
Under review as a conference paper at ICLR 2024

FEDERATED NATURAL POLICY GRADIENT METHODS
FOR MULTI-TASK REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated reinforcement learning (RL) enables collaborative decision making of
multiple distributed agents without sharing local data trajectories. In this work,
we consider a multi-task setting, in which each agent has its own private reward
function corresponding to different tasks, while sharing the same transition kernel of
the environment. Focusing on infinite-horizon tabular Markov decision processes,
the goal is to learn a globally optimal policy that maximizes the sum of the
discounted total rewards of all the agents in a decentralized manner, where each
agent only communicates with its neighbors over some prescribed graph topology.
We develop federated vanilla and entropy-regularized natural policy gradient (NPG)
methods under softmax parameterization, where gradient tracking is applied to
the global Q-function to mitigate the impact of imperfect information sharing.
We establish non-asymptotic global convergence guarantees under exact policy
evaluation, which are nearly independent of the size of the state-action space
and illuminate the impacts of network size and connectivity. To the best of our
knowledge, this is the first time that global convergence is established for federated
multi-task RL using policy optimization. Moreover, the convergence behavior of
the proposed algorithms is robust against inexactness of policy evaluation.

1 INTRODUCTION

Federated reinforcement learning (FRL) is an emerging paradigm that combines the advantages of
federated learning (FL) and reinforcement learning (RL) (Qi et al., 2021; Zhuo et al., 2019), allowing
multiple agents to learn a shared policy from local experiences, without exposing their private data
to a central server nor other agents. FRL is poised to enable collaborative and efficient decision
making in scenarios where data is distributed, heterogeneous, and sensitive, which arise frequently in
applications such as edge computing, smart cities, and healthcare (Wang et al., 2023; 2020; Zhuo
et al., 2019), to name just a few. As has been observed (Lian et al., 2017), decentralized training can
lead to performance improvements in FL by avoiding communication congestions at busy nodes such
as the server, especially under high-latency scenarios. This motivates us to design algorithms for
the fully decentralized setting, a scenario where the agents can only communicate with their local
neighbors over a prescribed network topology.

In this work, we study the problem of federated multi-task reinforcement learning (Anwar & Ray-
chowdhury, 2021; Qi et al., 2021; Yu et al., 2020), where each agent collects its own reward —
possibly unknown to other agents — corresponding to the local task at hand, while having access to
the same dynamics (i.e., transition kernel) of the environment. The collective goal is to learn a shared
policy that maximizes the total rewards accumulated from all the agents; in other words, one seeks
a policy that performs well in terms of overall benefits, rather than biasing towards any individual
task, achieving the Pareto frontier in a multi-objective context. There is no shortage of application
scenarios where federated multi-task RL becomes highly relevant. For instance, in healthcare (Zerka
et al., 2020), different hospitals may be interested in finding an optimal treatment for all patients
without disclosing private data, where the effectiveness of the treatment can vary across different
hospitals due to demographical differences. As another potential application, to enhance ChatGPT’s
performance across different tasks or domains (M Alshater, 2022; Rahman et al., 2023), one might
consult domain experts to chat and rate ChatGPT’s outputs for solving different tasks, and train
ChatGPT in a federated manner without exposing private data or feedback of each expert.

1

Under review as a conference paper at ICLR 2024

Nonetheless, despite the promise, provably efficient algorithms for federated multi-task RL remain
substantially under-explored, especially in the fully decentralized setting. The heterogeneity of local
tasks leads to a higher degree of disagreements between the global value function and local value
functions of individual agents. Due to the lack of global information sharing, care needs to be taken
to judiciously balance the use of neighboring information (to facilitate consensus) and local data
(to facilitate learning) when updating the policy. To the best of our knowledge, no algorithms are
currently available to find the global optimal policy with non-asymptotic convergence guarantees
even for tabular infinite-horizon Markov decision processes.

Motivated by the connection with decentralized optimization, it is tempting to take a policy optimiza-
tion perspective to tackle this challenge. Policy gradient (PG) methods, which seek to learn the policy
of interest via first-order optimization methods, play an eminent role in RL due to their simplicity and
scalability. In particular, natural policy gradient (NPG) methods (Amari, 1998; Kakade, 2001) are
among the most popular variants of PG methods, underpinning default methods used in practice such
as trust region policy optimization (TRPO) (Schulman et al., 2015) and proximal policy optimization
(PPO) (Schulman et al., 2017). On the theoretical side, it has also been established recently that the
NPG algorithm enjoys fast global convergence to the optimal policy in an almost dimension-free
manner (Agarwal et al., 2021; Cen et al., 2021), where the iteration complexity is nearly independent
of the size of the state-action space. Inspired by the efficacy of NPG methods, it is natural to ask:

Can we develop federated variants of NPG methods that are easy to implement in the fully
decentralized setting with non-asymptotic global convergence guarantees for multi-task RL?

1.1 OUR CONTRIBUTIONS

Focusing on infinite-horizon Markov decision processes (MDPs), we provide an affirmative answer to
the above question, by developing federated NPG (FedNPG) methods for solving both the vanilla and
entropy-regularized multi-task RL problems with finite-time global convergence guarantees. While
entropy regularization is often incorporated as an effective strategy to encourage exploration during
policy learning, solving the entropy-regularized RL problem is of interest in its own right, as the
optimal regularized policy possesses desirable robust properties with respect to reward perturbations
(Eysenbach & Levine, 2021; McKelvey & Palfrey, 1995).

Due to the multiplicative update nature of NPG methods under softmax parameterization, it is more
convenient to work with the logarithms of local policies in the decentralized setting. In each iteration
of the proposed FedNPG method, the logarithms of local policies are updated by a weighted linear
combination of two terms (up to normalization): a gossip mixing (Nedic & Ozdaglar, 2009) of the
logarithms of neighboring local policies, and a local estimate of the global Q-function tracked via the
technique of dynamic average consensus (Zhu & Martı́nez, 2010), a prevalent idea in decentralized
optimization that allows for the use of large constant learning rates (Di Lorenzo & Scutari, 2016;
Nedic et al., 2017; Qu & Li, 2017) to accelerate convergence. Our contributions are as follows.

• We propose FedNPG methods for both the vanilla and entropy-regularized multi-task RL problems,
where each agent only communicates with its neighbors and performs local computation using its
own reward or task information.

• Assuming access to exact policy evaluation, we establish that the average iterate of vanilla FedNPG
converges globally at a rate of O(1/T 2/3) in terms of the sub-optimality gap for the multi-task
RL problem, and that the last iterate of entropy-regularized FedNPG converges globally at a
linear rate to the regularized optimal policy. Our convergence theory highlights the impacts of
all salient problem parameters (see Table 1 for details), such as the size and connectivity of the
communication network. In particular, the iteration complexities of FedNPG are again almost
independent of the size of the state-action space, which recover prior results on the centralized
NPG methods when the network is fully connected.

• We further demonstrate the stability of the proposed FedNPG methods when policy evaluations are
only available in an inexact manner. To be specific, we prove that their convergence rates remain
unchanged as long as the approximation errors are sufficiently small in the ℓ∞ sense.

To the best of our knowledge, the proposed federated NPG methods are the first policy optimization
methods for multi-task RL that achieve explicit non-asymptotic global convergence guarantees, allow-
ing for fully decentralized communication without any need to share local reward/task information.

2

Under review as a conference paper at ICLR 2024

1.2 RELATED WORK

Global convergence of NPG methods for tabular MDPs. Agarwal et al. (2021) first establishes
a O(1/T) last-iterate convergence rate of the NPG method under softmax parameterization with
constant step size, assuming access to exact policy evaluation. When entropy regularization is in
place, Cen et al. (2021) establishes a global linear convergence to the optimal regularized policy for
the entire range of admissible constant learning rates using softmax parameterization and exact policy
evaluation, which is further shown to be stable in the presence of ℓ∞ policy evaluation errors. The
iteration complexity of NPG methods is nearly independent with the size of the state-action space,
which is in sharp contrast to softmax policy gradient methods that may take exponential time to
converge (Li et al., 2023; Mei et al., 2020). Lan (2023) proposed a more general framework through
the lens of mirror descent for regularized RL with global linear convergence guarantees, which is
further generalized in Zhan et al. (2023); Lan et al. (2023). Earlier analysis of regularized MDPs
can be found in Shani et al. (2020). Besides, Xiao (2022) proves that vanilla NPG also achieves
linear convergence when geometrically increasing learning rates are used; see also Khodadadian et al.
(2021); Bhandari & Russo (2021). Zhou et al. (2022) developed an anchor-changing NPG method for
multi-task RL under various optimality criteria in the centralized setting.

Distributed and federated RL. There have been a variety of settings being set forth for distributed
and federated RL. Mnih et al. (2016); Espeholt et al. (2018); Assran et al. (2019); Khodadadian et al.
(2022); Woo et al. (2023) focused on developing federated versions of RL algorithms to accelerate
training, assuming all agents share the same transition kernel and reward function; in particular,
Khodadadian et al. (2022); Woo et al. (2023) established the provable benefits of federated learning
in terms of linear speedup. More pertinent to our work, Zhao et al. (2023); Anwar & Raychowdhury
(2021) considered the federated multi-task framework, allowing different agents having private reward
functions. Zhao et al. (2023) proposed an empirically probabilistic algorithm that can seek an optimal
policy under the server-client setting, while Anwar & Raychowdhury (2021) developed new attack
methods in the presence of adversarial agents. Different from the FRL framework, Chen et al. (2021;
2022b); Omidshafiei et al. (2017); Kar et al. (2012); Chen et al. (2022a); Zeng et al. (2021) considered
the distributed multi-agent RL setting where the agents interact with a dynamic environment through
a multi-agent Markov decision process, where each agent can have their own state or action spaces.
Zeng et al. (2021) developed a decentralized policy gradient method where different agents have
different MDPs.

Decentralized first-order optimization algorithms. Early work of consensus-based first-order
optimization algorithms for the fully decentralized setting include but are not limited to Lobel &
Ozdaglar (2008); Nedic & Ozdaglar (2009); Duchi et al. (2011). Gradient tracking, which leverages
the idea of dynamic average consensus (Zhu & Martı́nez, 2010) to track the gradient of the global
objective function, is a popular method to improve the convergence speed (Qu & Li, 2017; Nedic
et al., 2017; Di Lorenzo & Scutari, 2016; Pu & Nedić, 2021; Li et al., 2020a).

Notation. Boldface small and capital letters denote vectors and matrices, respectively. Sets are
denoted with curly capital letters, e.g., S,A. We let (Rd, ∥·∥) denote the d-dimensional real coordinate
space equipped with norm ∥·∥. The ℓp-norm of v is denoted by ∥v∥p, where 1 ≤ p ≤ ∞, and the
spectral norm of a matrix M is denoted by ∥M∥2. We let [N] denote {1, . . . , N}, use 1 to represent
the all-one vector, and denote by 0 a vector or a matrix consisting of all 0’s. We allow the application
of functions such as log(·) and exp(·) to vectors or matrices, with the understanding that they are
applied in an element-wise manner.

2 MODEL AND BACKGROUNDS

2.1 MARKOV DECISION PROCESSES

Markov decision processes. We consider an infinite-horizon discounted Markov decision process
(MDP) denoted by M = (S,A, P, r, γ), where S and A denote the state space and the action space,
respectively, γ ∈ [0, 1) indicates the discount factor, P : S ×A → ∆(S) is the transition kernel, and
r : S × A → [0, 1] stands for the reward function. To be more specific, for each state-action pair
(s, a) ∈ S × A and any state s′ ∈ S, we denote by P (s′|s, a) the transition probability from state
s to state s′ when action a is taken, and r(s, a) the instantaneous reward received in state s when

3

Under review as a conference paper at ICLR 2024

setting algorithms iteration complexity optimality criteria

unregularized

NPG
(Agarwal et al., 2021) O

(
1

(1−γ)2ε

)
V ⋆ − V π(t) ≤ ε

FedNPG
(ours)

O
(

σ
√
N log |A|

(1−γ)
9
2 (1−σ)ε

3
2
+ 1

(1−γ)2ε

)
1
T

∑T−1
t=0

(
V ⋆ − V π(t)) ≤ ε

regularized

NPG
(Cen et al., 2021) O

(
1
τη log

(
1
ε

))
V ⋆
τ − V π(t)

τ ≤ ε

FedNPG
(ours) O

(
max

{
1
τη ,

1
1−σ

}
log
(
1
ε

))
V ⋆
τ − V π(t)

τ ≤ ε

Table 1: Iteration complexities of NPG and FedNPG (ours) methods to reach ε-accuracy of the
vanilla and entropy-regularized problems, where we assume exact gradient evaluation, and only keep
the dominant terms w.r.t. ε. The policy estimates in the t-iteration are π(t) and π̄(t) for NPG and
FedNPG, respectively, where T is the number of iterations. Here, N is the number of agents, τ ≤ 1 is
the regularization parameter, σ ∈ [0, 1] is the spectral radius of the network, γ ∈ [0, 1) is the discount
factor, |A| is the size of the action space, and η > 0 is the learning rate. For vanilla FedNPG, the

learning rate is set as η = η1 = O
((

(1−γ)9(1−σ)2 log |A|
TNσ

)1/3)
; for entropy-regularized FedNPG, the

learning rate satisfies 0 < η < η0 = O
(

(1−γ)7(1−σ)2τ
σN

)
. The iteration complexities of FedNPG

reduce to their centralized counterparts when σ = 0.

action a is taken. Furthermore, a policy π : S → ∆(A) specifies an action selection rule, where
π(a|s) specifies the probability of taking action a in state s for each (s, a) ∈ S ×A.

For any given policy π, we denote by V π : S 7→ R the corresponding value function, which is the
expected discounted cumulative reward with an initial state s0 = s, given by

∀s ∈ S : V π(s) := E

[∞∑
t=0

γtr(st, at)|s0 = s

]
, (1)

where the randomness is over the trajectory generated following the policy at ∼ π(·|st) and the
MDP dynamic st+1 ∼ P (·|st, at). We also overload the notation V π(ρ) to indicate the expected
value function of policy π when the initial state follows a distribution ρ over S, namely, V π(ρ) :=
Es∼ρ [V

π(s)]. Similarly, the Q-function Qπ : S ×A 7→ R of policy π is defined by

∀(s, a) ∈ S ×A : Qπ(s, a) := E

[∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
, (2)

which measures the expected discounted cumulative reward with an initial state s0 = s and an initial
action a0 = a, with expectation taken over the randomness of the trajectory. The optimal policy π⋆

refers to the policy that maximizes the value function V π(s) for all states s ∈ S , which is guaranteed
to exist (Puterman, 2014). The corresponding optimal value function and Q-function are denoted as
V ⋆ and Q⋆, respectively.

2.2 ENTROPY-REGULARIZED RL

Entropy regularization (Williams & Peng, 1991; Ahmed et al., 2019) is a popular technique in practice
that encourages stochasticity of the policy to promote exploration, as well as robustness against
reward uncertainties. Mathematically, this can be viewed as adjusting the instantaneous reward based
the current policy in use as

∀(s, a) ∈ S ×A : rτ (s, a) := r(s, a)− τ log π(a|s) , (3)
where τ ≥ 0 denotes the regularization parameter. Typically, τ should not be too large to outweigh
the actual rewards; for ease of presentation, we assume τ ≤ 1. Equivalently, this amounts to the
entropy-regularized (also known as “soft”) value function, defined as

∀s ∈ S : V π
τ (s) := V π(s) + τH(s, π). (4)

Here, we define

H(s, π) := E

[∞∑
t=0

−γt log π(at|st)
∣∣s0 = s

]
=

1

1− γ
Es′∼dπ

s

[
−
∑
a∈A

π(a|s′) log π(a|s′)

]
, (5)

4

Under review as a conference paper at ICLR 2024

where dπs0 is the discounted state visitation distribution of policy π given an initial state s0 ∈ S,
denoted by

∀s ∈ S : dπs0(s) := (1− γ)

∞∑
t=0

γtP(st = s|s0) , (6)

with the trajectory generated by following policy π in the MDP M starting from state s0. Analogously,
the regularized (or soft) Q-function Qπ

τ of policy π is related to the soft value function V π
τ (s) as

∀(s, a) ∈ S ×A : Qπ
τ (s, a) = r(s, a) + γEs′∈P (·|s,a) [V

π
τ (s′)] , (7a)

∀s ∈ S : V π
τ (s) = Ea∼π(·|s) [−τπ(a|s) +Qπ

τ (s, a)] . (7b)

The optimal regularized policy, the optimal regularized value function, and the Q-function are denoted
by π⋆

τ , V ⋆
τ , and Q⋆

τ , respectively.

2.3 NATURAL POLICY GRADIENT METHODS

Natural policy gradient (NPG) methods lie at the heart of policy optimization, serving as the backbone
of popular heuristics such as TRPO (Schulman et al., 2015) and PPO (Schulman et al., 2017).
Instead of directly optimizing the policy over the probability simplex, one often adopts the softmax
parameterization, which parameterizes the policy as

πθ := softmax(θ) or ∀(s, a) ∈ S ×A : πθ(a|s) :=
exp θ(s, a)∑

a′∈A exp θ(s, a′)
(8)

for any θ: S ×A → R.

Vanilla NPG method. In the tabular setting, the update rule of vanilla NPG at the t-th iteration can
be concisely represented as

∀(s, a) ∈ S ×A : π(t+1)(a|s) ∝ π(t)(a|s) exp
(
ηQ(t)(s, a)

1− γ

)
, (9)

where η > 0 denotes the learning rate, and Q(t) = Qπ(t)

is the Q-function under policy π(t). Agarwal
et al. (2021) shows that: in order to find an ε-optimal policy, NPG takes at most O

(
1

(1−γ)2ε

)
iterations, assuming exact policy evaluation.

Entropy-regularized NPG method. Turning to the regularized problem, we note that the update
rule of entropy-regularized NPG becomes

∀(s, a) ∈ S ×A : π(t+1)(a|s) ∝ (π(t)(a|s))1−
ητ

1−γ exp

(
ηQ

(t)
τ (s, a)

1− γ

)
, (10)

where η ∈ (0, 1−γ
τ] is the learning rate, and Q

(t)
τ = Qπ(t)

τ is the soft Q-function of policy π(t). Cen
et al. (2022) proves that entropy-regularized NPG enjoys fast global linear convergence to the optimal
regularized policy: to find an ε-optimal regularized policy, entropy-regularized NPG takes no more
than O

(
1
ητ log

(
1
ε

))
iterations.

3 FEDERATED NPG METHODS FOR MULTI-TASK RL

3.1 FEDERATED MULTI-TASK RL

In this paper, we consider the federated multi-task RL setting, where a set of agents learn collabo-
ratively a single policy that maximizes its average performance over all the tasks using only local
computation and communication.

Multi-task RL. Each agent n ∈ [N] has its own private reward function rn(s, a) — corresponding
to different tasks — while sharing the same transition kernel of the environment. The goal is to
collectively learn a single policy π that maximizes the global value function given by

V π(s) =
1

N

N∑
n=1

V π
n (s), (11)

5

Under review as a conference paper at ICLR 2024

where V π
n is the value function of agent n ∈ [N], defined by

∀s ∈ S : V π
n (s) := E

[∞∑
t=0

γtrn(st, at)|s0 = s

]
. (12)

Clearly, the global value function (11) corresponds to using the average reward of all agents

r(s, a) =
1

N

N∑
n=1

rn(s, a). (13)

The global Q-function Qπ(s, a) and the agent Q-functions Qπ
n(s, a) can be defined in a similar

manner obeying Qπ(s, a) = 1
N

∑N
n=1 Q

π
n(s, a).

In parallel, we are interested in the entropy-regularized setting, where each agent n ∈ [N] is equipped
with a regularized reward function given by

rτ,n(s, a) := rn(s, a)− τ log π(a|s) , (14)

and we define similarly the regularized value function and the global regularized value function as

∀s ∈ S : V π
τ,n(s) := E

[∞∑
t=0

γtrτ,n(st, at)|s0 = s

]
, and V π

τ (s) =
1

N

N∑
n=1

V π
τ,n(s). (15)

The soft Q-function of agent n is given by

Qπ
τ,n(s, a) = rn(s, a) + γEs′∈P (·|s,a)

[
V π
τ,n(s

′)
]
, (16)

and the global soft Q-function is given by Qπ
τ (s, a) =

1
N

∑N
n=1 Q

π
τ,n(s, a).

Federated policy optimization in the fully decentralized setting. We consider a federated setting
with fully decentralized communication, that is, all the agents are synchronized to perform information
exchange over some prescribed network topology denoted by an connected and undirected weighted
graph G([N], E). Here, E stands for the edge set of the graph with N nodes — each corresponding
to an agent — and two agents can communicate with each other if and only if there is an edge
connecting them. The information sharing over the graph is best described by a mixing matrix (Nedic
& Ozdaglar, 2009), denoted by W = [wij] ∈ [0, 1]N×N , where wij is a positive number if (i, j) ∈ E
and 0 otherwise. We also make the following standard assumptions on the mixing matrix.
Assumption 1 (double stochasticity). The mixing matrix W = [wij] ∈ [0, 1]N×N is symmetric (i.e.,
W⊤ = W) and doubly stochastic (i.e., W1 = 1, 1⊤W = 1⊤).

The following standard metric measures how fast information propagates over the graph.
Definition 1 (spectral radius). The spectral radius of W is defined as

σ :=
∥∥∥W − 1

N
1N1⊤

N

∥∥∥
2
∈ [0, 1). (17)

An immediate consequence is that for any x ∈ RN , letting x = 1
N 1⊤

Nx be its average, we have

∥Wx− x1N∥2 ≤ σ ∥x− x1N∥2 , (18)

where the consensus error contracts by a factor of σ.

3.2 PROPOSED FEDERATED NPG ALGORITHMS

Assuming softmax parameterization, the problem can be formulated as decentralized optimization,

(unregularized) max
θ

V πθ (s) =
1

N

N∑
n=1

V πθ
n (s), (19)

(regularized) max
θ

V πθ
τ (s) =

1

N

N∑
n=1

V πθ
τ,n(s), (20)

6

Under review as a conference paper at ICLR 2024

Algorithm 1 Federated NPG (FedNPG)

1: Input: learning rate η > 0, iteration number T ∈ N+, mixing matrix W ∈ RN×N .
2: Initialize: π(0), T (0) = Q(0).
3: for t = 0, 1, · · ·T − 1 do
4: Update the policy for each (s, a) ∈ S ×A:

logπ(t+1)(a|s) = W

(
logπ(t)(a|s) + η

1− γ
T (t)(s, a)

)
− log z(t)(s) , (U0

π)

where z(t)(s) =
∑

a′∈A exp
{
W
(
logπ(t)(a′|s) + η

1−γT
(t)(s, a′)

)}
.

5: Evaluate Q(t+1).
6: Update the global Q-function estimate for each (s, a) ∈ S ×A:

T (t+1)(s, a) = W
(
T (t)(s, a) +Q(t+1)(s, a)−Q(t)(s, a)︸ ︷︷ ︸

Q-tracking

)
. (U0

T)

7: end for

where πθ := softmax(θ) subject to communication constraints. Motivated by the success of NPG
methods, we aim to develop federated NPG methods to achieve our goal. For notational convenience,
let π(t) :=

(
π
(t)
1 , · · · , π(t)

N

)⊤
be the collection of policy estimates at all agents in the t-th iteration.

Let

π(t) := softmax

(
1

N

N∑
n=1

log π(t)
n

)
, (21)

which satisfies that π(t)(a|s) ∝
(∏N

n=1 π
(t)
n (a|s)

)1/N
for each (s, a) ∈ S × A. Therefore, π(t)

could be seen as the normalized geometric mean of {π(t)
n }n∈[N]. Define the collection of Q-function

estimates as

Q(t) :=
(
Q

π
(t)
1

1 , · · · , Qπ
(t)
N

N

)⊤
, Q(t)

τ :=
(
Q

π
(t)
1

τ,1 , · · · , Qπ
(t)
N

τ,N

)⊤
.

We shall often abuse the notation and treat π(t), Q(t)
τ as matrices in RN×|S||A|, and treat π(t)(a|s),

Q
(t)
τ (a|s) as vectors in RN , for all (s, a) ∈ S ×A.

Vanilla federated NPG methods. To motivate the algorithm development, observe that the NPG
method (cf. (9)) applied to (19) adopts the update rule

π(t+1)(a|s) ∝ π(t)(a|s) exp

(
ηQπ(t)

(s, a)

1− γ

)
= π(t)(a|s) exp

(
η
∑N

n=1 Q
π(t)

n (s, a)

N(1− γ)

)
for all (s, a) ∈ S ×A. Two challenges arise when executing this update rule: the policy estimates are
maintained locally without consensus, and the global Q-function are unavailable in the decentralized
setting. To address these challenges, we apply the idea of dynamic average consensus (Zhu &
Martı́nez, 2010), where each agent maintains its own estimate T

(t)
n (s, a) of the global Q-function,

which are collected as vector T (t) =
(
T

(t)
1 , · · · , T (t)

N

)⊤
. At each iteration, each agent updates its

policy estimates based on its neighbors’ information via gossip mixing, in addition to a correction term

that tracks the difference Q
π(t+1)
n

n (s, a)−Q
π(t)
n

n (s, a) of the local Q-functions between consecutive
policy updates. Note that the mixing is applied linearly to the logarithms of local policies, which
translates into a multiplicative mixing of the local policies. Algorithm 1 summarizes the detailed
procedure of the proposed algorithm written in a compact matrix form, which we dub as federated
NPG (FedNPG). Note that the agents do not need to share their reward functions with others, and
agent n ∈ [N] will only be responsible to evaluate the local policy π

(t)
n using the local reward rn.

Entropy-regularized federated NPG methods. Moving onto the entropy regularized case, we adopt
similar algorithmic ideas to decentralize (10), and propose the federated NPG (FedNPG) method

7

Under review as a conference paper at ICLR 2024

with entropy regularization, summarized in Algorithm 2 (see Appendix A). Clearly, the entropy-
regularized FedNPG method reduces to the vanilla FedNPG in the absence of the regularization (i.e.,
when τ = 0).

4 THEORETICAL GUARANTEES

4.1 GLOBAL CONVERGENCE OF FEDNPG

Convergence with exact policy evaluation. We begin with the global convergence of FedNPG
(cf. Algorithm 1), stated in the following theorem.

Theorem 1 (Global sublinear convergence of exact FedNPG (informal)). Suppose π
(0)
n , n ∈ [N] are

set as the uniform distribution. Then for 0 < η ≤ η1 := (1−σ)2(1−γ)3

16
√
Nσ

, we have

1

T

T−1∑
t=0

(
V ⋆(ρ)− V π(t)

(ρ)
)
≤

V ⋆(dπ
⋆

ρ)

(1− γ)T
+

log |A|
ηT

+
32Nση2

(1− γ)9(1− σ)2
. (22)

Theorem 1 characterizes the average-iterate convergence of the average policy π(t) (cf. (21)) across
the agents, which depends logarithmically on the size of the action space, and independently on
the size of the state space. When T ≥ 128

√
N log |A|σ2

(1−σ)4 , by optimizing the learning rate η =(
(1−γ)9(1−σ)2 log |A|

32TNσ

)1/3
to balance the latter two terms, we arrive at

1

T

T−1∑
t=0

(
V ⋆(ρ)− V π(t)

(ρ)
)
≲

V ⋆(dπ
⋆

ρ)

(1− γ)T
+

N1/3σ2/3

(1− γ)3(1− σ)2/3

(
log |A|

T

)2/3

. (23)

When the network is fully connected, i.e., σ = 0, the convergence rate of FedNPG recovers the
O(1/T) rate, matching that of the centralized NPG established in Agarwal et al. (2021). When the
network is relatively well-connected in the sense of σ2

(1−σ)2 ≲ 1−γ
N1/2 , FedNPG first converges at the

rate of O(1/T), and then at the slower O(1/T 2/3) rate after T ≳ (1−γ)3(1−σ)2

Nσ2 . In addition, when
the network is poorly connected in the sense of σ2

(1−σ)2 ≳ 1−γ
N1/2 , we see that FedNPG converges at

the O(1/T 2/3) rate. We state the iteration complexity in Corollary 1.

Corollary 1 (Iteration complexity of exact FedNPG). To reach 1
T

∑T−1
t=0

(
V ⋆(ρ)− V π(t)

(ρ)
)
≤ ε,

the iteration complexity of FedNPG is O
((

σ
(1−γ)9/2(1−σ)ε3/2

+ σ2

(1−σ)4

)√
N log |A|+ 1

ε(1−γ)2

)
.

Convergence with inexact policy evaluation. In practice, the policies need to be evaluated using
samples collected by the agents, where the Q-functions are only estimated approximately. We
are interested in gauging how the approximation error impacts the performance of FedNPG, as
demonstrated in the following theorem.

Theorem 2 (Global sublinear convergence of inexact FedNPG (informal)). Suppose that qπ
(t)
n

n are

used in replace of Qπ(t)
n

n in Algorithm 1. Under the assumptions of Theorem 1, we have

1

T

T−1∑
t=0

(
V ⋆(ρ)− V π(t)

(ρ)
)
≤

V ⋆(dπ
⋆

ρ)

(1− γ)T
+
log |A|
ηT

+
32Nσ2η2

(1− γ)9(1− σ)2
+C3 max

n∈[N],
t∈[T]

∥∥∥Qπ(t)
n

n − q
π(t)
n

n

∥∥∥
∞

,

(24)
where C3 := 32

√
Nση

(1−γ)5(1−σ)2

(
η
√
N

(1−γ)3 + 1
)
+ 2

(1−γ)2 .

As long as maxn∈[N],t∈[T]

∥∥Qπ(t)
n

n − q
π(t)
n

n

∥∥
∞ ≤ ε

C3
, inexact FedNPG reaches 1

T

∑T−1
t=0

(
V ⋆(ρ) −

V π(t)

(ρ)
)
≤ 2ε at the same iteration complexity as predicted in Corollary 1. Equipped with existing

sample complexity bounds on policy evaluation, e.g. Li et al. (2020b), this immediate leads to a
sample complexity bound for a federated actor-critic type algorithm for multi-task RL, which scales
linearly with respect to the size of the state-action space up to logarithmic factors. We leave further
details to Remark ?? in Appendix B.4.

8

Under review as a conference paper at ICLR 2024

4.2 GLOBAL CONVERGENCE OF FEDNPG WITH ENTROPY REGULARIZATION

Convergence with exact policy evaluation. Next, we present our global convergence guarantee of
entropy-regularized FedNPG with exact policy evaluation (cf. Algorithm 2).
Theorem 3 (Global linear convergence of exact entropy-regularized FedNPG (informal)). For
any γ ∈ (0, 1) and 0 < τ ≤ 1, there exists η0 = min

{
1−γ
τ ,O

(
(1−γ)7(1−σ)2τ

σ2N

)}
, such that if

0 < η ≤ η0, then we have∥∥Q(t)

τ −Q⋆
τ

∥∥
∞ ≤ 2γC1ρ(η)

t ,
∥∥ log π⋆

τ − log π(t)
∥∥
∞ ≤ 2C1

τ
ρ(η)t , (25)

where Q
(t)

τ := Qπ(t)

τ , ρ(η) ≤ max{1− τη
2 , 3+σ

4 } < 1, and C1 is some problem-dependent constant.

The exact expressions of C1 and η0 are specified in Appendix B.1. Theorem 3 confirms that
entropy-regularized FedNPG converges at a linear rate to the optimal regularized policy, which is
almost independent of the size of the state-action space, highlighting the positive role of entropy
regularization in federated policy optimization. When the network is fully connected, i.e. σ = 0,
the iteration complexity of entropy-regularized FedNPG reduces to O

(
1
ητ log 1

ε

)
, matching that of

the centralized entropy-regularized NPG established in Cen et al. (2021). When the network is less
connected, one needs to be more conservative in the choice of learning rates, leading to a higher
iteration complexity, as described in the following corollary.
Corollary 2 (Iteration complexity of exact entropy-regularized FedNPG). To reach∥∥log π⋆

τ − log π(t)
∥∥
∞ ≤ ε, the iteration complexity of entropy-regularized FedNPG is

Õ
(
max

{
2

τη
,

4

1− σ

}
log

1

ε

)
(26)

up to logarithmic factors. Especially, when η = η0, the best iteration complexity becomes

Õ
((

Nσ2

(1− γ)7(1− σ)2τ2
+

1

1− γ

)
log

1

τε

)
.

Convergence with inexact policy evaluation. Last but not least, we present the informal convergence
results of entropy-regularized FedNPG with inexact policy evaluation, whose formal version can be
found in Appendix B.2.
Theorem 4 (Global linear convergence of inexact entropy-regularized FedNPG (informal)). Suppose

that qπ
(t)
n

τ,n are used in replace of Qπ(t)
n

τ,n in Algorithm 2. Under the assumptions of Theorem 3, we have∥∥Q(t)

τ −Q⋆
τ

∥∥
∞ ≤ 2γ

(
C1ρ(η)

t + C2 max
n∈[N],t∈[T]

∥∥Qπ(t)
n

τ,n − q
π(t)
n

τ,n

∥∥
∞

)
,∥∥ log π⋆

τ − log π(t)
∥∥
∞ ≤ 2

τ

(
C1ρ(η)

t + C2 max
n∈[N],t∈[T]

∥∥Qπ(t)
n

τ,n − q
π(t)
n

τ,n

∥∥
∞

)
,

(27)

where Q
(t)

τ := Qπ(t)

τ , ρ(η) ≤ max{1− τη
2 , 3+σ

4 } < 1, and C1, C2 are problem-dependent constants
specified in Appendix B.2.

5 CONCLUSIONS

This work proposes the first provably efficient federated NPG (FedNPG) methods for solving vanilla
and entropy-regularized multi-task RL problems in the fully decentralized setting. The established
finite-time global convergence guarantees are almost independent of the size of the state-action
space up to some logarithmic factor, and illuminate the impacts of the size and connectivity of the
network. Furthermore, the proposed FedNPG methods are robust vis-a-vis inexactness of local
policy evaluations, leading to a finite-sample complexity bound of a federated actor-critic method for
multi-task RL. When it comes to future directions, it would be of great interest to further explore
sample-efficient algorithms and examine if it is possible to go beyond the entrywise approximation
error assumption in policy evaluation. Another interesting direction is to extend the analysis of
FedNPG to incorporate function approximations.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. The Journal of Machine
Learning Research, 22(1):4431–4506, 2021.

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the
impact of entropy on policy optimization. In International Conference on Machine Learning, pp.
151–160, 2019.

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251–276,
1998.

Aqeel Anwar and Arijit Raychowdhury. Multi-task federated reinforcement learning with adversaries.
arXiv preprint arXiv:2103.06473, 2021.

Mahmoud Assran, Joshua Romoff, Nicolas Ballas, Joelle Pineau, and Michael Rabbat. Gossip-based
actor-learner architectures for deep reinforcement learning. Advances in Neural Information
Processing Systems, 32, 2019.

Jalaj Bhandari and Daniel Russo. On the linear convergence of policy gradient methods for finite
MDPs. In International Conference on Artificial Intelligence and Statistics, pp. 2386–2394. PMLR,
2021.

Shicong Cen, Yuting Wei, and Yuejie Chi. Fast policy extragradient methods for competitive games
with entropy regularization. Advances in Neural Information Processing Systems, 34:27952–27964,
2021.

Shicong Cen, Chen Cheng, Yuxin Chen, Yuting Wei, and Yuejie Chi. Fast global convergence
of natural policy gradient methods with entropy regularization. Operations Research, 70(4):
2563–2578, 2022.

Jinchi Chen, Jie Feng, Weiguo Gao, and Ke Wei. Decentralized natural policy gradient with variance
reduction for collaborative multi-agent reinforcement learning. arXiv preprint arXiv:2209.02179,
2022a.

Tianyi Chen, Kaiqing Zhang, Georgios B Giannakis, and Tamer Başar. Communication-efficient
policy gradient methods for distributed reinforcement learning. IEEE Transactions on Control of
Network Systems, 9(2):917–929, 2021.

Ziyi Chen, Yi Zhou, and Rong-Rong Chen. Multi-agent off-policy tdc with near-optimal sample and
communication complexities. 2022b.

Paolo Di Lorenzo and Gesualdo Scutari. Next: In-network nonconvex optimization. IEEE Transac-
tions on Signal and Information Processing over Networks, 2(2):120–136, 2016.

John C Duchi, Alekh Agarwal, and Martin J Wainwright. Dual averaging for distributed optimization:
Convergence analysis and network scaling. IEEE Transactions on Automatic control, 57(3):
592–606, 2011.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam
Doron, Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with
importance weighted actor-learner architectures. In International conference on machine learning,
pp. 1407–1416. PMLR, 2018.

Benjamin Eysenbach and Sergey Levine. Maximum entropy RL (provably) solves some robust RL
problems. In International Conference on Learning Representations, 2021.

Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press, 2012.

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems, 14,
2001.

Soummya Kar, José MF Moura, and H Vincent Poor. Qd-learning: A collaborative distributed strategy
for multi-agent reinforcement learning through consensus. arXiv preprint arXiv:1205.0047, 2012.

10

Under review as a conference paper at ICLR 2024

Sajad Khodadadian, Prakirt Raj Jhunjhunwala, Sushil Mahavir Varma, and Siva Theja Maguluri. On
the linear convergence of natural policy gradient algorithm. In 2021 60th IEEE Conference on
Decision and Control (CDC), pp. 3794–3799. IEEE, 2021.

Sajad Khodadadian, Pranay Sharma, Gauri Joshi, and Siva Theja Maguluri. Federated reinforcement
learning: Linear speedup under Markovian sampling. In International Conference on Machine
Learning, pp. 10997–11057. PMLR, 2022.

Guanghui Lan. Policy mirror descent for reinforcement learning: Linear convergence, new sampling
complexity, and generalized problem classes. Mathematical programming, 198(1):1059–1106,
2023.

Guanghui Lan, Yan Li, and Tuo Zhao. Block policy mirror descent. SIAM Journal on Optimization,
33(3):2341–2378, 2023.

Boyue Li, Shicong Cen, Yuxin Chen, and Yuejie Chi. Communication-efficient distributed optimiza-
tion in networks with gradient tracking and variance reduction. The Journal of Machine Learning
Research, 21(1):7331–7381, 2020a.

Gen Li, Yuting Wei, Yuejie Chi, Yuantao Gu, and Yuxin Chen. Breaking the sample size barrier in
model-based reinforcement learning with a generative model. arXiv preprint arXiv:2005.12900,
2020b.

Gen Li, Yuting Wei, Yuejie Chi, and Yuxin Chen. Softmax policy gradient methods can take
exponential time to converge. Mathematical Programming, pp. 1–96, 2023.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. Advances in neural information processing systems, 30, 2017.

Ilan Lobel and Asuman Ozdaglar. Convergence analysis of distributed subgradient methods over
random networks. In 2008 46th Annual Allerton Conference on Communication, Control, and
Computing, pp. 353–360. IEEE, 2008.

Muneer M Alshater. Exploring the role of artificial intelligence in enhancing academic performance:
A case study of chatgpt. Available at SSRN, 2022.

Richard D McKelvey and Thomas R Palfrey. Quantal response equilibria for normal form games.
Games and economic behavior, 10(1):6–38, 1995.

Jincheng Mei, Chenjun Xiao, Csaba Szepesvari, and Dale Schuurmans. On the global convergence
rates of softmax policy gradient methods. In International Conference on Machine Learning, pp.
6820–6829. PMLR, 2020.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937, 2016.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. In Advances in Neural Information Processing
Systems, pp. 2775–2785, 2017.

Angelia Nedic and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimization.
IEEE Transactions on Automatic Control, 54(1):48–61, 2009.

Angelia Nedic, Alex Olshevsky, and Wei Shi. Achieving geometric convergence for distributed
optimization over time-varying graphs. SIAM Journal on Optimization, 27(4):2597–2633, 2017.

Shayegan Omidshafiei, Jason Pazis, Christopher Amato, Jonathan P How, and John Vian. Deep decen-
tralized multi-task multi-agent reinforcement learning under partial observability. In International
Conference on Machine Learning, pp. 2681–2690. PMLR, 2017.

Shi Pu and Angelia Nedić. Distributed stochastic gradient tracking methods. Mathematical Program-
ming, 187:409–457, 2021.

11

Under review as a conference paper at ICLR 2024

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 2014.

Jiaju Qi, Qihao Zhou, Lei Lei, and Kan Zheng. Federated reinforcement learning: Techniques,
applications, and open challenges. arXiv preprint arXiv:2108.11887, 2021.

Guannan Qu and Na Li. Harnessing smoothness to accelerate distributed optimization. IEEE
Transactions on Control of Network Systems, 5(3):1245–1260, 2017.

Md Mizanur Rahman, Harold Jan Terano, Md Nafizur Rahman, Aidin Salamzadeh, and Md Saidur
Rahaman. Chatgpt and academic research: a review and recommendations based on practical
examples. Rahman, M., Terano, HJR, Rahman, N., Salamzadeh, A., Rahaman, S.(2023). ChatGPT
and Academic Research: A Review and Recommendations Based on Practical Examples. Journal
of Education, Management and Development Studies, 3(1):1–12, 2023.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pp. 1889–1897, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Lior Shani, Yonathan Efroni, and Shie Mannor. Adaptive trust region policy optimization: Global
convergence and faster rates for regularized MDPs. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 34, pp. 5668–5675, 2020.

Hao Wang, Zakhary Kaplan, Di Niu, and Baochun Li. Optimizing federated learning on non-iid
data with reinforcement learning. In IEEE INFOCOM 2020-IEEE Conference on Computer
Communications, pp. 1698–1707. IEEE, 2020.

Jin Wang, Jia Hu, Jed Mills, Geyong Min, Ming Xia, and Nektarios Georgalas. Federated ensemble
model-based reinforcement learning in edge computing. IEEE Transactions on Parallel and
Distributed Systems, 2023.

Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement learning
algorithms. Connection Science, 3(3):241–268, 1991.

Jiin Woo, Gauri Joshi, and Yuejie Chi. The blessing of heterogeneity in federated q-learning: Linear
speedup and beyond. arXiv preprint arXiv:2305.10697, 2023.

Lin Xiao. On the convergence rates of policy gradient methods. The Journal of Machine Learning
Research, 23(1):12887–12922, 2022.

Tianlong Yu, Tian Li, Yuqiong Sun, Susanta Nanda, Virginia Smith, Vyas Sekar, and Srinivasan
Seshan. Learning context-aware policies from multiple smart homes via federated multi-task
learning. In 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and
Implementation (IoTDI), pp. 104–115. IEEE, 2020.

Sihan Zeng, Malik Aqeel Anwar, Thinh T Doan, Arijit Raychowdhury, and Justin Romberg. A
decentralized policy gradient approach to multi-task reinforcement learning. In Uncertainty in
Artificial Intelligence, pp. 1002–1012. PMLR, 2021.

Fadila Zerka, Samir Barakat, Sean Walsh, Marta Bogowicz, Ralph TH Leijenaar, Arthur Jochems,
Benjamin Miraglio, David Townend, and Philippe Lambin. Systematic review of privacy-preserving
distributed machine learning from federated databases in health care. JCO clinical cancer infor-
matics, 4:184–200, 2020.

Wenhao Zhan, Shicong Cen, Baihe Huang, Yuxin Chen, Jason D Lee, and Yuejie Chi. Policy mirror
descent for regularized reinforcement learning: A generalized framework with linear convergence.
SIAM Journal on Optimization, 33(2):1061–1091, 2023.

Fangyuan Zhao, Xuebin Ren, Shusen Yang, Peng Zhao, Rui Zhang, and Xinxin Xu. Federated
multi-objective reinforcement learning. Information Sciences, 624:811–832, 2023.

12

Under review as a conference paper at ICLR 2024

Ruida Zhou, Tao Liu, Dileep Kalathil, PR Kumar, and Chao Tian. Anchor-changing regularized
natural policy gradient for multi-objective reinforcement learning. Advances in Neural Information
Processing Systems, 35:13584–13596, 2022.

Minghui Zhu and Sonia Martı́nez. Discrete-time dynamic average consensus. Automatica, 46(2):
322–329, 2010.

Hankz Hankui Zhuo, Wenfeng Feng, Yufeng Lin, Qian Xu, and Qiang Yang. Federated deep
reinforcement learning. arXiv preprint arXiv:1901.08277, 2019.

13

Under review as a conference paper at ICLR 2024

Appendix

Table of Contents
A Federated NPG (FedNPG) with entropy regularization 14

B Convergence Analysis 15
B.1 Analysis of entropy-regularized FedNPG with exact policy evaluation 15
B.2 Analysis of entropy-regularized FedNPG with inexact policy evaluation 17
B.3 Analysis of FedNPG with exact policy evaluation 19
B.4 Analysis of FedNPG with inexact policy evaluation 21

C Proof of key lemmas 23
C.1 Proof of Lemma 1 . 23
C.2 Proof of Lemma 2 . 28
C.3 Proof of Lemma 3 . 29
C.4 Proof of Lemma 4 . 31
C.5 Proof of Lemma 5 . 33

D Proof of auxiliary lemmas 34
D.1 Proof of Lemma 6 . 34
D.2 Proof of Lemma 8 . 35
D.3 Proof of Lemma 9 . 37
D.4 Proof of Lemma 11 . 38

E Experiments 41

A FEDERATED NPG (FEDNPG) WITH ENTROPY REGULARIZATION

We record the entropy-regularized FedNPG method here due to space limits.

Algorithm 2 Federated NPG (FedNPG) with entropy regularization

1: Input: learning rate η > 0, iteration number T ∈ N+, mixing matrix W ∈ RN×N , regulariza-
tion coefficient τ > 0.

2: Initialize: π(0), T (0) = Q
(0)
τ .

3: for t = 0, 1, · · · do
4: Update the policy for each (s, a) ∈ S ×A:

logπ(t+1)(a|s) = W

((
1− ητ

1− γ

)
logπ(t)(a|s) + η

1− γ
T (t)(s, a)

)
− log z(t)(s) ,

(Uπ)
where z(t)(s) =

∑
a′∈A exp

{
W
((

1− ητ
1−γ

)
logπ(t)(a′|s) + η

1−γT
(t)(s, a′)

)}
.

5: Evaluate Q
(t+1)
τ .

6: Update the global Q-function estimate for each (s, a) ∈ S ×A:

T (t+1)(s, a) = W
(
T (t)(s, a) +Q(t+1)

τ (s, a)−Q(t)
τ (s, a)︸ ︷︷ ︸

Q-tracking

)
. (UT)

7: end for

14

Under review as a conference paper at ICLR 2024

B CONVERGENCE ANALYSIS

For technical convenience, we present first the analysis and proof for entropy-regularized FedNPG
and then for vanilla FedNPG.

B.1 ANALYSIS OF ENTROPY-REGULARIZED FEDNPG WITH EXACT POLICY EVALUATION

To facilitate analysis, we introduce several notation below. For all t ≥ 0, we recall π(t) as the
normalized geometric mean of {π(t)

n }n∈[N]:

π(t) := softmax

(
1

N

N∑
n=1

log π(t)
n

)
, (28)

from which we can easily see that for each (s, a) ∈ S × A, π(t)(a|s) ∝
(∏N

n=1 π
(t)
n (a|s)

) 1
N

. We

denote the soft Q-functions of π(t) by Q
(t)

τ :

Q
(t)

τ :=

Qπ(t)

τ,1
...

Qπ(t)

τ,N

 . (29)

In addition, we define Q̂
(t)
τ , Q

(t)

τ ∈ R|S||A| and V
(t)

τ ∈ R|S| as follows

Q̂(t)
τ :=

1

N

N∑
n=1

Q
π(t)
n

τ,n , (30a)

Q
(t)

τ := Qπ(t)

τ =
1

N

N∑
n=1

Qπ(t)

τ,n . (30b)

V
(t)

τ := V π(t)

τ =
1

N

N∑
n=1

V π(t)

τ,n . (30c)

For notational convenience, we also denote

α := 1− ητ

1− γ
. (31)

Following Cen et al. (2022), we introduce the following auxiliary sequence {ξ(t) =

(ξ
(t)
1 , · · · , ξ(t)N)⊤ ∈ RN×|S||A|}t=0,1,···, each recursively defined as

∀(s, a) ∈ S ×A : ξ(0)(s, a) :=
∥exp (Q⋆

τ (s, ·)/τ)∥1∥∥∥exp(1
N

∑N
n=1 log π

(0)
n (·|s)

)∥∥∥
1

· π(0)(a|s) , (32a)

log ξ(t+1)(s, a) = W
(
α log ξ(t)(s, a) + (1− α)T (t)(s, a)/τ

)
, (32b)

where T (t)(s, a) is updated via (U0
T). Similarly, we introduce an averaged auxiliary sequence

{ξ(t) ∈ R|S||A|} given by

∀(s, a) ∈ S ×A : ξ
(0)

(s, a) := ∥exp (Q⋆
τ (s, ·)/τ)∥1 · π

(0)(a|s) , (33a)

log ξ
(t+1)

(s, a) = α log ξ
(t)
(s, a) + (1− α)Q̂(t)

τ (s, a)/τ. (33b)

We introduces four error metrics defined as
Ω

(t)
1 :=

∥∥u(t)
∥∥
∞ , (34a)

Ω
(t)
2 :=

∥∥v(t)∥∥∞ , (34b)

Ω
(t)
3 :=

∥∥Q⋆
τ − τ log ξ

(t)∥∥
∞ , (34c)

Ω
(t)
4 := max

{
0,−min

s,a

(
Q

(t)

τ (s, a)− τ log ξ
(t)
(s, a)

)}
, (34d)

15

Under review as a conference paper at ICLR 2024

where u(t), v(t) ∈ R|S||A| are defined as

u(t)(s, a) :=
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2
, (35)

v(t)(s, a) :=
∥∥T (t)(s, a)− Q̂(t)

τ (s, a)1N

∥∥
2
. (36)

We collect the error metrics above in a vector Ω(t) ∈ R4:

Ω(t) :=
(
Ω

(t)
1 ,Ω

(t)
2 ,Ω

(t)
3 ,Ω

(t)
4

)⊤
. (37)

With the above preparation, we are ready to state the convergence guarantee of Algorithm 2 in
Theorem 5 below, which is the formal version of Theorem 3.
Theorem 5. For any N ∈ N+, τ > 0, γ ∈ (0, 1), there exists η0 > 0 which depends only on
N, γ, τ, σ, |A|, such that if 0 < η ≤ η0 and 1− σ > 0, then the updates of Algorithm 2 satisfy∥∥Q(t)

τ −Q⋆
τ

∥∥
∞ ≤ 2γρ(η)t

∥∥Ω(0)
∥∥
2
, (38)∥∥ log π⋆

τ − log π(t)
∥∥
∞ ≤ 2

τ
ρ(η)t

∥∥Ω(0)
∥∥
2
, (39)

where
ρ(η) ≤ max

{
1− τη

2
,
3 + σ

4

}
< 1 .

The dependency of η0 on N, γ, τ, σ, |A| is made clear in Lemma 2 that will be presented momentarily
in this section. The rest of this section is dedicated to the proof of Theorem 5. We first state a key
lemma that tracks the error recursion of Algorithm 2.
Lemma 1. The following linear system holds for all t ≥ 0:

Ω(t+1) ≤

σα ησ

1−γ 0 0

Sσ
(
1 + ηM

√
N

1−γ σ
)
σ (2+γ)ηMN

1−γ σ γηMN
1−γ σ

(1− α)M 0 (1− α)γ + α (1− α)γ
2γ+ητ
1−γ M 0 0 α

︸ ︷︷ ︸

=:A(η)

Ω(t) , (40)

where we let

S := M
√
N

(
2α+ (1− α) ·

√
2N +

1− α

τ
·
√
NM

)
, (41)

and

M :=
1 + γ + 2τ(1− γ) log |A|

(1− γ)2
· γ .

In addition, it holds for all t ≥ 0 that∥∥∥Q(t)

τ −Q⋆
τ

∥∥∥
∞

≤ γΩ
(t)
3 + γΩ

(t)
4 , (42)∥∥ log π(t) − log π⋆

τ

∥∥
∞ ≤ 2

τ
Ω

(t)
3 . (43)

Proof. See Appendix C.1.

Let ρ(η) denote the spectral norm of A(η). As Ω(t) ≥ 0, it is immediate from (40) that∥∥Ω(t)
∥∥
2
≤ ρ(η)t

∥∥Ω(0)
∥∥
2
,

and therefore we have ∥∥∥Q(t)

τ −Q⋆
τ

∥∥∥
∞

≤ 2γ
∥∥Ω(t)

∥∥
∞ ≤ 2γρ(η)t

∥∥Ω(0)
∥∥
2
,

and ∥∥ log π(t) − log π⋆
τ

∥∥
∞ ≤ 2

τ

∥∥Ω(t)
∥∥
∞ ≤ 2

τ
ρ(η)t

∥∥Ω(0)
∥∥
2
.

It remains to bound the spectral radius ρ(η), which is achieved by the following lemma.

16

Under review as a conference paper at ICLR 2024

Lemma 2 (Bounding the spectral norm of A(η)). Let

ζ :=
(1− γ)(1− σ)2τ

8 (τS0σ2 + 10Mcσ2/(1− γ) + (1− σ)2τ2/16)
, (44)

where S0 := M
√
N
(
2 +

√
2N + M

√
N

τ

)
, c := MN/(1− γ). For any N ∈ N+, τ > 0, γ ∈ (0, 1),

if

0 < η ≤ η0 := min
{1− γ

τ
, ζ
}
, (45)

then we have

ρ(η) ≤ max
{3 + σ

4
,
1 + (1− α)γ + α

2

}
< 1 . (46)

Proof. See Appendix C.2.

B.2 ANALYSIS OF ENTROPY-REGULARIZED FEDNPG WITH INEXACT POLICY EVALUATION

We define the collection of inexact Q-function estimates as

q(t)
τ :=

(
q
π
(t)
1

τ,1 , · · · , qπ
(t)
N

τ,N

)⊤
,

and then the update rule (UT) should be understood as

T (t+1)(s, a) = W
(
T (t)(s, a) + q(t+1)

τ (s, a)− q(t)
τ (s, a)

)
(47)

in the inexact setting. For notational simplicity, we define en ∈ R as

en := max
t∈[T]

∥∥∥Qπ(t)
n

τ,n − q
π(t)
n

τ,n

∥∥∥
∞

, n ∈ [N] , (48)

and let e = (e1, · · · , en)⊤. Define q̂
(t)
τ , the approximation of Q̂(t)

τ as

q̂(t)τ :=
1

N

N∑
n=1

q
π(t)
n

τ,n . (49)

With slight abuse of notation, we adapt the auxiliary sequence {ξ(t)}t=0,··· to the inexact updates as

ξ
(0)

(s, a) := ∥exp (Q⋆
τ (s, ·)/τ)∥1 · π

(0)(a|s) , (50a)

ξ
(t+1)

(s, a) :=
[
ξ
(t)
(s, a)

]α
exp

(
(1− α)

q̂
(t)
τ (s, a)

τ

)
, ∀(s, a) ∈ S ×A, t ≥ 0 . (50b)

In addition, we define

Ω
(t)
1 :=

∥∥∥u(t)
∥∥∥
∞

, (51a)

Ω
(t)
2 :=

∥∥∥v(t)∥∥∥
∞

, (51b)

Ω
(t)
3 :=

∥∥∥Q⋆
τ − τ log ξ

(t)
∥∥∥
∞

, (51c)

Ω
(t)
4 := max

{
0,−min

s,a

(
q(t)τ (s, a)− τ log ξ

(t)
(s, a)

)}
, (51d)

where

u(t)(s, a) :=
∥∥∥log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥∥
2
, (52)

v(t)(s, a) :=
∥∥∥T (t)(s, a)− q̂(t)τ (s, a)1N

∥∥∥
2
. (53)

We let Ω(t) be
Ω(t) :=

(
Ω

(t)
1 ,Ω

(t)
2 ,Ω

(t)
3 ,Ω

(t)
4

)⊤
. (54)

With the above preparation, we are ready to state the inexact convergence guarantee of Algorithm 2
in Theorem 6 below, which is the formal version of Theorem 4.

17

Under review as a conference paper at ICLR 2024

Theorem 6. Suppose that qπ
(t)
n

τ,n are used in replace of Qπ(t)
n

τ,n in Algorithm 2. For any N ∈ N+, τ >
0, γ ∈ (0, 1), there exists η0 > 0 which depends only on N, γ, τ, σ, |A|, such that if 0 < η ≤ η0 and
1− σ > 0, we have∥∥∥Q(t)

τ −Q⋆
τ

∥∥∥
∞

≤ 2γ

(
ρ(η)t

∥∥∥Ω(0)
∥∥∥
2
+ C2 max

n∈[N],t∈[T]

∥∥∥Qπ(t)
n

τ,n − q
π(t)
n

τ,n

∥∥∥
∞

)
, (55)∥∥∥log π⋆

τ − log π(t)
∥∥∥
∞

≤ 2

τ

(
ρ(η)t

∥∥∥Ω(0)
∥∥∥
2
+ C2 max

n∈[N],t∈[T]

∥∥∥Qπ(t)
n

τ,n − q
π(t)
n

τ,n

∥∥∥
∞

)
, (56)

where ρ(η) ≤ max{1 − τη
2 , 3+σ

4 } < 1 is the same as in Theorem 5, and C2 :=
σ
√
N(2(1−γ)+M

√
Nη)+2γ2+ητ

(1−γ)(1−ρ(η)) .

From Theorem 6, we can conclude that if

max
n∈[N],t∈[T]

∥∥∥Qπ(t)
n

τ,n − q
π(t)
n

τ,n

∥∥∥
∞

≤ (1− γ)(1− ρ(η))ε

2γ
(
σ
√
N(2(1− γ) +M

√
Nη) + 2γ2 + ητ

) , (57)

then inexact entropy-regularized FedNPG could still achieve 2ε-accuracy (i.e.
∥∥∥Q(t)

τ −Q⋆
τ

∥∥∥
∞

≤ 2ε)

within max
{

2
τη ,

4
1−σ

}
log

2γ∥Ω(0)∥
2

ε iterations.

Remark 1. When η = η0 (cf. (45) and (44)) and τ ≤ 1, the RHS of (57) is of the order

O
(

(1− γ)τη0ε

γ(γ2 + σ
√
N(1− γ))

)
= O

(
(1− γ)8τ2(1− σ)2ε

γ(γ2 + σ
√
N(1− γ))(γ2Nσ2 + (1− σ)2τ2(1− γ)6)

)
,

which can be translated into a crude sample complexity bound when using fresh samples to estimate
the soft Q-functions in each iteration.

The rest of this section outlines the proof of Theorem 6. We first state a key lemma that tracks
the error recursion of Algorithm 2 with inexact policy evaluation, which is a modified version of
Lemma 1.
Lemma 3. The following linear system holds for all t ≥ 0:

Ω(t+1) ≤ A(η)Ω(t) +

0

σ
√
N
(
2 + M

√
Nη

1−γ

)
ητ
1−γ
2γ2

1−γ

 ∥e∥∞

︸ ︷︷ ︸
=:b(η)

, (58)

where A(η) is provided in Lemma 1. In addition, it holds for all t ≥ 0 that∥∥∥Q(t)

τ −Q⋆
τ

∥∥∥
∞

≤ γΩ
(t)
3 + γΩ

(t)
4 , (59)∥∥ log π(t) − log π⋆

τ

∥∥
∞ ≤ 2

τ
Ω

(t)
3 . (60)

Proof. See Appendix C.3.

By (58), we have

∀t ∈ N+ : Ω(t) ≤ A(η)tΩ(0) +

t∑
s=1

A(η)t−sb(η) ,

which gives∥∥∥Ω(t)
∥∥∥
2
≤ ρ(η)t

∥∥∥Ω(0)
∥∥∥
2
+

t∑
s=1

ρ(η)t−s ∥b(η)∥2 ∥e∥∞

≤ ρ(η)t
∥∥∥Ω(0)

∥∥∥
2
+

σ
√
N(2(1− γ) +M

√
Nη) + 2γ2 + ητ

(1− γ)(1− ρ(η))
∥e∥∞ . (61)

18

Under review as a conference paper at ICLR 2024

Here, (61) follows from ∥b(η)∥2 ≤ ∥b(η)∥1 = σ
√
N(2(1−γ)+M

√
Nη)+2γ2+ητ

1−γ ∥e∥∞ and∑t
s=1 ρ(η)

t−s ≤ 1/(1 − ρ(η)). Recall that the bound on ρ(η) has already been established in
Lemma 2. Therefore we complete the proof of Theorem 6 by combining the above inequality with
(59) and (60) in a similar fashion as before. We omit further details for conciseness.

B.3 ANALYSIS OF FEDNPG WITH EXACT POLICY EVALUATION

We state the formal version of Theorem 1 below.
Theorem 7. Suppose all π(0)

n in Algorithm 1 are initialized as uniform distribution. When

0 < η ≤ η1 :=
(1− σ)2(1− γ)3

8(1 + γ)γ
√
Nσ2

,

we have

1

T

T−1∑
t=0

(
V ⋆(ρ)− V π(t)

(ρ)
)
≤

V ⋆(dπ
⋆

ρ)

(1− γ)T
+

log |A|
ηT

+
8(1 + γ)2γ2Nσ2

(1− γ)9(1− σ)2
η2 (62)

for any fixed state distribution ρ.

The rest of this section is dedicated to prove Theorem 7. Similar to (29), we denote the Q-functions
of π(t) by Q

(t)
:

Q
(t)

:=

Qπ(t)

1
...

Qπ(t)

N

 . (63)

In addition, similar to (30), we define Q̂(t), Q
(t) ∈ R|S||A| and V

(t) ∈ R|S| as follows

Q̂(t) :=
1

N

N∑
n=1

Q
π(t)
n

n , (64a)

Q
(t)

:= Qπ(t)

=
1

N

N∑
n=1

Qπ(t)

n . (64b)

V
(t)

:= V π(t)

=
1

N

N∑
n=1

V π(t)

n . (64c)

Following the same strategy in the analysis of entropy-regularized FedNPG, we introduce the auxiliary
sequence {ξ(t) = (ξ

(t)
1 , · · · , ξ(t)N)⊤ ∈ RN×|S||A|} recursively:

ξ(0)(s, a) :=
1∥∥∥exp(1

N

∑N
n=1 log π

(0)
n (·|s)

)∥∥∥
1

· π(0)(a|s) , (65a)

log ξ(t+1)(s, a) = W

(
log ξ(t)(s, a) +

η

1− γ
T (t)(s, a)

)
, (65b)

as well as the averaged auxiliary sequence {ξ(t) ∈ R|S||A|}:

ξ
(0)

(s, a) := π(0)(a|s) , (66a)

log ξ
(t+1)

(s, a) := log ξ
(t)
(s, a) +

η

1− γ
Q̂(t)(s, a) , ∀(s, a) ∈ S ×A, t ≥ 0 . (66b)

As usual, we collect the consensus errors in a vector Ω(t) = (
∥∥u(t)

∥∥
∞,
∥∥v(t)∥∥∞)⊤, where u(t), v(t) ∈

R|S||A| are defined as:

u(t)(s, a) :=
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2
, (67)

v(t)(s, a) :=
∥∥T (t)(s, a)− Q̂(t)(s, a)1N

∥∥
2
. (68)

19

Under review as a conference paper at ICLR 2024

Step 1: establishing the error recursion. The next key lemma establishes the error recursion of
Algorithm 1.
Lemma 4. The updates of FedNPG satisfy

Ω(t+1) ≤

(
σ η

1−γσ

Jσ σ
(
1 + (1+γ)γ

√
Nη

(1−γ)3 σ
))

︸ ︷︷ ︸
=:B(η)

Ω(t) +

(
0

(1+γ)γNσ
(1−γ)4 η

)
︸ ︷︷ ︸

=:d(η)

(69)

for all t ≥ 0, where

J :=
2(1 + γ)γ

(1− γ)2

√
N . (70)

In addition, we have

ϕ(t+1)(η) ≤ ϕ(t)(η) +
2(1 + γ)γ

(1− γ)4
η
∥∥u(t)

∥∥
∞ − η

(
V ⋆(ρ)− V

(t)
(ρ)
)
, (71)

where
ϕ(t)(η) := Es∼dπ⋆

ρ

[
KL
(
π⋆(·|s) ∥π(t)(·|s)

)]
− η

1− γ
V

(t)
(dπ

⋆

ρ) , ∀t ≥ 0 . (72)

Proof. See Appendix C.4.

Step 2: bounding the value functions. Let p ∈ R2 be defined as:

p(η) =

(
p1(η)
p2(η)

)
:=

2(1 + γ)γ

(1− γ)4

 σ(1−γ)(1−σ−(1+γ)γ
√
Nση/(1−γ)3)η

(1−γ)(1−σ−(1+γ)γ
√
Nσ2η/(1−γ)3)(1−σ)−Jσ2η

ση2

(1−γ)(1−σ−(1+γ)γ
√
Nσ2η/(1−γ)3)(1−σ)−Jσ2η

 ; (73)

the rationale for this choice will be made clear momentarily. We define the following Lyapunov
function

Φ(t)(η) = ϕ(t)(η) + p(η)⊤Ω(t) , ∀t ≥ 0 , (74)
which satisfies

Φ(t+1)(η) = ϕ(t+1)(η) + p(η)⊤Ω(t+1)

≤ ϕ(t)(η) +
2(1 + γ)γ

(1− γ)4
η
∥∥u(t)

∥∥
∞ − η

(
V ⋆(ρ)− V

(t)
(ρ)
)
+ p(η)⊤

(
B(η)Ω(t) + d(η)

)
= Φ(t)(η) +

[
p(η)⊤ (B(η)− I) +

(
2(1 + γ)γ

(1− γ)4
η, 0

)]
Ω(t) − η

(
V ⋆(ρ)− V

(t)
(ρ)
)

+ p2(η)
(1 + γ)γNσ

(1− γ)4
η . (75)

Here, the second inequality follows from (71). One can verify that the second term vanishes due to
the choice of p(η):

p(η)⊤ (B(η)− I) +

(
2(1 + γ)γ

(1− γ)4
η, 0

)
= (0, 0) . (76)

Therefore, we conclude that

V ⋆(ρ)− V
(t)
(ρ) ≤ Φ(t)(η)− Φ(t+1)(η)

η
+ p2(η)

(1 + γ)γNσ

(1− γ)4
.

Averaging over t = 0, · · · , T − 1,

1

T

T−1∑
t=0

(
V ⋆(ρ)− V

(t)
(ρ)
)

≤ Φ(0)(η)− Φ(T)(η)

ηT
+

2(1 + γ)2γ2

(1− γ)8
· Nσ2η2

(1− γ)(1− σ − (1 + γ)γ
√
Nσ2η/(1− γ)3)(1− σ)− σ2Jη

.

(77)

20

Under review as a conference paper at ICLR 2024

Step 3: simplifying the expression. We first upper bound the first term in the RHS of (77). Assuming
uniform initialization for all π(0)

n in Algorithm 1, we have
∥∥u(0)

∥∥
∞ =

∥∥v(0)∥∥∞ = 0, and

Es∼dπ⋆
ρ

[
KL
(
π⋆(·|s) ∥π(0)(·|s)

)]
≤ log |A|.

Therefore, putting together relations (74) and (154) we have

Φ(0)(η)− Φ(T)(η)

ηT
≤ log |A|

Tη
+

1

T

(
p(η)⊤Ω(0)/η +

V ⋆(dπ
⋆

ρ)

1− γ

)
=

log |A|
Tη

+
V ⋆(dπ

⋆

ρ)

T (1− γ)
, (78)

To continue, we upper bound the second term in the RHS of (77). Note that

η ≤ η1 ≤ (1− σ)(1− γ)3

2(1 + γ)γ
√
Nσ2

,

which gives
(1 + γ)γ

√
Nσ2

(1− γ)3
η ≤ 1− σ

2
. (79)

Thus we have

(1− γ)(1− σ − (1 + γ)γ
√
Nσ2η/(1− γ)3)(1− σ)− Jσ2η

≥ (1− γ)(1− σ)2/2− Jσ2η1

≥ (1− γ)(1− σ)2/4 , (80)

where the first inequality follows from (79) and the second inequality follows from the definition of
η1 and J . By (80), we deduce

2(1 + γ)2γ2

(1− γ)8
· Nσ2η2

(1− γ)(1− σ − (1 + γ)γ
√
Nσ2η/(1− γ)3)(1− σ)− Jσ2η

≤ 8(1 + γ)2γ2Nσ2

(1− γ)9(1− σ)2
η2 ,

(81)
and our advertised bound (62) thus follows from plugging (78) and (81) into (77).

B.4 ANALYSIS OF FEDNPG WITH INEXACT POLICY EVALUATION

We state the formal version of Theorem 2 below.

Theorem 8. Suppose that qπ
(t)
n

n are used in replace of Qπ(t)
n

n in Algorithm 1. Suppose all π(0)
n in

Algorithm 1 set to uniform distribution. Let

0 < η ≤ η1 :=
(1− σ)2(1− γ)3

8(1 + γ)γ
√
Nσ2

,

we have

1

T

T−1∑
t=0

(
V ⋆(ρ)− V π(t)

(ρ)
)

≤
V ⋆(dπ

⋆

ρ)

(1− γ)T
+

log |A|
ηT

+
8(1 + γ)2γ2Nσ2

(1− γ)9(1− σ)2
η2

+

[
8(1 + γ)γ

(1− γ)5(1− σ)2

√
Nση

(
(1 + γ)γη

√
N

(1− γ)3
+ 2

)
+

2

(1− γ)2

]
max

n∈[N],t∈[T]

∥∥∥Qπ(t)
n

n − q
π(t)
n

n

∥∥∥
∞

for any fixed state distribution ρ.

We next outline the proof of Theorem 8. With slight abuse of notation, we again define en ∈ R as

en := max
t∈[T]

∥∥∥Qπ(t)
n

n − q
π(t)
n

n

∥∥∥
∞

, n ∈ [N] , (82)

21

Under review as a conference paper at ICLR 2024

and let e = (e1, · · · , en)⊤. We define the collection of inexact Q-function estimates as

q(t) :=
(
q
π
(t)
1

1 , · · · , qπ
(t)
N

N

)⊤
,

and then the update rule (U0
T) should be understood as

T (t+1)(s, a) = W
(
T (t)(s, a) + q(t+1)(s, a)− q(t)(s, a)

)
(83)

in the inexact setting. Define q̂(t), the approximation of Q̂(t) as

q̂(t) :=
1

N

N∑
n=1

q
π(t)
n

n , (84)

we adapt the averaged auxiliary sequence {ξ(t) ∈ R|S||A|} to the inexact updates as follows:

ξ
(0)

(s, a) := π(0)(a|s) , (85a)

ξ
(t+1)

(s, a) := ξ
(t)
(s, a) exp

(
η

1− γ
q̂(t)(s, a)

)
, ∀(s, a) ∈ S ×A, t ≥ 0 . (85b)

As usual, we define the consensus error vector as Ω(t) = (
∥∥u(t)

∥∥
∞,
∥∥v(t)∥∥∞)⊤, where u(t), v(t) ∈

R|S||A| are given by

u(t)(s, a) :=
∥∥∥log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥∥
2
, (86)

v(t)(s, a) :=
∥∥∥T (t)(s, a)− q̂(t)(s, a)1N

∥∥∥
2
. (87)

The following lemma characterizes the dynamics of the error vector Ω(t), perturbed by additional
approximation error.
Lemma 5. The updates of inexact FedNPG satisfy

Ω(t+1) ≤ B(η)Ω(t) + d(η) +

(
0√

Nσ
(

(1+γ)γη
√
N

(1−γ)3 + 2
))∥∥e∥∥∞︸ ︷︷ ︸

=:c(η)

. (88)

In addition, we have

ϕ(t+1)(η) ≤ ϕ(t)(η) +
2(1 + γ)γ

(1− γ)4
η
∥∥∥u(t)

∥∥∥
∞

+
2η

(1− γ)2
∥e∥∞ − η

(
V ⋆(ρ)− V

(t)
(ρ)
)
, (89)

where ϕ(t)(η) is defined in (72).

Proof. See Appendix C.5.

Similar to (75), we can recursively bound Φ(t)(η) (defined in (74)) as

Φ(t+1)(η) = ϕ(t+1)(η) + p(η)⊤Ω(t+1)

(89)
≤ ϕ(t)(η) +

2(1 + γ)γ

(1− γ)4
η
∥∥∥u(t)

∥∥∥
∞

+
2η

(1− γ)2
∥e∥∞ − η

(
V ⋆(ρ)− V

(t)
(ρ)
)

+ p(η)⊤
(
B(η)Ω(t) + d(η) + c(η)

)
= Φ(t)(η) +

[
p(η)⊤ (B(η)− I) +

(
2(1 + γ)γ

(1− γ)4
η, 0

)]
︸ ︷︷ ︸

=(0,0) via (76)

Ω(t) − η
(
V ⋆(ρ)− V

(t)
(ρ)
)

+ p2(η)
(1 + γ)γNσ

(1− γ)4
η +

[
p2(η)

√
Nσ

(
(1 + γ)γη

√
N

(1− γ)3
+ 2

)
+

2η

(1− γ)2

]
∥e∥∞ .

(90)

22

Under review as a conference paper at ICLR 2024

From the above expression we know that

V ⋆(ρ)−V
(t)
(ρ) ≤ Φ(t)(η)− Φ(t+1)(η)

η
+p2(η)

(1 + γ)γNσ

(1− γ)4
+

[
p2(η)

√
Nσ

(
(1 + γ)γ

√
N

(1− γ)3
+

2

η

)
+

2

(1− γ)2

]
∥e∥∞ ,

which gives

1

T

T−1∑
t=0

(
V ⋆(ρ)− V

(t)
(ρ)
)
≤ Φ(0)(η)− Φ(T)(η)

ηT
+ p2(η)

(1 + γ)γNσ

(1− γ)4

+

[
p2(η)

√
Nσ

(
(1 + γ)γ

√
N

(1− γ)3
+

2

η

)
+

2

(1− γ)2

]
∥e∥∞ (91)

via telescoping. Combining the above expression with (78), (80) and (81), we have

1

T

T−1∑
t=0

(
V ⋆(ρ)− V

(t)
(ρ)
)
≤ log |A|

Tη
+

V ⋆(dπ
⋆

ρ)

T (1− γ)
+

8(1 + γ)2γ2Nσ

(1− γ)9(1− σ)2
η2

+

[
8(1 + γ)γ

(1− γ)5(1− σ)2

√
Nση

(
(1 + γ)γη

√
N

(1− γ)3
+ 2

)
+

2

(1− γ)2

]
∥e∥∞ ,

(92)

which establishes (82).

C PROOF OF KEY LEMMAS

C.1 PROOF OF LEMMA 1

Before proceeding, we summarize several useful properties of the auxiliary sequences (cf. (32) and
(33)), whose proof is postponed to Appendix D.1.

Lemma 6 (Properties of auxiliary sequences {ξ(t)} and {ξ(t)}). {ξ(t)} and {ξ(t)} have the following
properties:

1. ξ(t) can be viewed as an unnormalized version of π(t), i.e.,

π(t)
n (·|s) = ξ

(t)
n (s, ·)∥∥ξ(t)n (s, ·)

∥∥
1

, ∀n ∈ [N], s ∈ S . (93)

2. For any t ≥ 0, log ξ
(t)

keeps track of the average of log ξ(t), i.e.,

1

N
1⊤
N log ξ(t) = log ξ

(t)
. (94)

It follows that

∀s ∈ S, t ≥ 0 : π(t)(·|s) = ξ
(t)
(s, ·)∥∥ξ(t)(s, ·)∥∥

1

. (95)

Lemma 7 ((Cen et al., 2022, Appendix. A.2)). For any vector θ = [θa]a∈A ∈ R|A|, we denote by
πθ ∈ R|A| the softmax transform of θ such that

πθ(a) =
exp(θa)∑

a′∈A exp(θa′)
, a ∈ A . (96)

For any θ1, θ2 ∈ R|A|, we have∣∣ log(∥exp(θ1)∥1)− log(∥exp(θ2)∥1)
∣∣ ≤ ∥θ1 − θ2∥∞ , (97)

∥log πθ1 − log πθ2∥∞ ≤ 2 ∥θ1 − θ2∥∞ . (98)

23

Under review as a conference paper at ICLR 2024

Step 1: bound u(t+1)(s, a) =
∥∥ log ξ(t+1)(s, a) − log ξ

(t+1)
(s, a)1N

∥∥
2
. By (32b) and (33b) we

have

u(t+1)(s, a) =
∥∥ log ξ(t+1)(s, a)− log ξ

(t+1)
(s, a)1N

∥∥
2

=
∥∥∥α(W log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

)
+ (1− α)

(
WT (t)(s, a)− Q̂(t)

τ (s, a)1N

)
/τ
∥∥∥
2

≤ σα
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2
+

1− α

τ
σ
∥∥T (t)(s, a)− Q̂(t)

τ (s, a)1N

∥∥
2

≤ σα
∥∥u(t)

∥∥
∞ +

1− α

τ
σ
∥∥v(t)∥∥∞, (99)

where the penultimate step results from the averaging property of W (property (18)). Taking
maximum over (s, a) ∈ S ×A establishes the bound on Ω

(t+1)
1 in (40).

Step 2: bound v(t+1)(s, a) =
∥∥T (t+1)(s, a)− Q̂

(t+1)
τ (s, a)1N

∥∥
2
. By (UT) we have∥∥T (t+1)(s, a)− Q̂(t+1)

τ (s, a)1N

∥∥
2

=
∥∥∥W (

T (t)(s, a) +Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
)
− Q̂(t+1)

τ (s, a)1N

∥∥∥
2

=
∥∥∥(WT (t)(s, a)− Q̂(t)

τ (s, a)1N

)
+W

(
Q(t+1)

τ (s, a)−Q(t)
τ (s, a)

)
+
(
Q̂(t)

τ (s, a)− Q̂(t+1)
τ (s, a)

)
1N

∥∥∥
2

≤ σ
∥∥T (t)(s, a)− Q̂(t)

τ (s, a)1N

∥∥
2
+ σ

∥∥∥(Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
)
+
(
Q̂(t)

τ (s, a)− Q̂(t+1)
τ (s, a)

)
1N

∥∥∥
2

≤ σ
∥∥T (t)(s, a)− Q̂(t)

τ (s, a)1N

∥∥
2
+ σ

∥∥Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
∥∥
2
, (100)

where the penultimate step uses property (18), and the last step is due to∥∥∥(Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
)
+
(
Q̂(t)

τ (s, a)− Q̂(t+1)
τ (s, a)

)
1N

∥∥∥2
2

=
∥∥Q(t+1)

τ (s, a)−Q(t)
τ (s, a)

∥∥2
2
+N

(
Q̂(t)

τ (s, a)− Q̂(t+1)
τ (s, a)

)2
− 2

N∑
n=1

(
Q

π(t+1)
n

τ,n (s, a)−Q
π(t)
n

τ,n (s, a)
)(

Q̂(t+1)
τ (s, a)− Q̂(t)

τ (s, a)
)

=
∥∥Q(t+1)

τ (s, a)−Q(t)
τ (s, a)

∥∥2
2
−N

(
Q̂(t)

τ (s, a)− Q̂(t+1)
τ (s, a)

)2
≤
∥∥Q(t+1)

τ (s, a)−Q(t)
τ (s, a)

∥∥2
2
.

Step 3: bound
∥∥Q⋆

τ − τ log ξ
(t+1)∥∥

∞. We decompose the term of interest as

Q⋆
τ − τ log ξ

(t+1)
= Q⋆

τ − τα log ξ
(t) − (1− α)Q̂(t)

τ

= α(Q⋆
τ − τ log ξ

(t)
) + (1− α)(Q⋆

τ −Q
(t)

τ) + (1− α)(Q
(t)

τ − Q̂(t)
τ),

which gives∥∥Q⋆
τ −τ log ξ

(t+1)∥∥
∞ ≤ α

∥∥Q⋆
τ −τ log ξ

(t)∥∥
∞+(1−α)

∥∥Q⋆
τ −Q

(t)

τ

∥∥
∞+(1−α)

∥∥Q(t)

τ − Q̂(t)
τ

∥∥
∞ .

(101)
Note that we can upper bound

∥∥Q(t)

τ − Q̂
(t)
τ

∥∥
∞ by

∥∥Q(t)

τ − Q̂(t)
τ

∥∥
∞ =

∥∥∥∥∥ 1

N

N∑
n=1

Q
π(t)
n

τ,n − 1

N

N∑
n=1

Qπ(t)

τ,n

∥∥∥∥∥
∞

≤ 1

N

N∑
n=1

∥∥Qπ(t)
n

τ,n −Qπ(t)

τ,n

∥∥
∞

≤ M

N

N∑
n=1

∥∥ log ξ(t)n − log ξ
(t)∥∥

∞⩽M
∥∥u(t)

∥∥
∞. (102)

24

Under review as a conference paper at ICLR 2024

The last step is due to
∣∣ log ξ(t)n (s, a)− log ξ

(t)
(s, a)

∣∣ ≤ u(t)(s, a), while the penultimate step results
from writing

π(t)(·|s) = softmax
(
log ξ

(t)
(s, ·)

)
,

π(t)
n (·|s) = softmax

(
log ξ(t)n (s, ·)

)
,

and applying the following lemma.
Lemma 8 (Lipschitz constant of soft Q-function). Assume that r(s, a) ∈ [0, 1],∀(s, a) ∈ S ×A and
τ ≥ 0. For any θ, θ′ ∈ R|S||A|, we have

∥Qπθ′
τ −Qπθ

τ ∥∞ ≤ 1 + γ + 2τ(1− γ) log |A|
(1− γ)2

· γ︸ ︷︷ ︸
=:M

∥θ′ − θ∥∞ . (103)

Plugging (102) into (101) gives∥∥Q⋆
τ−τ log ξ

(t+1)∥∥
∞ ≤ α

∥∥Q⋆
τ−τ log ξ

(t)∥∥
∞+(1−α)

∥∥Q⋆
τ−Q

(t)

τ

∥∥
∞+(1−α)M

∥∥u(t)
∥∥
∞ . (104)

Step 4: bound
∥∥Q(t+1)

τ (s, a)−Q
(t)
τ (s, a)

∥∥
2
. Let w(t) : S ×A → R be defined as

∀(s, a) ∈ S×A : w(t)(s, a) :=
∥∥ log ξ(t+1)(s, a)−log ξ(t)(s, a)−(1−α)V ⋆

τ (s)1N/τ
∥∥
2
. (105)

Again, we treat w(t) as vectors in R|S||A| whenever it is clear from context. For any (s, a) ∈ S ×A
and n ∈ [N], by Lemma 8 it follows that∣∣∣Qπ(t+1)

n
τ,n (s, a)−Q

π(t)
n

τ,n (s, a)
∣∣∣ ≤ M max

s∈S

∥∥ log ξ(t+1)
n (s, ·)− log ξ(t)n (s, ·)− (1− α)V ⋆

τ (s)1|A|/τ
∥∥
∞

≤ M max
s∈S

max
a∈A

w(t)(s, a) ≤ M
∥∥w(t)

∥∥
∞ , (106)

and consequently ∥∥Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
∥∥
2
≤ M

√
N
∥∥w(t)

∥∥
∞ . (107)

It boils down to control
∥∥w(t)

∥∥
∞. To do so, we first note that for each (s, a) ∈ S ×A, we have

w(t)(s, a)

=
∥∥W (

α log ξ(t)(s, a) + (1− α)T (t)(s, a)/τ
)
− log ξ(t)(s, a)− (1− α)V ⋆

τ (s)1N/τ
∥∥
2

(a)
=
∥∥∥α(W − IN)

(
log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

)
+ (1− α)

(
WT (t)(s, a)/τ − log ξ(t)(s, a)− V ⋆

τ (s)1N/τ
)∥∥∥

2

(b)

≤ 2α
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2
+

1− α

τ

∥∥WT (t)(s, a)− τ log ξ(t)(s, a)− V ⋆
τ (s)1N

∥∥
2

(108)

where (a) is due to the doubly stochasticity property of W and (b) is from the fact ∥W − IN∥2 ≤ 2.
We further bound the second term as follows:∥∥∥WT (t)(s, a)− τ log ξ(t)(s, a)− V ⋆

τ (s)1N

∥∥∥
2

=
∥∥∥WT (t)(s, a)− τ log ξ(t)(s, a)−

(
Q⋆

τ (s, a)− τ log π⋆
τ (a|s)

)
1N

∥∥∥
2

≤
∥∥WT (t)(s, a)−Q⋆

τ (s, a)1N

∥∥
2
+ τ
∥∥ log ξ(t)(s, a)− log π⋆

τ (a|s)1N

∥∥
2

≤
∥∥WT (t)(s, a)− Q̂τ (s, a)1N

∥∥
2
+
∥∥Q̂τ (s, a)1N −Q⋆

τ (s, a)1N

∥∥
2

+ τ
∥∥ log ξ(t)(s, a)− log π(t)(a|s)1N

∥∥
2
+ τ
∥∥ log π(t)(a|s)1N − log π⋆

τ (a|s)1N

∥∥
2

= σ
∥∥T (t)(s, a)− Q̂(t)

τ (s, a)1N

∥∥
2
+

√
N
∣∣Q̂(t)

τ (s, a)−Q⋆
τ (s, a)

∣∣
+ τ
∥∥ log ξ(t)(s, a)− log π(t)(a|s)1N

∥∥
2
+ τ

√
N
∣∣ log π(t)(a|s)− log π⋆

τ (a|s)
∣∣ . (109)

25

Under review as a conference paper at ICLR 2024

Here, the first step results from the following relation established in Nachum et al. (2017):

∀(s, a) ∈ S ×A : V ⋆
τ (s) = −τ log π⋆

τ (a|s) +Q⋆
τ (s, a) , (110)

which also leads to ∥∥ log π(t) − log π⋆
τ

∥∥
∞ ≤ 2

τ

∥∥Q⋆
τ − τ log ξ

(t)∥∥
∞ (111)

by Lemma 7. For the remaining terms in (109), we have∣∣Q̂(t)
τ (s, a)−Q⋆

τ (s, a)
∣∣ ≤ ∥∥Q̂(t)

τ −Q
(t)

τ

∥∥
∞ +

∥∥Q(t)

τ −Q⋆
τ

∥∥
∞ , (112)

and

∥∥ log ξ(t)(s, a)− log π(t)(a|s)1N

∥∥
2
=

√√√√ N∑
n=1

(
log ξ

(t)
n (s, a)− log π(t)(a|s)

)2

≤

√√√√ N∑
n=1

2
∥∥ log ξ(t)n − log ξ

(t)∥∥2
∞

≤

√√√√ N∑
n=1

2
∥∥u(t)

∥∥2
∞ =

√
2N
∥∥u(t)

∥∥
∞ , (113)

where the first inequality again results from Lemma 7. Plugging (111), (112), (113) into (109) and
using the definition of u(t), v(t), we arrive at

w(t)(s, a) ≤
(
2α+ (1− α) ·

√
2N
)∥∥u(t)

∥∥
∞ +

1− α

τ

∥∥v(t)∥∥∞ +
1− α

τ
·
√
N
(∥∥Q̂(t)

τ −Q
(t)

τ

∥∥
∞ +

∥∥Q(t)

τ −Q⋆
τ

∥∥
∞

)
+

1− α

τ
· 2
√
N
∥∥Q⋆

τ − τ log ξ
(t)∥∥

∞ .

Using previous display, we can write (107) as∥∥Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
∥∥
2

≤ M
√
N

{(
2α+ (1− α) ·

√
2N
)∥∥u(t)

∥∥
∞ +

1− α

τ
σ
∥∥v(t)∥∥∞

+
1− α

τ
·
√
N
(
M
∥∥u(t)

∥∥
∞ +

∥∥Q(t)

τ −Q⋆
τ

∥∥
∞

)
+

1− α

τ
· 2
√
N
∥∥Q⋆

τ − τ log ξ
(t)∥∥

∞

}
.

(114)

Combining (100) with the above expression (114), we get

∥∥v(t+1)
∥∥
∞ ≤ σ

(
1 +

ηM
√
N

1− γ
σ

)∥∥v(t)∥∥∞ + σM
√
N

{(
2α+ (1− α) ·

√
2N +

1− α

τ
·
√
NM

)∥∥u(t)
∥∥
∞

+
1− α

τ
·
√
N
∥∥Q(t)

τ −Q⋆
τ

∥∥
∞ +

1− α

τ
· 2
√
N
∥∥Q⋆

τ − τ log ξ
(t)∥∥

∞

}
. (115)

Step 5: bound
∥∥Q(t+1)

τ −Q⋆
τ

∥∥
∞. For any state-action pair (s, a) ∈ S ×A, we observe that

Q⋆
τ (s, a)−Q

(t+1)

τ (s, a)

= r(s, a) + γ E
s′∼P (·|s,a)

[V ⋆
τ (s

′)]−
(
r(s, a) + γ E

s′∼P (·|s,a)

[
V π(t+1)

τ (s′)
])

= γ E
s′∼P (·|s,a)

[
τ log

(∥∥∥∥exp(Q⋆
τ (s

′, ·)
τ

)∥∥∥∥
1

)]
− γ E

s′∼P (·|s,a),

a′∼π(t+1)(·|s′)

[
Q

(t+1)

τ (s′, a′)− τ log π(t+1)(a′|s′)
]
,

(116)

26

Under review as a conference paper at ICLR 2024

where the first step invokes the definition of Qτ (cf. (7a)), and the second step is due to the following
expression of V ⋆

τ established in Nachum et al. (2017):

V ⋆
τ (s) = τ log

(∥∥∥∥exp(Q⋆
τ (s, ·)
τ

)∥∥∥∥
1

)
. (117)

To continue, note that by (95) and (33b) we have

log π(t+1)(a|s) = log ξ
(t+1)

(s, a)− log
(∥∥ξ(t+1)

(s, ·)
∥∥
1

)
= α log ξ

(t)
(s, a) + (1− α)

Q̂
(t)
τ (s, a)

τ
− log

(∥∥ξ(t+1)
(s, ·)

∥∥
1

)
. (118)

Plugging (118) into (116) and (114) establishes the bounds on

Q⋆
τ (s, a)−Q

(t+1)

τ (s, a) = γ E
s′∼P (·|s,a)

[
τ log

(∥∥∥∥exp(Q⋆
τ (s

′, ·)
τ

)∥∥∥∥
1

)
− τ log

(∥∥∥ξ(t+1)
(s′, ·)

∥∥∥
1

)]
− γ E

s′∼P (·|s,a),

a′∼π(t+1)(·|s′)

[
Q

(t+1)

τ (s′, a′)− τ

(
α log ξ

(t)
(s′, a′) + (1− α)

Q̂
(t)
τ (s′, a′)

τ

)
︸ ︷︷ ︸

=log ξ
(t+1)

(s′,a′)

]

(119)
for any (s, a) ∈ S ×A. In view of property (97), the first term on the right-hand side of (119) can be
bounded by

τ log

(∥∥∥∥exp(Q⋆
τ (s

′, ·)
τ

)∥∥∥∥
1

)
− τ log

(∥∥ξ(t+1)
(s′, ·)

∥∥
1

)
≤
∥∥Q⋆

τ − τ log ξ
(t+1)∥∥

∞ .

Plugging the above expression into (119), we have

0 ≤ Q⋆
τ (s, a)−Q

(t+1)

τ (s, a) ≤ γ
∥∥Q⋆

τ−τ log ξ
(t+1)∥∥

∞−γmin
s,a

(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
)
,

which gives∥∥Q⋆
τ−Q

(t+1)

τ

∥∥
∞ ≤ γ

∥∥Q⋆
τ−τ log ξ

(t+1)∥∥
∞+γmax

{
0,−min

s,a

(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
)}

.

(120)
Plugging the above inequality into (104) and (115) establishes the bounds on Ω

(t+1)
3 and Ω

(t+1)
2 in

(40), respectively.

Step 6: bound −mins,a
(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
)
. We need the following lemma which

is adapted from Lemma 1 in Cen et al. (2022):
Lemma 9 (Performance improvement of FedNPG with entropy regularization). Suppose 0 < η ≤
(1− γ)/τ . For any state-action pair (s0, a0) ∈ S ×A, one has

V
(t+1)

τ (s0)− V
(t)

τ (s0) ≥
1

η
E

s∼dπ(t+1)
s0

[
αKL

(
π(t+1)(·|s0) ∥π(t)(·|s0)

)
+ KL

(
π(t)(·|s0) ∥π(t+1)(·|s0)

)]
− 2

1− γ

∥∥Q̂(t)
τ −Q

(t)

τ

∥∥
∞ , (121)

Q
(t+1)

τ (s0, a0)−Q
(t)

τ (s0, a0) ≥ − 2γ

1− γ

∥∥Q̂(t)
τ −Q

(t)

τ

∥∥
∞ . (122)

Proof. See Appendix D.3.

Using (122), we have

Q
(t+1)

τ (s, a)− τ

(
α log ξ

(t)
(s, a) + (1− α)

Q̂
(t)
τ (s, a)

τ

)

≥ Q
(t)

τ (s, a)− τ

(
α log ξ

(t)
(s, a) + (1− α)

Q̂
(t)
τ (s, a)

τ

)
− 2γ

1− γ

∥∥Q̂(t)
τ −Q

(t)

τ

∥∥
∞

≥ α
(
Q

(t)

τ (s, a)− τ log ξ
(t)
(s, a)

)
− 2γ + ητ

1− γ

∥∥Q̂(t)
τ −Q

(t)

τ

∥∥
∞ , (123)

27

Under review as a conference paper at ICLR 2024

which gives

−min
s,a

(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
)

≤ −αmin
s,a

(
Q

(t)

τ (s, a)− τ log ξ
(t)
(s, a)

)
+

2γ + ητ

1− γ
M
∥∥u(t)

∥∥
∞

≤ αmax
{
0,min

s,a

(
Q

(t)

τ (s, a)− τ log ξ
(t)
(s, a)

)}
+

2γ + ητ

1− γ
M
∥∥u(t)

∥∥
∞ . (124)

This establishes the bounds on Ω
(t+1)
4 in (40).

C.2 PROOF OF LEMMA 2

Let f(λ) denote the characteristic function. In view of some direct calculations, we obtain

f(λ) = (λ− α)

{
(λ− σα)(λ− σ(1 + σbη))(λ− (1− α)γ − α)︸ ︷︷ ︸

=:f0(λ)

− ησ2

1− γ
[S(λ− (1− α)γ − α) + γcdMη + (1− α)(2 + γ)Mcη]︸ ︷︷ ︸

=:f1(λ)

}

− τη3γ

(1− γ)2
· 2cdMσ2 ,

(125)

where, for the notation simplicity, we let

b :=
M

√
N

1− γ
, (126a)

c :=
MN

1− γ
=

√
Nb , (126b)

d :=
2γ + ητ

1− γ
. (126c)

Note that among all these new notation we introduce, S, d are dependent of η. To decouple the
dependence, we give their upper bounds as follows

d0 :=
1 + γ

1− γ
≥ d , (127)

S0 := M
√
N

(
2 +

√
2N +

M
√
N

τ

)
≥ S , (128)

where (127) follows from η ≤ (1− γ)/τ , and (128) uses the fact that α ≤ 1 and 1− α ≤ 1.

Let

λ⋆ := max
{3 + σ

4
,
1 + (1− α)γ + α

2

}
. (129)

Since A(ρ) is a nonnegative matrix, by Perron-Frobenius Theorem (see Horn & Johnson (2012),
Theorem 8.3.1), ρ(η) is an eigenvalue of A(ρ). So to verify (46), it suffices to show that f(λ) > 0
for any λ ∈ [λ⋆,∞). To do so, in the following we first show that f(λ⋆) > 0, and then we prove that
f is non-decreasing on [λ⋆,∞).

• Showing f(λ⋆) > 0. We first lower bound f0(λ
⋆). Since λ⋆ ≥ 3+σ

4 , we have

λ⋆ − σ(1 + σbη) ≥ 1− σ

4
, (130)

and from λ⋆ ≥ 1+(1−α)γ+α
2 we deduce

λ⋆ − (1− α)γ − α ≥ (1− γ)(1− α)

2
(131)

28

Under review as a conference paper at ICLR 2024

and
λ⋆ >

1 + α

2
, (132)

which gives

λ⋆ − σα ≥ 1 + α

2
− σα . (133)

Combining (133), (130), (131), we have that

f0(λ
⋆) ≥ 1− σ

8

(
1 + α

2
− σα

)
ητ . (134)

To continue, we upper bound f1(λ
⋆) as follows.

f1(λ
⋆) ≤ Sτη + γcdMη +

2 + γ

1− γ
cMτη2

= η

(
τ

(
S +

2 + γ

1− γ
Mcη

)
+ γcdM

)
. (135)

Plugging (134),(135) into (125) and using (132), we have

f(λ⋆) >
1− α

2

(
f0(λ

⋆)− ησ2

1− γ
f1(λ

⋆)

)
− τη3γ

(1− γ)2
· 2cdMσ2

≥ τη2

2(1− γ)

[
1− σ

8
τ

(
1− σ + (1− α)(σ − 1

2
)

)
− ησ2

1− γ

(
τ

(
S +

2 + γ

1− γ
Mcη

)
+ 5γcdM

)]
=

τη2

2(1− γ)

[
(1− σ)2

8
τ − η

1− γ

(
Sτσ2 +

2 + γ

1− γ
Mcσ2τη + τ2

(
1

2
− σ2

)
· 1− σ

8
+ 5γcdMσ2

)]
≥ τη2

2(1− γ)

[
(1− σ)2

8
τ − η

1− γ

(
S0τσ

2 +
(1− σ)2

16
τ2 + (2 + γ + 5γd0) cMσ2

)]
≥ 0 ,

where the penultimate inequality uses 1
2 − σ ≤ 1−σ

2 , and the last inequality follows from the
definition of ζ (cf. (44)).

• Proving f is non-decreasing on [λ⋆,∞). Note that

η ≤ ζ ≤ (1− γ)(1− σ)2

8S0σ2
,

thus we have

∀λ ≥ λ⋆ : f ′
0(λ)−

ησ2

1− γ
f ′
1(λ) ≥ (λ− σα)(λ− σ(1 + σbη))− η

1− γ
Sσ2 ≥ 0 ,

which indicates that f0 − f1 is non-decreasing on [λ⋆,∞). Therefore, f is non-decreasing on
[λ⋆,∞).

C.3 PROOF OF LEMMA 3

Note that bounding u(t+1)(s, a) is identical to the proof in Appendix C.1 and shall be omitted. The
rest of the proof also follows closely that of Lemma 1, and we only highlight the differences due to
approximation error for simplicity.

Step 2: bound v(t+1)(s, a) =
∥∥T (t+1)(s, a)− q̂

(t+1)
τ (s, a)1N

∥∥
2
. Let q(t)

τ :=
(
q
π
(t)
1

τ,1 , · · · , qπ
(t)
N

τ,N

)⊤
.

Similar to (100) we have∥∥T (t+1)(s, a)− q̂(t+1)
τ (s, a)1N

∥∥
2

≤ σ
∥∥T (t)(s, a)− q̂(t)τ (s, a)1N

∥∥
2
+ σ

∥∥q(t+1)
τ (s, a)− q(t)

τ (s, a)
∥∥
2

≤ σ
∥∥T (t)(s, a)− q̂(t)τ (s, a)1N

∥∥
2
+ σ

∥∥Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
∥∥
2
+ 2σ ∥e∥2 . (136)

29

Under review as a conference paper at ICLR 2024

Step 3: bound
∥∥Q⋆

τ − τ log ξ
(t+1)∥∥

∞. In the context of inexact updates, (101) writes∥∥Q⋆
τ − τ log ξ

(t+1)∥∥
∞ ≤ α

∥∥Q⋆
τ − τ log ξ

(t)∥∥
∞+(1−α)

∥∥Q⋆
τ −Q

(t)

τ

∥∥
∞+(1−α)

∥∥Q(t)

τ − q̂(t)τ

∥∥
∞ .

For the last term, following a similar argument in (102) leads to

∥∥Q(t)

τ − q̂(t)τ

∥∥
∞ =

∥∥∥∥∥ 1

N

N∑
n=1

Q
π(t)
n

τ,n − 1

N

N∑
n=1

Qπ(t)

τ,n

∥∥∥∥∥
∞

+

∥∥∥∥∥ 1

N

N∑
n=1

(
Q

π(t)
n

τ,n − q
π(t)
n

τ,n

)∥∥∥∥∥
∞

≤ M · 1

N

N∑
n=1

∥∥ log ξ(t)n − log ξ
(t)∥∥

∞ +
1

N

N∑
n=1

en

≤ M
∥∥u(t)

∥∥
∞ + ∥e∥∞ .

Combining the above two inequalities, we obtain∥∥Q⋆
τ−τ log ξ

(t+1)∥∥
∞ ≤ α

∥∥Q⋆
τ−τ log ξ

(t)∥∥
∞+(1−α)

∥∥Q⋆
τ−Q

(t)

τ

∥∥
∞+(1−α)

(
M
∥∥u(t)

∥∥
∞ +

∥∥e∥∥∞) .

(137)

Step 4: bound
∥∥∥Q(t+1)

τ (s, a)−Q
(t)
τ (s, a)

∥∥∥
2
. We remark that the bound established in (107) still

holds in the inexact setting, with the same definition for w(t):∥∥∥Q(t+1)
τ (s, a)−Q(t)

τ (s, a)
∥∥∥
2
≤ M

√
N
∥∥∥w(t)

∥∥∥
∞

. (138)

To deal with the approximation error, we rewrite (109) as∥∥∥WT (t)(s, a)− τ log ξ(t)(s, a)− V ⋆
τ (s)1N

∥∥∥
2

=
∥∥∥WT (t)(s, a)− τ log ξ(t)(s, a)−

(
Q⋆

τ (s, a)− τ log π⋆
τ (a|s)

)
1N

∥∥∥
2

≤
∥∥WT (t)(s, a)−Q⋆

τ (s, a)1N

∥∥
2
+ τ
∥∥ log ξ(t)(s, a)− log π⋆

τ (a|s)1N

∥∥
2

≤
∥∥WT (t)(s, a)− q̂τ (s, a)1N

∥∥
2
+
∥∥q̂τ (s, a)1N −Q⋆

τ (s, a)1N

∥∥
2

+ τ
∥∥ log ξ(t)(s, a)− log π(t)(a|s)1N

∥∥
2
+ τ
∥∥ log π(t)(a|s)1N − log π⋆

τ (a|s)1N

∥∥
2

≤ σ
∥∥∥T (t)(s, a)− q̂(t)τ (s, a)1N

∥∥∥
2
+

√
N
∣∣q̂(t)τ (s, a)−Q⋆

τ (s, a)
∣∣

+ τ
∥∥∥log ξ(t)(s, a)− log π(t)(a|s)1

∥∥∥
2
+ τ

√
N
∣∣ log π(t)(a|s)− log π⋆

τ (a|s)
∣∣ , (139)

where the second term can be upper-bounded by∣∣q̂(t)τ (s, a)−Q⋆
τ (s, a)

∣∣ ≤ ∥∥Q̂(t)
τ −Q

(t)

τ

∥∥
∞ +

∥∥Q(t)

τ −Q⋆
τ

∥∥
∞ +

∥∥∥q̂(t)τ (s, a)− Q̂(t)
τ (s, a)

∥∥∥
∞

≤
∥∥Q̂(t)

τ −Q
(t)

τ

∥∥
∞ +

∥∥Q(t)

τ −Q⋆
τ

∥∥
∞ + ∥e∥∞ . (140)

Combining (140), (139) and the established bounds in (108), (111), (113) leads to

w(t)(s, a) ≤
(
2α+ (1− α) ·

√
2N
)∥∥∥u(t)

∥∥∥
∞

+
1− α

τ

∥∥∥v(t)∥∥∥
∞

+
1− α

τ
·
√
N
(∥∥∥Q̂(t)

τ −Q
(t)

τ

∥∥∥
∞

+
∥∥∥Q(t)

τ −Q⋆
τ

∥∥∥
∞

+ ∥e∥∞
)
+

1− α

τ
· 2
√
N
∥∥∥Q⋆

τ − τ log ξ
(t)
∥∥∥
∞

.

Combining the above inequality with (138) and (136) gives

∥∥v(t+1)
∥∥
∞ ≤ σ

(
1 +

ηM
√
N

1− γ
σ

)∥∥v(t)∥∥∞ + σM
√
N

{(
2α+ (1− α) ·

√
2N +

1− α

τ
·
√
NM

)∥∥u(t)
∥∥
∞

+
1− α

τ
·
√
N
(∥∥Q(t)

τ −Q⋆
τ

∥∥
∞ +

∥∥e∥∥∞)+ 1− α

τ
· 2
√
N
∥∥Q⋆

τ − τ log ξ
(t)∥∥

∞

}
+ 2σ

√
N ∥e∥∞ .

(141)

30

Under review as a conference paper at ICLR 2024

Step 5: bound
∥∥∥Q(t+1)

τ −Q⋆
τ

∥∥∥
∞

. It is straightforward to verify that (120) applies to the inexact
updates as well:∥∥∥Q⋆

τ −Q
(t+1)

τ

∥∥∥
∞

≤ γ
∥∥∥Q⋆

τ − τ log ξ
(t+1)

∥∥∥
∞

+ γ

(
−min

s,a

(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
))

.

Plugging the above inequality into (137) and (141) establishes the bounds on Ω
(t+1)
3 and Ω

(t+1)
2 in

(58), respectively.

Step 6: bound −mins,a
(
Q

(t+1)

τ (s, a) − τ log ξ
(t+1)

(s, a)
)
. We obtain the following lemma by

interpreting the approximation error e as part of the consensus error
∥∥∥Q̂(t)

τ −Q
(t)

τ

∥∥∥
∞

in Lemma 9.

Lemma 10 (inexact version of Lemma 9). Suppose 0 < η ≤ (1− γ)/τ . For any state-action pair
(s0, a0) ∈ S ×A, one has

V
(t+1)

τ (s0)− V
(t)

τ (s0) ≥
1

η
E

s∼dπ(t+1)
s0

[
αKL

(
π(t+1)(·|s0) ∥π(t)(·|s0)

)
+ KL

(
π(t)(·|s0) ∥π(t+1)(·|s0)

)]
− 2

1− γ

(∥∥∥Q̂(t)
τ −Q

(t)

τ

∥∥∥
∞

+ ∥e∥∞
)
, (142)

Q
(t+1)

τ (s0, a0)−Q
(t)

τ (s0, a0) ≥ − 2γ

1− γ

(∥∥∥Q̂(t)
τ −Q

(t)

τ

∥∥∥
∞

+ ∥e∥∞
)
. (143)

Using (143), we have

Q
(t+1)

τ (s, a)− τ

(
α log ξ

(t)
(s, a) + (1− α)

Q̂
(t)
τ (s, a)

τ

)

≥ Q
(t)

τ (s, a)− τ

(
α log ξ

(t)
(s, a) + (1− α)

Q̂
(t)
τ (s, a)

τ

)
− 2γ

1− γ

(∥∥∥Q̂(t)
τ −Q

(t)

τ

∥∥∥
∞

+ ∥e∥∞
)

≥ α
(
Q

(t)

τ (s, a)− τ log ξ
(t)
(s, a)

)
− 2γ + ητ

1− γ

∥∥∥Q̂(t)
τ −Q

(t)

τ

∥∥∥
∞

− 2γ

1− γ
∥e∥∞ , (144)

which gives

−min
s,a

(
Q

(t+1)

τ (s, a)− τ log ξ
(t+1)

(s, a)
)

≤ −αmin
s,a

(
Q

(t)

τ (s, a)− τ log ξ
(t)
(s, a)

)
+

2γ + ητ

1− γ
M
∥∥∥u(t)

∥∥∥
∞

+
2γ

1− γ
∥e∥∞ .

(145)

C.4 PROOF OF LEMMA 4

Step 1: bound u(t+1)(s, a) =
∥∥∥log ξ(t+1)(s, a)− log ξ

(t+1)
(s, a)1N

∥∥∥
2
. Following the same strat-

egy in establishing (99), we have∥∥∥log ξ(t+1)(s, a)− log ξ
(t+1)

(s, a)1N

∥∥∥
2

=

∥∥∥∥(W log ξ(t)(s, a)− log ξ
(t)
(s, a)1N

)
+

η

1− γ

(
WT (t)(s, a)− Q̂(t)(s, a)1N

)∥∥∥∥
2

≤ σ
∥∥∥log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥∥
2
+

η

1− γ
σ
∥∥∥T (t)(s, a)− Q̂(t)(s, a)1N

∥∥∥
2
, (146)

or equivalently ∥∥u(t+1)
∥∥
∞ ≤ σ

∥∥u(t)
∥∥
∞ +

η

1− γ
σ
∥∥v(t)∥∥∞ . (147)

Step 2: bound v(t+1)(s, a) =
∥∥T (t+1)(s, a)− Q̂(t+1)(s, a)1N

∥∥
2
. In the same vein of establishing

(100), we have∥∥T (t+1)(s, a)− Q̂(t+1)(s, a)1N

∥∥
2

≤ σ
∥∥T (t)(s, a)− Q̂(t)(s, a)1N

∥∥
2
+ σ

∥∥Q(t+1)(s, a)−Q(t)(s, a)
∥∥
2
, (148)

31

Under review as a conference paper at ICLR 2024

The term
∥∥Q(t+1)(s, a)−Q(t)(s, a)

∥∥
2

can be bounded in a similar way in (107):∥∥Q(t+1)(s, a)−Q(t)(s, a)
∥∥
2
≤ (1 + γ)γ

(1− γ)2

√
N
∥∥w(t)

0

∥∥
∞ , (149)

where the coefficient (1+γ)γ
(1−γ)2 comes from M in Lemma 8 when τ = 0, and w

(t)
0 ∈ R|S||A| is defined

as

∀(s, a) ∈ S ×A : w
(t)
0 (s, a) :=

∥∥∥∥log ξ(t+1)(s, a)− log ξ(t)(s, a)− η

1− γ
V ⋆(s)1N

∥∥∥∥
2

. (150)

It remains to bound
∥∥w(t)

0

∥∥
∞. Towards this end, we rewrite (108) as

w
(t)
0 (s, a)

=
∥∥W (

log ξ(t)(s, a) +
η

1− γ
T (t)(s, a)

)
− log ξ(t)(s, a)− η

1− γ
V ⋆(s)1N

∥∥
2

=

∥∥∥∥(W − I)
(
log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

)
+

η

1− γ

(
WT (t)(s, a)− V ⋆(s)1N

)∥∥∥∥
2

≤ 2
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2
+

η

1− γ

∥∥WT (t)(s, a)− V ⋆(s)1N

∥∥
2

≤ 2
∥∥ log ξ(t)(s, a)− log ξ

(t)
(s, a)1N

∥∥
2
+

η

1− γ

∥∥WT (t)(s, a)− Q̂(t)(s, a)1N

∥∥
2
+

η

1− γ
·
√
N
∣∣Q̂(t)(s, a)− V ⋆(s)

∣∣ .
(151)

Note that it holds for all (s, a) ∈ S ×A:∣∣Q̂(t)(s, a)− V ⋆(s)
∣∣ ≤ 1

1− γ

since Q̂(t)(s, a) and V ⋆(s) are both in [0, 1/(1− γ)]. This along with (151) gives

w
(t)
0 (s, a) ≤ 2

∥∥u(t)
∥∥
∞ +

η

1− γ

∥∥v(t)∥∥∞ +
η
√
N

(1− γ)2
.

Combining the above inequality with (149) and (148), we arrive at∥∥v(t+1)
∥∥
∞ ≤ σ

(
1 +

(1 + γ)γ
√
Nη

(1− γ)3
σ

)∥∥v(t)∥∥∞ +
(1 + γ)γ

(1− γ)2

√
Nσ

{
2
∥∥u(t)

∥∥
∞ +

η

(1− γ)2
·
√
N

}
.

(152)

Step 3: establish the descent equation. The following lemma characterizes the improvement in
ϕ(t)(η) for every iteration of Algorithm 1, with the proof postponed to Appendix D.4.
Lemma 11 (Performance improvement of exact FedNPG). For all starting state distribution ρ ∈
∆(S), we have the iterates of FedNPG satisfy

ϕ(t+1)(η) ≤ ϕ(t)(η) +
2η

(1− γ)2
∥∥Q̂(t) −Q

(t)∥∥
∞ − η

(
V ⋆(ρ)− V

(t)
(ρ)
)
, (153)

where
ϕ(t)(η) := Es∼dπ⋆

ρ

[
KL
(
π⋆(·|s) ∥π(t)(·|s)

)]
− η

1− γ
V

(t)
(dπ

⋆

ρ) , ∀t ≥ 0 . (154)

It remains to control the term
∥∥Q(t) − Q̂(t)

∥∥
∞. Similar to (102), for all t ≥ 0, we have∥∥Q(t) − Q̂(t)

∥∥
∞ =

∥∥∥∥∥ 1

N

N∑
n=1

Q
π(t)
n

n − 1

N

N∑
n=1

Qπ(t)

n

∥∥∥∥∥
∞

(a)

≤ (1 + γ)γ

(1− γ)2
· 1

N

N∑
n=1

∥∥ log ξ(t)n − log ξ
(t)∥∥

∞

(b)

≤ (1 + γ)γ

(1− γ)2
∥∥u(t)

∥∥
∞ , (155)

32

Under review as a conference paper at ICLR 2024

where (a) invokes Lemma 8 with τ = 0 and (b) stems from the definition of u(t). This along with
(153) gives

ϕ(t+1)(η) ≤ ϕ(t)(η) +
2(1 + γ)γ

(1− γ)4
η
∥∥u(t)

∥∥
∞ − η

(
V ⋆(ρ)− V

(t)
(ρ)
)
.

C.5 PROOF OF LEMMA 5

The bound on u(t+1)(s, a) is already established in Step 1 in Appendix C.1 and shall be omitted. As
usual we only highlight the key differences with the proof of Lemma 4 due to approximation error.

Step 1: bound v(t+1)(s, a) =
∥∥T (t+1)(s, a)− q̂(t+1)(s, a)1N

∥∥
2
. Let q(t) :=

(
q
π
(t)
1

1 , · · · , qπ
(t)
N

N

)⊤
.

From (83), we have∥∥∥T (t+1)(s, a)− q̂(t+1)(s, a)1N

∥∥∥
2

=
∥∥∥W (

T (t)(s, a) + q(t+1)(s, a)− q(t)(s, a)
)
− q̂(t+1)(s, a)1N

∥∥∥
2

=
∥∥∥(WT (t)(s, a)− q̂(t)(s, a)1N

)
+W

(
q(t+1)(s, a)− q(t)(s, a)

)
+
(
q̂(t)(s, a)− q̂(t+1)(s, a)

)
1N

∥∥∥
2

≤ σ
∥∥T (t)(s, a)− q̂(t)(s, a)1N

∥∥
2
+ σ

∥∥∥(q(t+1)(s, a)− q(t)(s, a)
)
+
(
q̂(t)(s, a)− q̂(t+1)(s, a)

)
1N

∥∥∥
2

≤ σ
∥∥T (t)(s, a)− q̂(t)(s, a)1N

∥∥
2
+ σ

∥∥q(t+1)(s, a)− q(t)(s, a)
∥∥
2

≤ σ
∥∥T (t)(s, a)− q̂(t)(s, a)1N

∥∥
2
+ σ

∥∥Q(t+1)(s, a)−Q(t)(s, a)
∥∥
2
+ 2σ

√
N ∥e∥∞ . (156)

Note that (149) still holds for inexact FedNPG:∥∥∥Q(t+1)(s, a)−Q(t)(s, a)
∥∥∥
2
≤ (1 + γ)γ

(1− γ)2

√
N
∥∥∥w(t)

0

∥∥∥
∞

, (157)

where w
(t)
0 is defined in (150). We rewrite (151), the bound on w

(t)
0 (s, a), as

w
(t)
0 (s, a) ≤ 2

∥∥ log ξ(t)(s, a)− log ξ
(t)
(s, a)1N

∥∥
2

+
η

1− γ

∥∥T (t)(s, a)− q̂(t)(s, a)1N

∥∥
2
+

ησ

1− γ
·
√
N
∣∣q̂(t)(s, a)− V ⋆(s)

∣∣ . (158)

With the following bound

∀(s, a) ∈ S ×A :
∣∣q̂(t)(s, a)− V ⋆(s)

∣∣ ≤ ∥∥q̂(t) −Q
(t)∥∥

∞ +
1

1− γ

in mind, we write (151) as

w
(t)
0 (s, a) ≤ 2

∥∥u(t)
∥∥
∞ +

ησ

1− γ

∥∥v(t)∥∥∞ +
η

1− γ
·
√
N

(∥∥q̂(t) − q(t)
∥∥
∞ +

1

1− γ

)
.

Putting all pieces together, we obtain

∥∥v(t+1)
∥∥
∞ ≤ σ

(
1 +

(1 + γ)γ
√
Nη

(1− γ)3
σ

)∥∥v(t)∥∥∞
+

(1 + γ)γ

(1− γ)2

√
Nσ

{
2
∥∥u(t)

∥∥
∞ +

η
√
N

(1− γ)2
+

η
√
N

1− γ
∥e∥∞

}
+ 2σ

√
N ∥e∥∞ .

(159)

Step 2: establish the descent equation. Note that Lemma 11 directly applies by replacing Q̂(t) with
q̂(t):

ϕ(t+1)(η) ≤ ϕ(t)(η) +
2η

(1− γ)2

∥∥∥q̂(t) −Q
(t)
∥∥∥
∞

− η
(
V ⋆(ρ)− V

(t)
(ρ)
)
.

33

Under review as a conference paper at ICLR 2024

To bound the middle term, for all t ≥ 0, we have∥∥∥Q(t) − q̂(t)
∥∥∥
∞

=

∥∥∥∥∥ 1

N

N∑
n=1

Q
π(t)
n

n − 1

N

N∑
n=1

Qπ(t)

n

∥∥∥∥∥
∞

+
1

N

∥∥∥∥∥
N∑

n=0

(
q
π(t)
n

n −Q
π(t)
n

n

)∥∥∥∥∥
∞

≤ (1 + γ)γ

(1− γ)2
· 1

N

N∑
n=1

∥∥∥log ξ(t)n − log ξ
(t)
∥∥∥
∞

+
1

N

N∑
n=1

en

≤ (1 + γ)γ

(1− γ)2

∥∥∥u(t)
∥∥∥
∞

+ ∥e∥∞ . (160)

Hence, (89) is established by combining the above two inequalities.

D PROOF OF AUXILIARY LEMMAS

D.1 PROOF OF LEMMA 6

The first claim is easily verified as log ξ(t)n (s, ·) always deviate from log π
(t)
n (·|s) by a global constant

shift, as long as it holds for t = 0:

log ξ(t+1)
n (s, ·) =

N∑
n′=1

[W]n,n′

(
α log ξ

(t)
n′ (s, ·) + (1− α)T (t)

n (s, ·)/τ
)

= α

N∑
n′=1

[W]n,n′

(
α
(
log π

(t)
n′ (s, ·) + c

(t)
n′ (s)1|A|

)
+ (1− α)T (t)

n (s, ·)/τ
)

= α

N∑
n′=1

[W]n,n′

(
α log π

(t)
n′ (s, ·) + (1− α)T (t)

n (s, ·)/τ
)
− log z(t)n (s)1|A| + c(t+1)

n (s)1|A|

= log π(t+1)
n (·|s) + c(t+1)

n (s)1|A|,

where z
(t)
n is the normalization term (cf. line 5, Algorithm 2) and {c(t)n (s)} are some constants. To

prove the second claim, ∀t ≥ 0,∀(s, a) ∈ S ×A, let

T
(t)
(s, a) :=

1

N
1⊤T (t)(s, a) . (161)

Taking inner product with 1
N 1 for both sides of (UT) and using the double stochasticity property of

W , we get
T

(t+1)
(s, a) = T

(t)
(s, a) + Q̂(t+1)

τ (s, a)− Q̂(t)
τ (s, a) . (162)

By the choice of T (0) (line 2 of Algorithm 2), we have T
(0)

= Q̂
(0)
τ and hence by induction

∀t ≥ 0 : T
(t)

= Q̂(t)
τ . (163)

This implies

log ξ
(t+1)

(s, a)− α log ξ
(t)
(s, a) = (1− α)Q̂(t)

τ (s, a)/τ

= (1− α)T
(t)
(s, a)/τ

=
1

N
1⊤ log ξ(t+1)(s, a)− α

1

N
1⊤ log ξ(t)(s, a).

Therefore, to prove (94), it suffices to verify the claim for t = 0:

1

N
1⊤ log ξ(0)(s, a) = log ∥exp (Q⋆

τ (s, ·)/τ)∥1 +
1

N
1⊤ logπ(0)(a|s)− log

∥∥∥∥∥exp
(

1

N

N∑
n=1

log π(0)
n (·|s)

)∥∥∥∥∥
1

= log ∥exp (Q⋆
τ (s, ·)/τ)∥1 + log π(0)(a|s) = log ξ

(0)
(s, a) .

By taking logarithm over both sides of the definition of π(t+1) (cf. (Uπ)), we get
log π(t+1)(a|s) = α log π(t)(a|s) + (1− α)Q̂(t)(s, a)/τ − z(t)(s) (164)

for some constant z(t)(s), which deviate from the update rule of log ξ
(t+1)

by a global constant shift
and hence verifies (95).

34

Under review as a conference paper at ICLR 2024

D.2 PROOF OF LEMMA 8

For notational simplicity, we let Qθ′

τ and Qθ
τ denote Q

πθ′
τ and Qπθ

τ , respectively. From (7a) we
immediately know that to bound

∥∥∥Qθ′

τ −Qθ
τ

∥∥∥
∞

, it suffices to control
∣∣V θ

τ (s) − V θ′

τ (s)
∣∣ for each

s ∈ S. By (4) we have∣∣V θ
τ (s)− V θ′

τ (s)
∣∣ ≤ ∣∣V θ(s)− V θ′

(s)
∣∣+ τ

∣∣H(s, πθ)−H(s, πθ′)
∣∣ , (165)

so in the following we bound both terms in the RHS of (165).

Step 1: bounding
∣∣H(s, πθ)−H(s, πθ′)

∣∣. We first bound
∣∣H(s, πθ)−H(s, πθ′)

∣∣ using the idea in
the proof of Lemma 14 in Mei et al. (2020). We let

θt = θ + t(θ′ − θ) , ∀t ∈ R , (166)

and let ht ∈ R|S| be

∀s ∈ S : ht(s) := −
∑
a∈A

πθt(a|s) log πθt(a|s) . (167)

Note that ∥ht∥∞ ≤ log |A|. We also denote Ht : S → R|A|×|A| by:

∀s ∈ S : Ht(s) :=
∂πθ(·|s)

∂θ

∣∣∣∣
θ=θt

= diag{πθt(·|s)} − πθt(·|s)πθt(·|s)⊤ , (168)

then we have

∀s ∈ S :

∣∣∣∣dht(s)

dt

∣∣∣∣ = ∣∣∣∣〈 ∂ht(s)

∂θt(·|s)
, θ′(s, ·)− θ(s, ·)

〉∣∣∣∣
= |⟨Ht(s) log πθt(·|s), θ′(s, ·)− θ(s, ·)⟩|
≤ ∥Ht(s) log πθt(·|s)∥1 ∥θ

′(s, ·)− θ(s, ·)∥∞ , (169)

where ∂ht(s)
∂θt(·|s) stands for ∂ht(s)

∂θ(·|s)
∣∣
θ=θt

. The first term in (169) is further upper bounded as

∥Ht(s) log πθt(·|s)∥1 =
∑
a∈A

πθt(a|s)
∣∣log πθt(a|s)− πθt(·|s)⊤ log πθt(·|s)

∣∣
≤
∑
a∈A

πθt(a|s)
(
|log πθt(a|s)|+

∣∣πθt(·|s)⊤ log πθt(·|s)
∣∣)

= −2
∑
a∈A

πθt(a, s) log πθt(a|s) ≤ 2 log |A| .

By Lagrange mean value theorem, there exists t ∈ (0, 1) such that

|h1(s)− h0(s)| =
∣∣∣∣dht(s)

dt

∣∣∣∣ ≤ 2 log |A| ∥θ′(s, ·)− θ(s, ·)∥∞ ,

where the inequality follows from (169) and the above inequality. Combining (5) with the above
inequality, we arrive at ∣∣H(s, πθ)−H(s, πθ′)

∣∣ ≤ 2 log |A|
1− γ

∥θ′ − θ∥∞ . (170)

Step 2: bounding
∣∣V θ(s)− V θ′

(s)
∣∣. Similar to the previous proof, we bound

∣∣V θ(s)− V θ′
(s)
∣∣ by

bounding
∣∣∣dV θt

dt (s)
∣∣∣. By Bellman’s consistency equation, the value function of πθt is given by

V θt(s) =
∑
a∈A

πθt(a|s)r(s, a) + γ
∑
a

πθα(a|s)
∑
s′∈S

P(s′|s, a)V θt(s′) ,

which can be represented in a matrix-vector form as

V θt(s) = e⊤s Mtrt , (171)

35

Under review as a conference paper at ICLR 2024

where es ∈ R|S| is a one-hot vector whose s-th entry is 1,

Mt := (I − γPt)
−1 , (172)

with Pt ∈ R|S|×|S| denoting the induced state transition matrix by πθt

Pt(s, s
′) =

∑
a∈A

πθt(a|s)P(s′|s, a) , (173)

and rt ∈ R|S| is given by

∀s ∈ S : rt(s) :=
∑
a∈A

πθt(a|s)r(s, a) . (174)

Taking derivative w.r.t. t in (171), we obtain (?)

dV θt(s)

dt
= γ · e⊤s Mt

dPt

dt
Mtrt + e⊤s Mt

drt
dt

. (175)

We now calculate each term respectively.

• For the first term, it follows that∣∣∣∣γ · e⊤s Mt
dPt

dt
Mtrt

∣∣∣∣ ≤ γ

∥∥∥∥Mt
dPt

dt
Mtrt

∥∥∥∥
∞

≤ γ

1− γ

∥∥∥∥dPt

dt
Mtrt

∥∥∥∥
∞

≤ 2γ

1− γ
∥Mtrt∥∞ ∥θ′ − θ∥∞ (176)

≤ 2γ

(1− γ)2
∥rt∥∞ ∥θ′ − θ∥∞

≤ 2γ

(1− γ)2
∥θ′ − θ∥∞ . (177)

where the second and fourth lines use the fact ∥Mt∥1 ≤ 1/(1− γ) (Li et al., 2020b, Lemma 10),
and the last line follow from

∥rt∥∞ = max
s∈S

∣∣∣∣∣∑
a∈A

πθt(a|s)r(s, a)

∣∣∣∣∣ ≤ 1.

We defer the proof of (176) to the end of proof.
• For the second term, it follows that∣∣∣∣e⊤s Mt

drt
dt

∣∣∣∣ ≤ 1

1− γ

∥∥∥∥drtdt

∥∥∥∥
∞

≤ 1

1− γ
∥θ′ − θ∥∞ . (178)

where the first inequality follows again from ∥Mt∥1 ≤ 1/(1 − γ), and the second inequality
follows from∥∥∥∥drtdt

∥∥∥∥
∞

= max
s∈S

∣∣∣∣drt(s)dt

∣∣∣∣ = max
s∈S

∣∣∣∣〈∂πθt(·|s)⊤r(s, ·)
∂θt(s, ·)

, θ′(s, ·)− θ(s, ·)
〉∣∣∣∣

≤ max
s∈S

∥∥∥∥∂πθt(·|s)⊤

∂θt(s, ·)
r(s, ·)

∥∥∥∥
1

∥θ′(s, ·)− θ(s, ·)∥∞

= max
s∈S

(∑
a∈A

πθt(a|s)
∣∣r(s, a)− πθt(·|s)⊤r(s, ·)

∣∣) ∥θ′(s, ·)− θ(s, ·)∥∞

≤ max
s∈S

max
a∈A

∣∣r(s, a)− πθt(·|s)⊤r(s, ·)
∣∣︸ ︷︷ ︸

≤1 since r(s,a)∈[0,1]

∥θ′(s, ·)− θ(s, ·)∥∞

≤ max
s∈S

∥θ′(s, ·)− θ(s, ·)∥∞ = ∥θ′ − θ∥∞ .

36

Under review as a conference paper at ICLR 2024

Plugging the above two inequalities into (175) and using Lagrange mean value theorem, we have∣∣V θ(s)− V θ′
(s)
∣∣ ≤ 1 + γ

(1− γ)2
∥θ′ − θ∥∞ . (179)

Step 3: sum up. Combining (179), (170) and (165), we have

∀s ∈ S :
∣∣V θ

τ (s)− V θ′

τ (s)
∣∣ ≤ 1 + γ + 2τ(1− γ) log |A|

(1− γ)2
∥log π − log π′∥∞ . (180)

Combining (180) and (7a), (103) immediately follows.

Proof of (176). For any vector x ∈ R|S|, we have[
dPt

dt
x

]
s

=
∑
s′∈S

∑
a∈A

dπθt(a|s)
dt

P(s′|s, a)x(s′) ,

from which we can bound the l∞ norm as∥∥∥∥dPt

dt
x

∥∥∥∥
∞

≤ max
s

∑
a∈A

∑
s′∈S

P(s′|s, a)
∣∣∣∣dπθt(a|s)

dt

∣∣∣∣ ∥x∥∞
= max

s

∑
a∈A

∣∣∣∣dπθt(a|s)
dt

∣∣∣∣ ∥x∥∞
≤ 2 ∥θ′ − θ∥∞ ∥x∥∞

as desired, where the last line follows from the following fact:∑
a∈A

∣∣∣∣dπθt(a|s)
dt

∣∣∣∣ = ∑
a∈A

∣∣∣∣〈∂πθt(a|s)
∂θt

, θ′ − θ

〉∣∣∣∣
=
∑
a∈A

∣∣∣∣〈∂πθt(a|s)
∂θt(s, ·)

, θ′(s, ·)− θ(s, ·)
〉∣∣∣∣

=
∑
a∈A

πθt(a|s)
∣∣(θ′(s, a)− θ(s, a))− πθt(·|s)⊤ (θ′(s, ·)− θ(s, ·))

∣∣
≤ max

a
|θ′(s, a)− θ(s, a)|+

∣∣πθt(·|s)⊤ (θ′(s, ·)− θ(s, ·))
∣∣

≤ 2 ∥θ′ − θ∥∞ .

D.3 PROOF OF LEMMA 9

To simplify the notation, we denote

δ(t) := Q̂(t)
τ −Q

(t)

τ . (181)

We first rearrange the terms of (164) and obtain

−τ log π(t)(a|s)+
(
Q

(t)

τ (s, a) + δ(t)(s, a)
)
=

1− γ

η

(
log π(t+1)(a|s)− log π(t)(a|s)

)
+
1− γ

η
z(t)(s) .

(182)
This in turn allows us to express V

(t)

τ (s0) for any s0 ∈ S as follows

V
(t)

τ (s0) = E
a0∼π(t)(·|s0)

[
−τ log π(t)(a0|s0) +Q

(t)

τ (s0, a0)
]

= E
a0∼π(t)(·|s0)

[
1− γ

η
z(t)(s0)

]
+ E

a0∼π(t)(·|s0)

[
1− γ

η

(
log π(t+1)(a0|s0)− log π(t)(a0|s0)

)
− δ(t)(s0, a0)

]
=

1− γ

η
z(t)(s0)−

1− γ

η
KL
(
π(t)(·|s0) ∥π(t+1)(·|s0)

)
− E

a0∼π(t)(·|s0)

[
δ(t)(s0, a0)

]
= E

a0∼π(t+1)(·|s0)

[
1− γ

η
z(t)(s0)

]
− 1− γ

η
KL
(
π(t)(·|s0) ∥π(t+1)(·|s0)

)
− E

a0∼π(t)(·|s0)

[
δ(t)(s0, a0)

]
,

(183)

37

Under review as a conference paper at ICLR 2024

where the first identity makes use of (7b), the second line follows from (182). Invoking (7b) again to
rewrite the z(s0) appearing in the first term of (183), we reach

V
(t)

τ (s0)

= E
a0∼π(t+1)(·|s0)

[
−τ log π(t+1)(a0|s0) +Q

(t)

τ (s0, a0) +

(
τ − 1− γ

η

)(
log π(t+1)(a0|s0)− log π(t)(a|s)

)]
− 1− γ

η
KL
(
π(t)(·|s0) ∥π(t+1)(·|s0)

)
− E

a0∼π(t)(·|s0)

[
δ(t)(s0, a0)

]
+ E

a0∼π(t+1)(·|s0)

[
δ(t)(s0, a0)

]
= E

a0∼π(t+1)(·|s0),

s1∼P (·|s0,a0)

[
−τ log π(t+1)(a0|s0) + r(s0, a0) + γV

(t)

τ (s0)
]

−
(
1− γ

η
− τ

)
KL
(
π(t+1)(·|s0) ∥π(t)(·|s0)

)
− 1− γ

η
KL
(
π(t)(·|s0) ∥π(t+1)(·|s0)

)
− E

a0∼π(t)(·|s0)

[
δ(t)(s0, a0)

]
+ E

a0∼π(t+1)(·|s0)

[
δ(t)(s0, a0)

]
. (184)

Note that for any (s0, a0) ∈ S ×A, we have

− E
a0∼π(t)(·|s0)

[
δ(t)(s0, a0)

]
+ E

a0∼π(t+1)(·|s0)

[
δ(t)(s0, a0)

]
=
∑
a0∈A

(
π(t+1)(a0|s0)− π(t)(a0|s0)

)
δ(t)(s0, a0)

≤
∥∥π(t+1)(·|s0)− π(t)(·|s0)

∥∥
1

∥∥δ(t)∥∥∞ ≤ 2
∥∥δ(t)∥∥∞ . (185)

To finish up, applying (184) recursively to expand V
(t)

τ (si), i ≥ 1 and making use of (185), we arrive
at

V
(t)

τ (s0)

≤
∞∑
i=1

γi · 2
∥∥∥δ(t)∥∥∥

∞
+ E

ai∼π(t+1)(·|si),
si+1∼P (·|si,ai),∀i≥0

[∞∑
i=1

γi
{
r(si, ai)− τ log π(t+1)(ai|si)

}

−
∞∑
i=1

γi

{(
1− γ

η
− τ

)
KL
(
π(t+1)(·|si) ∥π(t)(·|si)

)
+

1− γ

η
KL
(
π(t)(·|si) ∥π(t+1)(·|si)

)}]

=
2

1− γ

∥∥∥δ(t)∥∥∥
∞

+ V
(t+1)

τ (s0)

− E
s∼dπ(t+1)

s0

[(
1

η
− τ

1− γ

)
KL
(
π(t+1)(·|si) ∥π(t)(·|si)

)
+

1

η
KL
(
π(t)(·|si) ∥π(t+1)(·|si)

)]
,

(186)

where the third line follows since V
(t+1)

τ can be viewed as the value function of π(t+1) with adjusted
rewards r(t+1)(s, a) := r(s, a)− τ log π(t+1)(s|a). And (121) follows immediately from the above
inequality (186). By (7a) we can easily see that (122) is a consequence of (121).

D.4 PROOF OF LEMMA 11

We first introduce the famous performance difference lemma which will be used in our proof.

Lemma 12 (Performance difference lemma). For all policies π, π′ and state s0, we have

V π(s0)− V π′
(s0) =

1

1− γ
Es∼dπ

s0
Ea∼π(·|s)

[
Aπ′

(s, a)
]
. (187)

The proof of Lemma 12 can be found in, for example, Appendix A of Agarwal et al. (2021).

38

Under review as a conference paper at ICLR 2024

For all t ≥ 0, we define the advantage function A
(t)

as:

∀(s, a) ∈ S ×A : A
(t)
(s, a) := Q

(t)
(s, a)− V

(t)
(s) . (188)

Then for Alg. 1, the update rule of π (Eq. (164)) can be written as

log π(t+1)(a|s) = log π(t)(a|s) + η

1− γ

(
A

(t)
(s, a) + δ(t)(s, a)

)
− log ẑ(t)(s) , (189)

where δ(t) is defined in (181) and

log ẑ(t)(s) = log
∑
a′∈A

π(t)(a′|s) exp
{

η

1− γ

(
A

(t)
(s, a′) + δ(t)(s, a′)

)}
≥
∑
a′∈A

π(t)(a′|s) log exp
{

η

1− γ

(
A

(t)
(s, a′) + δ(t)(s, a′)

)}
=

η

1− γ

∑
a′∈A

π(t)(a′|s)
(
A

(t)
(s, a′) + δ(t)(s, a′)

)
=

η

1− γ

∑
a′∈A

π(t)(a′|s)δ(t)(s, a′) ≥ − η

1− γ

∥∥∥δ(t)∥∥∥
∞

, (190)

where the first inequality follows by Jensen’s inequality on the concave function log x and the last
equality uses

∑
a′∈A π(t)(a′|s)A(t)

(s, a′) = 0.

For all starting state distribution µ, we use d(t+1) as shorthand for dπ
(t+1)

µ , the performance difference
lemma (Lemma 12) implies:

V
(t+1)

(µ)− V
(t)
(µ)

=
1

1− γ
Es∼d(t+1)

∑
a∈A

π(t+1)(a|s)
(
A

(t)
(s, a) + δ(t)(s, a)

)
− 1

1− γ
Es∼d(t+1)Ea∼π(t+1)(·|s)

[
δ(t)(s, a)

]
=

1

η
Es∼d(t+1)

∑
a∈A

π(t+1)(a|s) log π(t+1)(a|s)ẑ(t)(s)
π(t)(a|s)

− 1

1− γ
Es∼d(t+1)Ea∼π(t+1)(·|s)

[
δ(t)(s, a)

]
=

1

η
Es∼d(t+1)KL

(
π(t+1)(·|s) ∥π(t)(·|s)

)
+

1

η
Es∼d(t+1) log ẑ(t)(s)−

1

1− γ
Es∼d(t+1)Ea∼π(t+1)(·|s)

[
δ(t)(s, a)

]
≥ 1

η
Es∼d(t+1)

(
log ẑ(t)(s) +

η

1− γ

∥∥δ(t)∥∥∞)− 2

1− γ

∥∥δ(t)∥∥∞ ,

from which we can see that

V
(t+1)

(µ)− V
(t)
(µ) ≥ − 2

1− γ

∥∥δ(t)∥∥∞ , (191)

where we use (190), and that

V
(t+1)

(µ)− V
(t)
(µ) ≥ 1− γ

η
Es∼µ

(
log ẑ(t)(s) +

η

1− γ

∥∥δ(t)∥∥∞)− 2

1− γ

∥∥δ(t)∥∥∞ , (192)

which follows from d(t+1) = dπ
(t+1)

µ ≥ (1 − γ)µ and the fact that log ẑ(t)(s) + η
1−γ

∥∥δ(t)∥∥∞ ≥ 0

(by (190)).

39

Under review as a conference paper at ICLR 2024

For any fixed ρ, we use d⋆ as shorthand for dπ
⋆

ρ . By the performance difference lemma (Lemma 12),

V ⋆(ρ)− V
(t)
(ρ)

=
1

1− γ
Es∼d⋆

∑
a∈A

π⋆(a|s)
(
A

(t)
(s, a) + δ(t)(s, a)

)
− 1

1− γ
Es∼d⋆Ea∼π⋆(·|s)

[
δ(t)(s, a)

]
=

1

η
Es∼d⋆

∑
a∈A

π⋆(a|s) log π(t+1)(a|s)ẑ(t)(s)
π(t)(a|s)

− 1

1− γ
Es∼d⋆Ea∼π⋆(·|s)

[
δ(t)(s, a)

]
=

1

η
Es∼d⋆

(
KL
(
π⋆(·|s) ∥π(t)(·|s)

)
− KL

(
π⋆(·|s) ∥π(t+1)(·|s)

)
+ log ẑ(t)(s)

)
− 1

1− γ
Es∼d⋆Ea∼π⋆(·|s)

[
δ(t)(s, a)

]
≤ 1

η
Es∼d⋆

(
KL
(
π⋆(·|s) ∥π(t)(·|s)

)
− KL

(
π⋆(·|s) ∥π(t+1)(·|s)

)
+

(
log ẑ(t)(s) +

η

1− γ

∥∥δ(t)∥∥∞)) ,

(193)

where we use (189) in the second equality.

By applying (192) with µ = d⋆ as the initial state distribution, we have

1

η
Es∼µ

(
log ẑ(t)(s) +

η

1− γ

∥∥δ(t)∥∥∞) ≤ 1

1− γ

(
V

(t+1)
(d⋆)− V

(t)
(d⋆)

)
+

2

(1− γ)2
∥∥δ(t)∥∥∞ .

Plugging the above equation into (193), we obtain

V ⋆(ρ)− V
(t)
(ρ) ≤ 1

η
Es∼d⋆

(
KL
(
π⋆(·|s) ∥π(t)(·|s)

)
− KL

(
π⋆(·|s) ∥π(t+1)(·|s)

))
+

1

1− γ

(
V

(t+1)
(d⋆)− V

(t)
(d⋆)

)
+

2

(1− γ)2
∥∥δ(t)∥∥∞ ,

which gives Lemma 11.

40

Under review as a conference paper at ICLR 2024

E EXPERIMENTS

We study the empirical performance of FedNPG (Algorithm 1) and entropy-regularized FedNPG
(Algorithm 2) on a K ×K GridWorld problem. To be specific, the collective goal of N agents is to
learn a global optimal policy to follow a predetermined path which starts at the top left corner and
ends at the bottom right corner. However, each agent only has access to partial information about the
whole map: in Figure 1 (where we take N = 3 and K = 9 as an example), agent n explores on map
n, n ∈ [N]. After taking an action, the agent gets reward 1 only when it is at the shaded positions,
otherwise it gets reward 0. We stipulate the action space of all agents to be A = {right, down}, i.e.
movement is allowed only in two directions right or down. If an agent takes an action that will lead
it out of the boarder of the map, we stipulate the agent’s state doesn’t change and receive reward
0. Each agent starts at the top left corner. To learn a shared policy to follow the path, we aim to
maximize the average value function of all agents.

Figure 1: Gridworld experiment. N agents (N = 3 in this illustration) aim to learn a shared policy to
follow a predetermined path, which is the red line in the complete map. Each agent only has access
to partial information about the path and gets reward 1 only at the shaded positions and 0 at other
positions. Each agent starts at the top left corner.

In the following, we provide empirical results of our algorithms. In all the experiments, we fix the
discounted factor γ = 0.99. We validate the effectiveness of vanilla FedNPG and entropy-regularized
FedNPG across different map size K, where we set τ = 0, 0.005, 0.05, η = 0.1, and N = 10. We
use a standard ring graph, where agent n receives information from agent n+1 for n ∈ [N − 1], and
agent N receives information from agent 1, with all the weights on each edge of the communication
graph set to be 0.5. The corresponding mixing matrix of the standard ring graph is as follows:

W =

0.5 0.5 0 0 · · · 0 0
0 0.5 0.5 0 · · · 0 0
0 0 0.5 0.5 · · · 0 0
...

...
...

...
...

...
0 0 0 0 · · · 0.5 0.5
0.5 0 0 0 · · · 0 0.5

 . (194)

Here, W in (194) satisfies the double stochasticity assumption but is not symmetric, hence doesn’t
strictly adhere to Assumption 1

41

Under review as a conference paper at ICLR 2024

2 4 6 8 10 12 14
iteration number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(V
*

V
)/V

*

K = 5
K = 10
K = 20
K = 30
K = 50
K = 70

(a) τ = 0

2 4 6 8 10 12 14
iteration number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

(V
*

V
)/V

*

K = 5
K = 10
K = 20
K = 30
K = 50
K = 70

(b) τ = 0.005

Figure 2: Changing map size K. We let τ = 0, 0.005 and change K for each τ . We plot V ⋆
τ − V

(t)

τ
with respect to the number of iterations t. Both vanilla and entropy-regularized NPG converges to
the optimal value function in a few iterations, and the convergence speed is almost the same across
different K.

Figure 2 plots V ⋆
τ − V

(t)

τ with respect to the number of iterations t for τ = 0 (vanilla) and τ = 0.005
(regularized). We can see that both vanilla and entropy-regularized FedNPG converge to the optimal
value function in a few iterations, and the convergence speed is almost the same across different K,
i.e. the impact of K on the convergence speed is minimal.

Figure 3 shows the performance of our algorithm when the number of agents N varies. We set
K = 10, 20, 30, τ = 0.005, and the communication graph to be the standard ring graph. We can
see that the convergence speed decreases as N increases. Same as before, the convergence speed is
insensitive to the change of K.

In Figure 4, we illustrate the impact of the network topology to our algorithms. To be specific, we
change the number of neighbors of each agent (i.e., the number of non-zero entries in each row of
W), and (i) randomly generalize the weights of the graph such that each row of W sum up to 1,
i.e.,W1 = 1, see Figure 4(a); (ii) set the non-zero entries in each row of W all to be 1

number of neighbors ,
see Figure 4(b). We fix η = 0.1, K = 10, τ = 0.005. We plot the curves of value functions changing
with respect to the number of iterations. The green dashed line represents the optimal value. For
both 4(a) and 4(b), the convergence speed increase as number of neighbors of each agent increases.
FedNPG performs better when using equal weights.

42

Under review as a conference paper at ICLR 2024

0 5 10 15 20 25
iteration number

9

10

11

12

13

14

15

16

va
lu

e
fu

nc
tio

n

10

20

30

40

50

N

(a) K = 10

0 5 10 15 20 25
iteration number

15.0

17.5

20.0

22.5

25.0

27.5

30.0

32.5

va
lu

e
fu

nc
tio

n

10

20

30

40

50

N

(b) K = 20

0 5 10 15 20 25
iteration number

20

25

30

35

40

45

va
lu

e
fu

nc
tio

n

10

20

30

40

50

N

(c) K = 30

Figure 3: Changing number of agents N . we let K = 10, 20, 30 and change N for each K. We plot
the curves of value functions changing with the iteration number. The green dashed line represents
the optimal value. We can see that the convergence speed decreases as N increases. Same as before,
the convergence speed is insensitive to the change of K.

0 10 20 30 40 50 60
iteration number

6

8

10

12

14

16

va
lu

e
fu

nc
tio

n

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

#n
ei

gh
bo

rs

(a) Random weights

0 10 20 30 40 50 60
iteration number

6

8

10

12

14

16

va
lu

e
fu

nc
tio

n

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

#n
ei

gh
bo

rs

(b) Equal weights

Figure 4: Changing communication network topology. We change the number of neighbors of each
agent. In Figure 4(a), we randomly generalize the weights of the graph such that each row of W sum
up to 1; (ii) In Figure 4(b), we set the non-zero entries in each row of W all to be 1

number of neighbors .
We plot the curves of value functions changing with the iteration number. The green dashed line
represents the optimal value. For both 4(a) and 4(b), the convergence speed increase as number of
neighbors increases. FedNPG performs better when using equal weights.

43

	Introduction
	Our contributions
	Related work

	Model and backgrounds
	Markov decision processes
	Entropy-regularized RL
	Natural policy gradient methods

	Federated NPG methods for multi-task RL
	Federated multi-task RL
	Proposed federated NPG algorithms

	Theoretical guarantees
	Global convergence of FedNPG
	Global convergence of FedNPG with entropy regularization

	Conclusions
	Appendix
	 Appendix
	Federated NPG (FedNPG) with entropy regularization
	Convergence Analysis
	Analysis of entropy-regularized FedNPG with exact policy evaluation
	Analysis of entropy-regularized FedNPG with inexact policy evaluation
	Analysis of FedNPG with exact policy evaluation
	Analysis of FedNPG with inexact policy evaluation

	Proof of key lemmas
	Proof of Lemma 1
	Proof of Lemma 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5

	Proof of auxiliary lemmas
	Proof of Lemma 6
	Proof of Lemma 8
	Proof of Lemma 9
	Proof of Lemma 11

	Experiments

