PAdaMFed-VR achieves

the best-known sample complexity ofO(ε−3) with a communication complexity ofO(ε−2) to find an
ε-stationary point (Wu et al., 2023).
Remark 3. In traditional FL, selecting optimal stepsizes theoretically requires knowledge of
problem-specific parameters, which are often unavailable. Consequently, in real-world FL sce-
narios, stepsizes must be tuned empirically—a process that is labor-intensive, time-consuming,
and sometimes even impractical. In our PAdaMFed and PAdaMFed-VR, the stepsizes are explic-
itly determined by system-defined constants (the numbers of participating clients S, local update
steps K, and communication rounds T ), without requiring any problem-specific parameters. This
hyperparameter-independent nature simplifies implementation, enhances robustness, and facilitates
the deployment of our algorithm across diverse FL applications.

4.2 PROOF SKETCH

Our theoretical proof starts from the L-smoothness property of the loss function f(θ), which yields
the following inequality:

f
(
θt+1

)
− f (θt) ≤ 2γ ‖∇f (θt)− gt‖ − γ ‖∇f (θt)‖+ γ

SK

∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥+ γ2L
2 .

1A point θ is said to be ε-stationary if ‖∇f (θ)‖ ≤ ε. Note that for any ε-stationary point defined using
‖∇f(θ)‖2, one can derive the corresponding guarantee for ‖∇f(θ)‖ based on the following relationship:

1

T

T−1∑
t=1

E‖∇f(θt)‖ = 1

T

T−1∑
t=1

E
√
‖∇f(θt)‖2 ≤ 1

T

T−1∑
t=1

√
E‖∇f(θt)‖2 ≤

√√√√ 1

T

T−1∑
t=1

E‖∇f(θt)‖2

where the first and second inequalities utilize Jensen’s inequality as the square root function is concave. There-
fore, we can align our results with the metric of 1

T

∑T
t=1 ‖∇f(θ

t)‖2 by taking square root on both sides of
their convergence bounds.

2Total number of samples across clients, local updates, and communication.
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To establish an upper bound for 1
T

∑T−1
t=0 E ‖∇f (θt)‖, we must quantify two key terms:

1
T

∑T−1
t=0 E ‖∇f (θt)− gt‖ and 1

T

∑T−1
t=0

1
SKE

[∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥].
The momentum gt is a recursive variable that accumulates values from previous rounds. By
plugging into the expression of gt (provided in (2)) into ‖∇f (θt)− gt‖ and introducing
the auxiliary term f

(
θt−1

)
, we can recursively express ‖∇f (θt)− gt‖ by its predecessor∥∥∇f (θt−1

)
− gt−1

∥∥, scaled by a contraction coefficient (1 − β). This substitution also intro-
duces additional terms associated with stochastic gradients and control variates. Through meticu-
lous control of all intermediate terms, we prove that 1

T

∑T−1
t=0 E ‖∇f (θt)− gt‖ is upper bounded

by O((SKT )−
1
4 ) for PAdaMFed and by O((SKT )−

1
3 ) for PAdaMFed-VR.

The term E
[∑

i∈St,k

∥∥∥gt,ki − gt∥∥∥] represents gradient dissimilarity across clients. While the het-
erogeneity bound (1) could readily control this term, our objective is to eliminate dependence
on such bounds. Instead, we relax this term to E

∥∥∇fi (θt−1
)
− ct−1

i

∥∥, along with other con-
trollable terms, by substituting the expressions for gt,ki and gt. Returning to our treatment
of E ‖∇f (θt)− gt‖, we exploit the recursive property of the control variate ct−1

i to bound

E
∥∥∇fi (θt−1

)
− ct−1

i

∥∥. This, in turn, allows us to establish a bound for E
[∑

i∈St,k

∥∥∥gt,ki − gt∥∥∥].
Combining the above processes leads to our analytical results. For comprehensive proofs, please
refer to Appendix A for Theorem 1 and Appendix B for Theorem 2.

Intuition on the Algorithmic Features: The efficacy of PAdaMFed stems from the synergistic in-
tegration of three indispensable components: local gradient normalization, client-side momentum,
and control variates. 1) Gradient normalization serves as an adaptive learning rate scheme, auto-
matically adjusting stepsizes based on the local optimization landscape. This design automatically
allows larger steps in regions with small gradients (where more aggressive exploration is beneficial)
and smaller steps in steep regions (where careful progress is needed). 2) Client-side momentum
helps accelerate convergence while maintaining stability. First, it helps overcome local irregularities
in the loss landscape by accumulating gradients over clients and iterations. Second, it accelerates
progress in directions of consistent gradient agreement. 3) Furthermore, control variates align lo-
cal updates with the global objective, reducing variance in gradient estimates and ensuring more
consistent updates across heterogeneous client data. Collectively, these techniques ensure that the
stepsizes are independent of problem-specific parameters such as smoothness constants and data
heterogeneity bounds, simplifying the tuning process and enhancing robustness across diverse FL
environments. Notably, our algorithms also eliminate the requirement of data heterogeneity bounds,
further broadening their applicability.

4.3 COMPARISONS WITH PRIOR WORK

We compare PAdaMFed and PAdaMFed-VR with several representative algorithms for solving FL
problems with heterogeneous data, as listed in Table 1.

Comparisons of PAdaMFed with Prior FL Algorithms: The SCAFFOLD (Karimireddy et al.,
2020b) algorithm requires the smoothness parameter L for stepsize tuning. However, its communi-

cation complexity, given by O
((

K
S

) 1
3 L
Kε4

)
, is suboptimal. MIME (Karimireddy et al., 2020a) im-

proves this complexity toO
(

1
SKε4

)
by incorporating server-level momentum. Nevertheless, MIME

requires large-batch local gradients per round, and its learning rates depend on multiple problem
parameters, including initial optimality gap ∆ and heterogeneity bound σ2

h, which are challenging
to estimate.

FedSPS (Sohom Mukherjee, 2024) incorporates stochastic Polyak step-sizes into local client up-
dates, achieving a communication complexity of O

(
1

NKε4

)
in full participation scenarios. How-

ever, its analysis relies on the assumption of bounded data heterogeneity. Moreover, its stepsize
tuning requires knowledge of the lower bounds of all loss functions, i.e., `∗i for all i, in addition to
the smoothness parameter L, leading to significant problem-parameter dependence.

SCAFFOLD-M (Cheng et al., 2024) employs similar client-side momentum as PAdaMFed, remov-
ing the need for bounded data heterogeneity. However, SCAFFOLD-M’s stepsizes depend on sev-
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Table 1: Comparisons of algorithms for solving FL problems with heterogeneous data.
(Shorthand notation: Add. Assump. = Additional assumptions aside from Assumptions 1–3, BDH
= Bounded data heterogeneity define in (1), BG = Bounded gradient that ‖∇fi(θ)‖ ≤ G, ∀i,θ,
BHD = Bounded hessian dissimilarity that

∥∥∇2fi(θ)−∇2f(θ)
∥∥2 ≤ δ, ∀i,θ)

Algorithms Add. Assump. Stepsize Restrictions
Stepsize-Related

Problem-Parameters

Communication

Complexity

SCAFFOLD
(Karimireddy et al., 2020b)

– γ =
√
S, η ≤ 1

24γKL

(
S
N

) 2
3

L O
((
N
S

) 1
3 L
Kε4

)
MIme

(Karimireddy et al., 2020a)
BDH, BHD η =

√
∆S

LG̃TK2 , G̃ = σ2
h + σ2

K
L, ∆, σ2, σ2

h O
(

1
SKε4

)

FedSPS
Sohom Mukherjee (2024)

BDH
ηt,ki = min

{
F
(
θ
t,k
i ;ξ

t,k
i

)
−`∗i

c
∥∥∥∇F(θt,k

i ;ξ
t,k
i

)∥∥∥2 , ηb
}

1

ηb ≤ min
{

1
2cL

, 1
25LK

} L, `∗i , ∀i O
(

1
NKε4

)

SCAFFOLD-M
(Cheng et al., 2024)

–
β = min

{
1, S

N
2
3

,
√
L∆SK
σ2T

,
√
L∆S2

G0N

}
2

γ = β
L

, ηKL . min

{
1√
S
, 1

βK
1
4

,
√
S
N

} L, ∆, σ2, G0 O
(

1
SKε4

)

PAdaMFed
(This paper)

– β =
√
SK
T

, γ =
(SK)

1
4

T
3
4

, η = 1

K
√
T

– O
(

1
SKε4

)
Variance Reduction

FAFED
(Wu et al., 2023)

BDH, BG ηt ∝ N
2
3

Lt
1
3

, βt ∝ η2
t L O

(
1

SKε3

)

SCAFFOLD-M-VR
(Cheng et al., 2024)

–

β = min

{
S
N
,
(
KL∆
σ2T

) 2
3
, S

1
3

}
γL = min

{
1,
√
βS
}

ηKL . min

{√
β
S
,
(
β
SK

) 1
4

} L, ∆, σ2 O
(

1

S
√
Kε4

)

PAdaMFed-VR
(This paper)

– β =
(SK)

1
3

T
2
3

, γ =
(SK)

1
3

T
2
3

, η = 1
KT

– O
(

1
SKε3

)
1 `∗i ≤ infξi∈Di,θ F (θ; ξi) for any i, and c is a constant to balance adaptivity and accuracy.
2 G0 := 1

N

∑N
i=1

∥∥∇fi(θ0)
∥∥2.

eral problem-specific parameters, including the smoothness parameter L, initial optimal gap ∆, and
stochastic gradient variance σ2, resulting in laborious stepsize tuning. In contrast, PAdaMFed is
completely independent of problem-specific parameters while achieving start-of-the-art communi-
cation complexity.

Comparisons of PAdaMFed-VR with Prior Variance-Reduced FL Algorithms: FAFED (Wu
et al., 2023) employing a momentum-based variance reduction with an adaptive matrix, achieving
the best-knownO(ε−3) sample complexity andO(ε−2) communication complexity through the use
of diminishing stepsizes. However, FAFED requires stringent assumptions of bounded gradients and
bounded data heterogeneity. Moreover, its learning rates are subject to several complex constraints
and rely on problem-parameter-based algorithm tuning. SCAFFOLD-M-VR (Cheng et al., 2024)
is a variance-reduced SCAFFOLD-M algorithm and, similarly, requires careful step size tuning
based on multiple problem-dependent parameters. Nevertheless, it fails to achieve the best-known
complexity established in the literature.

5 NUMERICAL EXPERIMENTS

In this section, we present experiments on two real-world datasets: EMNIST (Cohen et al., 2017)
and CIFAR-10 (Li et al., 2017). We evaluate the proposed algorithms against several baselines,
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(a) i.i.d (b) non-i.i.d

Figure 1: Test accuracy versus the number of communication rounds on the EMNIST dataset.

(a) i.i.d (b) non-i.i.d

Figure 2: Test accuracy versus learning rate on the EMNIST dataset.

including FedAvg (McMahan et al., 2017), SCAFFOLD (Karimireddy et al., 2020b), SCAFFOLD-
M (Cheng et al., 2024). Additionally, experiments are conducted under both i.i.d. and non-i.i.d. data
distributions. Due to space limitations, the detailed experimental setup and additional simulation
results are provided in Appendix C.

Figure 1 illustrates the test accuracy of various algorithms versus the number of communication
rounds on the EMNIST dataset, with subfigure 1a representing i.i.d. data and subfigure 1b depicting
non-i.i.d. data. The stepsizes for our algorithms, PAdaMFed and PAdaMFed-VR, are determined
based on the theoretical guidance provided in Theorem 1 and Theorem 2, respectively. For fair com-
parisons, the hyperparameters of other algorithms in Figure 1 are optimized through grid search to
achieve their best performance. The results demonstrate that our proposed methods significantly out-
perform all baseline algorithms—FedAvg, SCAFFOLD, and SCAFFOLD-M—in both convergence
speed and test accuracy. Notably, although SCAFFOLD-M employs a similar momentum technique,
it converges more slowly than PAdaMFed and achieves lower accuracy, validating the efficacy of our
adaptive stepsize design. Building upon these advantages, the incorporation of variance reduction
further enhances our methods’ superiority through more efficient sample utilization. Moreover, the
results on non-i.i.d. data in subfigure 1b demonstrate even greater performance margins than the
i.i.d. case, highlighting the advantages of our algorithms.

Figure 2 compares the test accuracy of various algorithms versus the learning rate on the EMNIST
dataset. All algorithms were evaluated over 400 communication rounds to ensure a fair comparison.
We observe that our algorithm demonstrates superior robustness to stepsize selection, maintaining
stable performance across a significantly wider range of learning rates compared to baseline meth-
ods. Specifically, it achieves test accuracy exceeding 0.8 across the stepsize range [3× 10−3, 10−1]

9



Published as a conference paper at ICLR 2025

for i.i.d. data distributions (subfigure 2a) and above 0.7 for the same stepsize range under non-i.i.d.
conditions (subfigure 2b). In contrast, baseline algorithms exhibit substantially narrower regions of
stable performance, empirically validating our method’s enhanced stepsize robustness.

6 CONCLUSIONS

This paper proposed a novel training approach, PAdaMFed, for nonconvex federated learning (FL)
that eliminates dependency on problem-specific parameters and enables automatic generalization
across diverse FL environments. PAdaMFed also removes the need for data heterogeneity bounds
and accommodates partial client participation, further broadening its applicability. We provided
rigorous theoretical analysis for PAdaMFed, demonstrating its state-of-the-art convergence under
minimal assumptions, including the L-smoothness of loss functions and unbiased stochastic gradi-
ents with bounded within-client variance. Furthermore, we enhanced this convergence rate by in-
corporating variance reduction, achieving the best-knownO(ε−3) sampling complexity andO(ε−2)
communication complexity. Extensive numerical experiments demonstrated that our algorithms out-
perform existing representative FL approaches in both runtime efficiency and stepsize robustness.
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A RELATED WORKS

Adaptive Stepsize Methods: Adaptive stepsize methods have gained significant attention in opti-
mization literature due to their ability to automatically adjust learning rates based on the geometry
of the objective function. These methods, such as Adam (Kingma & Ba, 2014), AdaGrad (Duchi
et al., 2011), and RMSProp Hinton (2012), have demonstrated remarkable success in various ma-
chine learning tasks, particularly in handling sparse gradients and non-stationary objectives. In the
context of FL, adaptive stepsizes offer several advantages. First, they eliminate the need for manual
tuning of learning rates, which is especially beneficial in federated settings where global knowledge
of the objective function’s properties is limited. Second, adaptive methods can potentially mitigate
the impact of data heterogeneity by allowing different update rates for different model parameters,
effectively accounting for varying gradient statistics across clients.

FedOpt (Reddi et al., 2020) introduced adaptive optimization techniques like AdaGrad, Adam, and
Yogi into FL, demonstrating improved convergence properties compared to the traditional FedAvg
algorithm. Wang et al. (2020) proposed FedNova, which normalizes and scales local updates to mit-
igate objective inconsistency caused by partial client participation and data heterogeneity. FedBN
(Li et al., 2021) employed local batch normalization to alleviate feature shift before averaging mod-
els, outperforming both classical FedAvg (McMahan et al., 2017) and FedProx (Li et al., 2020) for
non-IID data. While these approaches demonstrated the advantages of adaptive methods for easing
parameter tuning, none provides theoretical guarantees, and careful tuning of global learning rates
remains essential.

Momentum: Momentum, on the other hand, is a technique that accelerates gradient descent by
accumulating a velocity vector in directions of persistent reduction in the objective across iterations.
In nonconvex optimization, momentum has been shown to help escape saddle points more effi-
ciently and potentially reach better local optima (Cutkosky & Orabona, 2019). The incorporation of
momentum in FL algorithms can provide several benefits. It can help smooth out the impact of het-
erogeneous updates from different clients, potentially leading to more stable and faster convergence.
Moreover, momentum can aid in overcoming the challenges posed by partial client participation by
maintaining a consistent optimization trajectory even when client participation varies across rounds.

Hsu et al. (2019) proposed FedAvgM, which adds a server-side momentum term to the FedAvg
algorithm, demonstrating improved convergence rates and robustness to data heterogeneity. Wang
et al. (2019) developed SlowMo, a momentum-based method using two nested loops to achieve
faster convergence in distributed optimization. Both FedCM (Xu et al., 2021) and Cheng et al.
(2024) investigated the integration of client-side momentum in FedAvg to effectively tackle client
heterogeneity and partial participation in FL.

Combination of Adaptive Stepsizes and Momentum: Recent works have explored combining
adaptive methods and momentum in FL. FedAMS (Chen et al., 2020) implements a local AMS-
Grad scheme for FL, demonstrating fast convergence with low communication cost. MIme (Karim-
ireddy et al., 2020a) combines control variates with server-level momentum at every local update
to mimic centralized methods running on IID data, outperforming centralized methods but requir-
ing a large-batch local gradient per round for each client. Wu et al. (2023) introduced FAFED,
a momentum-based variance reduction scheme integrated with an adaptive matrix, attaining the
best-known sample and communication complexity when using diminishing stepsizes. While these
methods demonstrate improved performance, they still require careful tuning of global learning
rates.

A recent contribution, FedSPS (Sohom Mukherjee, 2024), claims to be the first fully locally adaptive
method for FL with minimal hyperparameter tuning. While promising, this approach relies on
stringent assumptions of bounded data heterogeneity and gradients. Moreover, it fails to converge
to optima with constant stepsizes and requires adjustment of a maximum stepsize threshold based
on the smoothness parameter, thus retaining some hyperparameter dependence. The limitations of
existing approaches underscore the critical need for more robust, adaptive FL algorithms capable of
operating effectively across diverse scenarios without extensive parameter tuning.

This paper makes a significant advancement by proposing a novel algorithm, PAdaMFed, that com-
pletely eliminates dependency on problem-specific parameters. All stepsizes in our approach are ex-
plicitly determined by the number of participating clients, local updates, and communication rounds.
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To the best of our knowledge, this is the first algorithm that achieves such problem-parameter inde-
pendence in FL. Moreover, our algorithm inherently manages data heterogeneity and partial client
participation without requiring any heterogeneity bound among clients, which is also nontrivial.

Data heterogeneity has been extensively studied in FL. However, existing algorithms either depend
on bounded data heterogeneity (e.g., FedAvg (McMahan et al., 2017), SCAFFOLD (Karimireddy
et al., 2020b), FedProx (Li et al., 2020), and MIme (Karimireddy et al., 2020a)) or fall short of
achieving state-of-the-art convergence rates (e.g., VRL-SGD (Liang et al., 2019) and LED (Alghu-
naim, 2024)). Recently, Cheng et al. (2024) demonstrated that momentum can eliminate the data
heterogeneity constraint in the FedAvg and SCAFFOLD algorithms while achieving state-of-the-art
convergence results. Wang et al. (2024) introduced DuDe-ASGD for asynchronous FL, which can
effectively handle arbitrarily heterogeneous data by leveraging stale stochastic gradients. However,
their algorithms require carefully designed stepsizes based on hyperparameters. In contrast, our al-
gorithm accommodates arbitrary data heterogeneity while achieving complete problem-parameter
independence.

A notable concurrent work by (Li et al., 2024) also explores problem-parameter-free algorithms in
the context of decentralized non-convex optimization. While both studies target problem-parameter-
free optimization, our work addresses the unique challenges inherent to federated learning settings.
The fundamental distinction lies in our treatment of client drift—a critical phenomenon arising from
multiple local updates and data heterogeneity in federated environments. Our key technical contri-
butions beyond (Li et al., 2024) are twofold: 1) The development of a novel framework integrating
control variates with momentum to mitigate client drift, requiring sophisticated theoretical analysis
due to their complex interactions; 2) The successful elimination of explicit heterogeneity bounds,
which were previously considered essential in federated learning literature.

A THEORETICAL ANALYSIS OF PADAMFED

Our analysis is based on the following useful lemmas.
Lemma 1. For any t, we have

1

NK

∑
i,k

∥∥∥θt,ki − θt∥∥∥2

≤ 1

3
η2K2 and

1

NK

∑
i,k

∥∥∥θt,ki − θt∥∥∥ ≤ 1

2
ηK.

Proof. From the update rule of local model, for any i, k and t, we have

∥∥∥θt,k+1
i − θt,ki

∥∥∥ = η

∥∥∥∥∥∥ gt,ki∥∥∥gt,ki ∥∥∥
∥∥∥∥∥∥ ≤ η.

Then,

∥∥∥θt,ki − θt∥∥∥2

=

∥∥∥∥∥∥
k−1∑
j=0

(
θt,j+1
i − θt,ji

)∥∥∥∥∥∥
2

≤ k
k−1∑
j=0

∥∥∥θt,j+1
i − θt,ji

∥∥∥2

≤ η2k2.

Summing the above inequality over i and k yields

1

NK

∑
i,k

∥∥∥θt,ki − θt∥∥∥2

≤ η2

K

K−1∑
k=0

k2 ≤ η2

6K
(K − 1)K(2K − 1) ≤ 1

3
η2K2.

Similarly, we have

1

NK

∑
i,k

∥∥∥θt,ki − θt∥∥∥ =
1

NK

∑
i,k

(∥∥∥θt,ki − θt∥∥∥2
) 1

2

≤ η

K

K−1∑
k=0

k ≤ 1

2
ηK.

These inequalities in Lemma 1 are frequently used in our analysis.
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Lemma 2. Given vectors ω1, · · · ,ωN ∈ Rd and ω = 1
N

∑N
i=1 ωi, if we sample S ⊂ {1, · · · , N}

uniformly randomly such that |S| = S, then it holds that

E

∥∥∥∥∥ 1

S

∑
i∈S

ωi

∥∥∥∥∥
2
 ≤ ‖ω‖2 +

1

SN

N∑
i=1

‖ωi − ω‖2 .

Proof. Letting 1{i ∈ S} be the indicator for the event i ∈ S , we prove this lemma by direct
calculation as follows:

E

∥∥∥∥∥ 1

S

∑
i∈S

ωi

∥∥∥∥∥
2
 = E
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S

N∑
i=1

ωi1{i ∈ S}
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2


=
1

S2
E

∑
i

‖ωi‖2 1{i ∈ S}+ 2
∑
i<j

ω>i ωj1{i, j ∈ S}


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1

SN
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‖ωi‖2 +
1

S2

S(S − 1)

N(N − 1)
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≤ 1

SN
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where the last inequality uses the fact that N−SN−1 ≤ 1 for any nonempty set S.

From the L-smoothness of f(·) in Assumption 2, we have
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)
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where (a) uses the inequality that
∥∥θt+1 − θt

∥∥ =

∥∥∥∥ γ
SK

∑
i∈St,k

gt,ki

‖gt,ki ‖

∥∥∥∥ ≤ γ, (b) is based on

γ ‖∇f (θt)‖ − γ ‖gt‖ ≤ γ ‖∇f (θt)− gt‖ and (c) is from the following relation:

∥∥gt∥∥
∥∥∥∥∥∥ 1

SK

∑
i∈St,k

gt,ki∥∥∥gt,ki ∥∥∥ −
gt

‖gt‖

∥∥∥∥∥∥ =
‖gt‖
SK

∥∥∥∥∥∥
∑
i∈St,k

 gt,ki∥∥∥gt,ki ∥∥∥ −
gt,ki
‖gt‖

∥∥∥∥∥∥
=
‖gt‖
SK

∥∥∥∥∥∥
∑
i∈St,k

‖gt‖ −
∥∥∥gt,ki ∥∥∥

‖gt‖
∥∥∥gt,ki ∥∥∥ gt,ki

∥∥∥∥∥∥
≤ ‖g

t‖
SK

∑
i∈St,k

∣∣∣‖gt‖ − ∥∥∥gt,ki ∥∥∥∣∣∣
‖gt‖

∥∥∥gt,ki ∥∥∥
∥∥∥gt,ki ∥∥∥

=
1

SK

∑
i∈St,k

∣∣∣∥∥gt∥∥− ∥∥∥gt,ki ∥∥∥∣∣∣
≤ 1

SK

∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥ .
Taking expectation on both sides of (A1), we obtain

γE
∥∥∇f (θt)∥∥ ≤E [f (θt)− f (θt+1

)]
+ 2γE

∥∥∇f (θt)− gt∥∥
+

γ

SK
E

 ∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥
+

γ2L

2
.

Summing the above inequality over t and dividing it by γT , we have

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ ≤ 1

γT
E
[
f
(
θ0
)
− f

(
θT
)]

+
2

T

T−1∑
t=0

E
∥∥∇f (θt)− gt∥∥

+
1

SKT

T−1∑
t=0

E

[∑
i∈St

∥∥∥gt,ki − gt∥∥∥
]

+
γL

2
. (A2)

We have the following results on the terms 1
T

∑T−1
t=0 E ‖∇f (θt)− gt‖ and

1
SKT

∑T−1
t=0 E

[∑
i∈St

∥∥∥gt,ki − gt∥∥∥] in (A2).

Lemma 3. Under Assumptions 2 and 3, the disparity 1
T

∑T−1
t=0 E ‖∇f (θt)− gt‖ is upper bounded

by:

1

T

T−1∑
t=0

E
∥∥∇f (θt)− gt∥∥ ≤ 1

βT

(
1

2
ηβKL+

3σ√
SK

)
+
γL

β
+

√
1 +

10β

S
ηKL+ σ

√
30β

SK

+ 2γL

√
β

S

(
1 +

4N2

S2

)
+

√
η
√
KLσ

2
√
S

.

Lemma 4. Under Assumptions 2 and 3, the gradient dissimilarity
1

SKT

∑T−1
t=0 E

[∑
i∈St

∥∥∥gt,ki − gt∥∥∥] is upper bounded by:

1

SKT

T∑
t=1

E

 ∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥
 ≤2β

((
1 +

2√
K

)
σ + 2ηKL+

(
1 +

2N

S

)
γL

)

+
8Nβ

ST

(√
2σ√
K

+

√
2S

3N
ηKL

)
.
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The proof of Lemma 3 is presented in subsection A.1 and the proof of Lemma 4 is presented in
subsection A.2.

Set β = β0√
T

, γ = γ0

T
3
4

and η = 1
K
√
T

. From Lemma 3, we know that

1

T

T−1∑
t=0

E
∥∥∇f (θt)− gt∥∥

≤ 1

β0

√
T

(
β0L

2T
+

3σ√
SK

)
+

γ0L

β0T
1
4

+

√
1 +

10β0

S
√
T

L√
T

+ σ

√
30β0

SK
√
T

+
2γ0L

T

√
β0

S

(
1 +

4N2

S2

)
+

√
Lσ

2
√
SKT

.
3σ

β0

√
SKT

+
γ0L

β0T
1
4

+
L√
T

+ σ

√
30β0

SK
√
T

+

√
Lσ

2
√
SKT

. (A3)

Similarly, from Lemma 4, we know that

1

SKT

T−1∑
t=0

E

 ∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥


≤ 2β0√
T

((
1 +

2√
K

)
σ +

2L√
T

+

(
1 +

2N

S

)
γ0L

T
3
4

)
+

8Nβ0

ST
3
2

(√
2σ√
K

+

√
2S

3N

L√
T

)

.
2β0σ√
T

+
4β0σ√
KT

. (A4)

Define the initial optimality gap ∆ := f
(
θ0
)
− f∗. Then, f

(
θ0
)
− f

(
θT
)
≤ f

(
θ0
)
− f∗ = ∆.

Plugging (A3) and (A4) into (A2), we have

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ .

∆

γ0T
1
4

+
6σ

β0

√
SKT

+
2γ0L

β0T
1
4

+
2L√
T

+ 2σ

√
30β0

SK
√
T

+

√
2Lσ

(SKT )
1
4

+
2β0σ√
T

+
4β0σ√
KT

+
γ0L

2T
3
4

.

Let γ0 = (SK)
1
4 and β0 =

√
SK. Then, we have

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ ≤ O(∆ + L+ σ +

√
Lσ

(SKT )
1
4

+

√
SKσ + L√

T

)
.

By setting SK ≤ O
(
T

1
3

)
, we have

√
SK√
T
∝ O

(
(SKT )−

1
4

)
and thus

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ ≤ O(∆ + L+ σ +

√
Lσ

(SKT )
1
4

)
.

A.1 PROOF OF LEMMA 3

The proof of Lemma 3 utilizes the following result.

Lemma 5. For any i, t, define φti := E ‖∇fi (θt)− cti‖
2. Under Assumptions 2 and 3, we have

φti ≤
(

2σ2

K
+

2S

3N
η2K2L2

)(
1− S

4N

)2t

+ 4

(
N2

S2
γ2L2 +

σ2

K
+

1

3
η2K2L2

)
,∀i.

Proof. Since for any t, the S elements in St are uniformly sampled from {1, · · · , N}, we have

cti =

{
ct−1
i with probability1− S

N
1
K

∑
k∇F

(
θt,ki ; ξt,ki

)
with probability SN .
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Using Young’s inequality repeatedly, we have

φti =

(
1− S

N

)
E
∥∥∇fi (θt)− ct−1

i

∥∥2
+
S

N
E

∥∥∥∥∥ 1

K

∑
k

(
∇fi

(
θt
)
−∇F

(
θt,ki ; ξt,ki

))∥∥∥∥∥
2

≤
(

1− S

N

)
E
∥∥∇fi (θt)∓∇fi (θt−1

)
− ct−1

i

∥∥2
+
S

N

(
2σ2

K
+

2L2

K

∑
k

E
∥∥∥θt,ki − θt∥∥∥2

)

≤
(

1− S

N

)
E
[(

1 +
S

2N

)
φt−1
i +

(
1 +

2N

S

)
γ2L2

]
+

2S

N

(
σ2

K
+

1

3
η2K2L2

)
≤
(

1− S

2N

)
φt−1
i +

2N

S
γ2L2 +

2S

N

(
σ2

K
+

1

3
η2K2L2

)
≤
(

1− S

2N

)t
φ0
i +

(
2N

S
γ2L2 +

2S

N

(
σ2

K
+

1

3
η2K2L2

)) t−1∑
τ=0

(
1− S

2N

)τ
≤
(

1− S

2N

)t
φ0
i + 4

(
N2

S2
γ2L2 +

σ2

K
+

1

3
η2K2L2

)
.

Since c−1
i = 1

K

∑K−1
k=0 ∇F

(
θ0; ξ−1,k

i

)
, we have

φ0
i =

(
1− S

N

)
E
∥∥∇fi (θ0

)
− c−1

i

∥∥2
+
S

N
E

∥∥∥∥∥∇fi (θ0
)
− 1

K

∑
k

∇F
(
θ0,k
i ; ξ0,k

i

)∥∥∥∥∥
2

≤
(

1− S

N

)
σ2

K
+

2S

N

(
L2E

∥∥∥θ0 − θ0,k
i

∥∥∥2

+
σ2

K

)
≤
(

1 +
S

N

)
σ2

K
+

2S

3N
η2K2L2

≤ 2σ2

K
+

2S

3N
η2K2L2.

Then, we have

φti ≤
(

2σ2

K
+

2S

3N
η2K2L2

)(
1− S

2N

)t
+ 4

(
N2

S2
γ2L2 +

σ2

K
+

1

3
η2K2L2

)
≤
(

2σ2

K
+

2S

3N
η2K2L2

)(
1− S

4N

)2t

+ 4

(
N2

S2
γ2L2 +

σ2

K
+

1

3
η2K2L2

)
,

where we use the relation 1− S
2N ≤

(
1− S

4N

)2
.

Define Et := ∇f (θt) − gt and ut := ∇f (θt) −∇f
(
θt−1

)
. From the update rule of momentum

gt, we have

Et =(1− β)
(
∇f

(
θt
)
− gt−1

)
+ β

∇f (θt)− ct−1 − 1

SK

∑
i∈St,k

(
∇F

(
θt,ki ; ξt,ki

)
− ct−1

i

)
︸ ︷︷ ︸

:=vt

=(1− β)Et−1 + (1− β)ut + βvt

=(1− β)tE0 +

t∑
τ=1

uτ (1− β)t+1−τ +

t∑
τ=1

βvτ (1− β)t−τ .

Based on the triangle inequality of `2 norm and the concavity of the square root (·) 1
2 , we have

E
∥∥Et∥∥ ≤(1− β)tE

∥∥E0
∥∥+

t∑
τ=1

E ‖uτ‖ (1− β)t+1−τ +

E

∥∥∥∥∥
t∑

τ=1

βvτ (1− β)t−τ

∥∥∥∥∥
2
 1

2

. (A5)
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Since c−1
i = 1

K

∑K−1
k=0 ∇F

(
θ0; ξ−1,k

i

)
for any i, c−1 = 1

N

∑
i c
−1
i , and g−1 = c−1, we have

E
∥∥E0

∥∥ = E

∥∥∥∥∥∥∇f (θ0
)
− 1

NK

∑
i,k

∇F
(
θ0; ξ−1,k

i

)
+

β

SK

∑
i∈S0,k

(
∇F

(
θ0
i ; ξ−1,k

i

)
−∇F

(
θ0,k
i ; ξ0,k

i

))∥∥∥∥∥∥
≤ σ√

NK
+ E

∥∥∥∥∥∥ β

SK

∑
i∈S0,k

(
∇F

(
θ0
i ; ξ−1,k

i

)
∓∇fi

(
θ0
i

)
∓∇fi

(
θ0,k
i

)
−∇F

(
θ0,k
i ; ξ0,k

i

))∥∥∥∥∥∥
≤ σ√

NK
+

βσ√
SK

+
β

SK
E

 ∑
i∈S0,k

∥∥∥∇fi (θ0
)
−∇fi

(
θ0,k
i

)∥∥∥
+

βσ√
SK

≤ βL

NK

∑
i,k

E
∥∥∥θ0,k

i − θ
0
∥∥∥+

3σ√
SK

≤ 1

2
ηβKL+

3σ√
SK

, (A6)

where the last inequality uses the results in Lemma 1.

Additionally, for any t, we have

∥∥ut∥∥ =
∥∥∇f (θt+1

)
−∇f

(
θt
)∥∥ ≤ L∥∥θt+1 − θt

∥∥ ≤ γL
∥∥∥∥∥∥ 1

SK

∑
i∈St,k

gt,ki

‖gt,ki ‖

∥∥∥∥∥∥ ≤ γL. (A7)

To proceed, we handle the last term in (A5). First, we have

E

∥∥∥∥∥
t∑

τ=1

βvτ (1− β)t−τ

∥∥∥∥∥
2

=

t∑
τ=1

β2E‖vτ‖2(1− β)2(t−τ)

+
∑

1≤τ1,τ2≤t,τ1 6=τ2

E
〈
βvτ1(1− β)t−τ1 , βvτ2(1− β)t−τ2

〉
. (A8)

Let F0 6= ∅ and F t,ki := σ({θt,ji }0≤j≤k ∪ F t) and F t+1 := σ(∪iF t,Ki ) for all t ≥ 0, where
σ() indicates the σ-algebra. Let E[·|F t] represent the expectation conditioned on the filtration F t
with respect to the random variables {ξt,ki }1≤i≤N,0≤k<K in the t-th iteration. Let Eξt,ki

[·] represent

the expectation taking over the random sample ξt,ki . Similarly, let ESt [·] represent the expectation
taking over the uniformly sampled client set St. The set St is independent across different t. Then,
for any t, we have

E[vt|F t] = E{ξt,ki }∀i,k,St
[vt]

= E{ξt,ki }∀i,k

∇f (θt)− ct−1 − 1

NK

∑
i,k

(
∇F

(
θt,ki ; ξt,ki

)
− ct−1

i

)
= ∇f

(
θt
)
− 1

NK

∑
i,k

∇fi
(
θt,ki

)
,
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where the last equality is based on Assumption 3 and the fact that 1
N

∑N
i=1 c

t
i = ct for any t. Then,

for any 0 ≤ t1 < t2 ≤ T − 1, we have
E
〈
vt1 ,vt2

〉
= E

〈
vt1 ,E

[
vt2 |F t2

]〉
= E

〈
1

SK

∑
i∈St,k

(
∇fi

(
θt1
)
−∇fi

(
θt1,ki

))
,

1

NK

∑
i,k

(
∇fi

(
θt2
)
−∇fi

(
θt2,ki

))〉

+ E

〈
1

SK

∑
i∈St,k

(
∇fi

(
θt1,ki

)
−∇F

(
θt1,ki ; ξt1,ki

))
,

1

NK

∑
i,k

(
∇fi

(
θt2
)
−∇fi

(
θt2,ki

))〉

+ E

〈
ESt

[
1

S

∑
i∈St

ct−1 − ct−1
i

]
,

1

NK

∑
i,k

(
∇fi

(
θt2
)
−∇fi

(
θt2,ki

))〉

≤ L2

2NK

∑
i,k

E
∥∥∥θt1,ki − θt1

∥∥∥2

+
L2

2NK

∑
i,k

E
∥∥∥θt2,ki − θt2

∥∥∥2

+
σ√
SK

L

NK

∑
i,k

∥∥∥θt2,ki − θt2
∥∥∥

≤ 1

3
η2K2L2 +

η
√
KLσ

2
√
S

. (A9)

Further, based on Lemma 2, we have

E
∥∥vt∥∥2 ≤E

∥∥∥∥∥∥∇f (θt)− 1

NK

∑
i,k

∇F
(
θt,ki ; ξt,ki

)∥∥∥∥∥∥
2

+
1

S

1

N

∑
i

E

∥∥∥∥∥ 1

K

∑
k

(
∇F

(
θt,ki ; ξt,ki

)
− 1

N

∑
i

∇F
(
θt,ki ; ξt,ki

))
−
(
ct−1
i − ct−1

)∥∥∥∥∥
2

︸ ︷︷ ︸
:=Λt

≤2

(
L2E

∥∥∥θt − θt,ki ∥∥∥2

+
σ2

NK

)
+

Λt
S

≤2

3
η2K2L2 +

2σ2

NK
+

Λt
S
.

Λt ≤
1

N

∑
i

E

∥∥∥∥∥ 1

K

∑
k

∇F
(
θt,ki ; ξt,ki

)
− ct−1

i

∥∥∥∥∥
2

=
1

N

∑
i

E

∥∥∥∥∥ 1

K

∑
k

∇F
(
θt,ki ; ξt,ki

)
∓∇fi

(
θt,ki

)
∓∇fi

(
θt
)
∓∇fi

(
θt−1

)
− ct−1

i

∥∥∥∥∥
2

≤ 4σ2

K
+

4L2

NK

∑
i,k

E
∥∥∥θt,ki − θt∥∥∥2

+ 4L2E
∥∥θt − θt−1

∥∥2
+

4

N

∑
i

E
∥∥∇fi (θt−1

)
− ct−1

i

∥∥2

≤ 4σ2

K
+

4

3
η2K2L2 + 4γ2L2 +

4

N

∑
i

φt−1
i ,

where φt−1
i := E

∥∥∇fi (θt−1
)
− ct−1

i

∥∥2
. From Lemma 5, we know that, for any i,

φt−1
i ≤

(
2σ2

K
+

2S

3N
η2K2L2

)(
1− S

4N

)2(t−1)

+ 4

(
N2

S2
γ2L2 +

σ2

K
+

1

3
η2K2L2

)
≤6σ2

K
+ 2η2K2L2 +

4N2

S2
γ2L2. (A10)

Plugging the upper bound of φt−1
i into Λt yields

Λt ≤
28σ2

K
+

28

3
η2K2L2 + 4γ2L2

(
1 +

4N2

S2

)
.
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Then, we have

E
∥∥vt∥∥2 ≤

(
2

3
+

10

S

)
η2K2L2 +

30σ2

SK
+

4γ2L2

S

(
1 +

4N2

S2

)
. (A11)

Plugging (A9) and (A11) into (A8) gives

E

∥∥∥∥∥
t∑

τ=1

βvτ (1− β)t−τ

∥∥∥∥∥
2

≤βE‖vτ‖2 + E 〈vτ1 ,vτ2〉

≤
(

2

3
+

10

S

)
βη2K2L2 +

30σ2β

SK
+

4βγ2L2

S

(
1 +

4N2

S2

)
+

1

3
η2K2L2 +

η
√
KLσ

2
√
S

.

Since β ≤ 1, taking square root on both sides of the above inequality yields

E

∥∥∥∥∥
t∑

τ=1

βvτ (1− β)t−τ

∥∥∥∥∥
2
 1

2

≤
√

1 +
10β

S
ηKL+ σ

√
30β

SK
+ 2γL

√
β

S

(
1 +

4N2

S2

)
+

√
η
√
KLσ

2
√
S

, (A12)

where we use the fact that
√
a+ b ≤

√
a+
√
b, for any a, b ≥ 0.

Plugging (A6), (A7), and (A12) into (A5), we have

E‖Et‖ ≤(1− β)t
(

1

2
ηβKL+

3σ√
SK

)
+
γL

β
+

√
1 +

10β

S
ηKL+ σ

√
30β

SK

+ 2γL

√
β

S

(
1 +

4N2

S2

)
+

√
η
√
KLσ

2
√
S

.

Summing the above inequality over t yields

1

T

T−1∑
t=0

E‖Et‖ ≤ 1

βT

(
1

2
ηβKL+

3σ√
SK

)
+
γL

β
+

√
1 +

10β

S
ηKL+ σ

√
30β

SK

+ 2γL

√
β

S

(
1 +

4N2

S2

)
+

√
η
√
KLσ

2
√
S

.

A.2 PROOF OF LEMMA 4

Recall that gt,ki = β
(
∇F

(
θt,ki ; ξt,ki

)
− ct−1

i + ct−1
)

+ (1− β)gt−1, and

gt =
1

SK

∑
i∈St,k

gt,ki

= β

(
1

S

∑
i∈St

(
1

K

K−1∑
k=0

∇F
(
θt,ki ; ξt,ki

)
− ct−1

i

)
+ ct−1

)
+ (1− β)gt−1.
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Then, we have

E

 1

SK

∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥


= βE

 1

SK

∑
i∈St,k

∥∥∥∥∥∇F (θt,ki ; ξt,ki

)
− ct−1

i − 1

S

∑
i∈St

(
1

K

K−1∑
k=0

∇F
(
θt,ki ; ξt,ki

)
− ct−1

i

)∥∥∥∥∥


≤ 2β

NK

∑
i,k

E
∥∥∥∇F (θt,ki ; ξt,ki

)
− ct−1

i

∥∥∥
=

2β

NK

∑
i,k

E
∥∥∥∇F (θt,ki ; ξt,ki

)
∓∇fi

(
θt,ki

)
∓∇fi

(
θt
)
∓∇fi

(
θt−1

)
− ct−1

i

∥∥∥
≤ 2β

σ +
L

NK

∑
i,k

∥∥∥θt,ki − θt∥∥∥+ L
∥∥θt − θt−1

∥∥+
2β

N

∑
i

E
∥∥∇fi (θt−1

)
− ct−1

i

∥∥
≤ 2β

(
σ +

1

2
ηKL+ γL

)
+

2β

N

∑
i

√
φt−1
i .

From Lemma 5, we know that√
φt−1
i ≤

(√
2σ√
K

+

√
2S

3N
ηKL

)(
1− S

4N

)t−1

+ 2

(
N

S
γL+

σ√
K

+
1√
3
ηKL

)
,∀i.

Thus, we have

E

 1

SK

∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥
 ≤2β

((
1 +

2√
K

)
σ + 2ηKL+

(
1 +

2N

S

)
γL

)

+ 2β

(√
2σ√
K

+

√
2S

3N
ηKL

)(
1− S

4N

)t−1

.

Summing the above inequality over t yields

1

SKT

T∑
t=1

E

 ∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥
 ≤2β

((
1 +

2√
K

)
σ + 2ηKL+

(
1 +

2N

S

)
γL

)

+
8Nβ

ST

(√
2σ√
K

+

√
2S

3N
ηKL

)
.

B THEORETICAL ANALYSIS OF PADAMFED WITH VARIANCE REDUCTION

The analysis of PAdaMFed-VR is similar to that of PAdaMFed. We first present the following two
auxiliary Lemmas.

Lemma 6. Under Assumptions 1 and 3, the disparity 1
T

∑T−1
t=0 E ‖∇f (θt)− gt‖ is upper bounded

by:

1

T

T−1∑
t=0

E
∥∥∇f (θt)− gt∥∥ ≤ 1

βT

(
1

2
ηKL+

3σ√
SK

)
+
ηKL

2β
+ γL

√
2

SKβ
+ σ

√
22β

SK

+ γL

√
3β

S

(
1 +

4N2

S2

)
+ ηKL

√
6β

S
.
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Algorithm 2 PAdaMFed-VR: PAdaMFed with Variance Reduction

1: Require: initial model θ0, θ−1 = θ0, control variates c−1
i = 1

K

∑K−1
k=0 ∇F

(
θ0; ξ−1,k

i

)
for

any i, c−1 = 1
N

∑
i c
−1
i , momentum g−1 = c−1, global learning rate γ, local learning rate η,

and momentum parameter β
2: for t = 0, · · · , T − 1 do
3: Central Server: Uniformly sample clients St ⊆ {1, · · · , N} with |St| = S
4: for each client i ∈ St in parallel do
5: Initialize local model θt,0i = θt and control variate cti = 0 (for i /∈ St, cti = ct−1

i )
6: for k = 0, · · · ,K − 1 do
7: Compute gt,ki = ∇F

(
θt,ki ; ξt,ki

)
+ β

(
ct−1 − ct−1

i

)
+ (1 −

β)
(
gt−1 −∇F

(
θt−1; ξt,ki

))
8: Update local model θt,k+1

i = θt,ki − η
gt,ki

‖gt,ki ‖
9: Update control variate cti = cti + 1

K∇F
(
θt,ki ; ξt,ki

)
10: end for
11: Upload θt,Ki and cti to central server
12: end for

Central server:
13: Aggregate local updates gt = 1

ηSK

∑
i∈St

(
θt − θt,Ki

)
14: Update global model θt+1 = θt − γgt
15: Aggregate control variate ct = ct−1 + 1

N

∑
i∈St

(
cti − c

t−1
i

)
16: Aggregate momentum gt = β

(
1
S

∑
i∈St

(
cti − c

t−1
i

)
+ ct−1

)
+ (1− β)gt−1

17: Download θt+1, βct + (1− β)gt to all clients
18: end for

Lemma 7. Under Assumptions 1 and 3, the gradient dissimilarity
1

SKT

∑T−1
t=0 E

[∑
i∈St

∥∥∥gt,ki − gt∥∥∥] is upper bounded by:

1

SKT

T∑
t=1

E

 ∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥
 ≤2β

((
1 +

2√
K

)
σ + 2ηKL+

(
1 +

2N

S

)
γL

)

+
8Nβ

ST

(√
2σ√
K

+

√
2S

3N
ηKL

)
+ ηKL+ 2γL.

Set β = β0

T
2
3

and γ = γ0

T
2
3

. η = 1
KT . From Lemma 6, we know that

1

T

T−1∑
t=0

E
∥∥∇f (θt)− gt∥∥ ≤ 1

β0T
1
3

(
L

2T
+

3σ√
SK

)
+

L

2β0T
1
3

+
γ0L

T
1
3

√
2

SKβ0
+

σ

T
1
3

√
22β0

SK

+
γ0L

T

√
3β0

S

(
1 +

4N2

S2

)
+

L

T
4
3

√
6β0

S

.
3σ

β0

√
SKT

1
3

+
L

2β0T
1
3

+
γ0L

T
1
3

√
2

SKβ0
+

σ

T
1
3

√
22β0

SK
. (A13)

Similarly, from Lemma 7, we have

1

SKT

T∑
t=1

E

 ∑
i∈St,k

∥∥∥gt,ki − gt∥∥∥
 ≤2β0

T
2
3

((
1 +

2√
K

)
σ +

2L

T
+

(
1 +

2N

S

)
γ0L

T
2
3

)

+
8Nβ0

ST
5
3

(√
2σ√
K

+

√
2S

3N

L

T

)
+
L

T
+

2γ0L

T
2
3

. (A14)
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Plugging (A13) and (A14) into (A2), we have

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ .

∆

γ0T
1
3

+
6σ

β0

√
SKT

1
3

+
L

β0T
1
3

+
2
√

2γ0L√
SKβ0T

1
3

+
2σ
√

22β0√
SKT

1
3

+
2β0σ

T
2
3

+
2γ0L

T
2
3

.

Set β0 = (SK)
1
3 and γ0 = (SK)

1
3 , we have

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ .

∆

γ0T
1
3

+
6σ

β0

√
SKT

1
3

+
L

β0T
1
3

+
2
√

2γ0L√
SKβ0T

1
3

+
2σ
√

22β0√
SKT

1
3

+
2β0σ

T
2
3

+
2γ0L

T
2
3

≤O

(
∆ + L+ σ

(SKT )
1
3

+
(L+ σ)(SK)

1
3

T
2
3

)
.

By setting SK ≤ O
(√

T
)

, we have (SK)
1
3

T
2
3
∝ O

(
(SKT )−

1
3

)
and thus

1

T

T−1∑
t=0

E
∥∥∇f (θt)∥∥ ≤ O(∆ + L+ σ

(SKT )
1
3

)
.

B.1 PROOF OF LEMMA 6

Since Et := ∇f (θt)− gt, we have

Et =∇f
(
θt
)
− 1

SK

∑
i∈St,k

∇F
(
θt,ki ; ξt,ki

)
+
β

S

∑
i∈St

(
ct−1
i − ct−1

)

− (1− β)

gt−1 ∓∇f
(
θt−1

)
− 1

SK

∑
i∈St,k

∇F
(
θt−1; ξt,ki

)
=(1− β)Et−1 +

1

SK

∑
i∈St,k

(
∇F

(
θt; ξt,ki

)
−∇F

(
θt,ki ; ξt,ki

))
︸ ︷︷ ︸

:=wt

+ β

∇f (θt)− ct−1 − 1

SK

∑
i∈St,k

(
∇F

(
θt; ξt,ki

)
− ct−1

i

)
︸ ︷︷ ︸

:=ṽt

+ (1− β)

 1

SK

∑
i∈St,k

(
∇F

(
θt−1; ξt,ki

)
−∇F

(
θt; ξt,ki

))
+∇f

(
θt
)
−∇f

(
θt−1

)
︸ ︷︷ ︸

:=ũt

=(1− β)tE0 +

t∑
τ=1

wτ (1− β)t−τ +

t∑
τ=1

ũτ (1− β)t+1−τ +

t∑
τ=1

βṽτ (1− β)t−τ .

E
∥∥Et∥∥ ≤(1− β)tE

∥∥E0
∥∥+

t∑
τ=1

E
∥∥wt

∥∥ (1− β)t−τ +

E

∥∥∥∥∥
t∑

τ=1

ũτ (1− β)t+1−τ

∥∥∥∥∥
2
 1

2

+

E

∥∥∥∥∥
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. (A15)
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Since θ−1 = θ0, c−1
i = 1

K

∑K−1
k=0 ∇F

(
θ0; ξ−1,k

i

)
for any i, c−1 = 1

N

∑
i c
−1
i , and g−1 = c−1,

we have

E
∥∥E0

∥∥ =E

∥∥∥∥∥∥∇f (θ0
)
− 1

NK

∑
i,k

∇F
(
θ0; ξ−1,k

i

)

+
1

SK

∑
i∈S0,k

(
β∇F

(
θ0
i ; ξ−1,k

i

)
+ (1− β)∇F

(
θ0; ξ0,k

i

)
−∇F

(
θ0,k
i ; ξ0,k

i

))∥∥∥∥∥∥
≤ σ√

NK
+

σ√
SK

+
1

SK
E

 ∑
i∈S0,k

∥∥∥∇fi (θ0
)
−∇fi

(
θ0,k
i

)∥∥∥
+

σ√
SK

≤ L

NK

∑
i,k

E
∥∥∥θ0,k

i − θ
0
∥∥∥+

3σ√
SK
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2
ηKL+

3σ√
SK

. (A16)

Then, we have ∥∥wt
∥∥ ≤ L

SK

∑
i∈St,k

E
∥∥∥θt,ki − θt∥∥∥ ≤ 1

2
ηKL. (A17)

Additionally, since E[ũt|F t] = 0, then, for any 0 ≤ t1 < t2 ≤ T − 1, we have

E
〈
ũt1 , ũt2

〉
= E

〈
ũt1 ,E[ũt2 |F t2 ]

〉
= 0.

From Lemma 2, for any t, we have

E
∥∥ũt∥∥2 ≤E

∥∥∥∥∥∥ 1

NK

∑
i,k

(
∇F

(
θt−1; ξt,ki

)
−∇F
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θt; ξt,ki
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+∇f
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θt
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−∇f
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)∥∥∥∥∥∥
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∥∥2
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Then, we have
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2

=

t∑
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SKβ
. (A18)

Similarly, since E[ṽt|F t] = 0, for any 0 ≤ t1 < t2 ≤ T − 1, we have

E
〈
ṽt1 , ṽt2

〉
= E

〈
ṽt1 ,E[ṽt2 |F t2 ]

〉
= 0.

From Lemma 2, for any t, we have

E‖ṽt‖2 ≤ E

∥∥∥∥∥∥∇f (θt)− 1

NK

∑
i,k

∇F
(
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)∥∥∥∥∥∥
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+
1
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N∑
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∥∥∥∥∥ 1
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∑
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(
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)
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∥∥∥∥∥
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1
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∥∥∥∥∥ 1
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S
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S

1
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By (A10), φt−1
i ≤ 6σ2

K + 2η2K2L2 + 4N2

S2 γ
2L2. Then, we have

E‖ṽt‖2 ≤22σ2

SK
+

3γ2L2

S

(
1 +

4N2

S2

)
+

6

S
η2K2L2.

E

∥∥∥∥∥
t∑

τ=1

βṽτ (1− β)t−τ

∥∥∥∥∥
2

≤ β2
t∑
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SK
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S

(
1 +

4N2

S2

)
+
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S
η2K2L2. (A19)

Plugging (A16), (A17), (A18), and (A19) into (A15) yields

E‖Et‖ ≤(1− β)t
(

1

2
ηKL+

3σ√
SK

)
+
ηKL

2β
+ γL

√
2

SKβ
+ σ

√
22β

SK

+ γL

√
3β

S

(
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4N2
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)
+ ηKL

√
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S
.

Summing the above inequality over t yields

1

T

T−1∑
t=0

E‖Et‖ ≤ 1

βT

(
1

2
ηKL+

3σ√
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)
+
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√
2
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√
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√
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S
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√
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B.2 PROOF OF LEMMA 7

With variance reduction, we have gt,ki = ∇F
(
θt,ki ; ξt,ki

)
− β

(
ct−1
i − ct−1

)
+ (1 −

β)
(
gt−1 −∇F

(
θt−1; ξt,ki

))
. Since gt = 1

SK

∑
i∈St,k g

t,k
i , we have

E
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From Section A.2, we know that
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(a) i.i.d (b) non-i.i.d

Figure 3: Test accuracy versus the number of communication rounds on the CIFAR-10 dataset.

Then, we have

E

[
1
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∑
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Summing the above inequality over t, we have
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2σ√
K

+

√
2S

3N
ηKL

)
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C ADDITIONAL NUMERICAL RESULTS

Experimental Settings: We employ a convolutional neural network (CNN) with three convolu-
tional layers and two fully connected layers for the EMNIST dataset, and a ResNet-18 architecture
for CIFAR-10. The experimental framework involves 100 distributed clients with 10 clients partici-
pating randomly in each training round. We investigate both independent and identically distributed
(i.i.d.) and non-i.i.d. data distributions. For i.i.d. scenarios, we implement uniform random data
distribution across clients. To simulate realistic heterogeneity in non-i.i.d. settings, we apply a
Dirichlet distribution Dir(1) for EMNIST, Dir(0.5) for CIFAR-10. The hyperparameters of all base-
lines, including learning rates, are optimized through comprehensive grid search.

C.1 SIMULATIONS ON CIFAR-10 DATASET

Figure 3 presents the comparative analysis of test accuracy across different algorithms on the
CIFAR-10 dataset, with subfigures 3a and 3b illustrating the performance under i.i.d. and non-
i.i.d. data distributions, respectively. The observed patterns align with those demonstrated in Figure
1. Our proposed algorithms demonstrate superior performance compared to existing methods, in-
cluding FedAvg, SCAFFOLD, and SCAFFOLD-M, both in terms of convergence rate and final test
accuracy. Under non-i.i.d. conditions, while all algorithms exhibit increased performance volatility
and reduced accuracy, the relative performance hierarchy remains consistent with the i.i.d. scenario,
as shown in subfigure 3b.

Figure 4 illustrates the evolution of gradient norm ‖∇f(θt)‖ for various algorithms on the CIFAR-
10 dataset under both i.i.d. and non-i.i.d. data distributions. The results demonstrate that
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(a) i.i.d (b) non-i.i.d

Figure 4: Gradient norm versus the number of communication rounds on the CIFAR-10 dataset.

(a) i.i.d (b) non-i.i.d

Figure 5: Ablation study versus the number of communication rounds on the CIFAR-10 dataset.

momentum-enhanced methods, specifically our proposed algorithm and SCAFFOLD-M, achieve
more rapid gradient norm reduction compared to their non-momentum counterparts.

We further carry out the ablation study by isolating the effects of momentum and gradient normaliza-
tion in Figure 5. The results demonstrate that incorporating SCAFFOLD with normalized gradient
leads to degraded performance due to the loss of gradient magnitude information. Therefore, the
momentum is essential in our algorithm design to maintain the descent direction by effectively ag-
gregating gradients across clients and iterations.
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