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Abstract

Image augmentations applied during training are crucial for the generalization
performance of image classifiers. Therefore, a large body of research has focused
on finding the optimal augmentation policy for a given task. Yet, RandAugment
[2]], a simple random augmentation policy, has recently been shown to outperform
existing sophisticated policies. Only Adversarial AutoAugment (AdvAA) [11],
an approach based on the idea of adversarial training, has shown to be better
than RandAugment. In this paper, we show that random augmentations are still
competitive compared to an optimal adversarial approach, as well as to simple
curricula, and conjecture that the success of AdvAA is due to the stochasticity of
the policy controller network, which introduces a mild form of curriculum.

1 Introduction

The success of a deep vision model can greatly depend on the data augmentations that were used
during training. For example, when training a WideResNet-28-10 on CIFAR10 [8], we observed a test
set accuracy increment of 6.8% when using augmentations. For natural images, these augmentations
can be categorized as geometric (e.g, horizontal flips, translations), color (e.g., histogram equalization),
and distortion (e.g., random cropping, or random greypainting of parts of the images, commonly
referred to as Cutout [3]]).

Finding the right augmentation policy, which determines the type and magnitude of the augmentation
to use at a given training point, has been the subject of a large amount of research. Novel approaches
range from using reinforcement learning [1]], Bayesian optimization [9]], or evolutionary algorithms
[S] to only name a few. While these methods managed to surpass the performance of existing hand-
crafted augmentation baselines, they were subsequently outperformed by RandAugment [2], a simple
random augmentation policy. The only exception is Adversarial AutoAugment [11] (AdvAA), which
uses an adversarial approach to guide the search for the right augmentation policy and significantly
outperforms RandAugment. Yet, it is unclear to which extent the polices selected by AdvAA are
adversarial; hence, the question remains: do adversarial augmentations truly help?

In this work, we shed more light on this open question and show that exactly solving the adversarial
objective in AdvAA is detrimental to generalization. We also show that curricula that increase the
adversarial degree of the augmentation is only as effective, if not less, than a random policy. The
comparison between the policies selected by AdvAA and those selected by an exhaustive search
suggests that the success of AdvAA might lie in the implicit randomness of the solution to the
optimization of the adversarial objective, as we further explain in the Section[5] We conclude our
work with a glimpse of hope suggesting a new direction that has interesting preliminary results and
could be a founding principle for new policies.
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2 Background

AutoAugment [[1]] is a natural starting point for an overview of recent works on automating the search
for the ideal augmentation policy, as it spans the policy search space that many subsequent works
adopt for their own policy search. The basis of AutoAugment’s search space consists of 16 operations
(ShearX/Y, TranslateX/Y, Rotate, AutoContrast, Invert, Equalize, Solarize, Posterize, Contrast, Color,
Brightness, Sharpness, Cutout [3]], Sample Pairing [6]). The search space for augmentation policies
is then spanned by pairs of these operations, where each operation has a probability and magnitude
along a uniform spacing of 11 probabilities, within the range [0, 1], and 10 magnitudes, within
the range [0, maxmagnitude]. At each training step, 5 of such policies are sampled with equal
probability leading to a search space of (16 * 11 x 10)2*5 ~ 1032 elements. In AutoAugment, the
authors aim to find the optimal set of augmentations by using a reinforcement learning approach,
where the validation set accuracy is used as reward. The augmentation policies they find improve test
set accuracy by 0.4% and 1.3% on CIFAR10 and CIFAR100 [8] when using a Wide-ResNet-28-10.
Lim et al. [9] drastically shorten the duration of the policy search by using a Bayesian optimization
approach while maintaining a similar performance. Hataya et al. [4] shorten the duration even
further by transforming the search into an online search (that is, during training of the final model).
The authors propose to minimize the Wasserstein distance between the augmented and the original
training data empirical distribution, again while maintaining a comparable performance in terms of
test set accuracy. Ho et al. [5] also search for the optimal augmentation policy in an online fashion
using an evolutionary algorithm (population-based training [7]]), reducing the search time and even
outperforming the original AutoAugment on CIFAR100 when using a Wide-ResNet-28-10.

However, all of these sophisticated approaches were outperformed by RandAugment, a simple
random augmentation policy introduced in [2] which uniformly samples the components of operation
pairs to be applied and uses either a constant or a random magnitude (to the same effect, as shown in
Appendix A.1.1 of [2]).

This simple RandAugment policy requires no search and yet achieves test set accuracies, on the
aforementioned data sets and model, that are on-par or better than the more complex techniques
previously discussed. To the best of our knowledge, only AdvAA [11] has significantly outperformed
RandAugment.

In Tab. [T|we compare the test set accuracies (as reported by each original publications) on CIFAR-10
and CIFAR-100 using Wide-ResNet-28-10 when using a baseline technique (Cutout) as well as some
of the most recent proposals (among which RandAugment and AdvAA).

3 The Adversarial Approach to Image Augmentation

The core idea of AdvAA consists of finding those augmentations that lead to “hard” samples, as
measured by their training loss. The hypothesis is that learning from hard examples should force the
model to learn more robust features [11]]. The optimization objective becomes a min-max problem:

I%nr_?gg‘(ET,wa(D) ['C(fw('r(x)vy))]v (D
where, D is the training set, x is a sample with label y, w are the model parameters, f,(+) is the
model output, L(f,,(+)) is the loss function, and S is the set of all available augmentations (as in
AutoAugment). In [11]] the inner maximization (i.e., find the most adversarial policies) is solved by
introducing a controller augmentation policy network that, given the losses produced by the main
model, is trained to output probabilities p1, . . ., p|s| for each 71, ..., 75|, such that the maximization
is solved in expectation (combining Eqns. (3) and (7) in [[11]]):
min maax Ex,wa(D)EfwP(-ﬂ) [‘C(fw (T({l?), y))]? (2)

where P(-, 0) is determined by the output of the controller policy network with parameters 6.

The approach in [11]], summarized by Eq. (2)), significantly outperforms the other works on automated
image augmentation (Tab. [I). Yet, the training of the controller augmentation policy network
introduces a large amount of stochasticity due to: (i) the training dynamics inside the min-max
problem and (ii) the REINFORCE algorithm [10]] necessary to cope with the non-differentiable
(discrete) augmentation operations in the objective. Hence, it is logical to assume that the policy



Table 1: Test set accuracy reported in recent works on automated image augmentation policy search
for Wide-ResNet-28-10. Importantly, only AdvAA consistently outperform RandAugment.

Data set
Work CIFAR10 CIFAR100
Baseline (Cutout [3]) 96.9 81.6
AutoAugment [[1]] +0.4 +1.3
Fast AutoAugment [9] +0.4 +1.3
Faster AutoAugment [4]] +0.5 +1.1
PBA [5] +0.4 +1.7
RandAugment [2] +0.4 +1.7
AdvAA [11]] +1.2 +2.9

network will act as a random sampling algorithm, at least until it has learnt how to correctly predict
which policies are the hardest for the given model. To complicate things, the model being trained
is constantly evolving making the optimal policy a moving target. Therefore, it is unclear that the
policies selected by the controller network are strictly adversarial.

In Section 4] we focus on determining whether being truly adversarial actually helps the model
learning more robust features, or if there are more complex dynamics that should be considered.

4 An Adversarial Approach

All our experiments are obtained following exactly the same training protocol, which is described
below and very similar to [[11]]. For computational reasons we discretize the magnitudes to 5 values
rather than 10, and reduced the search space of the operations to 15, as in [5]]. We use an initial batch
size of 128, we adopt a multiplicity of M = 1 and M = 2, that is augmenting each batch using
one or two operations (the latter approach effectively doubling the batch size as in [[L1]). We train
for 200 epochs and report the best test-accuracy over all training epochs, averaged across five runs.
The learning rate is set to 0.1 with decay of 0.2 after the 50th, 100th, and 140th epochs, we use a
warm-up of 10 epochs in which no augmentation is used, Nesterov optimizer, batch-norm momentum
set to 0.1, and weight decay set to 5e-4. We trained the model using a cluster equipped with Nvidia
GPUs model Tesla V100-SXM2-32GB with Cuda 10.1. The code was developed using Pytorch 1.8.1.
Given the slightly different setup, results in Tab. [2] are not meant for a direct comparison with [L1]].
They can instead be compared with each other since we have followed the same training protocol.

4.1 Removing the Stochasticity of the Controller Augmentation Policy Network Training

We note that the optimal solution to Eq. (Z)) is determined by the optimal solution to Eq. (I).

Corollary 1. Let 7" = 7; be the optimal solution to the inner maximization in Eq. @) for some
j <'|S| (for simplicity we assume only one optimum). Then any optimal solution 8* to the inner
maximization in Eq. (2)) has to fulfill p;(-,0*) = 1.

Corollary 1 can be proven by using Fubini-Tonelli to interchange the expectations in Eq. (2)). The
extension to multiple optima would simply share the probability mass among those. We run exper-
iments on CIFAR10 and CIFAR100 with a Wide-ResNet-28-10 in which we directly solve for 7*
in Eq. (I) during training to remove the stochasticity from the learning dynamics of the controller
augmentation policy network.

TrueAdy refers to an experiment where in order to find the true 77, at the end of each epoch the
empirical loss is evaluated on the entire training set and all the polices. Hence for all training points
N and for each policy 7 € S we evaluate: +; Ef\;l L(fuw(m(x:),y:) = Eq yop(0) [L(fu(T(2), y)].
This algorithm is clearly not scalable but it is used to gain more insights on the matter.

As shown in Tab[2} TrueAdy is actually harmful to generalization, as it lowers test set accuracy for all
data sets and multiplicities analyzed. Choosing random augmentations is not only computationally
more efficient, but also better in terms of generalization. This leaves the question “why do the learned



Table 2: Test set accuracy gains over the baseline with M=1 (our implementation of Cutout [3])) with
Wide-ResNet-28-10 trained for 200 epochs. Mean of 5 runs, standard deviations in brackets).

Accuracy % | Baseline Random TrueAdv  1-Adv-OEp  1-Adv-100Ep Smooth Cyclic

CIFAR10 M=1 | 96.8(0.1) +0.5(0.0) -1.1(0.2) - - +0.3(0.0)  +0.5(0.1)
M=2 - +0.8 (0.1) - +0.8 (0.1) +0.7 (0.0) +0.8 (0.1)  +0.9 (0.1)

CIFAR100 M=1 | 81.1(0.2) +1.3(0.1) -0.8(0.3) - - +0.7(0.1)  +1.1(0.2)
M=2 - +1.8 (0.3) - +0.9 (0.1) +0.9 (0.2) +0.6 (0.3) +1.2(04)

policies in [11]] not exhibit the same behavior, despite aiming to solve an objective whose exact
solution degrades generalization performance”? We hypothesize that this is due to the stochasticity
of the policy network training. Fig.[I|shows the operations and magnitudes used by AdvAA and
TrueAdv (details about the TrueAdv breakdown can be found in Fig. 2). The differences in the choice
of the policies are evident: (i) TrueAdy relies only on 3 operations (Rotation, Inversion, Brightness)
for more than 50% of the time, while for AdvAA the probability of sampling a specific operation
remains fairly uniform (some milder differences can be appreciated after epoch 300); (ii) TrueAdv
uses the highest magnitudes (8-9) 77% of the time compared to the 30% of AdvAA.
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Figure 1: Comparison between AdvAA (as reported in [11]]) and TrueAdv. We show the percentage of
times each operation or magnitude were used during training. For TrueAdv we report the average over
all epochs, and magnitudes are binned by increasing strength (i.e., bin 8-9 is the highest magnitude).
Notice how the operations (a) in AdvA A maintains an approximately uniform sampling across epochs,
while TrueAdv relies more often on fewer operations. Also, notice in (b) how the top two highest
magnitudes (8-9) are selected less than 30% of the time by AdvAA but 77% by TrueAdv. If we
analyze only the first 200 epochs (the stopping point for TrueAdv) this difference would be amplified.
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Figure 2: Percentage of times a given operation and magnitude were used during training (TrueAdv
strategy). Magnitudes have been binned into increasing strength (i.e., bin 8-9 is the highest magnitude,
while 0-1 is the lowest magnitude).
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These observations suggest that AdvAA is not maximizing the inner objective of Eq. [2] rather it
samples reasonably uniformly. A form of curriculum could also be playing a role, however, the
probabilities of sampling hard policies remain fairly low compared to TrueAdv.



Leveraging these observations, we experiment with 4 different curricula. To make the approaches
computationally tractable (unlike TrueAdv), we evaluate the losses at the end of each epoch on
a randomly sampled batch of size 128 and on a random subset of 500 policies. /-Adv-OEp uses
multiplicity M = 2, one hard augmentation (i.e. 7%, the augmentation with the highest average loss),
and one augmentation that is sampled from the 250 with the lowest average loss (i.e. easiest). /-Adv-
100Ep begins by using the easiest augmentations until epoch 100, and then switches to /-Adv-OEp.
Smooth gradually increases the adversarial approach starting with the easiest augmentations, the first
hard augmentation (i.e. 7%) is introduced in epoch 75 (when M = 2) or epoch 125 (when M = 1).
For M = 2, the augmentation with the second highest loss is added at epoch 150.

All three curricula improve over the baseline, as shown in Tab@ but cannot exceed the simple
random policy. We notice how TrueAdy suffers from over-fitting to the training data, suggesting that
truly adversarial augmentations are creating a distribution shift away from real data. Therefore, we
test a curriculum that reverts back to the easiest augmentations at the end of training, to match the
actual expected distribution. Cyclic starts with the easiest augmentations, for M = 2, the first hard
augmentation is introduced at epoch 75, the second at epoch 100. At epoch 125 it reverts back to only
one hard augmentation, and finally from epoch 150 on-wards it uses only the easiest set. For M = 1
it introduces the hard augmentation at epoch 75 before going back to the easy random augmentations
at epoch 150. Interestingly, the Cyclic schedule achieves strong improvements over the baseline
augmentation (Tab[2), even slightly surpassing random policies on CIFAR10. Random is still better,
however, on CIFAR100, especially in the case of M = 2.

5 Discussion

In this work we showed that when choosing training augmentations solving exactly the adversarial
objective introduced in [[L1] deteriorates the test set accuracy, even when compared to the baseline
[3]. We believe that the results achieved in [[11]] must come from its stochasticity and a mild form
of curriculum that emerges from the network policy controller. Our attempts to find an explicit
curriculum, however, led to improve the test set accuracy compared to the baseline but not compared
to a random augmentation policy. The idea of reverting towards milder augmentations as the model
completes the training has proven to be interesting, and in future works we will continue exploring
how this strategy can be refined to finally produce results that are better than using random policies,
while automatizing as much as possible the hyper parameters of the curriculum.



References

[1] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation strategies from data. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 113-123, 2019.

[2] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V Le. Randaugment: Practical
automated data augmentation with a reduced search space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pages 702—703, 2020.

[3] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural
networks with cutout. arXiv preprint arXiv:1708.04552, 2017.

[4] Ryuichiro Hataya, Jan Zdenek, Kazuki Yoshizoe, and Hideki Nakayama. Faster autoaugment:
Learning augmentation strategies using backpropagation. In European Conference on Computer
Vision, pages 1-16. Springer, 2020.

[5] Daniel Ho, Eric Liang, Xi Chen, Ion Stoica, and Pieter Abbeel. Population based augmentation:
Efficient learning of augmentation policy schedules. In International Conference on Machine
Learning, pages 2731-2741. PMLR, 2019.

[6] Hiroshi Inoue. Data augmentation by pairing samples for images classification. arXiv preprint
arXiv:1801.02929, 2018.

[7] Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, et al. Population based
training of neural networks. arXiv preprint arXiv:1711.09846, 2017.

[8] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Technical report, 2009.

[9] Sungbin Lim, Ildoo Kim, Taesup Kim, Chiheon Kim, and Sungwoong Kim. Fast autoaugment.
Advances in Neural Information Processing Systems, 32:6665-6675, 2019.

[10] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3):229-256, 1992.

[11] Xinyu Zhang, Qiang Wang, Jian Zhang, and Zhao Zhong. Adversarial autoaugment. arXiv
preprint arXiv:1912.11188, 2019.



	Introduction
	Background
	The Adversarial Approach to Image Augmentation
	An Adversarial Approach
	Removing the Stochasticity of the Controller Augmentation Policy Network Training

	Discussion

