

000 001 002 003 004 005 006 007 008 009 010 011 012 013 FROM VERIFIABLE DOT TO REWARD CHAIN: HAR- NESSING VERIFIABLE REFERENCE-BASED REWARDS FOR REINFORCEMENT LEARNING OF OPEN-ENDED GENERATION

008 **Anonymous authors**

009 Paper under double-blind review

ABSTRACT

014
015 Reinforcement learning with verifiable rewards (RLVR) succeeds in reasoning
016 tasks (e.g., math and code) by checking the final verifiable answer (i.e., a ver-
017 ifiable *dot* signal). However, extending this paradigm to open-ended genera-
018 tion is challenging because there is no unambiguous ground truth. Relying on
019 single-dot supervision often leads to inefficiency and reward hacking. To address
020 these issues, we propose reinforcement learning with verifiable reference-based
021 rewards (**RLVRR**). Instead of checking the final answer, RLVRR extracts an or-
022 dered linguistic signal from high-quality references (i.e., reward chain). Speci-
023 fically, RLVRR decomposes rewards into two dimensions: *content*, which preserves
024 deterministic core concepts (e.g., keywords), and *style*, which evaluates adher-
025 ence to stylistic properties through LLM-based verification. In this way, RLVRR
026 combines the exploratory strength of RL with the efficiency and reliability of su-
027 pervised fine-tuning (SFT). Extensive experiments on more than 10 benchmarks
028 with Qwen and Llama models confirm the advantages of our approach. RLVRR
029 (1) substantially outperforms SFT trained with ten times more data and advanced
030 reward models, (2) unifies the training of structured reasoning and open-ended
031 generation, and (3) generalizes more effectively while preserving output diversity.
032 These results establish RLVRR as a principled and efficient path toward verifiable
033 reinforcement learning for general-purpose LLM alignment.

1 INTRODUCTION

034
035 Reinforcement learning with verifiable rewards (RLVR) (Shao et al., 2024; Yu et al., 2025a; Team,
036 2025) has emerged as a promising paradigm for enhancing large language models (LLMs) in rea-
037 soning tasks such as mathematics and code generation. At its core, RLVR sidesteps the complicated
038 Chain-of-Thought (CoT) supervision and only checks the correctness of the final reasoning result
039 (i.e., the verifiable *dot*) within the reasoning solution. The presence of unambiguous ground truth
040 makes such a verifiable dot a reliable signal, guiding exploration toward correct CoTs while pre-
041 venting drift into spurious reasoning paths.

042 While RLVR is simple yet effective for reasoning tasks (e.g., math and code generation), it fails in
043 open-ended generation tasks, where no unambiguous ground truth exists and reliable verification
044 cannot be reduced to a single dot. In many cases, high-quality responses in open-ended generation
045 should satisfy a list of content requirements simultaneously; for instance, a safe-response policy
046 answer should explain the risk, refuse the harmful request, cite the relevant rule, and offer a safer
047 alternative. In practice, researchers often resort to reinforcement learning from human feedback
048 (RLHF) (Christiano et al., 2017; Bai et al., 2022; Ouyang et al., 2022) using preference-based reward
049 models (Liu et al., 2024; 2025a) or generative reward models (Jia et al., 2025; Gunjal et al., 2025).
050 Despite their widespread adoption, reward models suffer from two major limitations: (1) they are
051 prone to reward hacking, often overfitting superficial artifacts and spurious correlations (Chen et al.,
052 2024); (2) they require large-scale pairwise annotations, making training costly and brittle during
053 RL optimization. This motivates a critical research question: *how can we extend RL optimization to
open-ended generation by moving beyond single-dot supervision?*

To this end, we introduce **RLVRR** (reinforcement learning with verifiable reference-based rewards), a framework that extends RLVR to open-ended generation. Instead of relying on a single verifiable *dot*, RLVRR extracts an ordered sequence of verifiable linguistic signals from high-quality references, transforming the *dot* supervision into a *reward chain*, akin to how mathematical reasoning derives rules from ground truth. A *reference* is a high-quality exemplar for the same prompt, which can be drawn from synthetic instruction-following corpora (e.g., OpenHermes, Magpie, WebR) (Teknium, 2023; Xu et al., 2025; Jiang et al., 2025) at scale and low cost. Mechanistically, RLVRR mirrors the single-dot principle: the reward chain anchors exploration to a standardized, verifiable checklist derived from the reference. To make supervision both reliable and efficient, RLVRR decomposes rewards into two complementary dimensions: content and style. The **content** reward uses reference-derived key points (e.g., key entities or keywords) to score a rollout by whether those deterministic core concepts are present, which remains flexibility in phrasing and expression; The **style** reward runs a small set of LLM-generated, verifiable Python checks on the rollout to confirm adherence to reference-specific stylistic properties (e.g., length, format). By integrating these complementary signals, RLVRR retains RL’s exploratory dynamics but injects SFT-like token-level guidance, yielding lightweight reward, stable learning, and better generalization.

Comprehensive experiments across over 10 benchmarks show that: (1) RLVRR substantially outperforms SFT with $10\times$ more data, advanced reward models, and confidence-based rewards; (2) RLVRR can be effectively integrated into RLVR, unifying the training of structured reasoning and open-ended generation; (3) RLVRR eliminates loading reward models during RL training, incurring merely 0.71% computational overhead compared to random rewards. Moreover, our in-depth analyses reveal why RLVRR generalizes more effectively and confirm that it preserves output diversity despite relying on rule-based verifiers, underscoring its practical potential.

2 RELATED WORK

Reinforcement learning with verifiable rewards. RLVR has demonstrated strong capabilities on reasoning tasks such as math and code (Shao et al., 2024; Yu et al., 2025a; Team, 2025). By leveraging deterministic verifiers like Math-Verify (Kydliček, 2024) and SandboxFusion (Bytedance-Seed-Foundation-Code-Team et al., 2025), RLVR enables direct correctness evaluation. Building on this paradigm, recent work has extended RLVR to broader reasoning domains. For instance, (Su et al., 2025; Ma et al., 2025) train specialized LLMs as verifier models to assess whether generated responses are equivalent to reference answers. VeriFree (Zhou et al., 2025) and RLPR (Yu et al., 2025b) bypass answer verification by leveraging policy likelihood for reference answer as a reward signal. However, these methods merely conduct experiments on datasets comprising short-form answers (nearly 10 words), overlooking the challenges of open-ended generation.

Reinforcement learning for open-ended generation. A pivotal advancement in applying reinforcement learning (RL) to open-ended generation is RLHF, which leverages human preference data to train a reward model that guides policy optimization. While effective, RLHF introduces several drawbacks including high training costs and susceptibility to reward hacking (Gao et al., 2023). These challenges have spurred the development of offline methods such as Direct Preference Optimization (DPO) (Rafailov et al., 2023), which optimizes policies directly from preference data without an explicit reward model. More recently, (Chang et al., 2025) directly uses BLEU (Papineni et al., 2002) between the reference and the rollout as a reward signal for open-ended tasks. Despite its simplicity, n -gram precision metrics such as BLEU fail to capture key content aligned with human preferences, resulting in misaligned and noisy reward signals during training.

3 METHODOLOGY

We propose reinforcement learning with verifiable reference-based rewards (RLVRR), a framework designed to provide reliable, low-cost rewards for open-ended generation by leveraging **Reward Chain** extracted from reference responses. RLVRR decomposes the reward signal into **content** and **style** dimensions, each computed through rule-based verification rather than subjective model-based scoring, as illustrated in Figure 1. We first introduce the problem formalization of RLVRR in §3.1, followed by illustrating the details of content and style rewards in §3.2 and §3.3.

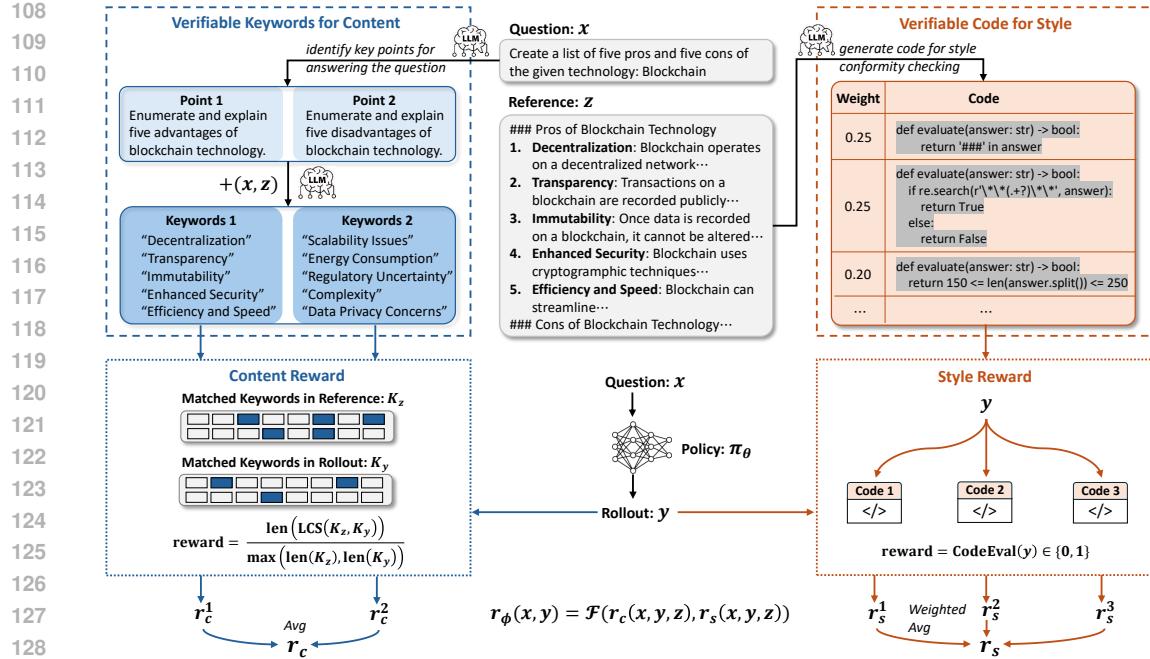


Figure 1: Overview of our proposed RLVRR framework. (1) **Upper (data construction):** given a Question x and a Reference z , we use an off-the-shelf LLM to generate verifiable components in terms of content and style for open-ended generation. (2) **Lower (RL training):** these verifiable components are leveraged to calculate the rule-based reward of the Rollout y .

3.1 PROBLEM FORMULATION

Let x denote an open-ended instruction sampled from the training data \mathcal{D} . Our goal is to train a policy π_θ that generates a response y maximizing the RL objective:

$$\mathcal{J}(\theta) = \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_\theta(\cdot | x)}[r_\phi(x, y)] - \beta \mathbb{D}_{\text{KL}}[\pi_\theta(y | x) \| \pi_{\text{ref}}(y | x)], \quad (1)$$

where r_ϕ is the reward function, \mathbb{D}_{KL} is the KL divergence, and π_{ref} denotes the reference model. Unlike conventional RLHF methods that rely on learned reward models to instantiate r_ϕ , RLVRR derives rewards directly from **verifiable linguistic signals** based on a reference answer z :

$$r_\phi(x, y) = \mathcal{F}(r_c(x, y, z), r_s(x, y, z)), \quad (2)$$

where r_c and r_s quantify content fidelity and stylistic conformity, respectively, and \mathcal{F} denotes the aggregation function (simple averaging in our experiments). Since both r_c and r_s are computed via reference-grounded rule-based reward, **RLVRR greatly mitigates the reward hacking and the inefficiency of reward models**, enabling robust and scalable RL training.

3.2 CONTENT REWARD OF RLVRR

Verifiable keywords for content. Numerous studies have shown that active learning, engaging with core concepts and rephrasing information, is more effective than passive memorization (Miller, 1956; Newport, 1990). Building on this insight, we propose a novel approach to verifiable reward design: our method extracts critical keywords (or phrases) from reference responses and optimizes the policy to maximize their inclusion during reinforcement learning. Rather than directly selecting keywords that loosely capture the semantics of the reference, we propose a novel **two-level hierarchical extraction** method: (1) an LLM first identifies a set of essential *key points* $\{p^m\}_{m=1}^M$ that the AI assistant must address when answering the question (See prompt in Figure 4); (2) for each key point p^m , the LLM extracts a set of *keywords* K^m (each fewer than three words) from the reference answer that encode the core facts, concepts, or entities required to assess the correctness and relevance of the response (See prompt in Figure 5). This strategy enables broader and more systematic keyword coverage while decomposing the content reward into fine-grained, verifiable units.

162 As shown in Table 3, this separation significantly improves performance by 0.9 points. On average,
 163 the extracted keywords constitute approximately **15%** of the reference response, striking a balance
 164 between coverage and conciseness.
 165

166 **Content reward calculation.** To assess content fidelity during RL training, we propose a reward
 167 function based on keyword alignment between a generated rollout y and reference text(s) z . For each
 168 key point p^m (where $m \in [1, M]$), we extract the matched keyword sequences K_y^m from y and K_z^m
 169 from z using regular expression matching. Crucially, K_y^m and K_z^m **preserve both the frequency**
 170 and **sequential order** of matched keywords, ensuring fine-grained alignment evaluation. For each
 171 key point p^m , we compute the semantic coherence between y and z using the longest common
 172 subsequence (LCS) metric (Wagner & Fischer, 1974). LCS is chosen because it inherently captures
 173 keyword ordering and repetition, making it well-suited for evaluating the structural and semantic
 174 fidelity of generated text. The alignment score for p^m is given by the normalized LCS length, while
 175 the overall content reward $r_c(x, y, z)$ is defined as the mean alignment score across all key points:
 176

$$r_c(x, y, z) = \frac{1}{M} \sum_{m=1}^M \frac{\text{len}(\text{LCS}(K_z^m, K_y^m))}{\max(\text{len}(K_z^m), \text{len}(K_y^m))}. \quad (3)$$

179 **To improve robustness and accommodate multiple references** $\{z_i\}_{i=1}^I$, we extend Eq. (3) by
 180 selecting the highest alignment score per key point across all references. This ensures tolerance to
 181 variations in reference phrasing while maintaining rigorous content fidelity assessment:
 182

$$r_c(x, y, \{z_i\}_{i=1}^I) = \frac{1}{M} \sum_{m=1}^M \max_i \left[\frac{\text{len}(\text{LCS}(K_{z_i}^m, K_{y_i}^m))}{\max(\text{len}(K_{z_i}^m), \text{len}(K_{y_i}^m))} \right]. \quad (4)$$

186 In RLVRR, we set $I = 3$ and show in Table 3 that multiple references consistently improve policy
 187 performance, suggesting diversified references enhance robustness.
 188

189 3.3 STYLE REWARD OF RLVRR

190 **Verifiable code for style.** Unlike reasoning tasks, stylistic quality significantly influences model
 191 performance in open-ended generation tasks. To quantify stylistic alignment, we employ an LLM
 192 to generate a set of verifiable Python functions $\{\text{CodeEval}_n(\cdot)\}_{n=1}^N$, each assessing whether the
 193 rollout y adheres to stylistic properties of a reference z . These properties include answer length,
 194 markdown formatting, and other measurable features (See prompt in Figure 6). Additionally, the
 195 LLM assigns a weight w_n to each $\text{CodeEval}_n(\cdot)$, reflecting its relative importance—an approach
 196 validated empirically in our ablation study (Table 3). While our current implementation focuses
 197 on verifiable stylistic elements, semantic aspects such as tone are implicitly captured through the
 198 content reward.
 199

200 **Style reward calculation.** During reinforcement learning, we compute the style reward $r_s(x, y, z)$
 201 by evaluating y against each $\text{CodeEval}_n(\cdot)$ and aggregating the results as a weighted sum:
 202

$$r_s(x, y, z) = \sum_{n=1}^N w_n \cdot \text{CodeEval}_n(y). \quad (5)$$

206 4 EXPERIMENTS

208 4.1 EXPERIMENTAL SETUP

210 **Models and training data.** We conduct experiments using the Qwen2.5 (Qwen Team, 2024) and
 211 Llama3.1 (Dubey et al., 2024) model series to ensure fair comparisons with prior work and en-
 212 able comprehensive evaluation. For training data, we adopt the dataset released by (Jiang et al.,
 213 2025), comprising 100K open-ended instruction-response pairs curated from diverse high-quality
 214 instruction-tuning datasets. All responses are regenerated by GPT-4o-mini to maintain consistency
 215 in response quality. During the data construction of RLVRR, we also leverage GPT-4o-mini as the
 off-the-shelf LLM to generate verifiable components. Besides, we **cross-validate the quality of**

216 **the verifiable components using the reference**, filtering out cases where both content and style re-
 217 wards of the reference fall below 0.7. Finally, we randomly sample 10K data for RL training, where
 218 GRPO (Shao et al., 2024) is applied as the optimization algorithm to ensure that all other settings
 219 are consistent with our approach.
 220

221 **Evaluation benchmarks.** We assess our models using five of the most popular open-ended
 222 instruction-following benchmarks: AlpacaEval 2 (Li et al., 2023), Arena-Hard (Li et al., 2024),
 223 MT-Bench (Zheng et al., 2023), IFEval (Zhou et al., 2023), and FollowBench (Jiang et al., 2024).
 224 For AlpacaEval 2, we report the length-controlled win rate (LC), which ensures robustness against
 225 verbosity. For Arena-Hard, we report the win rate (WR) against the baseline model. For MT-Bench,
 226 we provide the average score, using GPT-4.1-mini as the evaluation judge. For IFEval and Fol-
 227 lowBench, we report the prompt-level strict accuracy and the hard satisfaction rate, respectively.
 228 Besides, we evaluate the impact of diverse methods on tasks across multiple domains: (1) **Knowl-
 229 edge:** MMLU (Hendrycks et al., 2021a); (2) **Reasoning:** ARC (Clark et al., 2018); (3) **Math:**
 230 MATH (Hendrycks et al., 2021b); (4) **Code:** HumanEval (Chen et al., 2021). More evaluation
 231 details are listed in Appendix B.
 232

232 **Baselines.** We compare RLVRR with seven established and contemporaneous methods, catego-
 233 rized into SFT, reward strategies, and DPO. (1) **SFT:** Standard supervised fine-tuning (Wei et al.,
 234 2022; Mishra et al., 2022) on (i) 10K data which shares identical prompts with RL, or (ii) 100K
 235 data. (2) **Random:** We examine whether random rewards $\sim \text{Uniform}(0, 1)$ can benefit open-ended
 236 generation. (3) **BLEU:** (Chang et al., 2025) directly uses BLEU (Papineni et al., 2002) between
 237 the reference and the rollout as a reward signal for RL-based alignment. (4) **RM:** We use Skywork-
 238 Reward-V2-Llama-3.1-8B¹ (Liu et al., 2025a) trained on well-curated preference data as the reward
 239 model to score output in GRPO. (5) **GRM:** Following Rubrics as Rewards (Gunjal et al., 2025),
 240 we use GPT-4o-mini as the generative reward model to judge whether the rollout satisfies checklist-
 241 style rubrics. (6) **RLPR** (Yu et al., 2025b): RLPR is a verifier-free framework that uses the LLM’s
 242 own token probability scores of reference answers as the reward signal. (7) **DPO** (Rafailov et al.,
 243 2023): We generate the preference dataset following (Meng et al., 2024). For each question x , we
 244 first generate 5 responses using the INSTRUCT model and then use GPT-4o-mini to select the best
 245 one as *win* and the worst one as *lose*. All implementation details are illustrated in Appendix A.1.
 246

246 4.2 MAIN RESULTS

248 Table 1 summarizes the performance of various methods across five open-ended benchmarks and
 249 four additional tasks, revealing several key findings. (1) **Superiority over SFT:** Remarkably,
 250 RLVRR outperforms SFT by a significant margin on open-ended tasks, even when SFT is trained
 251 with *10× more data*. (2) **Advantages over alternative reward strategies:** RLVRR consistently
 252 surpasses other reward strategies, including random reward, BLEU, reward model (RM), genera-
 253 tive reward model (GRM), and RLPR. Notably, it improves over the RM-based approach—which
 254 requires loading an auxiliary reward model during training—by **+2.3** and **+2.7** points on Qwen2.5-
 255 3B-Base and Instruct, respectively. (3) **Improved over DPO:** RLVRR exhibits stronger performance
 256 than DPO, a widely adopted alignment method, further validating its effectiveness. (4) **Robustness**
 257 **across scales and initializations:** The benefits of RLVRR persist across varying model sizes and
 258 training starting points, demonstrating its general applicability. (5) **Generalization to diverse tasks:**
 259 Beyond open-ended generation, RLVRR achieves state-of-the-art results on knowledge-intensive,
 260 reasoning, mathematical, and coding tasks, highlighting its superior generalization capability.
 261

261 4.3 INTEGRATION WITH MATHEMATICAL REASONING

263 To examine the compatibility of our method in jointly optimizing for both closed-form reasoning
 264 and open-ended generation within RLVRR, we focus on the mathematical domain as a representative
 265 setting. The reasoning template is shown in Appendix A.3. Following SimpleRL-Zoo (Zeng et al.,
 266 2025), we stratify the MATH dataset (Lewkowycz et al., 2022) into five difficulty levels and ran-
 267 domly sample 10K examples from levels 2–5 as the base for math-focused RL training. To explore
 268 integration, we construct a mixed training set by combining 5k math-focused samples (*using rule-
 269 based reward*) with 5k open-ended instances (*using RLVRR-based reward*). We evaluate the result-

¹This model ranks first on RewardBench (Lambert et al., 2025) as of September 24th, 2025.

270 Table 1: Evaluation results across five open-ended benchmarks and four other tasks. The results of
 271 Llama3.1, which indicate consistent findings, are shown in Appendix C.

Method	#Data	Alpaca Eval 2	Arena Hard	MT Bench	IF Eval	Follow Bench	Avg.	MMLU	ARC	MATH	Human Eval	Avg.
Qwen2.5-3B Models												
<i>Base</i>	-	0.8	6.5	6.4	22.0	12.4	9.6	66.8	75.6	54.0	66.5	65.7
→ SFT	10K	22.0	27.3	7.5	31.8	45.0	26.7	66.1	83.7	59.6	65.9	68.8
→ SFT	100K	25.1	32.9	7.5	35.9	51.3	30.5	60.4	81.4	58.7	65.9	66.6
→ GRPO (Random)	10K	3.7	3.6	6.1	25.7	16.1	11.0	66.9	73.7	59.7	61.6	65.5
→ GRPO (BLEU)	10K	14.4	26.6	6.9	29.2	41.8	23.8	67.2	82.0	59.9	62.8	68.0
→ GRPO (RM)	10K	22.4	33.7	7.3	32.8	47.6	28.8	67.1	84.2	59.6	65.1	69.0
→ GRPO (GRM)	10K	21.1	30.5	7.4	35.4	47.3	28.3	65.5	81.2	58.2	63.9	67.2
→ GRPO (RLPR)	10K	21.8	28.6	7.4	32.6	47.2	27.5	65.7	82.8	58.7	65.3	68.1
→ GRPO (RLVRR)	10K	23.7	35.3	7.6	37.7	51.2	31.1	67.9	85.7	60.6	66.0	70.0
<i>Instruct</i>	-	17.0	19.3	7.8	54.9	47.5	29.3	67.3	84.8	63.2	71.3	71.6
→ DPO	10K	18.0	31.1	7.6	59.3	49.6	33.1	67.1	84.8	63.7	69.2	71.2
→ GRPO (RM)	10K	22.3	34.1	7.6	55.3	49.3	33.7	67.5	85.3	63.2	70.7	71.7
→ GRPO (RLVRR)	10K	24.3	36.5	7.9	61.3	51.9	36.4	67.8	85.4	63.6	71.9	72.2
Qwen2.5-7B Models												
<i>Base</i>	-	2.1	8.9	7.3	24.7	14.9	11.6	74.2	79.8	69.4	76.0	74.9
→ SFT	10K	30.0	53.2	8.3	42.3	47.5	36.3	75.2	89.8	67.5	77.4	77.5
→ SFT	100K	32.3	52.0	8.3	43.5	56.3	38.5	70.9	87.5	67.6	76.7	75.7
→ GRPO (Random)	10K	4.5	7.8	7.4	28.3	15.0	12.6	74.3	78.6	68.3	76.6	74.4
→ GRPO (BLEU)	10K	19.9	44.1	7.8	39.5	46.8	31.6	74.6	83.5	68.0	77.1	75.8
→ GRPO (RM)	10K	32.8	53.5	8.2	43.2	49.0	37.3	74.8	88.3	68.8	76.5	77.1
→ GRPO (GRM)	10K	31.6	52.7	8.1	43.9	49.5	37.2	73.6	86.4	68.8	76.2	76.3
→ GRPO (RLPR)	10K	31.9	51.7	8.2	42.6	49.2	36.7	72.4	87.0	67.1	76.1	75.7
→ GRPO (RLVRR)	10K	33.6	54.9	8.3	47.8	54.6	39.8	75.7	89.6	70.1	77.5	78.2
<i>Instruct</i>	-	35.6	37.1	8.7	69.7	53.8	41.0	74.9	90.2	80.6	83.8	82.4
→ DPO	10K	36.7	52.4	8.2	69.3	53.3	44.0	74.3	89.9	80.9	82.6	81.9
→ GRPO (RM)	10K	37.6	53.6	8.4	69.1	53.9	44.5	75.1	89.5	80.2	82.8	81.9
→ GRPO (RLVRR)	10K	41.4	55.8	8.8	70.3	55.7	46.4	75.6	90.3	80.6	84.1	82.6

Table 2: Performance comparison of math tasks based on Qwen2.5-3B-Base.

Method	GSM8K	MATH 500	Minerva Math	GaoKao 2023 En	Olympiad Bench	College Math	Avg.	Open-ended Avg.	
<i>Base</i>		81.8	61.2	21.0	48.1	25.0	39.5	46.1	9.6
→ GRPO - 10K math (RLVR)		86.2	68.0	26.1	57.4	30.7	43.2	51.9	22.6
→ GRPO - 10K open-ended (RLVRR)		85.0	64.0	25.4	54.3	26.8	43.0	49.8	31.1
→ GRPO - 5k math (RLVR) + 5k open-ended (RLVRR)		86.0	67.8	29.4	57.3	28.0	42.7	51.9	30.7
→ GRPO - 5k math (RLVR) + 5k open-ended (RM)		84.6	67.0	24.7	56.5	27.3	42.3	50.4	28.2
<i>Instruct</i>		87.0	64.8	27.6	56.6	27.3	45.1	51.4	29.3

305 ing models on six standard mathematical reasoning benchmarks, including GSM8K (Cobbe et al.,
 306 2021), MATH 500 (Hendrycks et al., 2021b), Minerva Math (Lewkowycz et al., 2022), GaoKao
 307 2023 En (Liao et al., 2024), Olympiad Bench (He et al., 2024), and College Math (Tang et al.,
 308 2024). We report the performance of CoT reasoning with greedy decoding.

309 As shown in Table 2, RLVR trained solely on mathematical data significantly boosts performance
 310 on math benchmarks but generalizes poorly to open-ended tasks (Avg. 22.6). In contrast, RLVRR
 311 trained only on open-ended data achieves strong performance in open-ended tasks and also im-
 312 proves mathematical reasoning (Avg. 49.8), indicating positive transfer. Unified training on mixed
 313 data provides the best balance, reaching 51.9 on math benchmarks and 30.7 on open-ended tasks.
 314 Remarkably, this setting even surpasses the INSTRUCT model trained on millions of samples, despite
 315 using only 10K RL training instances. Furthermore, RLVRR demonstrates better compatibility with
 316 reasoning tasks compared to RM. These results demonstrate that **our method seamlessly integrates**
 317 **with RLVR, unifying the training of structured reasoning and open-ended generation.**

5 ANALYSIS

5.1 ABLATION STUDY

321 To systematically evaluate method components and offer a comprehensive understanding of
 322 RLVRR, we conduct ablation studies based on Qwen2.5-3B-Base in Table 3.

324
325
326 Table 3: Ablation study based on Qwen2.5-3B-Base.
327
328

Method	AlpacaEval 2	Arena-Hard	MT-Bench	IF-Eval	FollowBench	Avg.
GRPO (RLVRR)	23.7	35.3	7.6	37.7	51.2	31.1
<i>Effect of content reward and style reward</i>						
-w/o content reward	9.6	10.2	6.7	28.6	35.5	18.1
-w/o multiple references	23.6	35.1	7.6	36.1	50.9	30.7
- repl. LCS with direct matching	10.3	8.5	6.5	29.0	34.7	17.8
-w/o style reward	19.6	28.5	6.6	36.6	50.1	28.3
-w/o weight in style	22.2	35.0	7.6	36.2	48.6	29.9
<i>Effect of keyword extraction</i>						
-w/o two-level extraction	22.6	35.3	7.5	34.3	51.3	30.2
- extract 15% keywords randomly	19.0	32.4	7.1	32.9	43.7	27.0
- extract 15% keywords by TF-IDF	19.6	31.3	7.4	33.3	45.5	27.4
- extract 30% keywords by TF-IDF	19.4	30.5	7.3	32.7	45.9	27.2

340
341 Table 4: Impact of various reference LLMs based
342 on Qwen2.5-3B-Base.

Method	LLM of Ref	#Data	Open-ended Avg.
SFT	GPT-4o-mini	10K	26.7
SFT	GPT-4o-mini	100K	30.5
GRPO (RLVRR)	GPT-4o-mini	10K	31.1
SFT	Llama3-70B-Inst	10K	24.8
SFT	Llama3-70B-Inst	100K	28.3
GRPO (RLVRR)	Llama3-70B-Inst	10K	28.9

343
344 Table 5: Results of SFT via self-data distilla-
345 tion based on Qwen2.5-3B-Base.

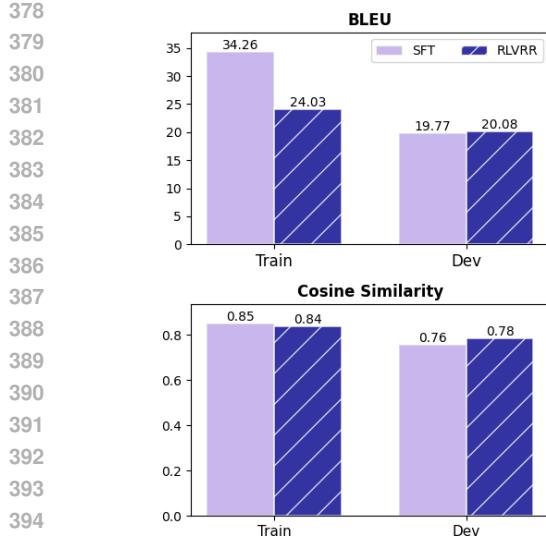
Method	#Data	Open-ended Avg.
Base	-	9.6
↪ SFT	10K	26.7
↪ SFT	100K	30.5
↪ SFT-distilled SFT	10K	25.0
↪ RLVRR-distilled SFT	10K	29.2

350
351 **Effect of content reward.** Our ablation study reveals that removing the content reward results
352 in a severe performance degradation, with the average score dropping by 13.0 points compared to
353 the full method. This underscores the critical role of content alignment in response generation.
354 Interestingly, when using only a single reference (instead of multiple references) for content reward
355 computation, performance remains robust, declining marginally from 31.1 to 30.7, demonstrating
356 the method’s resilience to reference variability. Finally, we attempt to replace LCS with a naïve
357 “direct matching” approach, which calculates the percentage of keywords appearing in the rollout as
358 the content reward. This approach leads to catastrophic failure as it (1) disregards keyword ordering
359 and (2) incentivizes reward hacking (Skalse et al., 2022), where the model generates excessively
360 verbose outputs to artificially inflate keyword coverage.

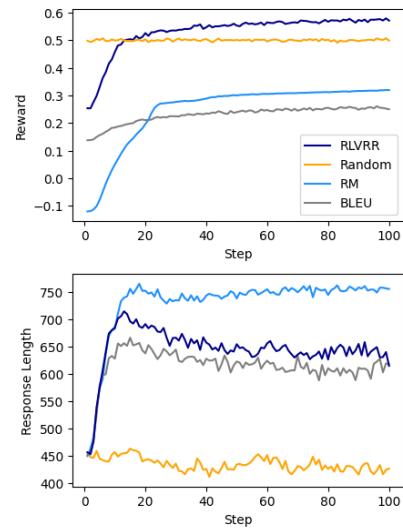
361
362 **Effect of style reward.** The absence of style reward reduces performance by 2.8 points, confirming
363 that learning presentation, structure, and formatting from references is essential for high-quality
364 responses. Moreover, when style reward components are aggregated without LLM-generated impor-
365 tance weights, performance drops by 1.2 points, validating that LLM-derived weighting effectively
366 captures stylistic nuances.

367
368 **Effect of keywords extraction.** We analyze the impact of keyword extraction strategies on align-
369 ment performance. First, we ablate the two-level hierarchical extraction process in favor of a single-
370 step approach where keywords are directly extracted from the full response. This leads to a 0.9-point
371 drop in average score, confirming that hierarchical extraction improves keyword precision and cov-
372 erage. Next, we compare LLM-based extraction with rule-based alternatives: (1) **random selection**
373 after stopword filtering and (2) **TF-IDF-based selection** (Sparck Jones, 1972), both extracting 15%
374 of words for fairness. As shown in Table 3, LLM extraction outperforms both variants by 3.7–4.1
375 points, demonstrating its superiority in identifying semantically critical keywords. Notably, increasing
376 the TF-IDF keyword ratio to 30% further degrades performance, suggesting that **quality matters**
377 **more than quantity**—a sparse set of high-value keywords suffices for effective learning.

378
379 **Effect of reference LLMs.** Table 4 examines the impact of diverse reference LLMs, where the
380 LLM is used for (1) reference generation and (2) verifiable component generation of RLVRR. Re-



396 Figure 2: Average BLEU scores and semantic
397 similarities between references and generated
398 responses for SFT and RLVRR.



396 Figure 3: Curves of reward and response length
397 during RL training with different methods.
398

400 markedly, substituting the GPT-4o-mini model with a less powerful yet open-source alternative, such
401 as Llama3-70B-Instruct (Dubey et al., 2024), yields consistent results— **RLVRR continues to out-**
402 **perform SFT even when SFT is trained with 10× more data.** This demonstrates the robustness
403 of our approach across varying levels of LLM sophistication and highlights its potential to reduce
404 reliance on proprietary commercial models without compromising downstream performance.
405

406 5.2 LEARNING WHAT MATTERS: WHY RLVRR GENERALIZES BETTER THAN SFT

408 In this section, we investigate why RLVRR, which reinforces quality signals (keywords or phrases),
409 outperforms SFT, which models the entire reference sequence token-by-token. To compare their
410 generalization behaviors, we conduct a controlled study on 1,000 randomly sampled prompts, each
411 from the training and development sets. For each prompt, we generate responses using two models
412 trained separately with SFT and RLVRR, and evaluate their quality with BLEU and cosine se-
413 mantic similarity against references. Semantic similarity is computed using embeddings from all-
414 mpnet-base-v2 (Reimers & Gurevych, 2019). Results show that while SFT achieves higher BLEU
415 on the training set, this advantage vanishes and even reverses on the development set, indicating
416 strong memorization but poor generalization (Chu et al., 2025). The limitation stems from SFT’s
417 *imitation learning* objective, which minimizes token-level prediction error under teacher forcing:
418 $\mathcal{L}_{SFT} = -\sum_{t=1}^{|z|} \log \pi_\theta(z_t | x, z_{<t})$. This training paradigm enforces exact mimicry but suffers from
419 *exposure bias* (Zhang et al., 2019; Schmidt, 2019), as the model never recovers from its own mis-
420 takes. RLVRR, in contrast, rewards the preservation of key semantic elements while allowing flexi-
421 ble phrasing, leading to stable performance across both training and development sets. Specifically,
422 RLVRR maintains consistent BLEU and higher semantic similarity (0.84 vs. 0.85 on training; 0.78
423 vs. 0.76 on development, compared to SFT). These results suggest that **RLVRR better captures**
424 **the semantic essence of references and generalizes more effectively to unseen inputs.**

425 5.3 SELF-DATA DISTILLED RLVRR OUTPERFORMS STANDARD SFT

427 Recent work such as DeepSeek-R1 (DeepSeek-AI, 2025) demonstrates that fine-tuning on trajec-
428 tories sampled from the same model post-RL training, an approach we refer to as *self-data distillation*,
429 can yield better performance than standard SFT on reasoning tasks. In this section, we extend this
430 idea to open-ended generation and examine whether a similar benefit holds. As shown in Table 5,
431 self-data distillation using RLVRR significantly improves performance over standard SFT (2.5-point
gain in average performance) when both are trained on the same 10K dataset. While it does not

432
433
434
435
436 Table 6: Average runtime per step for
437 different reward strategies in RL training,
438 based on Qwen2.5-3B-Base.
439
440
441
442

Method	Time (s)	Δ Random (%)
Random	121.56	0.00%
BLEU	122.38	0.67%
RM	131.62	8.28%
GRM	128.92	6.05%
RLPR	129.38	6.43%
RLVRR	122.42	0.71%

443
444
445 match the performance of SFT trained on the full 100K data, it notably narrows the gap using only
446 10% of the data. These results highlight the superior quality of supervision signals produced by
447 RLVRR. Moreover, since the distilled data remains close in distribution to the base model’s outputs,
448 the resulting student model benefits from both strong alignment and distributional consistency.

449 5.4 TRAINING DYNAMICS ANALYSIS & COST ANALYSIS

450
451 **Training dynamics analysis.** Figure 3 visualizes the curves of reward and response length during
452 RL training with different methods (Random, BLEU, RM, and RLVRR). We observe that RLVRR
453 achieves a more stable and substantial increase in reward compared to the other methods, highlighting
454 its effectiveness in providing consistent and high-quality learning signals. This trend is further
455 validated by the content/style reward curves in Figure 8. Notably, RLVRR’s response length surges
456 initially, reflecting exploratory behavior for informative outputs, then declines and stabilizes as the
457 model learns conciseness. This demonstrates **RLVRR’s robustness against reward hacking**, as
458 it avoids exploiting length for reward gains. In contrast, RM persistently favors longer responses,
459 likely due to over-reliance on superficial heuristics rather than true quality.

460
461 **Cost analysis.** We present a detailed cost breakdown of RLVRR in Appendix D, covering both the
462 data construction and RL training phases. Key findings include: (1) the total cost of API calls during
463 data construction is \$21.36, which is highly economical given the scale of the task; (2) in the RL
464 training phase, RLVRR introduces only a **0.71%** computational overhead compared to the Random
465 Reward baseline (refer to Table 6). These results underscore RLVRR’s practicality for real-world
466 deployment, with minimal financial and computational burdens.

467 5.5 RLVRR DOES NOT COMPROMISE DIVERSITY

468
469 A potential concern with RLVRR’s reference-based verifiable reward is that it could restrict output
470 diversity. To examine this, we set the decoding temperature to 1.0 and sampled five responses per
471 method across five open-ended benchmarks, reporting average best@5 and Self-BLEU in Table 7.
472 The relative performance improvements of RLVRR over baselines remain consistent with Table 1.
473 Notably, RLVRR attains a Self-BLEU of 24.0, comparable to RM (23.9) and the INSTRUCT model
474 (23.7). These findings indicate that **RLVRR does not sacrifice diversity despite its reliance on**
475 **verifiable references**, and in fact, enhances the model’s ability to generate diverse responses relative
476 to other reward strategies.

477 6 CONCLUSION

478
479 In this paper, we propose RLVRR, a novel framework that extends verifiable reward learning beyond
480 reasoning tasks to open-ended generation. By constructing rule-based verifiers derived from high-
481 quality references across content and style dimensions, RLVRR retains RL’s exploratory dynamics
482 but injects SFT-like token-level guidance, thus providing reliable and low-cost training signals. Our
483 results establish RLVRR as an efficient and scalable path toward verifiable reinforcement learning
484 for general-purpose LLMs.
485

486 REPRODUCIBILITY STATEMENT
487

488 We are committed to ensuring the transparency and reproducibility of our research. To support
489 this commitment, we will publicly release our annotated dataset and all source code, facilitating
490 future extensions and community research. Comprehensive details of our methodology are provided
491 throughout this paper: the prompts used for data construction are illustrated in Appendix A.2; the
492 evaluation details are shown in Appendix B. Furthermore, the experimental implementations can be
493 found in Appendix A.1. We believe that releasing these assets will lower the barrier for replication,
494 enable fair comparisons, and foster further exploration in this line of research.

495
496 REFERENCES
497

498 Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn
499 Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless
500 assistant with reinforcement learning from human feedback. In [arXiv](https://arxiv.org/abs/2204.05862), 2022. URL <https://arxiv.org/abs/2204.05862>.

501 Bytedance-Seed-Foundation-Code-Team, :, Yao Cheng, Jianfeng Chen, Jie Chen, Li Chen, Liyu
502 Chen, Wentao Chen, Zhengyu Chen, Shijie Geng, Aoyan Li, Bo Li, Bowen Li, Linyi Li, Boyi
503 Liu, Jiaheng Liu, Kaibo Liu, Qi Liu, Shukai Liu, Siyao Liu, Tianyi Liu, Tingkai Liu, Yongfei Liu,
504 Rui Long, Jing Mai, Guanghan Ning, Z. Y. Peng, Kai Shen, Jiahao Su, Jing Su, Tao Sun, Yifan
505 Sun, Yunzhe Tao, Guoyin Wang, Siwei Wang, Xuwu Wang, Yite Wang, Zihan Wang, Jinxiang
506 Xia, Liang Xiang, Xia Xiao, Yongsheng Xiao, Chenguang Xi, Shulin Xin, Jingjing Xu, Shikun
507 Xu, Hongxia Yang, Jack Yang, Yingxiang Yang, Jianbo Yuan, Jun Zhang, Yufeng Zhang, Yuyu
508 Zhang, Shen Zheng, He Zhu, and Ming Zhu. Fullstack bench: Evaluating llms as full stack coders,
509 2025. URL <https://arxiv.org/abs/2412.00535>.

510 Yapei Chang, Yekyung Kim, Michael Krumdick, Amir Zadeh, Chuan Li, Chris Tanner, and Mohit
511 Iyyer. Bleuberri: Bleu is a surprisingly effective reward for instruction following, 2025. URL
512 <https://arxiv.org/abs/2505.11080>.

513 Lichang Chen, Chen Zhu, Juhai Chen, Davit Soselia, Tianyi Zhou, Tom Goldstein, Heng Huang,
514 Mohammad Shoeybi, and Bryan Catanzaro. ODIN: disentangled reward mitigates hacking in
515 RLHF. In Forty-first International Conference on Machine Learning, ICML 2024, Vienna,
516 Austria, July 21-27, 2024. OpenReview.net, 2024. URL <https://openreview.net/forum?id=zcIV80QFVF>.

517 Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
518 Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
519 Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
520 Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
521 Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fo-
522 tios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex
523 Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
524 Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa, Alec
525 Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob Mc-
526 Grew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating large
527 language models trained on code. 2021.

528 Paul F. Christiano, Jan Leike, Tom B. Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
529 reinforcement learning from human preferences. In Advances in Neural Information Processing
530 Systems, pp. 4299–4307, 2017.

531 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V
532 Le, Sergey Levine, and Yi Ma. SFT memorizes, RL generalizes: A comparative study of founda-
533 tion model post-training. In Forty-second International Conference on Machine Learning, 2025.
534 URL <https://openreview.net/forum?id=dYur3yabMj>.

535 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
536 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge,
537 2018.

540 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 541 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 542 Schulman. Training verifiers to solve math word problems. [arXiv preprint arXiv:2110.14168](https://arxiv.org/abs/2110.14168),
 543 2021.

544

545 OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
 546 <https://github.com/open-compass/opencompass>, 2023.

547

548 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
 549 2025. URL <https://arxiv.org/abs/2501.12948>.

550

551 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
 552 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
 553 [arXiv preprint arXiv:2407.21783](https://arxiv.org/abs/2407.21783), 2024.

554

555 Leo Gao, John Schulman, and Jacob Hilton. Scaling laws for reward model overoptimization. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan
 556 Scarlett (eds.), *Proceedings of the 40th International Conference on Machine Learning*, volume 202 of *Proceedings of Machine Learning Research*, pp. 10835–10866. PMLR, 23–29 Jul 2023.
 557 URL <https://proceedings.mlr.press/v202/gao23h.html>.

558

559 Anisha Gunjal, Anthony Wang, Elaine Lau, Vaskar Nath, Bing Liu, and Sean Hendryx. Rubrics as
 560 rewards: Reinforcement learning beyond verifiable domains, 2025. URL <https://arxiv.org/abs/2507.17746>.

561

562 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
 563 Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
 564 Olympiadbench: A challenging benchmark for promoting agi with olympiad-level bilingual mul-
 565 timodal scientific problems, 2024.

566

567 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
 568 cob Steinhardt. Measuring massive multitask language understanding. In *9th International
 569 Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021*.
 570 OpenReview.net, 2021a. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.

571

572 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 573 and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. *NeurIPS*,
 574 2021b.

575

576 Jian Hu, Xibin Wu, Zilin Zhu, Xianyu, Weixun Wang, Dehao Zhang, and Yu Cao. Openrlhf: An
 577 easy-to-use, scalable and high-performance rlhf framework. [arXiv preprint arXiv:2405.11143](https://arxiv.org/abs/2405.11143),
 578 2024.

579

580 Ruipeng Jia, Yunyi Yang, Yongbo Gai, Kai Luo, Shihao Huang, Jianhe Lin, Xiaoxi Jiang, and
 581 Guanjun Jiang. Writing-zero: Bridge the gap between non-verifiable tasks and verifiable rewards,
 582 2025. URL <https://arxiv.org/abs/2506.00103>.

583

584 Yuxin Jiang, Yufei Wang, Xingshan Zeng, Wanjun Zhong, Liangyou Li, Fei Mi, Lifeng Shang,
 585 Xin Jiang, Qun Liu, and Wei Wang. FollowBench: A multi-level fine-grained constraints fol-
 586 lowing benchmark for large language models. In Lun-Wei Ku, Andre Martins, and Vivek
 587 Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational
 588 Linguistics (Volume 1: Long Papers)*, pp. 4667–4688, Bangkok, Thailand, August 2024. As-
 589 sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.257. URL <https://aclanthology.org/2024.acl-long.257>.

590

591 Yuxin Jiang, Yufei Wang, Chuhan Wu, Xinyi Dai, Yan Xu, Weinan Gan, Yasheng Wang, Xin Jiang,
 592 Lifeng Shang, Ruiming Tang, and Wei Wang. Instruction-tuning data synthesis from scratch via
 593 web reconstruction. In Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher
 594 Pilehvar (eds.), *Findings of the Association for Computational Linguistics, ACL 2025, Vienna,
 595 Austria, July 27 - August 1, 2025*, pp. 6603–6618. Association for Computational Linguistics,
 596 2025. URL <https://aclanthology.org/2025.findings-acl.343/>.

594 Hynek Kydlíček. Math-Verify: Math Verification Library, 2024. URL <https://github.com/huggingface/math-verify>. If you use this software, please cite it using the metadata from
 595 this file.
 596

597 Nathan Lambert, Valentina Pyatkin, Jacob Morrison, LJ Miranda, Bill Yuchen Lin, Khyathi Chandu,
 598 Nouha Dziri, Sachin Kumar, Tom Zick, Yejin Choi, Noah A. Smith, and Hannaneh Hajishirzi.
 599 RewardBench: Evaluating reward models for language modeling. In Luis Chiruzzo, Alan Rit-
 600 ter, and Lu Wang (eds.), *Findings of the Association for Computational Linguistics: NAACL*
 601 2025, pp. 1755–1797, Albuquerque, New Mexico, April 2025. Association for Computational
 602 Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.96. URL <https://aclanthology.org/2025.findings-naacl.96/>.
 603

604 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski,
 605 Vinay V. Ramasesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo,
 606 Yuhuai Wu, Behnam Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quanti-
 607 tative reasoning problems with language models. In Sanmi Koyejo, S. Mohamed,
 608 A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), *Advances in Neural*
 609 *Information Processing Systems 35: Annual Conference on Neural Information Processing*
 610 *Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,*
 611 *2022, 2022*. URL http://papers.nips.cc/paper_files/paper/2022/hash/18abbeef8cfe9203fdf9053c9c4fe191-Abstract-Conference.html.
 612

613 Tianle Li, Wei-Lin Chiang, Evan Frick, Lisa Dunlap, Banghua Zhu, Joseph E Gonzalez, and Ion
 614 Stoica. From live data to high-quality benchmarks: The arena-hard pipeline, 2024.
 615

616 Xuechen Li, Tianyi Zhang, Yann Dubois, Rohan Taori, Ishaan Gulrajani, Carlos Guestrin, Percy
 617 Liang, and Tatsunori B Hashimoto. AlpacaEval: An automatic evaluator of instruction-following
 618 models, 2023.
 619

620 Minpeng Liao, Chengxi Li, Wei Luo, Wu Jing, and Kai Fan. MARIO: MATH reasoning with code
 621 interpreter output - a reproducible pipeline. In Lun-Wei Ku, Andre Martins, and Vivek Sriku-
 622 mar (eds.), *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 905–924,
 623 Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/
 624 v1/2024.findings-acl.53. URL <https://aclanthology.org/2024.findings-acl.53/>.
 625

626 Chris Yuhao Liu, Liang Zeng, Jiacai Liu, Rui Yan, Jujie He, Chaojie Wang, Shuicheng Yan, Yang
 627 Liu, and Yahui Zhou. Skywork-reward: Bag of tricks for reward modeling in llms. *arXiv preprint*
 628 [arXiv:2410.18451](https://arxiv.org/abs/2410.18451), 2024.
 629

630 Chris Yuhao Liu, Liang Zeng, Yuzhen Xiao, Jujie He, Jiacai Liu, Chaojie Wang, Rui Yan, Wei
 631 Shen, Fuxiang Zhang, Jiacheng Xu, Yang Liu, and Yahui Zhou. Skywork-reward-v2: Scaling
 632 preference data curation via human-ai synergy, 2025a. URL <https://arxiv.org/abs/2507.01352>.
 633

634 Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi, Tianyu Pang, Chao Du, Wee Sun Lee, and
 635 Min Lin. Understanding r1-zero-like training: A critical perspective. In *Conference on Language*
 636 *Modeling (COLM)*, 2025b.
 637

638 Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhui Chen. General-reasoner:
 639 Advancing llm reasoning across all domains. [arXiv:2505.14652](https://arxiv.org/abs/2505.14652), 2025. URL <https://arxiv.org/abs/2505.14652>.
 640

641 Yu Meng, Mengzhou Xia, and Danqi Chen. Simpo: Simple preference optimization with a
 642 reference-free reward. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2024.
 643

644 George A Miller. The magical number seven, plus or minus two: Some limits on our capacity for
 645 processing information. *Psychological review*, 63(2):81, 1956.
 646

647 Swaroop Mishra, Daniel Khashabi, Chitta Baral, and Hannaneh Hajishirzi. Cross-task general-
 648 ization via natural language crowdsourcing instructions. In Smaranda Muresan, Preslav Nakov,
 649 and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meeting of the Association for*

648 Computational Linguistics (Volume 1: Long Papers), pp. 3470–3487, Dublin, Ireland, May
 649 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.244. URL
 650 <https://aclanthology.org/2022.acl-long.244>.

651

652 Elissa L Newport. Maturational constraints on language learning. *Cognitive science*, 14(1):11–28,
 653 1990.

654

655 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 656 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
 657 instructions with human feedback. In *Advances in neural information processing systems*, pp.
 658 27730–27744, 2022. URL <https://openreview.net/forum?id=TG8KACxEN>.

659

660 Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. Bleu: a method for automatic
 661 evaluation of machine translation. In Pierre Isabelle, Eugene Charniak, and Dekang Lin (eds.),
 662 *Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics*, pp.
 663 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguistics.
 664 doi: 10.3115/1073083.1073135. URL <https://aclanthology.org/P02-1040/>.

665

666 Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL <https://qwenlm.github.io/blog/qwen2.5/>.

667

668 Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
 669 Finn. Direct preference optimization: Your language model is secretly a reward model. In
Advances in Neural Information Processing Systems, 2023.

670

671 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 672 networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language
 673 Processing*. Association for Computational Linguistics, 11 2019. URL <https://arxiv.org/abs/1908.10084>.

674

675 Florian Schmidt. Generalization in generation: A closer look at exposure bias. In Alexandra
 676 Birch, Andrew Finch, Hiroaki Hayashi, Ioannis Konstas, Thang Luong, Graham Neubig, Yusuke
 677 Oda, and Katsuhiro Sudoh (eds.), *Proceedings of the 3rd Workshop on Neural Generation and
 678 Translation*, pp. 157–167, Hong Kong, November 2019. Association for Computational Linguistics.
 679 doi: 10.18653/v1/D19-5616. URL <https://aclanthology.org/D19-5616/>.

680

681 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
 682 Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
 683 matical reasoning in open language models, 2024. URL <https://arxiv.org/abs/2402.03300>.

684

685 Joar Skalse, Nikolaus Howe, Dmitrii Krasheninnikov, and David Krueger. Defining and charac-
 686 terizing reward gaming. *Advances in Neural Information Processing Systems*, 35:9460–9471,
 687 2022.

688

689 Karen Sparck Jones. A statistical interpretation of term specificity and its application in retrieval.
Journal of documentation, 28(1):11–21, 1972.

690

691 Yi Su, Dian Yu, Linfeng Song, Juntao Li, Haitao Mi, Zhaopeng Tu, Min Zhang, and Dong Yu.
 692 Crossing the reward bridge: Expanding rl with verifiable rewards across diverse domains, 2025.
 693 URL <https://arxiv.org/abs/2503.23829>.

694

695 Zhengyang Tang, Xingxing Zhang, Benyou Wang, and Furu Wei. Mathscales: Scaling instruc-
 696 tion tuning for mathematical reasoning. In *Forty-first International Conference on Machine
 697 Learning, ICML 2024*, Vienna, Austria, July 21–27, 2024. OpenReview.net, 2024. URL <https://openreview.net/forum?id=Kjww7ZN47M>.

698

699 Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
<https://qwenlm.github.io/blog/qwq-32b/>.

700

701 Teknium. Openhermes 2.5: An open dataset of synthetic data for generalist llm assistants, 2023.
 702 URL <https://huggingface.co/datasets/teknium/OpenHermes-2.5>.

702 Robert A Wagner and Michael J Fischer. The string-to-string correction problem. *Journal of the*
 703 *ACM (JACM)*, 21(1):168–173, 1974.

704

705 Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
 706 drew M. Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In *International*
 707 *Conference on Learning Representations*, 2022. URL <https://openreview.net/forum?id=gEZrGCozdqR>.

708

709 Zhangchen Xu, Fengqing Jiang, Luyao Niu, Yuntian Deng, Radha Poovendran, Yejin Choi, and
 710 Bill Yuchen Lin. Magpie: Alignment data synthesis from scratch by prompting aligned LLMs
 711 with nothing. In *The Thirteenth International Conference on Learning Representations*, 2025.
 712 URL <https://openreview.net/forum?id=Pnk7vMbznK>.

713

714 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
 715 Fan, Gaohong Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng,
 716 Yuxuan Tong, Chi Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen,
 717 Jiangjie Chen, Chengyi Wang, Hongli Yu, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing
 718 Liu, Wei-Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang.
 719 Dapo: An open-source llm reinforcement learning system at scale, 2025a. URL <https://arxiv.org/abs/2503.14476>.

720

721 Tianyu Yu, Bo Ji, Shouli Wang, Shu Yao, Zefan Wang, Ganqu Cui, Lifan Yuan, Ning Ding, Yuan
 722 Yao, Zhiyuan Liu, Maosong Sun, and Tat-Seng Chua. Rlpr: Extrapolating rlvr to general domains
 723 without verifiers, 2025b. URL <https://arxiv.org/abs/2506.18254>.

724

725 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
 726 zoo: Investigating and taming zero reinforcement learning for open base models in the wild, 2025.
 727 URL <https://arxiv.org/abs/2503.18892>.

728

729 Wen Zhang, Yang Feng, Fandong Meng, Di You, and Qun Liu. Bridging the gap between training
 730 and inference for neural machine translation. In Anna Korhonen, David Traum, and Lluís
 731 Màrquez (eds.), *Proceedings of the 57th Annual Meeting of the Association for Computational*
 732 *Linguistics*, pp. 4334–4343, Florence, Italy, July 2019. Association for Computational Linguistics.
 733 doi: 10.18653/v1/P19-1426. URL <https://aclanthology.org/P19-1426/>.

734

735 Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
 736 Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
 737 Judging LLM-as-a-judge with MT-bench and chatbot arena. In *Thirty-seventh Conference on*
 738 *Neural Information Processing Systems Datasets and Benchmarks Track*, 2023. URL <https://openreview.net/forum?id=uccHPGDlao>.

739

740 Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou,
 741 and Le Hou. Instruction-following evaluation for large language models, 2023. URL <https://arxiv.org/abs/2311.07911>.

742

743 Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
 744 Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. *arXiv preprint*
 745 *arXiv:2505.21493*, 2025.

746

747

748

749

750

751

752

753

754

755

APPENDICES

A DETAILED EXPERIMENTAL SETUP

A.1 IMPLEMENTATION DETAILS

We adopt the OpenRLHF (Hu et al., 2024) framework for efficient training. During SFT, we train models for 3 epochs with a learning rate of 2e-5, a batch size of 128, a max sequence length of 2048, and a cosine learning rate schedule with 10% warmup steps. During GRPO, we set the epoch to 1, the learning rate to 5e-7, the number of rollouts to 8, max prompt length and max generation length to 1024 tokens, and maintain the same global batch size of 128. During DPO, we train models for 1 epoch with a learning rate of 5e-7, a batch size of 128, a max sequence length of 2048, and a β of 1e-2. All experiments are conducted on 8 NVIDIA A800 GPUs. We report the average performance of three random runs.

A.2 PROMPT TEMPLATE FOR DATA CONSTRUCTION

Prompt Template of Generating Key Points for Answering the Question

You are given a **Question**. Your task is to identify **all essential key points** that the AI assistant must notice when answering the question. Return your output as a Python list of strings, where each string is a key point.

[Question]:
{question}

Figure 4: Prompt template of generating key points for answering the question.

Prompt Template of Generating Keywords

You are given a **Question**, **Key Points of the Question**, and a **Reference Answer**. Your task is to identify **all essential keywords (less than 3 words for each keyword)** from the reference answer that match each key point. These keywords should be explicitly mentioned or accurately reflected in a good AI-generated answer. These keywords should represent the core facts, concepts, or entities required to assess the correctness and relevance of the response.

Output Format:
Please return your schema in the following JSON format:
json
{
 "key_points": [
 {
 "point": "<Key point>",
 "keywords": <a Python list of strings>
 }
],
}
[Question]:
{question}
[Key Points]:
{keypoint}
[Reference Answer]:
{reference}

Figure 5: Prompt template of generating keywords.

Prompt Template of Generating Code for Style Conformity Checking

You are given a **Reference Answer**. Your task is to evaluate whether an **AI-generated answer** follows a similar **format and style** as the reference answer. The goal is not to assess content correctness or completeness, but to compare the presentation, structure, and formatting features of the two answers.

Key Evaluation Focus:

Your evaluation should focus on **style-related aspects** such as:

- Overall structure and organization (e.g., use of sections or bullet points)
- Length similarity (in terms of word count, within a reasonable range)
- Paragraph count and distribution (roughly comparable, not necessarily identical)
- Use of markdown elements like bold text, headers, lists, code blocks
- Visual layout and clarity

Do NOT evaluate the factual content, relevance, or correctness of the answer.

Instructions:

- Identify 3–6 Key Style Evaluation Points:** For each point, define a **specific and measurable** style-related criterion. Allow for small variations instead of requiring exact matches.
- Define a Python Function for Each Point:** The function should be named `evaluate(answer: str) -> bool` and return:
 - `True` if the AI-generated answer satisfies the style point (even approximately),
 - `False` otherwise.
- Assign a Weight to Each Point:** Each point should be assigned a weight that reflects its relative importance. All weights must sum to **1.0**.

Output Format:

Please return your evaluation schema in the following JSON format:

```
```json
{
 "key_points": [
 {
 "point": "<Key evaluation point>",
 "explanation": "<Why this point helps assess format/style similarity>",
 "verification_code": "def evaluate(answer: str) -> bool:\n# Your logic here\nreturn ...",
 "weight": <float weight>
 }
],
 "total_weight": 1.0
}
````
```

[Reference Answer]:

{reference}

Figure 6: Prompt template of generating code for style conformity checking.

A.3 TEMPLATE FOR MATHEMATICAL REASONING

Figure 7 shows the training and evaluation template for mathematical reasoning, where we first require the model to think step by step and then output the final answer within “boxed{ }”.

Training and Evaluation Template for Mathematical Reasoning

Figure 7: Training and evaluation template for mathematical reasoning.

864 **B EVALUATION DETAILS**
865

866 Table 8 lists the evaluation details for AlpacaEval 2 (Li et al., 2023), Arena-Hard (Li et al., 2024),
 867 MT-Bench (Zheng et al., 2023), IFEval (Zhou et al., 2023), and FollowBench (Jiang et al., 2024).
 868 AlpacaEval 2 comprises 805 questions from 5 datasets, and MT-Bench spans 8 categories with a
 869 total of 80 questions. Arena-Hard is an enhanced version of MT-Bench, featuring 500 well-defined
 870 technical problem-solving queries. IFEval comprises 541 samples designed to evaluate instruction-
 871 following LLMs through diverse, verifiable instructions that include numerous lexical and format-
 872 ting constraints. FollowBench is a multi-level, fine-grained benchmark for evaluating constraint-
 873 following capabilities, featuring 820 samples across five constraint types and five difficulty levels.
 874 To balance cost and performance, we select GPT-4.1-mini as the judge. Evaluation metrics are re-
 875 ported in accordance with each benchmark’s protocol. For tasks across multiple domains, we align
 876 our evaluation settings with OpenCompass (Contributors, 2023).
 877

877 Table 8: Evaluation details for AlpacaEval 2, Arena-Hard, MT-Bench, IFEval, and FollowBench.
 878 The baseline model refers to the model compared against.
 879

| Benchmark | # Exs. | Baseline Model | Judge Model | Scoring Type | Metric |
|--------------|--------|----------------|--------------|---------------------------|----------------------------|
| AlpacaEval 2 | 805 | GPT-4 Turbo | GPT-4.1-mini | Pairwise comparison | Length-controlled win rate |
| Arena-Hard | 500 | GPT-4-0314 | GPT-4.1-mini | Pairwise comparison | Win rate |
| MT-Bench | 80 | - | GPT-4.1-mini | Single-answer grading | Rating of 1-10 |
| IFEval | 541 | - | - | Rule-based verification | Accuracy |
| FollowBench | 820 | - | GPT-4.1-mini | Rule and LLM verification | Satisfaction rate |

880 **C EXPERIMENTAL RESULTS OF LLAMA3.1**
881

882 Table 9 presents results on Llama3.1-8B-Instruct, as prior work shows that effective GRPO training
 883 requires a sufficiently strong base model (Liu et al., 2025b). RLVRR consistently outperforms all
 884 baselines by more than 2 points, with a comparable improvement observed on Qwen2.5. These
 885 findings confirm that **our approach generalizes robustly across different model architectures**.
 886

887 Table 9: Evaluation results of Llama3.1-8B across five open-ended benchmarks and four other tasks.
 888

| Method | #Data | Alpaca
Eval 2 | Arena
Hard | MT
Bench | IF
Eval | Follow
Bench | Avg. | MMLU | ARC | MATH | Human
Eval | Avg. |
|-----------------|-------|------------------|---------------|-------------|-------------|-----------------|-------------|-------------|-------------|-------------|---------------|-------------|
| <i>Instruct</i> | - | 30.9 | 34.3 | 8.4 | 76.8 | 54.2 | 40.9 | 69.4 | 83.4 | 51.9 | 72.6 | 69.3 |
| → SFT | 10K | 31.2 | 46.9 | 8.5 | 75.6 | 53.2 | 43.1 | 67.7 | 83.7 | 50.6 | 69.9 | 68.0 |
| → SFT | 100K | 33.1 | 51.0 | 8.5 | 75.9 | 55.3 | 44.8 | 65.4 | 81.6 | 51.7 | 70.8 | 67.4 |
| → GRPO (Random) | 10K | 5.2 | 6.7 | 7.6 | 26.3 | 17.5 | 12.7 | 66.7 | 79.7 | 40.7 | 66.8 | 63.5 |
| → GRPO (BLEU) | 10K | 30.4 | 39.6 | 8.2 | 69.2 | 49.8 | 39.4 | 69.2 | 82.0 | 50.2 | 72.8 | 68.6 |
| → GRPO (RM) | 10K | 32.5 | 50.7 | 8.7 | 76.0 | 53.7 | 44.3 | 69.6 | 84.2 | 52.4 | 72.1 | 69.6 |
| → GRPO (GRM) | 10K | 31.1 | 48.5 | 8.4 | 75.4 | 54.3 | 43.5 | 69.5 | 83.2 | 51.2 | 70.9 | 68.7 |
| → GRPO (RLPR) | 10K | 30.8 | 48.6 | 8.3 | 74.6 | 54.4 | 43.3 | 68.7 | 82.8 | 52.7 | 72.3 | 69.1 |
| → DPO | 10K | 32.0 | 48.1 | 8.6 | 77.3 | 53.6 | 43.9 | 69.1 | 83.8 | 51.0 | 72.2 | 69.0 |
| → GRPO (RLVRR) | 10K | 36.7 | 52.3 | 8.7 | 77.7 | 56.2 | 46.3 | 70.2 | 84.9 | 52.6 | 73.0 | 70.2 |

905 **D COST ANALYSIS**
906907 **D.1 COST OF DATA CONSTRUCTION**
908

909 The data construction phase, responsible for synthesizing verifiable components for content and
 910 style reward, operates exclusively **offline**, meaning it incurs no runtime cost during model training.
 911 For context, we estimated the budget for data synthesis using the GPT-4o-mini API, based on the
 912 API’s pricing of \$0.15 per 1M input tokens and \$0.60 per 1M output tokens. Table 10 lists the
 913 breakdown of the estimated costs, which demonstrates that the overall expenditure (**\$21.36**) is both
 914 reasonable and manageable.

915 **Can an open-source LLM be utilized as an alternative?** In Table 4, we explore the impact of
 916 LLMs on generating verifiable components during the data construction phase. Our findings in-
 917 dicate that substituting the GPT-4o-mini model with a less powerful yet open-source alternative,

918 Table 10: Estimated budget for data construction using the GPT-4o-mini API.
919

| 920 Task | 921 # of Samples | 922 Avg. Input Token Length | 923 Avg. Output Token Length | 924 Cost (\$) |
|-------------------------|------------------|-----------------------------|------------------------------|---------------|
| 925 Multiple References | 926 20,000 | 927 170 | 928 652 | 929 8.33 |
| 930 Key Points | 931 10,000 | 932 202 | 933 234 | 934 1.71 |
| 935 Keywords | 936 30,000 | 937 1,156 | 938 103 | 939 7.06 |
| 940 Style | 941 10,000 | 942 853 | 943 497 | 944 4.26 |

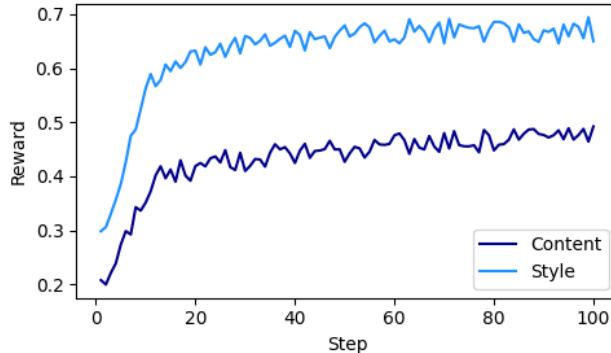
925 such as Llama3-70B-Instruct, **yields comparable performance while significantly surpassing**
926 **SFT trained with 10 \times more data**. The Llama3-70B-Instruct model can be deployed on only
927 2 NVIDIA 3090 GPUs, with the option to further reduce hardware requirements through low-bit
928 quantization². This provides an economical alternative for RLVRR without compromising perfor-
929 mance. Overall, our framework demonstrates robustness in leveraging diverse LLMs for verifiable
930 component generation, confirming its adaptability and effectiveness.

931 D.2 COST OF RL TRAINING

932 **RLVRR incurs negligible computational overhead.** As shown in Table 11, we report the average runtime
933 per training step on 8 NVIDIA A800 GPUs across various reward strategies. RLVRR increases runtime by
934 only **0.71%** compared to the Random Reward baseline, comparable to the lightweight BLEU-based re-
935ward (+0.67%). In contrast, RM introduces a substantial 8.28% overhead due to the need to maintain
936 and query a learned reward model, while RLPR incurs a 6.43% increase from additional reference forward
937 passes. These results highlight that RLVRR achieves verifiability with minimal runtime cost, making it a
938 scalable choice for real-world RL training scenarios.

939 E REWARD CURVES

940 Figure 8 presents the training dynamics of RLVRR in terms of **content** and **style** rewards. Both
941 rewards exhibit a consistent upward trend in the early stages, indicating effective optimization across
942 dimensions. Notably, the style reward plateaus after approximately 60 steps, suggesting that stylistic
943 improvements saturate relatively quickly. In contrast, the content reward continues to increase, albeit
944 more gradually, highlighting the model’s sustained ability to refine content quality over time.

945 Figure 8: Content and style rewards of RLVRR during training, based on Qwen2.5-3B-Base.
946

947 ²<https://github.com/ollama/ollama>

948 Table 11: Average runtime per step for dif-
949 ferent reward strategies in RL training.

| 950 Method | 951 Time (s) | 952 Δ Random (%) |
|------------|--------------|-------------------------|
| 953 Random | 954 121.56 | 955 0.00% |
| 956 BLEU | 957 122.38 | 958 0.67% |
| 959 RM | 960 131.62 | 961 8.28% |
| 962 GRM | 963 128.92 | 964 6.05% |
| 965 RLPR | 966 129.38 | 967 6.43% |
| 968 RLVRR | 969 122.42 | 970 0.71% |

F CASE STUDY

In this case study, we analyze the performance of various methods, all based on the Qwen2.5-3B-Base model, using a sample instruction from AlpacaEval 2. Table 12 displays the responses generated by four different methods. The SFT model produces a concise and factually accurate answer, although it lacks detail and context regarding the name change. In contrast, models further trained with BLEU and RM yield incorrect responses, asserting that Facebook Corporation did not change its legal name and providing an inaccurate account of the rebranding process. Our proposed method, RLVRR, demonstrates a notable improvement by providing a response that is both factually accurate and comprehensive. Additionally, the response generated by our method is significantly shorter than those produced by BLEU and RM. This combination of detail, accuracy, and brevity highlights the superiority of our approach in delivering informative and precise answers.

Table 12: Generated responses from different methods for a sampled instruction in AlpacaEval 2.

| | |
|--------------------|---|
| Instruction | Did Facebook corporation change its name? |
| SFT | Yes, Facebook Corporation changed its name to Meta Platforms, Inc. In 2021. |
| BLEU | No, the Facebook Corporation did not alter its legal name. Despite the fact that the company has introduced a diverse array of products and services beyond its primary social networking platform, which includes popular applications such as Instagram, WhatsApp, Messenger, and various others, the official name of the corporation continues to be Facebook, Inc. Nevertheless, in October 2021, Facebook made an announcement indicating their intention to modify their corporate brand name to better reflect their expanding range of offerings. As of now, the new brand name has not been disclosed to the public, and it is anticipated that the complete transition to this new name will require a significant amount of time. |
| RM | No, Facebook Corporation did not change its name. Facebook Corporation, also known as Facebook, Inc., is the parent company of the Facebook social media platform, and it has not gone through any significant name change. The company holds other online platforms and services such as Instagram and WhatsApp, but the name Facebook Corporation remains the same. There have been some changes in the branding, such as the rebranding of WhatsApp and Facebook Messenger with the Meta logo, but the parent company's name has not changed. The announcement made by Facebook in October 2021 about rebranding its parent company as Meta did not materialize, and Facebook Corporation still holds the name Facebook Corporation. |
| RLVRR | Yes, Facebook Corporation changed its name to Meta Platforms, Inc. In October 2021. The rebranding aims to reflect the company's expanded focus beyond social media and into building the "metaverse," a virtual space where people can interact and communicate in immersive, 3D environments. The new name "Meta" represents the company's ambition to drive breakthroughs in areas such as virtual and augmented reality. |

G LLM USAGE

We utilized large language models to support both manuscript polishing and data construction. In particular, the GPT-4o-mini API is employed to assist with the construction of the training dataset. Further details of this process are provided in Section 3 and Appendix A.2.