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Abstract
This paper presents OmniJARVIS, a novel
Vision-Language-Action (VLA) model for open-
world instruction-following agents in open-world
Minecraft. Compared to prior works that either
emit textual goals to separate controllers or pro-
duce the control command directly, OmniJARVIS
seeks a different path to ensure both strong rea-
soning and efficient decision-making capabilities
via unified tokenization of multimodal interac-
tion data. First, we introduce a self-supervised
approach to learn a behavior encoder that pro-
duces discretized tokens for behavior trajecto-
ries τ = {o0, a0, . . . } and an imitation learn-
ing (IL) policy decoder conditioned on these to-
kens. Thanks to the semantically meaningful
behavior tokens, the resulting VLA model, Om-
niJARVIS, can reason (by producing thoughts),
plan, answer questions, and act (by producing
behavior tokens for the IL policy decoder). Om-
niJARVIS demonstrates excellent performances
on open-world Minecraft tasks. Our analysis fur-
ther unveils the crucial design principles and its
scaling potentials.

1. Introduction
Recent advancements in pretrained Large Language Mod-
els (LLMs) (Brown et al., 2020; Touvron et al., 2023;
Gong et al., 2023) and Multimodal Language Models
(MLMs) (Liu et al., 2024; Alayrac et al., 2022) have cat-
alyzed the development of Vision-Language-Action (VLA)
models (Brohan et al., 2023; Huang et al., 2023; Wang et al.,
2023b; Reed et al., 2022). These VLA models represent a
significant stride towards creating autonomous agents ca-
pable of understanding and executing instructions to tackle
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reasoning and action tasks in open-world settings. Promi-
nently, two architectural approaches have emerged: 1) In-
tegrating an off-the-shelf MLM (Driess et al., 2023) with
goal-conditioned controllers that execute text-derived in-
structions, exemplified by models like DEPS (Wang et al.,
2023c); and 2) Directly tuning MLMs to generate control
commands, maintaining their inherent reasoning and linguis-
tic capabilities, as seen in RT-2 (Brohan et al., 2023) and
LEO (Huang et al., 2023). However, both approaches face
challenges in complex, open-world environments such as
Minecraft. The former may struggle with text-only task rep-
resentations leading to controller miscommunication, while
the latter, though solving the communication issue, faces
practical limitations due to the extensive context required
for long-term control, which escalates computational costs
and reduces inference efficiency in dynamic settings.

In this paper, we aim to tackle challenges faced by exist-
ing VLA models in open-world environments, specifically
focusing on complex, context-dependent tasks and long-
term task execution. Our key insight is drawn from human
decision-making, where informed choices are made through
multi-modal interactions involving mental, verbal, and phys-
ical elements (illustrated in Figure 1). Mimicking this pro-
cess, if VLA models could learn from similar interaction
data, they might replicate human decision-making strate-
gies. However, modeling such interaction data is non-trivial:
it is multi-modal, encloses vision (mostly observations),
language (instructions, thoughts, etc.), and actions (behav-
ior trajectories). While significant progress has been made
in tokenizing vision and language for autoregressive mod-
els (Liu et al., 2024; Bavishi et al., 2023; Alayrac et al.,
2022), effectively tokenizing actions remains difficult. Di-
rect use of low-level action data from environments strains
the model’s capacity for processing lengthy sequences, ad-
versely impacting performance and limiting the use of gen-
erative models for planning. Conversely, language-level
action tokens require extensive supervision and often fail to
capture the full range of possible actions accurately.

To this end, we propose OmniJARVIS, a novel VLA model
that jointly models vision , language , and actions in inter-
action data with unified tokenization. OmniJARVIS com-
prises two key ideas: 1) Behavior Tokenization. We intro-
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Figure 1: Illustration of multi-modal interaction data for decision-making. A canonical interaction sequence depicting the human
decision-making process starts from a given task instruction and memory, followed by a series of sub-task completion which involves
initial observations, chain-of-thought reasoning, and behavior trajectories. Our proposed VLA model OmniJARVIS jointly models
the vision (observations), language (instructions, memories, thoughts), and actions (behavior trajectories) as unified autoregressive
sequence prediction. A self-supervised behavior encoder (detailed in Section 2 and Figure 2) converts the actions into behavior tokens
while the other modalities are tokenized following the practices of MLMs (Liu et al., 2024; Bavishi et al., 2023; Alayrac et al., 2022).

duce a self-supervised approach to learn a behavior encoder
that produces discretized tokens for actions (behavior trajec-
tories) and an imitation learning policy decoder conditioned
on these tokens (Section 2); 2) Autoregressive Modeling.
By augmenting these behavior tokens into the vocabulary
of pretrained MLMs, we pack the multimodal interaction
data into unified token sequences and learn a transformer on
these sequences with an autoregressive modeling objective.
We conduct comprehensive evaluations in the open-world
Minecraft Universe (Lin et al., 2023). OmniJARVIS demon-
strates impressive performances on a wide range of atomic,
programmatic, and open-ended Minecraft tasks. Our analy-
sis confirms several critical design choices in data formation,
tokenization, and the scaling potential of OmniJARVIS.

2. A Tokenizer for Behaviors
As noted in Section 1, a principal challenge in VLA models
is the modality mismatch between actions and language
instructions. A crucial insight is that substantial knowledge
about action outcomes can be derived from behavior trajec-
tories {τ (i)}i. We suggest developing a behavior tokenizer
to complement existing vision and language tokenizers, fa-
cilitating integrated tokenization of vision , language , and
actions in multimodal interaction data (Figure 1). The be-
havior tokens should meet two main criteria: they must
encapsulate complete and varied behaviors from brief tra-
jectories and contain semantic content to align with other
modalities, thereby enhancing the reasoning and planning
capabilities of LLMs through processes like CoT reasoning.

Specifically, we aim at producing a set of N discrete be-

havior tokens sbhv
1 , . . . , sbhv

N from a behavior trajectory
τ = {o0, a0, . . . }. Further, a de-tokenizer is needed to
map these tokens back to an action rollout in the environ-
ment that reproduces the goal achieved in τ . GROOT (Cai
et al., 2023b) explores a VAE-based approach to jointly
learn a latent representation of behavior trajectories and an
imitation learning policy decoder that conditions the latent
as goal. However, the continuous latent cannot be used as
the behavior tokens as they can be more difficult to learn
and decode with the existing discrete tokens of pretrained
MLMs (Huang et al., 2023; Ma et al., 2022). Therefore, we
replace the Gaussian latent in GROOT with an improved
vector quantized discrete latent called Finite Scalar Quan-
tization (FSQ) (Mentzer et al., 2023). We adopt a quanti-
zation configuration of 5 levels of codes and a codebook
size of 15360. Overall, the behavior tokenizer (behavior
encoder) eϕ(o1;T ) and the de-tokenizer (IL policy decoder)
πθ(at|o1:t) is learned with the following objective:

argminϕ,θEτ∼D

[
T∑

t=1

− log πθ(at|o1:t, f(eϕ(o1:T )))

]
,

where f(·) denotes the finite scalar quantizer. We choose
a non-causal (bidirectional) transformer and a causal trans-
former to parameterize the encoder eϕ(o1;T ) and the policy
decoder πθ(at|o1:t), respectively.

3. Interaction Data and OmniJARVIS
As depicted in Figure 1, canonical multimodal interaction
data includes vision (observations), language (instructions,
memories, thoughts), and actions (behavior trajectories).
Directly gathering such data from human annotators can
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Figure 2: Self-supervised learning for behavior tokenizer of OmniJARVIS. We modify the VAE-based self-supervised learning of
behavior trajectories in Cai et al. (2023b) to train the behavior tokenizer and de-tokenizer in OmniJARVIS. Specifically, we adopt the
auto-encoding objective but replace the Gaussian latent with a discrete representation based on Finite Scalar Quantizer (Mentzer et al.,
2023). The encoder is used as the behavior tokenizer to produce discrete tokens from the actions (behavior trajectories) in multimodal
interaction data, while the behavior tokens emitted by OmniJARVIS will be sent to the policy decoder to perform motor control.

Figure 3: Architecture and Inference of OmniJARVIS. The
main body of OmniJARVIS is a multimodal language model
(MLM) augmented with additional behavior tokens. Given a task
instruction, initial memory, and observation, OmniJARVIS will
iteratively perform chain-of-thought reasoning and produce behav-
ior tokens as a means of control via the decoder policy (behavior
de-tokenizer). (Not shown above) OmniJARVIS can also make
textual responses, e.g. answering questions.
be challenging. Thus, we propose transforming an existing
Minecraft gameplay dataset (Baker et al., 2022) into the
requisite multimodal interaction data for OmniJARVIS. Our
methodology involves defining the interaction data, convert-
ing and augmenting it from available datasets, and detailing
the architecture, learning framework, and inference pro-
cesses of OmniJARVIS. An overview of the architecture
and inference mechanics is provided in Figure 3.

3.1. Multimodal Interaction Data Format

An interaction sequence of decision-making D = {Dt}Tt=0

comprises T segments. Each segment Dt can be a sentence
of text words {wi}Ni=1, i.e. the language part such as in-
structions Dinst

t , memory Dmem
t or thoughts Dthought

t . Dt can
also be an image I , i.e. the vision part such as observations
Dobs

t = I . Finally, Dt may belong to the action (behavior
trajectory) part, i.e. Dbhv

t = {o0, a0, . . . }. We assume these
segments follow the ordering below (Figure 1):

Dinst
0 , Dmem

1︸ ︷︷ ︸
Context

, Dobs
2 , Dthought

3 , Dbhv
4︸ ︷︷ ︸

completion of sub-task 1

, Dobs
5 , Dthought

6 , Dbhv
7︸ ︷︷ ︸

completion of sub-task 2

, . . .

We tokenize such a sequence of segments into a series of to-
kens {s0, . . . , sM} using the vision and language tokenizer
from a pretrained MLM and the behavior tokenizer intro-
duced in Section 2. In practice, segments of the interaction
data D often lack completeness in public datasets. Specifi-
cally, the Minecraft contractor data from OpenAI includes
only behavior trajectories Dbhv

t . So we augment the dataset
with necessary textual segments: instructions Dinst

t , memory
Dmem

t , and thoughts Dthought
t . Following prior established

methodologies (Liu et al., 2024), we utilize LLMs to gener-
ate these texts. Dinst

t provides a high-level task description,
Dmem

t summarizes previous interactions, and Dthought
t re-

flects the agent’s reasoning and decision-making rationale.
We employ in-context learning with pretrained LLMs to
synthesize these interaction components as in appendix E.

3.2. Architecture, Training, and Inference

As depicted in Figure 3, OmniJARVIS builds on a pretrained
MLM, enhanced by integrating an additional 35 tokens from
the behavior tokenizer, in line with the [8, 8, 8, 6, 5] FSQ
configuration described in Section 2. Each behavioral ele-
ment includes five tokens sbhv1, . . . , sbhv5, corresponding
to the five FSQ levels. We design OmniJARVIS’s learn-
ing objective, inspired by (Brown et al., 2020; Raffel et al.,
2020), as a prefix language modeling task. During training,
for a batch B of token sequences s, we optimize Omni-
JARVIS using the loss function:

L(θ,B) = −
|B|∑
b=1

T∑
t=1

log pθ(s
(b,t)
res |s(b,<t)

res , s
(b,1)
prefix, ..., s

(b,L)
prefix ),

where sprefix includes the context tokens from Dinst
t , Dmem

t ,
and Dobs

t . The model predicts the remaining tokens, sourced
from Dthought

t and Dbhv
t , in an autoregressive manner. Omni-

JARVIS is trained to generate thoughts and subsequent be-
haviors from task instructions, memories, and observations.
At inference, OmniJARVIS begins with a task instruction,
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Table 1: Evaluation results of different agents on atom tasks. The
text-conditioned VPT(VPT[text]∗) is from Appendix I of its paper.

Method ↑ ↑ ↑ ↑

VPT∗[text] 2.6±0.3 9.2±0.7 - 0.8±0.1
STEVE-I 11.0±3.0 10.0±2.5 3.2±1.6 5.1±2.5
GROOT 14.3±4.7 19.7±8.7 19.0±11.3 7.3±0.6
OmniJARVIS 10.8±5.2 20.3±9.2 25.8±2.9 8.2±3.6

an empty memory, and an initial observation, producing
reasoned thought chains and behavior tokens iteratively.

4. Capabilities and Analysis
4.1. Overview
The details of training methods and datasets are listed in
Appendix D. We select LLaVA-7B V1.5 (Liu et al., 2024)
as the foundation model and fine-tune it on the open-world
interaction datasets with over 1T tokens for one epoch, and
get OmniJARVIS-7B model. We conduct experiments on
open-world environment Minecraft (Guss et al., 2019) and
evaluate OmniJARVIS with tasks of three different diffi-
culties: 1) Atomic tasks, which are skill-level tasks and
testing the ability of follow simple instructions, 2) program-
matic tasks, which require agents reasoning to decompose
the provided instructions into atomic-level subtasks, and 3)
creative free-form instruction-following and open-world
embodied question-answering tasks. The benchmark of
different group of tasks can be seen in Appendix A.

We also conduct ablation experiments of OmniJARVIS
with different behavior tokenizers, different training dataset
formats, and different vision tokenizations in Appendix B.
Finally, we explore the scaling potential of OmniJARVIS
with different models and data scales as in Appendix B.

4.2. Results and Analysis
We first compute the average rewards of different agents of
every atomic task in Table 1 across 10 runs. By observing
the environment and adjusting action tokens dynamically,
OmniJARVIS effectively follows straightforward instruc-
tions across various scenarios. It consistently achieves a
high average reward with minimal standard deviation.
Programmatic Tasks often necessitate intricate reasoning
for planning. We assess task completion based on the suc-
cess rate within a designated timeframe, as shown in Table 2.
While STEVE-I (Lifshitz et al., 2023) and GROOT (Cai
et al., 2023b) manage only simple tasks, agents employ-
ing Language Behavior Tokenizers such as zero-shot plan-
ner (Huang et al., 2022a), ReAct (Yao et al., 2022), and
DEPS (Wang et al., 2023c), handle more complex chal-
lenges like those in the diamond group, albeit with lower
success rates. Notably, in the Food group, these agents
achieve about a 10% success rate, as these tasks are less
demanding. Language-conditioned tokenizers require addi-
tional supervised training using language-conditioned tra-
jectories, which was scarce during STEVE-I’s training, re-
sulting in significant performance disparities. Conversely,

Table 2: Success rate of different agents on programmatic tasks.
We distinguish different methods through action tokenizer, where
STEVE-I and GROOT directly output actions, ReAct and DEPS
output language as goals, and then use STEVE-I to output actions.
OmniJARVIS uses the self-supervised discrete action tokenizer.

Native Token ↑ Language Token ↑ Ours ↑
Tasks

STEVE-I GROOT ReAct DEPS OmniJARVIS

Wood 0.04±0.0 0.05±0.0 0.44±0.1 0.78±0.1 0.95±0.0
Food 0.00±0.0 0.00±0.0 0.12±0.0 0.12±0.0 0.44±0.0
Stone 0.00±0.0 0.00±0.0 0.30±0.1 0.68±0.0 0.82±0.0
Iron 0.00±0.0 0.00±0.0 0.06±0.0 0.16±0.0 0.32±0.1
Diamond 0.00±0.0 0.00±0.0 0.00±0.0 0.04±0.0 0.08±0.0

Average 0.01 0.02 0.23 0.43 0.59

Table 3: Evaluation results on open-ended tasks, including
instruction-following and embodied question-answering. The val-
ues in Instruction-Following tasks are represented by FSD scores
from rollout videos, where lower scores indicate better perfor-
mance. In Question-Answering tasks, the values are GPT-4 elo
rating scores, with higher scores indicating better performance.

STEVE-1 Voyager DEPS OursInstruction
Following ↓ 972.79 932.16 929.52 886.25

Vicuna-13B LLaMA-2-70B ChatGPT-3.5 OursQuestion
Answering ↑ 2.85 2.5 7.5 8.4

OmniJARVIS leverages a self-supervised behavior tokenizer
that omits the need for additional language data, enhanc-
ing performance across diverse tasks. This will be further
validated in upcoming Creative Task experiments.

Free-form creative tasks defy simple evaluation metrics like
rewards or success rates due to their complex nature. Instead,
we use the Fréchet Sequence Distance (FSD) metric, akin
to FID for image generation, to assess agent performance
in creative tasks. A lower FSD indicates closer alignment
with human expert behavior, reflecting superior creative
instruction-following. Details on this metric’s analysis and
computation are in Appendix A.3.

Additionally, we implement creative embodied question-
answering benchmarks to test the agents’ capability to fol-
low creative instructions and understand world knowledge.
The instruction set and full evaluation results are detailed
in Appendix A.4 and Table 3, respectively. OmniJARVIS
excels at both question answering and instruction following,
outperforming strong baselines. It also demonstrates supe-
rior reasoning in embodied question-answering tasks, even
against ChatGPT baselines.

5. Conclusion
We’ve presented OmniJARVIS, a novel VLA model that en-
compasses strong reasoning and efficient decision-making
capabilities via unified tokenization of vision , language ,
and actions in multimodal interaction data. The key ideas
are learning behavior tokenizer and de-tokenizer using self-
supervised learning on behavior trajectories and autoregres-
sive modeling of tokenized multimodal interaction data us-
ing a pretrained multimodal language model.
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A. Benchmarks
Experimental Setups. We conduct experiments in the complex and open-world environment of Minecraft, a voxel-based 3D
video game that has garnered significant attention from real-life research due to its popularity and diverse mechanics (Guss
et al., 2019; Fan et al., 2022). We first evaluate OmniJARVIS with atomic tasks, which are skill-level tasks, testing VLAs’
ability to follow simple and straightforward instructions. Then we evaluate OmniJARVIS with programmatic tasks, which
require the agent to obtain an item starting from an empty inventory. The success of these tasks requires VLAs to decompose
the provided instruction into atomic-level subtasks, and hence tests VLAs’ complex reasoning ability. Finally, we test the
OmniJARVIS with creative free-form instruction-following tasks, which can not be formulated with clear reward functions
and are different from programmatic tasks. We evaluate OmniJARVIS with open-world embodied question-answering
benchmarks. We also conduct ablation experiments of OmniJARVIS with different behavior tokenizers, different training
dataset formats, and different vision tokenizations. Finally, we explore the scaling potential of OmniJARVIS with different
models and data scales.

A.1. Main Results I: Atomic Tasks

Atom tasks are various simple skills that agents in Minecraft need to master. They are basic tasks yet are fundamental skills
that agents need to master during the learning process. We first evaluate OmniJARVIS with our learned behavior tokenizer
on these tasks.

Tasks. We select “chopping trees” , “digging dirt” , “mining stones” , and “collecting wheat seeds” as the
evaluation tasks. We directly take those short task descriptions as instructions for agents.

Baselines. We use text-conditioned VPT (Baker et al., 2022), Open-world Control (Cai et al., 2023a), STEVE-I (Lifshitz
et al., 2023), and video-instructed GROOT (Cai et al., 2023b) as baselines.

A.2. Main Results II: Programmatic Tasks

To further verify the ability of OmniJARVIS to complete tasks with long sequences, we use 30 programmatic tasks to
evaluate the performance of different agents. These tasks require the agent to start from an empty inventory in a new world
until obtaining the final required items, which is usually a chain of atom tasks. These tasks are divided into five groups
based on difficulty: wooden, food, stone, iron, and diamond. For example, the prompt for task “Obtain a diamond pickaxe”

is “Give you nothing in the inventory, obtain a diamond pickaxe.” This task require more game time and more complex
planning for up to 10 different intermediate items (Baker et al., 2022).

Baselines are divided into two types. 1) directly outputs actions, namely the native behavior tokenizer, including STEVE-
I (Lifshitz et al., 2023) and GROOT (Cai et al., 2023b). 2) using pretrained LLM as a planner to output language goals and
connect the STEVE-I to execute these goals, including Zero-Shot Planner (GPT) (Huang et al., 2022a), ReAct (Yao et al.,
2022), and DEPS (Wang et al., 2023c).

A.3. Main Results III: Open-Ended Tasks

The open-ended tasks differ from programmatic tasks due to the lack of straightforward success criteria (Fan et al., 2022).
We select the long-term creative tasks which usually need at least 5 minutes of human-playing time to finish. The task
prompts can be found in Appendix A.3. Following image generation and video generation tasks (Heusel et al., 2017;
Unterthiner et al., 2018), we take the Fréchet Sequence Distance (FSD) metrics to evaluate the correlation between agent
rollout video and creative instruction.

FSD computation. Specifically, we first ask human experts to finish the creative task prompts under randomly generated
worlds and record the game-playing videos Vhuman. Then, we provided the task prompts for different Minecraft agents, and
obtained a rollout video set Vagent. Then we divide the videos into trunks of 128 frames. For each segment, we sample 16
frames, with 8 frames in between each sampled frame. These sequences of 16 frames are then fed through the video encoder
of MineCLIP (Fan et al., 2022) to obtain 512-dimensional video embeddings. Finally, the score is calculated according to
(Heusel et al., 2017) between the embeddings of the generated videos and the reference videos.

To evaluate the effectiveness of FSD metrics, we compute FSD scores between and within sets of videos using three distinct
tasks, as illustrated in Figure A.1. A noticeable gap exists between the FSD scores calculated within the same set of videos
and those calculated between different sets. Furthermore, the metric exhibits relative insensitivity to the number of videos
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used for computing the score, demonstrating the validity of our proposed metric.

Figure A.1: FSD scores between and within sets of videos for two distinct tasks. The horizontal axis represents the number of videos used
for computing the scores, and the vertical axis depicts the corresponding score.

Prompts for Creative Tasks. To thoroughly assess the agent’s performance and generalization with free-form creative
instructions, we manually designed over 20 diverse prompts covering tasks like arranging items, collecting materials,
exploring environments, crafting items, farming, and more.

Prompts for Creative Tasks

1. Cook the beef with a furnace and recycle the furnace. If you meet night, place and use the bed for sleeping.

2. Explore caves, mine resources, and craft items in Minecraft to progress and survive.

3. Gather resources, craft tools, and cook food in Minecraft.

4. Place a torch on the wall to light the environment. Collect and picking it up when you leave.

5. Craft an oak boat and use it to travel

6. Obtain resources for building and survival by gathering materials and farming resources.

7. Consistently interact with chests to manage inventory contents.

8. Explore and gather resources in Minecraft.

9. Collect and mine azure bluets, deal damage to mobs, and defeat mobs in the game.

10. Do the following tasks sequentially: 1.Gather oak logs and oak leaves from trees. 2.Use oak logs to create oak planks and then a
crafting table. 3.Create sticks from oak planks using the crafting table. 4.Craft a wooden axe and a wooden pickaxe using sticks
and oak planks. 5.Collect materials like mushrooms and brown mushrooms by mining blocks with the wooden axe. 6.Mine grass,
tall grass, and stone using the wooden tools for resources.

11. Harvest sugar cane to obtain multiple sugar cane pieces.

12. Plant and consume wither roses repeatedly.

13. Harvest wheat seeds, plant them, and use the harvested wheat seeds to feed animals or craft items such as bread.

14. Trade with a villager by giving emeralds and books to receive enchanted books as well as new emeralds and books.

15. Mine ice using an iron pickaxe and pick up the ice block obtained.

16. Open a chest in the game to access or manage inventory items.

A.4. Embodied Question Answering Benchmarks

The embodied question-answering benchmarks consist of questions and instructions for Minecraft benchmarks, consisting
of over 100 questions on knowledge question answering, embodied planning, and math reasoning.
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Table 4: Embodied Question Answering Examples.

Category Question Answer

Planning How to obtain bucket with empty inventory step-by-step in Minecraft? 1. mine 4 log without tool. . .
Planning How to obtain cooked beef with empty inventory step-by-step in Minecraft? 1. kill cow to obtain 1 beef. . .

Knowledge How many materials do I need to collect to make 2 iron ingots in one go? To make 1 iron ingot, you need 1 iron ore and. . .
Knowledge What are the materials to make 1 diamond pickaxe in Minecraft? 3 diamond, 2 stick.
Knowledge What are the materials to make 1 iron helmet in Minecraft? 5 iron ingots.
Knowledge What are the materials to make 1 golden axe in Minecraft? 3 gold ingot, 2 stick.
Knowledge What are the materials to make 1 wooden shovel in Minecraft? 1 planks, 2 stick.
Knowledge What are the materials to make 1 bread in Minecraft? 3 wheat.

Reasoning Can diamond be mined with stone pickaxe in Minecraft? No. Diamond can only be mined with iron. . .
Reasoning Can coal be mined with an iron pickaxe in Minecraft? Yes. Coal can be mined. . .
Reasoning Can obsidian be mined with an iron pickaxe in Minecraft? No. Diamond can only be mined with iron. . .
Reasoning Can lapis lazuli be mined with a diamond pickaxe in Minecraft? Yes. Lapis lazuli can be mined
Reasoning Can emeralds be mined with a stone pickaxe in Minecraft? No. Emeralds can only be mined with an iron. . .

Decision-making <image><inventory> To mine diamonds, what behavior should I do now? craft iron pickaxe

To enhance the LLM-based agent’s understanding of Minecraft, we gathered a large dataset called Minecraft-Embodied-
Question-Answering-300k (mc-eqa-300k). Initially, we extracted language corpus from the Minecraft Wiki1 and Dig-
Minecraft2 website to create prompts for the language model (ChatGPT). This resulted in around 50k question-answer pairs.
Using these as seed questions, ChatGPT generated approximately 250k diverse questions on various aspects of Minecraft.
To ensure accurate responses and avoid hallucinations common with existing models like self-instruct (Wang et al., 2022),
we employed a retrieval augmented generation (Lewis et al., 2020) method known as RAT (Wang et al., 2024) to generate
accurate answers. The resulting question-answering dataset, along with interaction data, form our training dataset for
OmniJARVIS.

Example of Embodied Question Answering Generation for Knowledge Group

question: How to craft diamond pickaxe step-by-step, describe every step in details.
answer: To craft a diamond pickaxe in Minecraft, you will need to follow these steps:
1. **Gather Resources:**
- Start by gathering the necessary resources to craft a diamond pickaxe. You’ll need three diamonds and two sticks.
- Diamonds can be found deep underground, typically between levels 1 to 15 in the Overworld. You’ll need an iron pickaxe or better to
mine diamonds. Use this iron pickaxe to mine the diamond ore blocks.
2. **Crafting Sticks:**
- If you haven’t already, craft sticks from wooden planks. Open your crafting table and place two wooden planks vertically to create
four sticks.
3. **Crafting the Diamond Pickaxe:**
- Open your crafting table, which consists of a 3x3 crafting grid.
- Place the three diamonds in the top row.
- Place two sticks in the middle row, one in the center slot and one in the slot just below it.
- Your crafting grid should now look like this:
[D][D][D]
[ ][S][ ]
[ ][S][ ]
- [D] represents a diamond.
- [S] represents a stick.
- Once you’ve placed the items in the correct pattern, you’ll see a diamond pickaxe appear in the result box of the crafting table.
4. **Collect the Diamond Pickaxe:**
- Click or drag the diamond pickaxe from the crafting table’s result box into your inventory.
Congratulations! You now have a diamond pickaxe in your inventory. Diamond pickaxes are extremely valuable in Minecraft because
they can mine most blocks faster than other pickaxes and are required to mine certain valuable resources like obsidian. Be sure to use
it wisely and take care of it, as it’s a valuable tool in the game.

1https://minecraft.wiki/
2https://www.digminecraft.com/
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Example of Embodied Question Answering Generation for Reasoning Group

question: Can stone pickaxe be used to mine diamonds?
answer: No, a stone pickaxe cannot be used to mine diamonds in Minecraft. An iron pickaxe or better is required to mine diamonds.
question: Can golden pickaxe be used to mine diamonds?
answer: In Minecraft, you cannot use a golden pickaxe to mine diamonds. Diamonds are one of the hardest materials in the game and
require an iron pickaxe or better to mine. Using a gold pickaxe on diamond ore blocks will cause them to break, but you won’t receive
any diamonds as a drop. You’ll just get the diamond ore block itself.
To successfully mine diamonds, you should use an iron, diamond, or netherite pickaxe. These pickaxes have the required hardness to
break diamond ore blocks and yield diamonds when mined.

Example of Embodied Question Answering Generation for Planning Group

question: Give you nothing in the inventory, how to obtain diamond pickaxe from empty inventory, generate a step-by-step plan, start
from punching trees, and describe every step in detail.
answer: Obtaining a diamond pickaxe in Minecraft involves several steps, starting from punching trees and eventually progressing to
mining diamonds. Here’s a step-by-step plan to obtain a diamond pickaxe from an empty inventory:
**Step 1: Punching Trees**
1. **Gather Wood:** Start by punching trees to collect wood blocks. You’ll need at least 3 logs to proceed.
**Step 2: Crafting Basic Tools**
2. **Craft Wooden Planks:** Open your inventory and turn the logs into wooden planks by placing them in the crafting grid (4
wooden logs -> 16 wooden planks).
3. **Craft Crafting Table:** Use the wooden planks to craft a crafting table. Place 4 wooden planks in the 2x2 crafting grid to create it.
4. **Craft Wooden Pickaxe:** With the crafting table, craft a wooden pickaxe using wooden planks and sticks. Place 3 wooden planks
in the top row and 2 sticks in the middle row.
**Step 3: Finding Stone**
5. **Mine Stone:** Use your wooden pickaxe to mine stone blocks. You’ll need at least 3 stone blocks to proceed.
**Step 4: Upgrading Tools**
6. **Craft Furnace:** Use the crafting table to create a furnace using 8 pieces of cobblestone. Place the cobblestone in all squares of
the crafting grid except the center square.
7. **Smelt Cobblestone:** Use the furnace to smelt the cobblestone into smooth stone. Place the cobblestone in the top slot of the
furnace and fuel (wooden planks, sticks, etc.) in the bottom slot. Collect the smooth stone when it’s ready.
**Step 5: Crafting a Stone Pickaxe**
8. **Craft Stone Pickaxe:** With the smooth stone, craft a stone pickaxe using cobblestone and sticks. Place 3 cobblestones in the top
row and 2 sticks in the middle row.
**Step 6: Upgrade to Iron Pickaxe**
9. **Find Iron Ore:** Find iron ore blocks underground (usually at lower depths) and mine them using your stone pickaxe. You’ll
need at least 3 iron ore blocks.
10. **Smelt Iron Ore:** Place your iron ore in the top slot of the furnace and use wooden planks as fuel in the bottom slot. This will
smelt the iron ore into iron ingots.
11. **Craft Iron Pickaxe:** With the iron ingots, craft a iron pickaxe using iron ingots and sticks. Place 3 iron ingots in the top row
and 2 sticks in the middle column.
**Step 7: Mining Diamonds**
12. **Find Diamonds:** Use your iron pickaxe to mine for diamonds. Diamonds are found deep underground, usually between levels
5 to 12. They appear as blue, sparkly ore blocks.
**Step 8: Crafting a Diamond Pickaxe**
13. **Craft Diamond Pickaxe:** Once you have collected at least 3 diamonds, craft a diamond pickaxe using diamonds and sticks.
Place 3 diamonds in the top row and 2 sticks in the middle row.
**Step 9: Using the Diamond Pickaxe**
14. **Mine Ores:** The diamond pickaxe is more durable and efficient than lower-tier pickaxes. Use it to mine a variety of ores,
including iron, gold, redstone, and more.
And that’s it! You’ve successfully obtained a diamond pickaxe from an empty inventory by following these steps. Remember that
Minecraft’s world generation and mechanics might vary slightly depending on the version you’re playing, so adapt the plan as needed.

B. Insights and Analysis
B.1. Behavior Tokenizer

We explore OmniJARVIS with different behavior tokenizers, including the default setting using FSQ codebook, a variant of
using VQ-VAE instead of FSQ (Van Den Oord et al., 2017), and simply using sub-goal language annotation as behavior
“tokens”. The evaluation results on 4 programmatic tasks are listed in Table 5. Using an FSQ tokenizer is generally better
than a language goal, which confirms the advantages of using a tokenized behavior over language descriptions of behavior.
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The use of VQ-VAE as a quantized behavior tokenizer collapsed during the training process, so there were no results in all
test tasks.

Table 5: Ablation experiments on OmniJARVIS with different behavior tokenizer.

Behavior Tokenizer

GROOT (Cai et al., 2023b) 0.7 0.9 0.5 0.8
FSQ (Mentzer et al., 2023) 0.9 1 0.9 0.9
VQ-VAE (Van Den Oord et al., 2017) - - - -

B.2. Interactive Dataset Format

We explore the crucial roles played by the different type of segments in interaction data, including the instruction, memory,
thought, and caption tokens. The results can be found in Table 6, where we evaluate the loss in predicting the behavior
tokens. It can be seen that instruction and thought can be more critical to the successful prediction of behavior tokens. This
is consistent with our hypothesis – making informed decisions requires task instruction and reasoning.

Table 6: Ablation experiments on OmniJARVIS training on different interactive datasets. The first line is training on the unconditional
interactive dataset, i.e., without the instruction of the trajectories.

Instruction Caption Thought Memory Eval Loss

0.67
✓ 0.51
✓ ✓ 0.48
✓ ✓ ✓ 0.33
✓ ✓ ✓ ✓ 0.17

B.3. Vision Tokenization

We also evaluate training OmniJARVIS with different vision tokenization, including ImageCaptioner + LLaMA2-7B (Chen
et al., 2023; Touvron et al., 2023) (basically converting the vision input into textual captions), fuyu-8b (Bavishi et al., 2023),
and LLaVA-7B (Liu et al., 2024) architecture. For the ImageCaptioner+, we fix the ImageCaptioner models and only
fine-tune the language model, i.e., LLaMA2-7B. We use the prediction loss of behavior tokens as the evaluation criterion,
namely eval loss. We found that the model trained with LLaVA-7B architecture has the lowest evaluation loss, so we chose
this model as the default model.

Table 7: Ablation experiments on OmniJARVIS with different vision tokenizers.

Vision Tokenizer Train Loss Eval Loss

ImageCaptioner+ (Chen et al., 2023; Touvron et al., 2023) 0.4917 0.5249
Fuyu-8B (Bavishi et al., 2023) 0.4261 0.4409
LLaVA-7B (Liu et al., 2024) 0.1793 0.1804

Behavior Codebook. We conduct an in-depth investigation of behavior tokenizers with varying codebook sizes, utilizing
recommended sets of FSQ levels to approximate specified codebook dimensions (Mentzer et al., 2023) as delineated in
Table 8. We evaluate performance across multiple metrics for each codebook size. Codebook Usage is quantified as the
proportion of codewords utilized at least once when encoding the validation datasets. Reconstruction FSD is measured
by the FSD scores derived from the MineCLIP encoder (Fan et al., 2022), processing 1,000 different demonstration
videos through the FSQ-GROOT and subsequent rollout in a randomly generated environment. Additionally, we measure
Resampling FSD, which is the FSD score obtained when the environment rollout is conditioned on representations sampled
from the codebook. Finally, we assess the average rewards for the task “collect wood” using OmniJARVIS across varying
codebook sizes. Our findings indicate that increases in codebook size correlate with enhanced average rewards and reduced
FSD scores, suggesting a scalable performance in OmniJARVIS with larger codebooks.

12



OmniJARVIS: Unified Vision-Language-Action Tokenization Enables Open-World Instruction Following Agents

Table 8: Ablation experiments on behavior tokenizer with different code vocabulary size.

Codebook
size

FSQ
Levels

Training
Iterations

Train
Loss

Eval
Loss

Reconstruction
FSD ↓

Sampling
FSD ↓

Average
Rewards ↑

Codebook
Usage

e8 [8,6,5] 180k 2.746 3.161 46.57 68.90 0.63±0.67 93.75%
e10 [8,5,5,5] 180k 3.011 3.148 43.67 61.85 0.54±1.21 97.65%
e14 [8,8,8,6,5] 240k 3.092 3.116 42.72 57.37 2.27±2.45 92.36%

Provided Generated

Figure B.2: Examples of behavior tokenization-detokeinzation. Left: the reference video to be tokenized by our FSQ-based behavior
tokenizer (encoder). Right: the behavior of the policy decoder is conditioned on the behavior tokens. The policy decoder can reproduce
the task being accomplished in the reference video.

B.4. Behavior Semantics

We provide some qualitative analysis on the learned FSQ-based behavior tokenizer. In Figure B.2, we tokenize several
reference videos, then feed the behavior tokens to the policy decoder and see if it can accomplish the same task as in
reference videos. The results indicate that our behavior tokenizer is able to capture such behavior semantics and offers rich
task information.

B.5. Scaling Potential of OmniJARVIS

Figure B.3: Scaling potential of OmniJARVIS. Its evaluation
loss continues to drop with the growth of data and model
parameters. The Pearson coefficients for the 2B, 7B, and 13B
models are 0.9991, 0.9999, and 0.9989 respectively.

We investigate the scaling effect (Kaplan et al., 2020; Lin et al.,
2024) of data and model in OmniJARVIS by monitoring the
instruction-following loss on the validation set as the amount
of data increases. In addition to fine-tuning from the default
LLaVA-7B, we include two additional scales: OmniJARVIS-2B
(fine-tuned from LLaVA-2B with Gemma-2B language mod-
els (Hinck et al., 2024)) and OmniJARVIS-13B (fine-tuned from
LLaVA-13B with LLaMA2-13B language models (Liu et al.,
2024)).

The validation loss curves in Figure B.3 reveal the following in-
sights: 1) When using Omni-Tokenizer, OmniJARVIS’s instruc-
tion tuning aligns with the scaling law (Kaplan et al., 2020). All
curves exhibit a log-linear decrease as the data scale increases.
2) Scaling up VLM consistently enhances performance. No-
tably, OmniJARVIS-7B demonstrates significantly lower losses
compared to OmniJARVIS-2B. However, while improvements
are consistent, the difference between OmniJARVIS-7B and
OmniJARVIS-13B seems less pronounced, hinting at potential
saturation when further scaling up VLM. This underscores both
the scalability of OmniJARVIS and the importance of increasing data volume to match the model.
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Figure C.4: Comparative Framework of Vision-Language Action Models. (a) depicts a model where upon receiving a language
instruction, actions are directly output based on the environmental state, facilitating immediate interaction with the environment at a
unified frequency. Smaller models with <1B parameters like VPT (Baker et al., 2022) maintain higher frequencies (>20Hz), though
their capability for complex reasoning tasks is limited. Larger models with >7B parameters such as RT-2 (Brohan et al., 2023), offer
enhanced performance but operate at significantly reduced frequencies (2-3Hz). (b) illustrates a common approach utilizing large
vision-language models for planning, subsequently outputting language goals (Wang et al., 2023c; Driess et al., 2023; Brohan et al.,
2022a). A language-conditioned policy then translates these language goals into actions at a real-time interaction rate of 20Hz, with
high-level models re-planning at less than 1Hz. This hierarchical structure balances interaction frequency and performance, while it
requires language as an intermediary and additional language labels. The training process of high-level vision-language models and
language-conditioned policies are separate, thus performing poorly on tasks that can not be easily connected by language. (c) (ours)
mirrors the hierarchical structure of (b) but differentiates by employing a self-supervised encoder-decoder policy (Cai et al., 2023b) and
FSQ quantization (Mentzer et al., 2023) as a behavior tokenizer. The upper-level vision-language models produce self-supervised behavior
tokens, which are then conditioned by a policy decoder to output actions, facilitating environment interaction. The behavior tokens are
injected into the training corpus of vision-language-action models, which enables end-to-end inference. This approach also eliminates the
need for external language supervision and scales efficiently.

C. Related Works
Pretrained Language Models for Decision-making. Several works have explored leveraging LLMs to generate action
plans for high-level tasks in embodied environments (Huang et al., 2022a; Liang et al., 2022; Brohan et al., 2022b; Zhang
et al., 2023). To better perform complex planning in the environment, existing methods usually utilize chain-of-thought (Wei
et al., 2022) or related methods (Yao et al., 2022). To better cope with uncertainties in open worlds, some LLM-based
methods generate plans interactively with human and environmental feedback (Shinn et al., 2023; Wang et al., 2023c; Huang
et al., 2022b) and retrieving from memory (Wang et al., 2023b) or internet corpus (Wang et al., 2024). However, those plans
can only be executed in a language environment or require an additional controller or code executor to interact in an open
world.

Vision-Language-Action Models. In order to better utilize the knowledge inside the language model for decision-making,
some methods tend to use decision datasets to fine-tune pretrained language models (Durante et al., 2024; Driess et al., 2023).
Gato (Reed et al., 2022) was among the first to tokenize environment-provided actions to enable joint sequential modeling
across modalities. PaLM-E (Driess et al., 2023) generates high-level instructions as texts and uses dedicated controllers
to perform the task described by the output instructions. The RT series focuses more on robotics settings. Specifically,
RT-1 pairs a VLM with a language-conditioned controller; RT-2 extends the VLM to directly include control tokens; RT-X
generalizes to new robots and environments. A recent VLA model LEO (Huang et al., 2023) expands the perception from
2D images to 3D world and enables rich scene-level reasoning and control tasks.

Open-world Agents in Minecraft. As LLMs have achieved remarkable reasoning results and understanding capabilities
across various domains, the year 2023 has witnessed researchers adopting multiple LLM-based approaches to create
open-world agents in Minecraft (Wang et al., 2023c; Zhu et al., 2023; Wang et al., 2023b;a). Some methods focus on
building policies for low-level skills (Cai et al., 2023b; Lifshitz et al., 2023; Baker et al., 2022). Building upon the low-level
policies to interact with the Minecraft environment, Wang et al. (2023c), Yuan et al. (2023) and Wang et al. (2023b) focus
on leveraging the pre-trained language models as planners to finish programmatic tasks with in-context learning. Wang
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et al. (2023a) adopts the life-long learning scheme and generates code as policies to enable continual exploration. Some use
expert trajectories and Minecraft corpus to fine-tune pre-trained vision language models for better embodied planning (Qin
et al., 2023; Zheng et al., 2023).

D. Training Details
Training Details. The training of the OmniJARVIS is divided into two stages. In the first step, we use a self-supervised
training method to train a Behavior Tokenizer, including the Encoder and Decoder jointly. We use FSQ as a quantization
method and build a codebook with 8*8*8*6*5 discrete codes. The training data for Behavior Tokenizer comes from
Contractor Dataset (Baker et al., 2022), which is a collection of Minecraft gameplay videos. The training parameters and
details remain consistent with GROOT. Each frame in our experiments has a resolution of 128x128 pixels. We segmented
each episode into multiple trunks, with each trunk consisting of 128 frames. The learning rate was set at 0.00004, with a
weight decay of 0.001. The batch size was configured to 2, and training was conducted on a cluster of eight NVIDIA 3090
Ti graphics cards. The training dataset comprised sections 6xx, 7xx, 9xx, and 10xx of the contractor dataset provided by
OpenAI (Baker et al., 2022). The precision for training was set to bfloat16.

In the second stage, we use this behavior tokenizer to process Minecraft offline trajectories to obtain behavior token
sequences. We add 35 (8+8+8+6+5) additional tokens to the MLM tokenizer as behavior tokens for unified representation, so
each time the VLA needs to output a continuous sequence of 5 tokens to represent a complete behavior. The raw interaction
dataset comes from the sections 6xx, 7xx, and 10xx of the contractor dataset provided by OpenAI (Baker et al., 2022)
and the recording interactions of JARVIS-1 Agents (Wang et al., 2023b). We use GPT-3.5 to synthesize thought, memory,
and instruction to raw offline datasets to build complete interaction data. These data collectively constitute the embodied
instruction-following dataset of OmniJARVIS, including 600k trajectories and about 900M tokens.

We utilized the SFTTrainer class from the TRL library by Hugging Face to train the VLM model. The learning rate was set
at 1.4e-5, and a cosine learning rate scheduler was employed. The weight decay parameter was set to 0 with a warm-up ratio
of 0.03. Training took place on 8 A800 GPUs with FSDP, with a batch size of 2 and gradient accumulation steps of 4 using
bf16 precision. The training lasted for one epoch on our generated dataset.

Training Datasets.

The training dataset of OmniJARVIS further includes a large amount of QA data about Minecraft. We generate a large
number of seed questions about these texts using web pages on the Minecraft wiki. Then, we use the self-instruct method to
generate a large number of creative questions and instructions. This constructed QA dataset consists of 300k conversations
with about 90M tokens. During the training process, the QA data and instruction-following data are mixed, with a total of
about 1T tokens, to train OmniJARVIS. In specific, we SFT (supervised finetune) LLaVA-7B (Liu et al., 2024). The details
can be found in Appendix D. To further demonstrate the generalizability of the method, we also fine-tune LLaVA at different
scales and VLM Fuyu-8B with different architectures. The relevant results are presented in Section B.3 and Section B.5.

E. Synthesis of Interaction Data
E.1. Synthesis of instruction

The instruction is a high-level description of what task is being performed in the current interaction sequence. The considered
OpenAI Minecraft data includes meta information of each gameplay video, which depicts fundamental events that happened
during in Minecraft gameplay, e.g. what block was just destroyed, what entity was just killed, what item was just crafted, etc.
Such meta-information can provide a basic overview of what the player has been through in the gameplay. We therefore
prompt an LLM into summarizing the gameplay with the meta information. The summary will then be used as the instruction
Dinst

t of the current interaction trajectory.
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Prompt E.1:Prompt for Instruction Generation

**Instruction**:
This is a paragraph of description of the player’s gameplay in Minecraft. The caption summarizes the current environmental state and
agent behavior, with the timestamp indicating which frame of the video this caption is from. Please summarize what tasks the agent
completed throughout the entire video. Please guess what instruction or task the player received to exhibit such behaviors. This task
should be clear and in details.
**IMPORTANT**:
DIRECTLY output the task. DO NOT repeat user input. DO NOT add additional explanations or introducement in the answer unless
you are asked to.
**Observation**:
Stats minecraft.custom:minecraft.interact_with_furnace happens. Gui is open. New stats minecraft.craft_item:minecraft.cooked_beef
happens. Get new item: cooked_beef*9. Get new item: stone_pickaxe*1. Stats minecraft.use_item:minecraft.stone_pickaxe
happens. Stats minecraft.mine_block:minecraft.furnace happens. Stats minecraft.pickup:minecraft.furnace happens. Get new item:
furnace*1. Stats minecraft.use_item:minecraft.white_bed happens. Stats minecraft.mine_block:minecraft.white_bed happens. Stats
minecraft.pickup:minecraft.white_bed happens. Get new item: white_bed*1. New stats minecraft.use_item:minecraft.cooked_beef
happens. Consume cooked_beef*1. **Task**:
1. Interact with a furnace to smelt cooked_beef and eat the cooked_beef. 2. Place a white_bed and sleep on it to survive the night.
**Observation**:
{observation}

Example of Instruction Generation

Example:
**Observation**:
Consume chest*1. Stats use_item:chest happens. Consume chest*1. Stats use_item:chest happens. Consume chest*1. Stats
use_item:chest happens. Consume chest*1. Stats use_item:chest happens. Consume item: chest*1. Stats use_item:chest happens. Stats
custom:open_chest happens. Open Game 2D GUI. Consume oak_planks*24. Consume item: birch_planks*5. Stats custom:open_chest
happens. Open Game 2D GUI. Consume lapis_lazuli*22. Consume item: iron_ingot*18. Consume item: potato*30. Consume item:
carrot*9. Consume item: wheat*4. Stats custom:open_chest happens. Consume oak_planks*64. Consume item: oak_planks*44.
Stats custom:open_chest happens. Open Game 2D GUI. Consume item: granite*20. Stats custom:open_chest happens. Open
Game 2D GUI. Consume item: oak_sapling*2. Consume item: birch_sapling*4. Consume item: wheat_seeds*12. Consume item:
poisonous_potato*1. Consume item: bread*1. Stats custom:open_chest happens. Open Game 2D GUI. Stats custom:open_chest
happens. Get new item: wheat*4. Get new item: carrot*9. Get new item: potato*30. Stats custom:open_chest happens. Open
Game 2D GUI. Consume item: wheat*4. Consume item: carrot*9. Consume item: potato*30. Get new item: potato*15. Stats
custom:open_chest happens. Open Game 2D GUI. Consume item: lapis_lazuli*64. Stats custom:interact_with_furnace happens. Open
Game 2D GUI. Consume item: potato*15. Stats custom:open_chest happens. Open Game 2D GUI. Get new item: iron_ingot*18.
Stats custom:interact_with_crafting_table happens. Open Game 2D GUI. Consume item: stick*28. Get new item: stick*22. Consume
item: iron_ingot*18.
**Generated Instruction**:
Task: Organize and manage inventory by storing items in chests, crafting various items, and using the furnace to smelt resources
efficiently. Also, focus on gathering resources like wood, ores, food items, and plant materials for crafting and survival purposes.

E.2. Synthesis of memory

The memory Dmem
t is the summary of what agents have finished in the previous interaction sequences. Due to the limited

sequence length that the auto-regressive model can handle, the model needs to learn to summarize key information related
to the task in historical interactions and ignore behaviors unrelated to instructions. The memory will be updated based on
the results of each episode trunk and used for subsequent episode trunks. We therefore prompt an LLM into summarizing
the gameplay with the meta information. The summary will then be used as the memory Dmem

t of the current interaction
trajectory. The memory prompt is as follows:
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Prompt E.3:Prompt for Memory Summarization

A player is playing Minecraft.The situation of the player contains 4 parts: task, state, inventory and memory. Under this situation, the
player will take a behavior. And after this behavior, the player’s memory will be updated to "Updated Memory". I need you to give a
subpart of the player’s updated memory that is most relevant to its task.
Task is the goal of the player. State describes the image the player is facing, Inventory is its current inventory of items. Memory
contains its past behaviors, each item in memory is its past behavior and the number of this behavior. The memory is sorted by time,
with the most recent behavior at the end. There are mainly 9 types of behavior:
+ ’craft_item:x’ means to craft an item x;
+ ’drop:x’ means to drop an item x;
+ ’use_item:x’ means to use an item x;
+ ’pickup:x’ means to pickup an item x;
+ ’custom’ means to custom its playing status;
+ ’mine_block:x’ means to mine a block x;
+ ’kill_entity:x’ means to kill an entity x;
+ ’entity_killed_by:x’ means the player is killed by an entity x;
+ ’break_item:x’ means an item x got broken.
Here is the player’s current situation:

Task: {task}
State: {state}
Inventory: {inventory}
Behavior: {behavior}
Updated Memory: {updated_memory}

I need you to summarize what the player has done to complete the task according to the updated memory. Please make
sure every part in your summary is relevant to the task. The output format should be: "The player first ..., then ..., and finally ..." Then
in a new line, try to summarize which stage of the task the player is in according to the memory.

Example of Memory Summarization

Example:
Task: "Gather various resources including andesite, granite, diorite, coal, iron ore, and cobblestone using a stone pickaxe. Craft and
use torches for illumination. Upgrade from a wooden to a stone pickaxe and craft a stone sword for defense. Explore and mine in a
systematic way, ensuring to light up the environment with torches and replacing tools as they wear out."
State: "The image captures a moment in a video game, specifically Minecraft. The scene is set in a dimly lit cave, with a wooden pillar
standing prominently in the foreground. The player’s inventory and score are displayed in the top left corner of the screen, providing a
glimpse into the player’s progress in the game. In the bottom right corner, the player’s health and hunger bars are visible, indicating
the player’s current status in the game. The rest of the screen is filled with a series of lines of text, each line representing a command
or instruction from the game. These commands seem to be related to the player’s movement and interaction with the environment,
guiding the player through their adventure in Minecraft. The image is a snapshot of a complex digital world, where every command
and action is carefully calculated and executed. It’s a testament to the immersive and engaging nature of video games like Minecraft."
Inventory: {’stone_pickaxe’: 1, ’wooden_axe’: 1, ’oak_log’: 8, ’stone_sword’: 1, ’andesite’: 8, ’coal’: 13, ’oak_planks’: 2, ’charcoal’:
2, ’torch’: 27, ’dirt’: 1, ’furnace’: 1, ’cobblestone’: 108, ’stick’: 21, ’iron_ore’: 2, ’granite’: 15, ’diorite’: 9, ’wooden_pickaxe’: 1}
Behavior: {’use_item:wooden_axe’: 1, ’mine_block:oak_fence’: 1}
Updated Memory: {’pickup:dirt’: 1, ’mine_block:oak_leaves’: 4, ’mine_block:andesite’: 8, ’pickup:furnace’: 1,
’use_item:stone_pickaxe’: 169, ’mine_block:stone’: 125, ’craft_item:charcoal’: 4, ’use_item:torch’: 14, ’mine_block:oak_log’:
21, ’mine_block:furnace’: 1, ’craft_item:stone_pickaxe’: 2, ’pickup:oak_planks’: 2, ’craft_item:wooden_axe’: 1, ’craft_item:stick’:
40, ’use_item:wooden_pickaxe’: 13, ’craft_item:air’: 0, ’pickup:andesite’: 8, ’use_item:furnace’: 1, ’mine_block:grass’: 1,
’mine_block:crafting_table’: 2, ’craft_item:furnace’: 1, ’pickup:crafting_table’: 2, ’pickup:coal’: 21, ’mine_block:grass_block’: 1,
’craft_item:torch’: 40, ’pickup:oak_log’: 23, ’pickup:cobblestone’: 124, ’craft_item:oak_planks’: 36, ’craft_item:crafting_table’:
1, ’use_item:crafting_table’: 3, ’use_item:wooden_axe’: 18, ’craft_item:wooden_pickaxe’: 1, ’mine_block:coal_ore’: 21,
’mine_block:granite’: 15, ’pickup:granite’: 15, ’drop:stone_pickaxe’: 1, ’pickup:stone_pickaxe’: 1, ’mine_block:diorite’: 9,
’pickup:diorite’: 9, ’break_item:stone_pickaxe’: 1, ’craft_item:stone_sword’: 1, ’mine_block:iron_ore’: 2, ’pickup:iron_ore’:
2, ’mine_block:wall_torch’: 1, ’pickup:torch’: 1, ’mine_block:oak_fence’: 1}
Generated Summary:
The player first gathered various resources including andesite, granite, diorite, coal, iron ore, and cobblestone using a stone pickaxe.
Then, they crafted and used torches for illumination, upgraded from a wooden to a stone pickaxe, and crafted a stone sword for defense.
Finally, they explored and mined systematically, ensuring to light up the environment with torches and replacing tools as they wore out.
The player is in the stage of gathering various resources, crafting torches, upgrading tools, and exploring systematically.
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E.3. Synthesis of thought

The thought Dthought
t is the agent’s reasoning and explanation of its own decisions. Previous methods have confirmed that

using thought-enhanced interaction data helps language models understand decision-making (Hu & Clune, 2024). Compared
to labeling thoughts by humans (Yao et al., 2022; Brohan et al., 2023), we assume that thought is an intermediate variable
that can be determined by the actions taken and observations made before and after the action, which is similar to an Inverse
Dynamics Model (Baker et al., 2022). We therefore prompt an LLM into estimating the thought of decisions with in-context
learning, which will then be used as the thought Dthought

t of the current behavior. The detailed prompt is as follows:

Prompt E.5:Prompt for Thought Generation

A player is playing Minecraft. I need you to give thought about what behavior it should take next given current situation. Here are
some demonstrations:

Task: "Obtain a diamond"
State: "The image captures a scene from the popular video game, There is a grass block in front of the agent."
Inventory: {’dirt’: 10}
Memory: {}
Thought: "The player has nothing in its inventory, it should first go to harvest some oak logs. However there is a grass block in front of
the agent, it should mine it first to find a way. So the behavior should be {mine_block:grass:1}."
Behavior: {’mine_block:grass’: 1}

Task: "Obtain an iron pickaxe"
State: "In the image, a player in the video game is standing in a dark cave."
Inventory: {’dirt’: 20, ’stick’: 10, ’iron_ore’: 5, ’furnace’: 1, ’stone_pickaxe’: 1}
Memory: {’mine_block:iron_ore’: 5, ’craft_item:furnace’: 1}
Thought: "The player has 5 iron ores in its inventory, it should smelt them to get iron ingots. However, it does not have enough coal to
smelt the iron ores. The player should mine some coal ores first. And using the stone pickaxe in the inventory can help to mine the
coal ores. So the behavior should be {use_item:stone_pickaxe:1, mine_block:coal_ore:1}."
Behavior: {’use_item:stone_pickaxe’: 1, ’mine_block:coal_ore’: 1}

Task: "Harvest logs"
State: "The image captures a moment in the video game The player’s character, standing in the center of the frame, is holding a
crafting table in their hands. The crafting table, which is the main focus of the image, is gray and has a crafting grid on top of it."
Inventory: {’oak_log’: 20, ’stick’: 8}
Memory: {’use_item:wood_axe’: 40, ’craft_item:stick’: 8, ’mine_block:oak_log’: 20, ’break_item:wood_axe’: 1}
Thought: "The player needs to harvest more logs. However the last memory shows that the player has broken the wood axe. So the
player should craft a new wood axe first. The player has enough logs in the inventory and the crafting table in the inventory can help to
craft the wood axe. So the behavior should be {use_item:crafting_table:1}."
Behavior: {"use_item"crafting_table": 1}

In demonstrations, "Task" is the goal of player. "State" describes the image the player is facing, "Inventory" is its current
inventory and "Memory" contains past behaviors taken by the player. "Memory" is sorted by time, with the most recent behavior
at the end. You should pay attention to recent behaviors. According to these information, players first generate thoughts
about what to do next("Thought") and then take behaviors accordingly("Behavior"). In the first demo, the behavior is not
relevant to the task; in the second demo, the thought considers needs of the task and current inventory; the third demo considers
the memory of the player and identify the need of crafting a new tool to replace the broken tool. Now think about the following situation:

Task: {task}
State: {state}
Inventory: {inventory}
Memory: {memory}
Thought: {}
Behavior: {behavior}

Given current situation and the behavior the player will take, output a simple thought that will directly lead to this behav-
ior. Please carefully revise the need of the task, current inventory and recent memory of the player. Be sure to explain every part of the
behavior. The output format should be "Thought: reason...So the behavior should be {behavior}".
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Example of Thought Generation

Example:
Task: "The player was instructed to mine various resources and craft tools in Minecraft: 1. Start by mining coal ore and crafting cooked
beef from it. 2. Smelt iron ore and cook food in the furnace. 3. Mine stone to collect cobblestone. 4. Craft a stone pickaxe and use it to
mine various ores like coal, iron, and diorite. 5. Create torches from coal and sticks. 6. Craft a stone pickaxe and an iron pickaxe. 7.
Use the iron pickaxe to mine granite and gather resources. 8. Interact with a crafting table to craft items like an iron pickaxe, torches,
and iron ingots. 9. Utilize tools like pickaxes to mine stones and different ores efficiently. 10. Gather various resources like coal, iron,
cobblestone, diorite, and granite. 11. Keep crafting and mining to progress in the game.These actions showcase a cycle of resource
gathering, processing, and crafting to advance the player’s capabilities and inventory in the game."
State: "The image captures a moment in the video game Minecraft. The player’s character, standing in the center of the frame, is
holding a crafting table in their hands. The crafting table, which is the main focus of the image, is gray and has a crafting grid on top
of it. In the crafting grid, there are several items arranged in rows and columns. Starting from the top left, there’s a book, followed by a
loom in the middle, and a furnace at the bottom. The crafting table is set against a black background, which contrasts with the gray
color of the table and the items on it. At the bottom of the image, there’s a red banner with the text "Crafting" written on it. This
banner adds a pop of color to the otherwise monochrome image. The overall composition of the image suggests that the player is in
the process of crafting something, possibly a book or a loom, using the items in the crafting grid."
Inventory: {’wooden_shovel’: 1, ’wooden_axe’: 1, ’cobblestone’: 51, ’dirt’: 14, ’andesite’: 23, ’iron_ore’: 7, ’coal’: 31, ’stick’: 54,
’birch_log’: 5, ’birch_planks’: 47, ’furnace’: 1, ’crafting_table’: 1, ’granite’: 4, ’diorite’: 7, ’wooden_pickaxe’: 1}
Memory: {use_item:stone_pickaxe’: 63, ’mine_block:coal_ore’: 9, ’pickup:coal’: 9, ’mine_block:wall_torch’: 1, ’use_item:torch’: 3,
’pickup:torch’: 1, ’mine_block:granite’: 4, ’pickup:granite’: 4, ’mine_block:stone’: 38, ’pickup:cobblestone’: 37, ’mine_block:diorite’:
8, ’pickup:diorite’: 7, ’use_item:cobblestone’: 3, ’mine_block:iron_ore’: 3, ’pickup:iron_ore’: 3, ’break_item:stone_pickaxe’: 1}
Behavior: {’use_item:crafting_table’: 1}
Generated Thought:
Thought: The player’s current inventory includes various resources like cobblestone, coal, iron ore, and granite, along with essential
tools like a wooden pickaxe, shovel, and axe. Recent memory indicates the player has been actively mining various blocks and
collecting resources, including coal, granite, and iron ore. However, the memory also shows that the player’s stone pickaxe has broken.
To progress efficiently and craft necessary items, such as torches and better pickaxes, the player should utilize the crafting table. So the
behavior should be {’use_item:crafting_table’: 1}.

F. Examples of OmniJARVIS Interaction Process
The tokens with blue color are prompted from the environment observation and user, and the tokens with red color are
generated by OmniJARVIS.
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Example 1 of OmniJARVIS Interaction

TASK: Mine stone with an iron pickaxe, gather cobblestone, then switch to gravel, mining it with a wooden shovel to collect some.
Return to mining stone with the iron pickaxe, place torches for visibility, then proceed to mine iron ore as well. The agent collects
items along the way, including gravel and iron ore while constantly gathering cobblestone throughout the process.
MEMORY: I have mine 13 stone blocks and 1 gravel block.
INVENTORY: iron_pickaxe: 1, wooden_shovel: 1, wooden_axe: 1, cobblestone: 156, crafting_table: 1, andesite: 23, iron_ore: 4,
coal: 31, birch_log: 5, birch_planks: 47, furnace: 1, gravel: 1, granite: 12, diorite: 28, wooden_pickaxe: 1, stone_pickaxe: 1, dirt: 14,
stick: 43

OBSERVATION:
CAPTION: The image captures a moment in the video game Minecraft. The player’s character is standing at the entrance of a cave,
which is characterized by its dark gray walls and ceiling. The floor of the cave is a contrasting light gray, with a few small rocks
scattered about. In the bottom left corner of the screen, the player’s health and hunger bars are visible, indicating the status of the
character. The top right corner of the screen displays the player’s inventory, showcasing a variety of items including a pickaxe, a
sword, and some food. The most striking feature of the image is the text Iron Pickaxe that appears in the bottom right corner of the
screen. This suggests that the player might be using an iron pickaxe, a common tool in the game for mining. The precise location of
the objects and their relative positions contribute to the immersive gaming experience.
THOUGHT: The player needs to mine iron ore with an iron pickaxe to progress towards the task. Recent memory indicates a focus
on using the iron pickaxe for various mining activities. Since iron ore is a key component in the task’s objectives and the player
already possesses the required tool, the next step should be to mine the iron ore. So the behavior should be ’use_item:iron_pickaxe’,
’mine_block:iron_ore’.
CONTROL: TOKEN[BEHAVIOR-12372].
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Example 2 of OmniJARVIS Interaction

TASK: Task: 1. Smelt iron ingots in a furnace. 2. Craft an iron pickaxe from iron ingots and sticks. 3. Mine diamond ore blocks using
the iron pickaxe, collecting diamonds. 4. Mine redstone ore, collecting redstone. 5. Mine diorite blocks. 6. Craft a diamond pickaxe
using diamonds and sticks. 7. Craft additional diamond pickaxes using cobblestone and the previous diamond pickaxe.
MEMORY: I have smelt 3 iron ingots.
INVENTORY: oak_log: 9, andesite: 3, dirt: 6, oak_planks: 8, iron_ingot: 3, cobblestone: 124, stone_axe: 1, stone_pickaxe: 1, granite:
15, wheat_seeds: 1, diorite: 9, stick: 7

OBSERVATION:
CAPTION: The image captures a scene from the video game Minecraft. In the center of the frame, a player’s hand is seen holding
a torch, which is ablaze with orange and yellow flames. The torch is being used to ignite a pile of wooden planks that are stacked
haphazardly on top of each other. The planks are brown and appear to be made of wood. The player’s health and hunger bars are
visible in the bottom left corner of the screen, indicating the player’s status in the game. In the bottom right corner, the player’s
inventory is displayed, showcasing the tools at their disposal. The background of the image reveals a cave-like structure, characterized
by stalactites hanging from the ceiling and stalagmites rising from the floor. The walls of the cave are made of gray stone, providing a
stark contrast to the wooden planks. Overall, the image provides a snapshot of a moment in the game, capturing the player’s interaction
with the environment and the tools at their disposal.
THOUGHT: The player holds enough iron ingots in their inventory, fulfilling the task requirement to craft iron ingots in a furnace.
However, to proceed with the subsequent tasks which involve mining diamond ore and redstone ore, acquiring an iron pickaxe is
crucial. Considering the current inventory, the player possesses the necessary materials to craft an iron pickaxe - iron ingots and sticks.
Crafting the iron pickaxe now will enable the player to move efficiently towards their goal of mining valuable resources like diamonds
and redstone. Therefore, the immediate action should be to craft an iron pickaxe. So the behavior should be craft_item:iron_pickaxe.
CONTROL: TOKEN[BEHAVIOR-1375].
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