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Abstract

Many deep learning methods are data-driven, often converging to local minima due to
limited training data. This situation poses a challenge in domains where acquiring adequate
data is difficult for model training or fine-tuning, such as generalized few-shot semantic
segmentation (GFSSeg) and monocular depth estimation (MDE). To this end, we propose
a self-trained geometry regularization framework to enhance model training or fine-tuning
in scenarios with limited training data using geometric knowledge. Specifically, we propose
to leverage low-level geometry information extracted from the training data and define a
novel regularization term, which is a plug-and-play module jointly trained with the primary
task via multi-task learning. Our proposed regularization neither relies on extra manual
labels and data in training nor requires extra computation during the inference stage. We
demonstrate the effectiveness of this regularization on GFSSeg and MDE tasks. Notably, it
improves the state-of-the-art GFSSeg by 5.61% and 4.26% mloU of novel classes on PASCAL
and COCO in the 1-shot scenario. In MDE, it achieves a relative reduction of SILog error
by 16.6% and 9.4% for two recent methods in the KITTI dataset.

1 Introduction

The recent advancements in deep learning-based approaches have been enormous and promising. Various
modern and sophisticated deep neural networks (Dosovitskiy et al., 2020; Liu et al., 2021; Oquab et al., 2023;
Carion et al., 2020; Touvron et al., 2022) have been proposed to address diverse tasks. These deep learning
models are mostly data-driven and need much training data (Zhou et al., 2017; Deng et al., 2009; Russakovsky
et al., 2015; Kuznetsova et al., 2020), avoiding suffering from local minimum convergence. Meanwhile, in
practice, annotating a large number of training samples is exceedingly challenging, particularly for tasks
involving dense predictions. For example, in monocular depth estimation (MDE), collecting large-scale data
with paired ground truth is costly (Ranftl et al., 2022; Bhat et al., 2023; Ranftl et al., 2021a; Piccinelli et al.,
2024). Additionally, in generalized few-shot semantic segmentation (GFSSeg) (Tian et al., 2022; Hajimiri
et al., 2023; Liu et al., 2023a; Lang et al., 2022), only a few shots of data can be used to adapt the models
to novel classes. Therefore, there remain many challenges in dense prediction tasks with less data.

One way to combat against this issue is to train the network for fundamental task-invariant features via self-
supervised learning with a large scale of unlabelled data (Chen et al., 2020; Caron et al., 2021; Bao et al.,
2022; He et al., 2022), which will be further fine-tuned for downstream tasks with much smaller task-specific
annotated data. In (Darcet et al., 2023; Oquab et al., 2023), robust visual features are first learned without
supervision, followed by evaluating two dense downstream tasks, semantic image segmentation and depth
estimation. However, such approaches need carefully designed regularization modules to avoid representation
collapse (Grill et al., 2020; Caron et al., 2021; He et al., 2020; Oquab et al., 2023) and may also suffer from
catastrophic forgetting in model fine-tuning (Li et al., 2023b; Xu et al., 2023b).

Another idea is to employ geometry regularization. Encoding geometry constraints via auxiliary learning
helps the model to learn the task-invariant features, benefiting the convergence of the primary task. Edge or
semantic information can be considered as examples of geometry information. Some earlier works (Ramirez
et al., 2018; Fu et al., 2018b; Zhang et al., 2019a; Zhu et al., 2020) have shown that joint detection of edge
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and semantic labels can improve performance in medical image analysis and depth estimation. Some other
methods use edges or semantics to guide the main tasks (e.g., depth estimation) via iterative fine-tuning (Shao
et al., 2023b; Xu et al., 2023a) or other post-processing (Su & Tao, 2023). While geometric regularization is
usually effective, the difficulty lies in acquiring different geometry constraints. Semantic labels often provide
more geometric information compared to edges, yet the acquisition is also more challenging.

This work proposes a new auxiliary plug-and-play geometry regularization network (GRNet) to improve
model training. Unlike previous methods that fuse low-level features into the primary task with increased
computation, GRNet is discardable and does not lead to additional computational costs at the inference
stage. In addition, we propose a novel primary-to-auxiliary aggregation module in GRNet to consider
the association between the primary task and the regularization task. Rethinking the usages of geometry
constraints, we aim to introduce an accessible yet effective low-level geometry regularization. Unlike the
previous methods that mainly use edges, we investigate different low-level geometry information while the
edge is just a special case. Specifically, in the auxiliary regularisation term, we investigate keypoints, e.g.,
SuperPoint (DeTone et al., 2018), scare-invariant feature transform (SIFT) (Lowe, 2004), and edges, e.g.,
Canny edges (Canny, 1986), as pseudo ground truths. Our results show that both keypoints and edges work
well to improve the results and that different choices of low-level geometries lead to similar improvement.

The keypoints work as keypoint regularization brings in additional subtasks similar to edge regularization.
Based on recent progress in model-based deep learning (Shlezinger et al., 2020), additional regularization
often help the model training and reduces over-fitting. The fact that keypoint work in segmentation validates
and supports our hypothesis that the deep learning model trained from a small dataset can be biased.
Previous researchers have used edge as a supervisor signal to improve segmentation (Yu et al., 2018) and
depth estimation (Zhu et al., 2020). It is true that such information helps. However, our research shows that
model bias is another major factor compromising performance. Including additional terms such as edge is
a special case that would improve model generalization and, therefore, better performance. To validate and
support our hypothesis, we used a key point it is not directly related to segmentation and showed that it
also helps.

The benefits of the proposed auxiliary GRNet are three-fold. Firstly, it improves the feature extraction in
the backbone to make it more effective for multiple tasks. Secondly, by integrating the output of the primary
task into an auxiliary low-level structure detection task through a primary-to-auxiliary aggregation module,
we can post a constraint on the output of the primary task. Surprisingly, different choices of geometry
knowledge, such as edges and key points, improve the performance of the main tasks comparably. This helps
us better understand the role of auxiliary edge detection in previous methods, which we will discuss in more
detail in Section 4.1.4 and Section 4.2.3. Thirdly, it is easier to obtain low-level structures than semantic
labels for regularization. For example, the edges can be estimated by pretrained deep learning models or
traditional handcrafted methods such as the Canny edge detector (Canny, 1986). The key points can be
easily computed by SIFT (Lowe, 2004) and self-supervised SuperPoint model (DeTone et al., 2018).

It shall be highlighted that our method is conceptually different from many existing methods (Li et al., 2020;
Lu et al., 2022; Li et al., 2024). Our method uses the output p of the primary task as one of the inputs of
the auxiliary task. Such a design encourages the network to compute p in favour of the auxiliary task, i.e.,
the network would compute p that leads to lower loss of the auxiliary task. This is equivalent to imposing a
constraint on the output p such that it favours low-level geometry extraction in the auxiliary task. It differs
from other methods that directly apply post-processing smoothing to the output. Moreover, this auxiliary
geometry aggregation module would be discarded after the training, and it would not lead to any extra
computational cost at the inference stage.

The major contributions of this paper are:

e We propose a simple yet effective self-trained geometry regularization, which uses the accessible
low-level geometry information to construct a regularization term for training the dense prediction
tasks via multi-task learning.

o We propose a primary-to-auxiliary geometry aggregation module to consider the association between
the primary and auxiliary tasks. It encourages the primary branch to predict output in favour of
the auxiliary task, which differs from post-processing fusion or smoothing in previous methods.
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o We integrate the proposed regularization term with different approaches on GFSSeg and MDE tasks.
Experimental results show that it is generic for different architectures and tasks.

2 Related works

2.1 Dense Prediction Tasks with Less Data

Dense prediction tasks refer to tasks where prediction for each pixel is needed, such as depth estimation (Laina
et al.; 2016; Yuan et al., 2022; Patil et al., 2022; Shao et al., 2023a; Yang et al., 2024; Ranftl et al., 2020;
Bhat et al., 2023; Li et al., 2023a; Kirillov et al., 2023), semantic image segmentation (Zhao et al., 2017;
Chen et al., 2017; Cheng et al., 2022; Xie et al., 2021; Li et al., 2023a; Isensee et al., 2021), etc. Recently,
The Segment Anything model and Depth Anything model have shown that large-scale data is important in
improving the performance of dense prediction tasks (Ranftl et al., 2021b; Kirillov et al., 2023; Bhat et al.,
2023; Yang et al., 2024). However, obtaining large-scale data in some tasks is challenging. For example,
around 63 million images are collected for training the Depth Anything model (Yang et al., 2024), and 12
million for the Segment Anything model (Kirillov et al., 2023). It is more difficult to train with large-scale
data. Without pursuing training with large-scale data, we aim to design accessible yet effective geometry
regularization for dense prediction tasks with less data. In this paper, we use generalized few-shot semantic
segmentation (GFSSeg) and monocular depth estimation (MDE) as two examples to validate our approach,
where both tasks face data scarcity issues.

In the GFSSeg (Tian et al., 2022), we need to adapt the models to novel classes while maintaining their
performances in base classes using only a few shots of data with novel class. Tian et al. (2022) proposed
context-aware prototype learning (CAPL), which mines contextual cues from support and query samples to
enrich the classifier for the novel class segmentation. Liu et al. (2023a) proposed to leverage projection onto
orthogonal prototypes (POP) to generalize well on base classes and quickly adapt to new objects or instances.
We use these two methods as baselines to evaluate the effectiveness of our method in GFSSeg. Hajimiri et al.
(2023) propose leveraging the InfoMax principle to maximize Mutual Information (MI) between learned
feature representations and predictions with an easily optimized inference phase.

In MDE, some approaches (Ranftl et al., 2020; Bhat et al., 2023; Yang et al., 2024; Piccinelli et al., 2024)
endeavour to gather as much data as possible to train a robust model. Ranftl et al. (2020) try to mix
multiple datasets from different sources and propose a robust training objective to boost the depth estimation
performance. Bhat et al. (2023) propose the first approach that combines both worlds, leading to a model
with excellent generalization performance in MED while maintaining metric scale. Built upon (Bhat et al.,
2023), Yang et al. (2024) extend the training image scale to 63 million, achieving impressive generalization
ability. Such large-scale training data poses significant challenges for both data collection and model training
processes. Recent other works (Shao et al., 2023b; Yuan et al., 2022; Shao et al., 2023a) popularly employ
the vision transformer. Leveraging the pretrained transformer (Liu et al., 2021) as a backbone encoder, Yuan
et al. (2022) proposed neural window fully-connected conditional random fields (NeWCRFs) as depth decoder,
showing promising performance in MDE task. Based on NeWCRFs, a physics-regularization is proposed to
consider a normal distance map in the depth estimation (Shao et al., 2023a). Shao et al. (2023b) proposed
Iterative elastic Bins (IEbBins), which modifies the regression task to the classification task and adopts an
iterative post-processing to improve the results. However, it requires 129% extra computational cost.

In this work, we use NeWCRFs as our baseline, and we find that our GRNet can improve the NeWCRFs by
7.4% and 16.6% in NYUv2 (Nathan Silberman & Fergus, 2012) and KITTT (Geiger et al., 2013). Compared
with TEbBins, GRNet with NeWCRFs can achieve comparable or better performance without using its
iterative post-processing and, therefore, avoids the 129% extra computational cost.

2.2 Auxiliary Edge and Semantic Detection

Previously, many methods have been proposed to use edge detection or semantic segmentation to improve
the performance of main tasks. Ramirez et al. (2018) proposed to leverage the semantics and geometry by
enforcing spatial proximity between depth discontinuities and semantics for monocular depth estimation.
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Wu et al. (2019) proposed pyramid cost volumes to capture semantic and multi-scale spatial information
for semantic stereo-matching. Zhu et al. (2020) explore the constraints from semantic segmentation to help
unsupervised monocular depth estimation. Rahman & Fattah (2024) propose a depth semantics symbiosis
module to achieve comprehensive mutual awareness information for boosting depth estimation. Although
semantic labels are helpful, obtaining large-scale labels can be costly in many scenarios.

Compared with the semantics, low-level structure information is more accessible to compute. For example,
it is easy to compute the Canny edge or Sobel edge using the famous Canny operator (Canny, 1986) and
the Sobel operator (Sobel & Feldman, 1973). Pretrained deep-learning models, such as SAM (Kirillov et al.,
2023), can also be used. Schenk & Fraundorfer (2017) leverage the combination of edge images and depth
maps for joint camera pose estimation. In some recent work, synthetic images are used to train deep learning
models, where the ground truths can be easily obtained (Zhang et al., 2019b; DeTone et al., 2018). In this
work, we investigate using different low-level geometric information, such as keypoints and the edge, in the
auxiliary task. The previously used edge is a special case. Our study shows that diverse low-level geometries
work similarly in improving the models.

3 Method

We propose a simple yet effective geometry regularization network (GRNet) to improve the model training
or fine-tuning in dense prediction tasks with limited training data. GRNet constructs a regularization term
by learning from low-level keypoints or edge information via multi-task learning, as shown in Figure 1.
We evaluate the proposed GRNet in generalized few-shot semantic segmentation (GFSSeg) and monocular
depth estimation (MDE) tasks. As the low-level keypoints or edges used in this work are obtained via a
self-supervised model or hand-crafted methods, the regularization term is self-trained and does not require
any manual labels. This module is discarded in the inference stage. Therefore, the geometry regularization
is a plug-and-play module and does not lead to additional computation costs at the inference stage.

In section 3.1, we first describe the auxiliary geometry regularization structure, followed by different choices
of low-level geometry information in section 3.2. Our proposed primary-to-auxiliary aggregation module is
depicted in section 3.3. Finally, the overall loss function is shown in section 3.4.

3.1 The Auxiliary Geometry Regularization Structure

The proposed geometry regularization module includes a low-level geometry extractor, a primary-to-auxiliary
aggregation module and an auxiliary decoder, as enclosed in the dashed line in orange in Figure 1(a). The
low-level geometry extractor is a non-trainable module, and there are several options, such as SIFT (Lowe,
2004), SuperPoint (DeTone et al., 2018) and Canny (Canny, 1986), which we will discuss in Section 3.2. The
primary-to-auxiliary aggregation module takes the output of the primary task as one of the inputs of the
auxiliary task. It considers the association between low-level structures and the primary tasks, which will
be discussed in Section 3.3. The auxiliary decoder takes a simple design that includes three decoder blocks,
where each includes a 1 x 1 convolution, a 3 x 3 transposed convolution and a 1 x 1 convolution consecutively.

3.2 Choice of Low-level Geometry Information

One important aspect of the method is the geometry information used to train the auxiliary decoder. In our
study, we investigate several options, including SIFT (Lowe, 2004), SuperPoint (DeTone et al., 2018) and
Canny edge (Canny, 1986). Previous studies (Song et al., 2020) often conjecture that joint edge detection
provides information to smooth the output of the primary task and improves the results. Some other
methods (Shao et al., 2023b) use such information to iteratively update MDE. In GRNet, we find that the
keypoints and edge work similarly to improve the results in GFSS and MDE tasks. This raises a question on
what is the role of edge detection in previous methods. We have conducted some experiments in our study
in Section 4.2.3, and our results suggest that the post-processing iteration could be removed if we adopt the
proposed GRNet to regularize the model training.
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Figure 1: The pipeline of the proposed auxiliary self-trained geometry regularization network (GRNet).
(a) GRNet consists of a low-level geometry extractor, a primary-to-auxiliary aggregation module, and an
auxiliary decoder. (b) The primary-to-auxiliary aggregation module first combines two inputs, feature b
from the encoder backbone and output p of the primary task, followed by gate attention and softmax to
generate the correlation attention maps between primary and auxiliary tasks. The merged feature m results
from a weighted sum of two maps multiplied by attention maps and their corresponding features. The final
step includes averaging the merged feature m with feature b for auxiliary low-level geometry detection.

3.3 Primary-to-Auxiliary Aggregation

Unlike other methods that try to fuse the outputs of the low-level tasks for the primary dense prediction
task, we propose a regularization at both the feature level b and output level p for the primary dense
prediction task, as shown in Figure 1(a). We propose a primary-to-auxiliary (P2A) aggregation module
with soft attention to achieve a one-way information flow from the primary dense prediction branch to the
auxiliary low-level regularization branch. Figure 1(b) illustrates the detailed diagram of the proposed P2A
aggregation module. Given feature outputs b and p extracted from the backbone and primary decoder
respectively, we first concatenate them to get ¢ = Concat(b,p). Then we define two functions to map c via
two different spatial-wise gates G, and G via two 1 x 1 convolution. We obtain:

Ap = Gp(c), Ap = Gp(c). (1)
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The softmax function is then applied to Ap and Ay, to generate S, and Sp.
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A merged feature m can be computed by a weighted sum of the map b and map p:

m=>b-S,+p-Sp. (3)
We then compute b’ as average of m and the feature b for subsequent low-level structure detection.
b
b = J; m (4)

The module is introduced to regularize the model training at the training stage and avoid converging to local
minima. We do not change the network structure of existing methods. It can be discarded effortlessly after
training.

3.4 Loss function

As described in section 3.3, we obtain the supervisory geometry information from the hand-crafted or pre-
trained low-level extractor. We adopt the focal loss (Lin et al., 2020) to compute the loss L, for the auxiliary
task, as shown in Equation (5):

Lgr = F(sgt Sest), (5)
where sg; and s.s; denote the pseudo low-level geometry supervision and estimated geometry from the
auxiliary task, respectively. F denotes the function to compute focal loss.

In order to use the auxiliary task to regularize the primary task, we combine the losses of the two tasks via
a weighted sum. The overall loss is computed as the weighted sum of the loss L, from the primary dense
prediction decoder and Lg, from GRNet, as shown in Equation (6):

L=L,+X Ly, (6)

where A controls the balance of the two items and A is set to 1 empirically in our work.

4 Experimental Results

We evaluate our methods in the generalized few-shot semantic segmentation (GFSSeg) and monocular depth
estimation (MDE) tasks.

4.1 Generalized Few-shot Semantic Segmentation

4.1.1 Datasets and Evaluations

« Datasets. The PASCAL-5' built on the PASCAL VOC 2012 (Everingham et al., 2010) dataset is
used. It contains 12,031 images with high-quality pixel-level annotations of 20 classes, split into two
sets of 10,582 and 1,449 for training and validation, respectively. Following the standard protocol
in (Liu et al., 2023b; Tian et al., 2022), the 20 classes are evenly partitioned into four folds for cross-
validation. Furthermore, we evaluate the capability of our method on a more challenging COCO-20?
dataset, which includes 122,218 images with 80 object classes. In between, 82,081 and 40,137 images
are exploited for training and validation. Similarly, experiments on COCO-20° are also conducted
with cross-validation on four folds (20 classes per fold).

e Evaluation Metrics. For both datasets, once we validate the model on one fold, the classes in this
fold serve as novel classes, and the classes in the other three folds plus background play the role of
base classes. The Intersection over Union (IoU) per class and mean IoU (mloU) over the base, novel,
and all classes are computed. We follow the same settings as in (Tian et al., 2022; Myers-Dean et al.,
2021; Liu et al., 2020; 2023a) to conduct four-fold cross-validation and calculate the average values.
We also repeat each experiment with five different seeds and compute the mean values (Tian et al.,
2022).
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Table 1: Performance comparisons on PASCAL-5¢ for GFSSeg. We report mloU (%) over base classes
(Base), novel classes (Novel), and all classes (Base + Novel = Total). All models are based on ResNet-50. |
represents the use of SIFT as the constraint of our GRNet. “GRNet w A” denotes to apply GRNet on A.

Moethod ‘ 1-shot 5-shot 10-shot

‘ Base Novel Total Base Novel Total Base Novel Total

PFENet (Tian et al., 2020) 8.32 2.67 6.97 8.83 1.89 7.18 / / /

PANet (Wang et al., 2019) 31.88 11.25 26.97 | 3295 1525 28.74 / / /

DIaM (Hajimiri et al., 2023) 70.89 35.11 61.24 | 70.85 55.31 68.29 / / /
FT (Myers-Dean et al., 2021) | 66.84 18.82  55.41 72.03 46.40 65.93 | 73.02 52.55 68.14
FT-Triplet 66.41 19.71 55.31 71.31 50.46 66.35 | 72.87 57.00 69.10
CAPL (Tian et al., 2022) 65.48 18.85 54.38 | 66.14 2241 55.72 | 69.09 27.17 59.11
GRNet w CAPL § 69.72 20.18 57.92 | 70.51 28.57 60.53 | 72.51 31.01 62.82
POP (Liu et al., 2023a) 73.92 35.51 64.77 | 74.78 55.87 70.28 | 74.99 58.77 71.13
GRNet w POP § 73.75 41.12 66.01 | 74.80 57.12 70.89 | 74.83 59.81 71.52

Table 2: Performance comparisons on COCO-20° for GFSSeg. Models are based on ResNet-50. 1 represents
the use of SIFT as the constraint of our GRNet.

Method 1-shot 5-shot 10-shot

Base Novel Total Base Novel Total Base Novel Total

DIaM 48.28  17.22  40.29 | 48.37 28.73 46.72 / / /
FT 43.42 8.94 34.90 | 47.18 24.72  41.63 | 48.18 30.03 43.70
FT-Triplet 43.64 9.23 35.14 46.61 28.84 41.36 46.61 34.49 43.27
CAPL (Tian et al., 2022) | 44.61 7.05 35.46 | 45.24 11.05 36.80 | 45.51 10.82  36.95
GRNet w CAPL 7 46.26 9.36 37.16 | 46.38 13.30 38.21 | 46.38 14.55 39.63
POP (Liu et al., 2023a) | 54.71 15.31 44.98 | 54.90 29.97 48.75 | 55.01 35.05 50.08
GRNet w POP 7 53.81 19.57 45.36 | 54.12 31.62 49.27 | 55.06 36.18 50.29

4.1.2 Implementation Details

Our GRNet is implemented on PyTorch. Following the training strategy in (Tian et al., 2022; Liu et al.,
2023a), the mini-batch stochastic gradient descent with momentum 0.9 and weight decay 0.0001 is exploited
to optimize the model. During the base class learning, the initial learning rate is set to 0.01, which is
annealed down to zero following a “poly” policy whose power is fixed to 0.9. The batch size is 8 for both
datasets, and the models are trained for 100 epochs for base class learning. For novel class updating, we
update the model with a fixed learning rate of 0.01 for 500 epochs, and the batch size is set as 2 and 8 for
PASCALS5? and COCO-20%, respectively.

4.1.3 Comparison with state-of-the-art methods

We integrate the proposed GRNet with the two latest GFSSeg methods, CAPL (Tian et al., 2022) and
POP (Liu et al., 2023a), to justify its effectiveness on PASCAL-5' and COCO-20" datasets. We denote
the method applying GRNet on baseline approach A as “GRNet w A”. We choose the SIFT keypoint as
the main geometry knowledge in our implementation, but the results using other low-level structures are
also reported. Table 1 summarizes the mIoU performances of different settings (k-shot, ¥ = 1,5,10) on
the PASCAL-5 dataset. Overall, the results across three different settings consistently indicate that the
proposed GRNet can improve the performances of the novel classes. In particular, the mloU performance
of novel class by GRNet with the CAPL outperforms the original CAPL model by 7.1%, 27.5% and 14.1%
relatively in 1-shot, 5-shot and 10-shot, respectively, while the performances for base classes are maintained
or slightly improved. Similarly, the GRNet with POP outperforms the original POP by 15.8%, 2.2%, and
1.8% for novel classes in 1-shot, 5-shot, and 10-shot, respectively.
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Table 1 shows that GRNet with CAPL outperforms the baseline CAPL method on base and novel classes
across three different shot experiments. Meanwhile, the results of GRNet with POP are in a bit of mloU
improvement (0.02%) of base class on the 5-shot setting, even worse than that on 1-shot and 10-shot settings.
We think the reason is the different training strategies between CAPL and POP. It is highlighted that the
GRNet leads to a slight performance drop for base classes in POP (Liu et al., 2023a), but this does not
happen in CAPL (Tian et al., 2022). This is due to the different training strategies between CAPL and
POP. The former iteratively optimizes the models for the base classes and updates the novel classes in each
epoch. The latter trains the models for base classes first and then updates them for the novel classes without
using the data of base classes.

Table 2 details the performance comparisons of 1-shot, 5-shot, and 10-shot on COCO-20" dataset. Similar
to the experimental results on the PASCAL-5' dataset, GRNet with POP surpasses the original POP by
27.8%, 5.5%, and 3.2% relatively on 1-shot, 5-shot, and 10-shot settings. The results again empirically verify
the effectiveness of our method. Figure 2 shows three sample results for GFSSeg in PASCAL, by CAPL,
POP and our methods under the 5-shot setting. As shown in the results, our methods achieve more accurate
segmentation.

Next, we discuss the deeper insights revealed by the experimental results. When training data is limited or
scarce in the few-shot segmentation task, the risk of over-fitting increases as the training would optimize the
model for the limited training data and lead to poor generalization. Although data augmentation could help,
there is still space for improvement. Our core idea is to increase the task via multi-tasking. By including the
low-vision task in the few-shot semantic segmentation, we ask the network to optimize for both the primary
and low-vision tasks simultaneously. Table 1 and 2 present that our proposed GRNet algorithm enhances
the performance of novel classes across three different settings, demonstrating its effectiveness in reducing
over-fitting and improving generalization.

4.1.4 Choice of low-level geometry extractor

Table 3: Performance comparisons of different geometry regularization on PASCAL-5?, including SIFT,
SuperPoint and Canny edge. We report mloU (%) over base classes (Base), novel classes (Novel), and all
classes (Base + Novel = Total). All models are based on ResNet-50. f, I and § respectively represent the
use of SIFT, SuperPoint and Canny edge as the constraints of our GRNet.

‘ 1-shot 5-shot 10-shot
‘ Base Novel Total Base Novel Total Base Novel Total

Method

CAPL (Tian et al., 2022) | 6548 18.85 54.38 | 66.14 2241 55.72 | 69.09 27.17 59.11
GRNet w CAPL ¢ 69.72 20.18 57.92 | 70.51 28.57 60.53 | 72.51 31.01 62.82
GRNet w CAPL § 70.12 20.03 58.19 | 70.47 29.49 60.72 | 7248 31.25 62.96
GRNet w CAPL § 69.65 20.13 57.85 | 70.08 29.53 60.43 | 72.33 30.62 62.53

POP (Liu et al., 2023a) | 73.92 35.51 64.77 | 74.78 55.87 70.28 | 74.99 58.77 71.13
GRNet w POP { 73.75 41.12 66.01 | 74.70 57.12 70.89 | 74.83 59.81 71.52
GRNet w POP § 73.71  41.09 65.98 | 74.62 57.08 7081 | 74.76 59.68 71.44
GRNet w POP § 73.83 40.52 65.89 | 74.88 56.99 70.65 | 74.98 59.67 71.34

Table 4: p values of statistic t-test between SIFT and other regularizations in 1-shot CAPL on PASCAL
dataset.

SIFT vs. | Baseline | SuperPoint | Canny
p-value 0.032 0.109 0.622

To verify the effectiveness of different low-level geometry extractors, we adopt and compare the SIFT (1),
SuperPoint (f) and Canny edge (§) as low-level geometry in the GFSSeg. Table 3 shows the performance
comparisons of different geometry regularizations on PASCAL-5". In the GRNet with CAPL, the three
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different low-level geometries improve the performance of novel classes comparably. We further conduct a
statistic t-test to compare SIFT regularization with SuperPoint, Canny and also the baseline without GRNet.

Table 4 shows the statistic t-test p values to validate the choice of regularizations. As we can see, there is a
significant difference between the SIFT regularized model and the baseline (p < 0.05). The different choices
of regularization terms do not lead to significant differences (p > 0.05), which indicates that the choice of
regularization is not sensitive to the final performance.

4.1.5 Ablation Studies

We conduct ablation studies to evaluate the effectiveness of each proposed module. We use POP as a
baseline. The GRNet includes two modules. The first module is a simple multi-task learning of the primary
task and a low-level extraction task to detect SIFT, denoted as “Multi-task” The second module is the
primary-to-auxiliary module, which considers the association between the two tasks. Table 5 summarizes the
performances when the two components are used in GFSSeg. Specifically, in the case of 5-shot segmentation,
the addition of the “Multi-task” component leads to an increase in the IoU metric of novel classes from 55.87
to 56.47. Furthermore, the integration of the primary-to-auxiliary module resulted in a further improvement,
raising the final ToU of novel classes to 57.12. The results show that both components would improve the
performances for novel classes without sacrificing much accuracy on the base classes. Multi-task learning
and the primary-to-auxiliary aggregation module allow the model to generalize better.

Table 5: Ablation study for GRNet on PASCAL in the generalized few-shot segmentation.

Baseline Multi-task Primary-to- 1-shot 5-shot 10-shot

(POP) Auxiliary Base/Novel /Total Base/Novel/Total Base/Novel /Total
v 73.92/35.51/64.77 74.78/55.87/70.28 74.99/58.77/71.13
v v 73.63/36.88/64.89 74.69/56.47/70.36 74.89/59.24/71.27
v v v 73.75/41.12/66.01 74.70/57.12/70.89 74.83/59.81/71.52

Next, we investigate the impact of different A\ weights on the results. Table 6 shows the performance
comparisons for different hyper-parameters A choices. The results indicate that when A is set to 1, the
proposed algorithm achieves a mIoU of 70.87 in 5-shot segmentation on the PASCAL dataset, outperforming
the settings of A at 0.1 and 0.5.

Table 6: Performance comparisons of different hyper-parameters on PASCAL-5¢ with SIFT. We report mIoU
(%) of all classes (Base + Novel = Total)
A 0.1 0.5 1
GRNet w POP § | 70.77 | 70.68 | 70.89

4.2 Monocular Depth Estimation
4.2.1 Datasets

We use the NYUv2 (Nathan Silberman & Fergus, 2012) and KITTI (Geiger et al., 2013) datasets to evaluate
the model generalization of the proposed GRNet in MDE. NYUv2 is an indoor dataset with 120K RGB-
D videos captured from 464 indoor scenes. We follow the official training/testing split to evaluate our
method, where 249 scenes are used for training, and 654 images from 215 scenes are used for testing. KITTI
is an outdoor dataset captured by equipment mounted on a moving vehicle, providing stereo images and
corresponding 3D laser scans. The images are around 376 x 1241 resolution. We follow the experiment
setting in (Yuan et al., 2022), which consists of 85,898 training images, 1000 validation images and 500 test
images. We report the comparison results on the validation data.



Under review as submission to TMLR

(a) RGB (b) CAPL (c) GRNet w CAPL (d) POP (e) GRNet w POP

(f) Ground Truth

Figure 2: The visualization comparison of three examples from PASCAL by different methods under the
5-shot setting of GFSSeg.

4.2.2 Evaluation Metrics

Similar to previous work (Yuan et al., 2022; Shao et al., 2023b), we leverage the standard evaluation protocols
in MDE, i.e., square root of the scale-invariant logarithmic error (SILog), relative absolute error (Abs Rel),
relative squared error (Sq Rel), root mean squared error (RMSE), log10 error (logl0), and threshold accuracy
(6 <1.25). We also report the computational complexity in GFlops.

4.2.3 Comparison with state-of-the-art

Table 7: Quantitative results on NYUv2. “Abs Rel” and “RMSE” are the main ranking metrics. t, { and §
respectively represent the use of SIF'T, SuperPoint and Canny edge as the constraints of our GRNet.

Method Abs Rel | RMSE | SqRell | loglo] 6 <1.251 GFlops|
DORN (Fu et al., 2018a) 0.115 0.509 / 0.051 0.828 /
BTS (Lee et al., 2019) 0.110 0.392 0.066 0.047 0.885 /
Adabin (Bhat et al., 2021) 0.103 0.364 / 0.044 0.903 /
P3Depth (Patil et al., 2022) 0.104 0.356 / 0.043 0.898 /
NeWCRFs (Yuan et al., 2022) 0.095 0.334 0.045 0.041 0.922 43.182
IEBins (Shao et al., 2023b) 0.087 0.314 0.040 0.038 0.936 99.068
GRNet w NeWCRFs § 0.089 0.314 0.042 0.039 0.929 43.182
GRNet w NeWCRFs 0.088 0.314 0.041 0.039 0.929 43.182
GRNet w NeWCRFs § 0.088 0.314 0.041 0.038 0.929 43.182

Results on indoor scenes. We choose the recent NeWCRFs (Yuan et al., 2022) as our baseline and
implement GRNet in NYUv2 for indoor scenes. We use three different geometries: SIFT, SuperPoint and
Canny Edge. Their results are denoted by f, I and § respectively. Table 7 shows that our proposed
GRNet improves the depth estimation performance in the two main metrics, “Abs Rel” error and “RMSE”.
Specifically, the “Abs Rel” error is reduced by 7.37% relatively from 0.095 to 0.088, and the RMSE error is
reduced by 5.99% relatively from 0.334 to 0.314. We also compare our method with IEBins, which proposes
the Iterative Elastic Bins on top of NeWCRFs for MDE. Table 7 shows that our GRNet with NeWCRFs
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(c) GRNet with NeWCRFs

(b) NeWCRFs

(a) RGB (d) Ground Truth
Figure 3: Some examples of monocular depth estimation from NYUv2 by NeWCRFs (Yuan et al., 2022) and
our proposed GRNet

achieves comparable performance compared with ITEBins but with a 56.4% reduction in GFlops. This shows
that our method could be used to replace the iterative elastic bins. Figure 3 visualizes the comparisons
between NeWCRFs and our GRNet in MDE.

It is also interesting to note that different choices of geometries improve the performance of MDE compara-
bly, similar to that in GFSSeg. Previous work (Krishna & Vandrotti, 2023) suspected that the edges provide
information to smooth the output of the segmentation or depth estimation for improved performance. How-
ever, this cannot explain why the keypoints improve the performance comparable to the edge. Moreover,
SuperPoint (DeTone et al., 2018) and SIFT (Lowe, 2004) differ from each other, while their improvements
in the tasks here are also similar. We conjecture that the terms from either edges or points play a role of
regularization instead of smoothing.

Results on outdoor scenes. We also report the results for the outdoor scenes in KITTT (Geiger et al.,
2013). Table 8 summarizes the comparison with previous methods. By applying the GRNet with the recent
NeWCRFs (Yuan et al., 2022) and IEBins (Shao et al., 2023b), we achieve relative reductions of the main
metric SILog error by 16.6% from 8.31 to 6.93 and 9.4% from 7.58 to 6.87, respectively. The performance
comparison on KITTT again proves that our GRNet could benefit the depth estimation methods for better
generalization.
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Table 8: Quantitative results on KITTI validation. The SILog is the main ranking metric. { represents the
use of SIFT as the constraint of our GRNet.

Method SlLog | AbsRel|l SqRell{ RMSE /| ¢ <1.257%
DORN (Fu et al., 2018a) 12.22 11.78 3.03 3.80 0.913
BTS (Lee et al., 2019) 10.67 7.51 1.59 3.37 0.938
BA-Full (Aich et al., 2021) 10.64 8.25 1.81 3.30 0.938
NeWCRFs (Yuan et al., 2022) 8.31 5.54 0.89 2.55 0.968
GRNet w NeWCRFs t 6.93 4.84 0.76 2.06 0.979
IEBins (Shao et al., 2023b) 7.58 5.10 0.75 2.37 0.974
GRNet w IEBins 1 6.87 4.70 0.74 2.01 0.980

5 Conclusions

In this paper, we proposed a novel regularization term to improve the training of existing deep neural
networks, especially for dense prediction tasks with limited training data, such as generalized few-shot
semantic segmentation and monocular depth estimation. The proposed self-trained plug-and-play geometry
regularization is discarded in the inference stage and would neither modify the network structure nor change
the speed. Experimental results on different generalized few-shot semantic segmentation and monocular
depth estimation methods validate the effectiveness and generalization of the proposed regularization term.
A limitation of the approach is the additional time for training.
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