

# NAVIGATING THE LATENT SPACE DYNAMICS OF NEURAL MODELS

000  
001  
002  
003  
004  
005  
006  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  
Anonymous authors  
Paper under double-blind review

## ABSTRACT

Neural networks transform high-dimensional data into compact, structured representations, often modeled as elements of a lower dimensional latent space. In this paper, we present an alternative interpretation of neural models as dynamical systems acting on the latent manifold. Specifically, we show that autoencoder models implicitly define a *latent vector field* on the manifold, derived by iteratively applying the encoding-decoding map, without any additional training. We observe that standard training procedures introduce inductive biases that lead to the emergence of attractor points within this vector field. Drawing on this insight, we propose to leverage the vector field as a *representation* for the network, providing a novel tool to analyze the properties of the model and the data. This representation enables to: (i) analyze the generalization and memorization regimes of neural models, even throughout training; (ii) extract prior knowledge encoded in the network’s parameters from the attractors, without requiring any input data; (iii) identify out-of-distribution samples from their trajectories in the vector field. We further validate our approach on vision foundation models, showcasing the applicability and effectiveness of our method in real-world scenarios.

## 1 INTRODUCTION

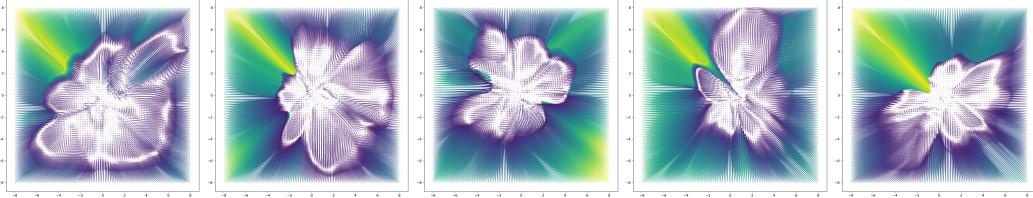


Figure 1: *Latent dynamics of AEs*. Latent vector fields induced by autoencoders with bottleneck  $k = 2$ , trained on MNIST, with  $\mathbf{z}_0 \sim \mathcal{U}[-8, 8]$ . Models with different initializations are shown. Colors (viridis colormap) represent vector norms ranging from violet (low) to yellow (high). The shape of the latent manifold identifies with the encoder’s support. White regions indicate where the vector field vanishes, revealing attractors aligned with high-density areas of the data distribution.

Neural networks are powerful function approximators, capable of solving complex tasks across a wide range of domains (Jumper et al., 2021; Radford et al., 2021). A core component of their success lies in their ability to transform high-dimensional inputs into compact, structured representations (Bengio et al., 2013), typically modeled as points in a lower-dimensional latent space.

In this work, we propose a novel perspective: for any given autoencoder (AE) architecture, there exists an associated *latent vector field* (see Figure 1) that characterizes the model’s behavior in representation space. This field arises naturally by iterating the encoder-decoder map in the latent space, requiring no additional training. Intuitively, such dynamics often settle into *attractors*: stable states toward which nearby trajectories converge, summarizing the long-term behavior of the system.

While prior work has shown that overparameterized autoencoders can memorize training data under strong assumptions (Radhakrishnan et al., 2020; Jiang and Pehlevan, 2020), we consider a broader

054 setting. We show that memorization emerges as just *one* type of attractor in the latent vector field,  
 055 and that the structure of this field reflects deeper properties of the network, such as generalization  
 056 behavior and sensitivity to distribution shifts.

057 Our contributions can be summarized as follows:  
 058

- 059 • We show that every AE implicitly defines a latent vector field, whose trajectories and fixed  
 060 points encode properties of both the model and the data.
- 061 • We demonstrate that most neural mappings are contractive, leading naturally to the emer-  
 062 gence of fixed points and attractors in the latent space.
- 063 • We empirically connect attractors to the network’s memorization and generalization regimes,  
 064 showing how they evolve during training.
- 065 • We show experimentally that vision foundation models can be probed in a data-free manner:  
 066 initializing with noise, we recover attractors that reveal semantic information embedded in  
 067 the model’s weights.
- 068 • Finally, we show that trajectories in the latent vector field can capture the learned data  
 069 distribution and serve as a signal for detecting distribution shifts.

## 071 2 METHOD

072 **Notation and background** We consider neural models  $F$  as compositions of encoder-decoder  
 073 modules, defined as  $F_\Theta = D_{\theta_2} \circ E_{\theta_1}$  parametrized by  $\Theta = [\theta_1, \theta_2]$ . The encoder  $E_{\theta_1}$  maps inputs  
 074  $\mathbf{x} \sim p(\mathbf{x})$  supported on  $\mathcal{X} \subset \mathbb{R}^m$  to a typically lower-dimensional space  $\mathcal{Z} \subset \mathbb{R}^k$ , and the decoder  
 075  $D_{\theta_2}$  reconstructs the input. The model is trained to minimize the mean squared error  $\mathcal{L}_{MSE}$ :

$$076 \mathcal{L}_{MSE}(\mathbf{x}) = \sum_{\mathbf{x} \in \mathcal{X}} \|\mathbf{x} - F_\Theta(\mathbf{x})\|_2^2 + \lambda \mathcal{R}(\Theta), \quad (1)$$

077 where  $\mathcal{R}$  is either an explicit or implicit regularization term encouraging contractive behavior in  $F$ .

078 We posit that minimizing this objective leads to a reduction in the spectral norm of the Jacobian,  
 079  $\|J_F(\mathbf{x})\|_\sigma$  for  $\mathbf{x} \sim p(\mathbf{x})$ . Examples of regularization include weight decay, where  $\mathcal{R} = \|\Theta\|_2^F$ , or  
 080 data augmentation by sampling transformations  $T \sim p(T)$  and minimizing:

$$081 \mathcal{L}_{MSE}(\mathbf{x}) = \sum_{\mathbf{x} \in \mathcal{X}} \|\mathbf{x} - F(\mathbf{x})\|_2^2 + \sum_{T \in p(T)} \|\mathbf{x} - F(T\mathbf{x})\|_2^2. \quad (2)$$

082 Such augmentations include additive Gaussian noise in denoising AEs (Vincent et al., 2008) and input  
 083 masking in masked AEs (He et al., 2022). Another form of contractive pressure is the bottleneck  
 084 dimension  $k = \dim(\mathcal{Z})$ , which places a hard upper bound on the rank of the encoder Jacobian,  
 085  $\text{rank}(J_E) \leq k$  and, by the chain rule, constrains the full model Jacobian  $J_F(\cdot) = J_E(\cdot) \odot J_D(\cdot)$ .  
 086 Table 2 (Appendix) lists many AE variants, including denoising AEs (DAEs) (Vincent et al., 2008),  
 087 sparse AEs (SAEs) (Ng et al., 2011), variational AEs (VAEs) (Kingma et al., 2013), and others (Rifai  
 088 et al., 2011; Alain and Bengio, 2014; Gao et al., 2024), highlighting how their objectives promote  
 089 local contractive behavior around training data.

090 Given a possibly pretrained AE model, we define the map  $f(\mathbf{z}) = E \circ D(\mathbf{z})$  and study its repeated  
 091 application  $f(\dots f(f(\mathbf{z})))$ , which can be modeled as a differential equation.

### 092 2.1 THE LATENT DYNAMICS OF NEURAL MODELS

093 Given a sample  $\mathbf{z} \in \mathcal{Z} \subseteq \mathbb{R}^k$ , we study the effect of repeatedly applying the map  $f$ , i.e.,  $f \circ f \circ \dots f(\mathbf{z})$ .  
 094 By introducing a discrete time parameter  $t$ , this iterative process defines the discrete ODE:

$$095 \begin{cases} \mathbf{z}_{t+1} = f(\mathbf{z}_t) \\ \mathbf{z}_0 = \mathbf{z} \end{cases} \quad (3)$$

096 which discretizes the following continuous differential equation:  
 097

$$\frac{\partial \mathbf{z}}{\partial t} = f(\mathbf{z}) - \mathbf{z} \quad (4)$$

108 In Eq. 3, the map  $f$  defines the pushforward of a *latent vector field*  $V : \mathbb{R}^k \mapsto \mathbb{R}^k$ , tracing nonlinear  
 109 trajectories in latent space (Fig. 1). A natural question is whether the ODE has well-defined and unique  
 110 solutions. By the Banach fixed-point theorem, this holds if and only if  $f$  is Lipschitz-continuous **with**  
 111 **Lipschitz constant  $C < 1$ .**

112 **Definition 1.** A function  $f : \mathcal{Z} \mapsto \mathcal{Z}$  is *Lipschitz-continuous* if there exists a constant  $C$  s.t. for every  
 113 pair of points  $\mathbf{z}_1, \mathbf{z}_2$ :

$$115 \quad d(f(\mathbf{z}_1), f(\mathbf{z}_2))_{\mathcal{Z}} \leq C d(\mathbf{z}_1, \mathbf{z}_2)_{\mathcal{Z}}. \quad (5)$$

117 When  $C < 1$ ,  $f$  is called *contractive*, for a given metric  $d$  on  $\mathcal{Z}$ .

119 For any contractive map, Eq. 3 admits fixed-point solutions, i.e., repeatedly applying the map  $f$  will  
 120 converge to a unique solution  $\mathbf{z}^*$  satisfying  $\mathbf{z}^* = f(\mathbf{z}^*)$ . The fixed points  $\mathbf{z}^*$  can act as attractors,  
 121 capturing and summarizing the system’s long-term dynamics.

122 **Definition 2.** A fixed point  $\mathbf{z} = f(\mathbf{z})$  is an *attractor* of a differentiable map  $f$  if all eigenvalues of the  
 123 Jacobian  $J$  of  $f$  at  $\mathbf{z}$  are strictly less than one in absolute value.

125 When  $f$  is nonlinear, the ODE in Eq. 3 can have multiple solutions depending on the initial conditions  
 126  $\mathbf{z}_0$ . The previous definition allows for a definition of Lipschitz continuity, which is inherently local:

128 **Definition 3.** Let  $f : \mathcal{Z} \mapsto \mathcal{Z}$  be differentiable and  $C$ -Lipschitz continuous. Then the Lipschitz  
 129 constant  $C$  is given by:  $C = \sup_{\mathbf{z} \in \mathcal{Z}} \|J_f(\mathbf{z})\|_{\sigma}$ , where  $J_f(\mathbf{z})$  is the Jacobian of  $f$  evaluated at  $\mathbf{z}$  and  
 130  $\|\cdot\|_{\sigma}$  is the spectral norm.

131 The set of initial conditions  $\mathbf{z}_0$  leading to the same attractor  $\mathbf{z}^*$ , is denoted as *basin of attraction*.

133 **Why are neural mappings contractive in practice?** We argue that mappings learned by neural  
 134 AEs and their variants tend to be *locally contractive*, i.e., their Jacobians have small eigenvalues  
 135 near training examples. This behavior emerges naturally from several explicit and implicit inductive  
 136 biases present in modern training pipelines. Below, we outline the main factors promoting contractive  
 137 behavior:

138 • **Initialization bias.** Standard initialization schemes (LeCun et al., 2002; Glorot and Bengio, 2010;  
 139 He et al., 2015) are designed to preserve activation variance at the start of training to avoid vanishing  
 140 or exploding gradients. Theoretical arguments in support assume i.i.d. inputs and weights, and are  
 141 often tied to specific activation functions (e.g., ReLU in (He et al., 2015)). However, real-world  
 142 training data is typically correlated, and architectural features like residual connections (He et al.,  
 143 2016) break weight independence. As a result, networks often exhibit a bias toward mappings that  
 144 are globally expansive or contractive, empirically skewed toward the latter (Poole et al., 2016).

145 We illustrate this empirically in Figure 6 (Appendix), showing that various vision backbones  
 146 exhibit contractive behavior at initialization. Figure 3a (left) shows a 2D latent vector field which  
 147 is globally contractive at initialization towards a single attractor at the origin. This contractive  
 148 behavior also holds in higher dimensions (see the number of attractors at epoch 0 in Figure 3c).

149 • **Explicit regularization.** Common regularization methods like weight decay (D’Angelo et al., 2024)  
 150 encourage contraction by penalizing the norm of model parameters. In the linear case, minimizing  
 151 parameter norms directly reduces the Jacobian’s spectral norm, making the map contractive. While  
 152 this link is less direct for nonlinear models, the effect due to weight decay persists in practice.  
 153 Regularization is often integrated into optimizers used in large-scale models (Loshchilov, 2017).  
 154 Additional architectural constraints, such as small bottleneck dimensions, also limit the rank of  
 155  $J_f(\mathbf{z})$ . Soft constraints include KL divergence in VAEs or sparsity penalties in SAEs (see Table 2  
 156 in the Appendix for a complete overview).

158 • **Implicit regularization.** Data augmentations introduce local perturbations around training exam-  
 159 ples, effectively defining a neighborhood structure in input space. For instance, Gaussian noise  
 160 in DAEs or masking in MAEs perturbs inputs along specific directions. These augmentations  
 161 implicitly regularize the Jacobian  $J_f(\mathbf{x})$  by penalizing sensitivity to those perturbations. Unlike  
 parametric regularization, this effect is inherently local and nonparametric.

162 **3 THEORETICAL REMARKS**  
 163

164 In this section, we study the behavior of the latent vector field, focusing on its trajectories (Section 3.1)  
 165 as well as its fixed points and attractors (Section 3.2), when they exist. Formal statements and proofs  
 166 of all theorems and propositions are provided in Appendix A.  
 167

168 **3.1 TRAJECTORIES OF THE LATENT VECTOR FIELD**  
 169

170 Prior work (Miyasawa et al., 1961; Robbins, 1992; Alain and Bengio, 2014) has shown that, under  
 171 ideal conditions, the residual of a denoising AE trained with noise variance  $\sigma^2$  approximates the  
 172 score function, i.e., the gradient of the log-density of the data, as  $\sigma \rightarrow 0$ . Interestingly, Alain and  
 173 Bengio (2014) shows a connection between denoising and contractive AEs, where the Jacobian norm  
 174 of the input-output mapping is explicitly penalized.  
 175

176 We build on this by observing a more general phenomenon: when an autoencoding map is locally  
 177 contractive relative to a chosen neighborhood structure (e.g., Gaussian noise, masking) and sufficiently  
 178 approximates the input distribution  $p(\mathbf{x})$ , the induced latent vector field pushes points in the direction  
 179 of the score of the corresponding prior in latent space.  
 180

181 Informally, this implies that the vector field acts to nonlinearly project samples toward regions of  
 182 high probability on the data manifold.  
 183

**Theorem 1** (informal, proof in Appendix A.1). *Let  $F$  be a trained autoencoder and let  $q(\mathbf{z}) = \int p(\mathbf{x})q(\mathbf{z}|\mathbf{x})d\mathbf{x}$  be the marginal distribution induced in latent space. Assume  $q(\mathbf{z})$  is smooth and that there exists an open neighborhood  $\Omega \supseteq \text{supp } q$  and a constant  $L < 1$  such that  $\sup_{\mathbf{z} \in \Omega} \|J_f(\mathbf{z})\|_\sigma \leq L$ . Then, latent dynamics  $f(\mathbf{z}) - \mathbf{z}$  in  $\Omega$  is locally proportional to the score function  $\nabla_{\mathbf{z}} \log q(\mathbf{z})$ .*  
 184

185 This result establishes a general link between the vector field’s trajectories and the score function,  
 186 under the assumption of local contractivity. In practice, neural networks often strike a balance  
 187 between the reconstruction loss (Eq. 1) and regularization on the Jacobian, which contributes to the  
 188 emergence of attractors in the latent space.  
 189

190 An important implication of Theorem 1 is that integrating the vector field  $f(\mathbf{z}) - \mathbf{z}$  effectively estimates  
 191 the log-density, i.e.,  $\int_{\mathbf{z}} \nabla \log q(\mathbf{z})d\mathbf{z} = \log q(\mathbf{z}) + C$  in unbounded domains. If the Jacobian  $J_f$  is  
 192 symmetric (e.g., in AEs with tied weights (Alain and Olivier, 2013)), then the latent vector field is  
 193 *conservative* and corresponds to the gradient of a potential  $V_f = \nabla E$ . In this case, the AE defines  
 194 an energy-based model with  $q(\mathbf{z}) = e^{-E(\mathbf{z})}$  (Zhai et al., 2016; Song and Kingma, 2021). In the  
 195 general (non-conservative) case, we show empirically in Section 4.2 that the trajectories still reflect  
 196 the learned prior distribution.  
 197

198 However, attractors are generally not accessible solving the fixed-point equation with first order  
 199 methods, unless initialized very close to them. The following result formalizes this:  
 200

**Proposition 3.1** (informal, proof in Appendix A.2). *Iterations of the map  $f$  in Eq. 3 correspond to gradient descent on a potential  $L(\mathbf{z})$  (i.e.,  $f \approx \mathbf{z} - \alpha L(\mathbf{z})$ ) if and only if  $f$  is an isometry (its eigenvalues are near 1), or the dynamics occur near attractors, where  $J_f$  vanishes.*  
 201

202 This underscores the role of higher-order dynamics in the vector field: repeated applications of  $f$   
 203 trace complex, nonlinear trajectories that can escape spurious or unstable fixed points.  
 204

205 **3.2 CHARACTERIZING THE ATTRACTORS OF THE LATENT VECTOR FIELD**  
 206

207 In this section, we aim to characterize what the fixed point solutions of Eq. 3 represent. In Ap-  
 208 pendix A.4 we consider the two cases of linear and homogeneous networks as examples, to build  
 209 intuition on the characterization of attractors and latent vector field.  
 210

**Between memorization and generalization.** Our goal is to characterize the properties of the latent  
 211 vector field and the learned attractors in the general setting. We argue that different models can  
 212 fit training points reaching similar low loss, but interpolate *differently* outside the training support,  
 213 depending on the regularization strength and the amount of overparametrization.  
 214

215 In this context, a key question arises: what information do the attractors  $\mathbf{z}^*$  encode? We argue that  
 216 neural models lie in a *spectrum* between memorization and generalization, depending on the strength  
 217

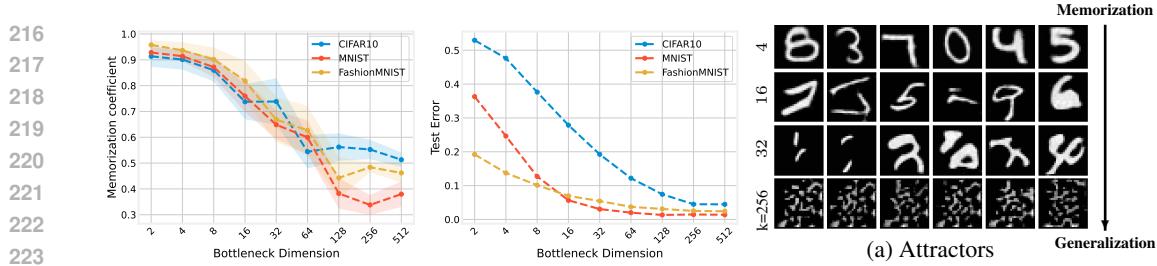


Figure 2: *Memorization vs Generalization*. Attractors memorize the training data as a function of the rank of  $J_f(\mathbf{z})$  by adjusting the bottleneck dimension  $k$  (left) which is inversely proportional to the amount of generalization attained by the model (center); On the right we show example of decoded attractors transitioning from a strong memorization model (first row) to good generalization (last row).

of the regularization term in Eq. 1. We hypothesize that attractors fully characterize where a model falls on this spectrum. To do so, we first connect attractors to the notion of generalization via the following proposition:

**Proposition 3.2** (Informal, proof in Appendix A.3). *Let  $\mathbf{Z}^*$  be a dictionary of attractors of  $f = E \circ D$  in a neighborhood  $\Omega$  of the latent space, and let  $\Pi(\mathbf{z})$  denote the projection onto the nearest attractor to a latent code  $\mathbf{z} = E(\mathbf{x})$ . If  $D$  is  $L_D$ -Lipschitz on  $\Omega$ , then for any test point  $\mathbf{x}$ :*

$$\|\mathbf{x} - F(\mathbf{x})\|_2^2 \leq \underbrace{\|\mathbf{x} - D(\Pi(E(\mathbf{x})))\|_2^2}_{\text{error to prototype}} + \underbrace{L_D^2 \|\mathbf{x} - \Pi(E(\mathbf{x}))\|_2^2}_{\text{coverage error}}.$$

In short, attractors define a dictionary for the data: when they coincide with training points, prototype error on these points vanishes but coverage is narrow (memorization regime), whereas generalization requires attractors that both cover the latent space and serve as good prototypes for unseen data.

We consider attractors as *representations summarizing the information stored in the weights of the network*. This interpretation is in line with the convergence of paths in the vector field to modes of the learned distribution of Theorem 1, and can be easily seen in the case of memorization.

**Extreme overparametrization case.** When the capacity of a network exceeds the number of training examples by far, AEs enter an overfitting regime leading to data memorization (Zhang et al., 2019; Radhakrishnan et al., 2020; Jiang and Pehlevan, 2020; Kadkhodaie et al., 2023). The network in this case learns a constant function or an approximation thereof, which can be retrieved through the iterations of Eq. 3.

### 3.2.1 THE ROLE OF REGULARIZATION

We empirically demonstrate that the balance between memorization and generalization is governed by the strength of regularization. In Figure 2, we show how increasing regularization on the Jacobian  $J_f(\mathbf{z}^*)$  drives the model from a memorization regime, where many training examples are stored as attractors, toward generalization. We remark that this memorization arises in an *over-regularized* regime, as opposed to the *overfitting* regime of extremely overparametrized networks.

**Setting.** We trained 30 convolutional AEs on the CIFAR, MNIST, and FashionMNIST datasets, varying the bottleneck dimension  $k$  from 2 to 512. This acts as a hard regularizer on  $J_f(\mathbf{z}^*)$ , by constraining its rank to be  $\leq k$ . We compute attractors  $\mathbf{Z}^*$  from elements of the training set  $\mathcal{X}_{train}$  by iterating  $f$  till convergence. We measure the degree of memorization by defining a *memorization coefficient*, which is given by the cosine similarity of each decoded attractor  $\mathbf{x}^* = D(\mathbf{z}^*)$  to its closest point in the training set,  $\text{mem}(\mathbf{z}^*) = \min_{\mathbf{x} \in \mathcal{X}_{train}} \cos(D(\mathbf{z}^*), \mathbf{x})$  and we report the mean and standard deviation over attractors. We measure generalization by simply reporting the error on the test set. In Figure 13 in the Appendix, we also report the rank explaining 90% of the variance of the matrix of decoded attractors  $\mathbf{X}^*$ , showing that attractors corresponding to good generalization models span more directions in the input space. For additional information on the model, hyperparameters, and settings, we refer to Appendix D.

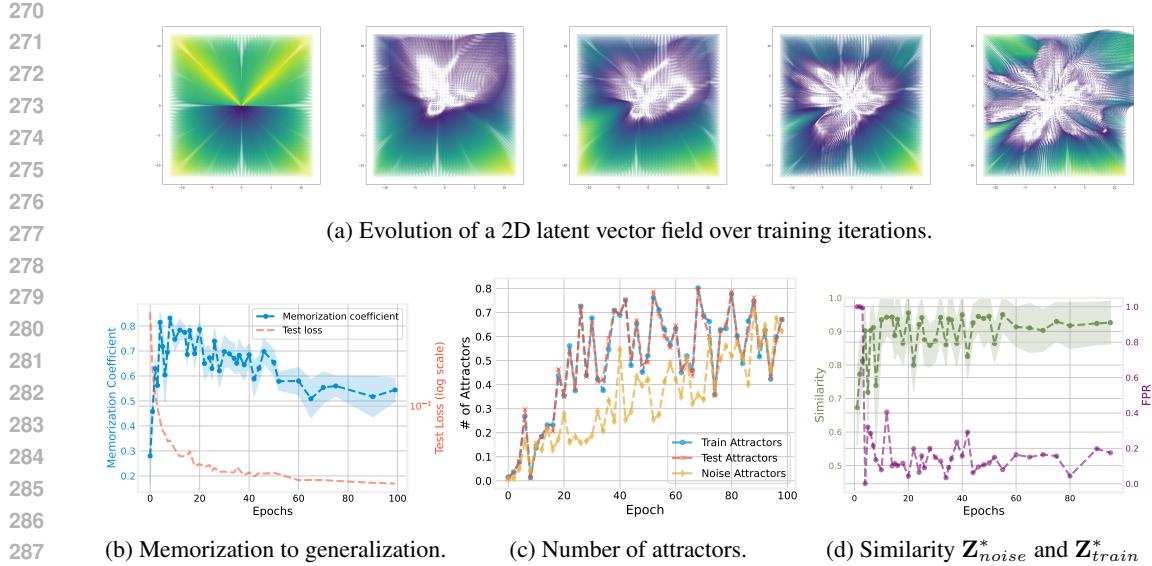


Figure 3: *Latent vector field dynamics.* (a) The 2D vector field ( $k = 2$ ) expands from a single attractor, eventually stabilizing and over-fitting because of capacity limits. *Bottom:* Evolution of larger capacity AEs ( $k = 128$ ) across training. (b) Throughout training, the network first memorizes the data with a high memorization coefficient (in blue) and then generalizes, achieving a low test error (red). (c): Evolution of attractor count for training (blue), test (red), and noise (yellow) samples; (d) Attractors computed from training and from gaussian noise converge during training (green), while the separability of the trajectories (measured as FPR95, the lower the better) increase (purple).

**Analysis of results.** In Figure 2 on the left, we observe that the more regularized networks ( $k$  from 2 to 16) tend to memorize data, trading off generalization performance (middle plot). We remark that this kind of memorization is not due to overfitting, as was shown in (Kadkhodaie et al., 2023) for diffusion models, but it happens in the underfit regime, due to the strong regularization constraint on  $J_f(\mathbf{x})$ . We show in Figure 14 in the Appendix results in the overfitting regime, by training the models with different sample sizes and observing a similar pattern.

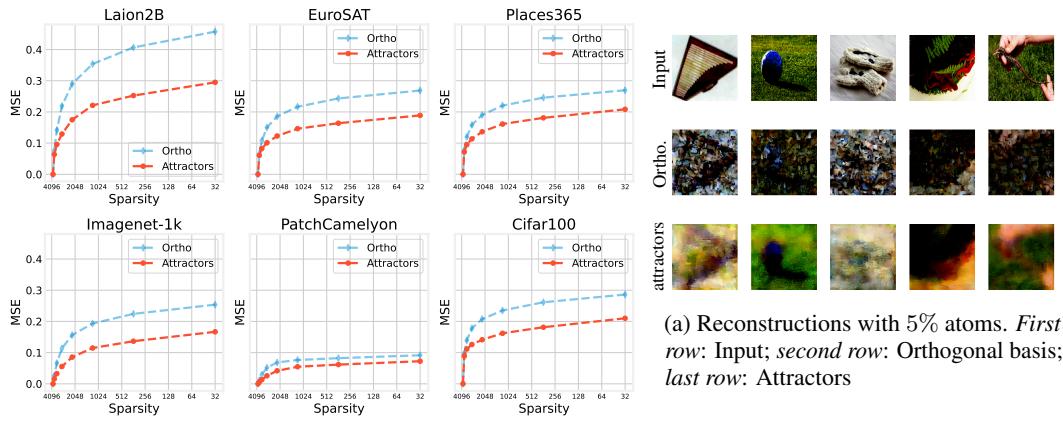
**Takeaway.** Attractors capture the interplay between generalization and memorization of neural models, which corresponds to the trade-off between the reconstruction performance and regularization term of the AE model.

### 3.2.2 MEMORIZATION AND GENERALIZATION ACROSS TRAINING

In the experiment in Figure 3 we show that a similar transition from a memorization regime to generalization occurs across training.

**Setting.** We monitor the latent vector field and attractors statistics across the training dynamics of a convolutional AE trained on MNIST with bottleneck dimension  $k = 128$  (bottom row plots in the Figure). To show qualitatively the evolution of a latent vector field, we also plot it across training epochs for AEs with bottleneck dimension  $k = 2$  in Figure 3a.

**Analysis of results.** In Figure 3b we show the transition from memorization, occurring at the first epochs of training, to generalization, by plotting the memorization coefficient and the test error across training, observing a trade-off between the two. In the center plot, we plot the fraction of distinct attractors, computed from 5000 random elements respectively from the  $P_{train}$ ,  $P_{test}$  and  $\mathcal{N}(0, I)$ , where we consider two attractors equal if  $\cos(\mathbf{z}_1^*, \mathbf{z}_2^*) > 0.99$ . Initially, the model converges to a single attractor (as also seen in the 2D example in Figure 3a). Over time, the number of attractors increases, stabilizing for training and test data in tandem with the test loss, while attractors from noise inputs converge more slowly. The right plot shows the Chamfer symmetric similarity between attractors from the training and noise distributions, which increases over training as the two distributions of attractors match.



(a) Reconstructions with 5% atoms. *First row*: Input; *second row*: Orthogonal basis; *last row*: Attractors

Figure 4: *Data-free weight information probing of Stable Diffusion model*. We plot the error (MSE) vs sparsity (number of atoms) used to reconstruct samples from diverse dataset respectively from (i) an orthonormal random basis of the latent space (blue); (ii) attractors computed from gaussian noise (red), showing that attractors consistently reconstructs samples better on all datasets. (Right) Reconstructions using 5% of the atoms on ImageNet

Importantly, while attractors derived from noise and training data become increasingly similar over the course of training, the *trajectories* leading to them differ significantly. To quantify this, we compute the **False Positive Rate at 95% True Positive Rate (FPR95)** scores for distinguishing trajectories originating from noise versus those from training data: **FPR95** measures what percentage of noise latent trajectories are falsely classified as training trajectories, setting a threshold such that 95% of training trajectories are classified correctly. We define the trajectory score as  $\text{score}(\mathbf{z}) = \frac{1}{N} \sum_{\mathbf{z}_i \in \pi(\mathbf{z})} d(\mathbf{z}_i, \mathbf{Z}_{train}^*)$  where  $\pi(\mathbf{z}) = [\mathbf{z}_0, \dots, \mathbf{z}_N]$  is the trajectory. The FPR95 decreases sharply during training, showing that the network learns to separate the two types of trajectories.

**Takeaway.** As the latent vector field evolves during training, the model transitions from memorization to generalization, forming similar attractors from different input distributions, while retaining information of the source distribution in the latent trajectories.

## 4 EXPERIMENTS ON VISION FOUNDATION MODELS

In this section we demonstrate the existence and applicability of the latent dynamics on vision foundation models, including the AE backbones of the Stable Diffusion model (Rombach et al., 2022) and vision transformer masked AEs (He et al., 2022), showing; (i) how information stored in the weights of a pretrained model can be recovered by computing the attractors from noise (ii) how trajectories in the latent dynamics are informative to characterize the learned distribution and detect distribution shifts.

### 4.1 DATA FREE WEIGHT PROBING

**Setting.** In this experiment, we investigate how much information stored in a neural network’s weights can be recovered purely from attractors computed on Gaussian noise, *without* access to any input data. We focus on AE component of Stable Diffusion (Rombach et al., 2022) pretrained on the large scale Laion2B dataset (Schuhmann et al., 2022).

We sample  $\mathbf{Z}_n \sim \mathcal{N}(\mathbf{0}, I)$  and compute the corresponding attractors as solutions to  $f(\mathbf{Z}_n^*) = \mathbf{Z}_n^*$ . We generate  $N = 4096$  such points, matching the latent dimensionality  $k$  of the model. We evaluate the reconstruction performance on 6 diverse datasets Laion2B (Schuhmann et al., 2022), Imagenet (Deng et al., 2009), EuroSAT (Helber et al., 2019), CIFAR100 (Krizhevsky et al., 2009), PatchCamelyon (Litjens et al., 2018), and Places365 (Zhou and Paffenroth, 2017). These datasets span general, medical, and satellite image domains.

For each dataset, we randomly sample 500 test examples and reconstruct them in latent space using Orthogonal Matching Pursuit (OMP) (Mallat and Zhang, 1993), with varying sparsity levels (i.e., number of atoms used). Reconstructions are decoded via  $D$ , and performance is compared against

378

379

380

381

382

383

384

| Method                | SUN397       |              | Places365    |              | Texture      |              | iNaturalist  |              |
|-----------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|                       | FPR ↓        | AUROC ↑      |
| <i>d</i> (Attractors) | <b>29.60</b> | <b>91.20</b> | <b>29.95</b> | <b>90.99</b> | <b>25.85</b> | <b>92.63</b> | <b>29.85</b> | <b>91.29</b> |
| KNN                   | 100.00       | 42.59        | 100.00       | 32.36        | 34.50        | 89.41        | 86.35        | 68.60        |

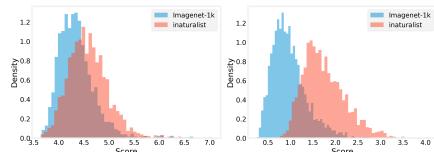
(a) *FPR and AUROC scores*(b) *KNN baseline* (c) *Latent trajectories*

Figure 5: *Trajectories in the latent vector field characterize distribution shifts* We measure out-of-distribution detection performance on ViTMAE: On the *left* we report scores for 4 different datasets, highly outperforming the KNN baseline. On the *right*, histograms of scores on the INaturalist dataset, demonstrating much better separability between in-distribution and out-of-distribution **when probing latent trajectories distances to in-distribution attractors (c)**, as opposed to measure distances to in-distribution features (b).

a baseline reconstruction using the initial orthogonal samples  $\mathbf{Z}_0^*$ , which, by design, fully span the latent space  $\mathcal{Z}$ .

**Analysis of results.** In Figure 4, we plot the error as a function of the number of elements (atoms) chosen to reconstruct the test samples using OMP. We compare by building a random orthogonal basis sampled in the latent space. On all considered datasets, noise attractors recover test samples with lower reconstruction error, representing a better dictionary of signals. In Figure 4a, we show qualitative reconstruction using only 5 % of the atoms. In Figures 7, 8, 9 in the Appendix, we include additional qualitative evidence of this phenomenon, visualizing reconstructions of random samples of the datasets as a function of the number of atoms used. In Appendix B, we report additional results on variants of the AE of different sizes.

**Takeaway.** Attractors of foundation models computed from noise can serve as a dictionary of signals to represent diverse datasets, demonstrating that it is possible to probe the information stored in the weights of foundation models in a black box way, without requiring any input data.

## 4.2 LATENT TRAJECTORIES CHARACTERIZE THE LEARNED DISTRIBUTION

In the following experiment, we test the hypothesis that trajectories are informative on the distribution learned by the model, testing how well Theorem 1 holds in practice. Our goal is to evaluate whether these trajectories can be used to detect distribution shifts in the input data. To classify a sample as out-of-distribution (OOD), we focus on two key questions: (i) does the sample trajectory converge to one of the attractors of the training data, i.e., does it *share the same basin* of attraction? (ii) If so, *how fast* does it converge?

Notably, an OOD sample may still lie within a shared attractor basin. To capture both scenarios, we track the distance from each point along a test sample’s trajectory to the nearest attractor from the training set. In the former case, we expect that an OOD sample converges faster, while in the latter case, the distance term to the attractors will dominate the score.

**Setting.** We test this hypothesis using the ViT-MAE (He et al., 2022) architecture pretrained on ImageNet. We sample 2000 training images and compute their attractors, stopping when convergence reaches a tolerance of  $10^{-5}$  or a maximum number of iterations. We test on samples from SUN397 (Xiao et al., 2016), Places365 (Zhou and Paffenroth, 2017), Texture (Cimpoi et al., 2014), and iNaturalist (Van Horn et al., 2018), standard benchmarks for OOD detection (Yang et al., 2024). We report two metrics: FPR95, and Area Under the Receiver Operating Characteristic Curve (AUROC). FPR95 [here](#) measures what percentage of OOD data we falsely classify as ID, **setting a threshold s.t. 95% of ID data is correctly classified**.

**Analysis of results.** In Figure 5 we report OOD detection performance by using the following score function: for a test sample  $\mathbf{z}_{test}$  we compute its trajectory  $\pi_{\mathbf{z}_{test}} = [\mathbf{z}_0, \dots, \mathbf{z}_N^*]$  towards attractors and compute the distance of  $\pi_{\mathbf{z}_{test}}$  to the set of training attractors  $\mathbf{Z}_{train}^*$ , i.e.  $\text{score}(\mathbf{z}) = d(\pi_{\mathbf{z}_{test}}, \mathbf{Z}_{train}^*)$ . As a distance function, we employ Euclidean distance, and we aggregate the score by computing the mean distance over the trajectory  $\text{score}(\mathbf{z}) = \frac{1}{N} \sum_i d(\mathbf{z}_i, \mathbf{Z}_{train}^*)$ . We compare with a  $K$ -Nearest neighbor baseline ([adapted from Sun et al. \(2022\)](#)), where the score for a test sample is obtained by taking the mean distance over the  $K$ -NN on the training dataset,

432 where  $K = 2000$  in the experiments. The score proposed demonstrates how informative the latent  
 433 vector field is on the training distribution. In Figure 5 on the right, we show histograms of scores  
 434 for the distance to attractors and the KNN, showing again that the former method is able to tell apart  
 435 in-distribution and out-of-distribution data correctly.

436 **Takeaway.** Trajectories in the latent vector field characterize the source distribution and are  
 437 informative to detect distribution shifts.

## 439 5 RELATED WORK

441 **Memorization and generalization in neural networks (NNs).** NNs exhibit a rich spectrum of  
 442 behaviors between memorization and generalization, depending on model capacity, regularization,  
 443 and data availability (Arpit et al., 2017; Zhang et al., 2021; Power et al., 2022). In the case of extreme  
 444 overparametrization, namely networks trained on few data points, it has been shown experimentally  
 445 in (Radhakrishnan et al., 2020; Zhang et al., 2019) and theoretically for sigmoid shallow AEs  
 446 in (Jiang and Pehlevan, 2020) that AEs can memorize examples and implement associative memory  
 447 mechanisms. (Alain and Bengio, 2014; Vincent, 2011), A similar phenomenon has been observed  
 448 in diffusion models in (Somepalli et al., 2023; Dar et al., 2023) and analyzed in (Kadkhodaie  
 449 et al., 2023) Similarly, non gradient-based approaches such as Hopfield networks and their modern  
 450 variants (Hopfield, 1982; Ramsauer et al., 2020) extend classical attractor dynamics to neural systems  
 451 that interpolate between memory-based and generalizing regimes. In our work, we show that AEs  
 452 fall in general in the spectrum between memorization and generalization, depending on inductive  
 453 biases that enforce contraction.

454 **Contractive neural models.** Different approaches have been proposed to regularize NNs in order  
 455 to make them smoother and more robust to input perturbations and less prone to overfitting. Many of  
 456 these regularization techniques either implicitly or explicitly promote contractive mappings in AEs:  
 457 for example, sparse AEs (Ng et al., 2011; Gao et al., 2024), their denoising variant (Vincent et al.,  
 458 2008), and contractive AEs (Rifai et al., 2011; Alain and Bengio, 2014) losses enforce learned maps  
 459 to be contractive through the loss. Regularization strategies such as weight decay (Krogh and Hertz,  
 460 1991) favor as well contractive solutions for neural models, and they are incorporated in standardized  
 461 optimizers such as AdamW (Loshchilov, 2017). All these approaches enforce either directly or  
 462 indirectly the existence of fixed points and attractors in the proposed latent vector field representation.

463 **Neural networks as dynamical systems.** Distinct lines of work have interpreted neural networks  
 464 as dynamical systems. Neural ODEs (Chen et al., 2018) view depth as continuous time and model  
 465 hidden states via differential equations, while deep equilibrium models (Bai et al., 2019) characterize  
 466 predictions as fixed points of implicit dynamics. Closer to our work, Radhakrishnan et al. (2020) interpret  
 467 overparameterized autoencoders as dynamical systems acting in the input space, implementing  
 468 associative memory. In contrast, we show that *any* autoencoder induces a *latent* vector field, and we  
 469 link its properties to generalization, memorization, and the characterization of the learned distribution.

470 **Nonlinear operators spectral analysis.** In the context of image processing and 3D graphics, previous  
 471 work has inspected generalization of spectral decompositions to nonlinear operators (Bungert et al.,  
 472 2021; Gilboa et al., 2016; Fumero et al., 2020), focusing on one homogeneous operator. In our work,  
 473 fixed points of Eq. 3 can be interpreted as the decomposition of the NN into a dictionary of signals.

## 474 6 CONCLUSIONS AND DISCUSSION

475 In this work we proposed to represent neural AEs as vectors fields, implicitly defined by iterating the  
 476 autoencoding map in the latent space. We showed that (i) attractors in the latent vectors field exists in  
 477 practice due to inductive biases in the training regime which enforce local contractions; (ii) they retain  
 478 key properties of the model and the data, linking to memorization and generalization regimes of the  
 479 model; (iii) knowledge stored in the weights can be retrieved without access to input data in vision  
 480 foundation models; (iv) paths in the vector field inform on the learned distribution and its shifts.

481 **Limitations and future works.** *Generalizing to arbitrary models:* Eq. 3 cannot be directly gener-  
 482 alized to model trained with discriminative objectives such as a deep classifiers, or self supervised  
 483 models, as the network is not invertible. However we note that (i) **our theory holds in general for**  
 484 **any self map which is locally contractive** (ii) the vector field is still defined in the output space, and  
 485 can be simply obtained by computing the residual  $F(\mathbf{x}) - y$  and in the neighborhood of an attractor,

486 the relation in proposition 3.1 can still hold for different objectives. One idea is to train a decoder  
487 on top of the frozen encoder-only model. We give preliminary evidence of the existence of latent  
488 vector fields in self-supervised models and in next token predictors (Large language models) in Ap-  
489 pendix B.8, showing that extending our framework to arbitrary models hold promise. An alternative  
490 intriguing idea is the one to train a *surrogate AE* model in the latent space of the model of interest,  
491 which would be agnostic from the pretraining objective. Sparse AEs for mechanistic interpretability  
492 of large language models (LLMs) (Gao et al., 2024) fit in this category. Analyzing the associated  
493 latent vector field can shed light on features learned by SAEs and biases stored in their weights.  
494 *Learning dynamics*: characterizing how attractors forms during training, under which conditions  
495 noise attractors converge to the training attractors, holds promise to use the proposed representation to  
496 study the learning dynamics of neural models to inspect finetuning of AE modules, such as low-rank  
497 adapters (Hu et al., 2022) and double descent (Nakkiran et al., 2021). *Alignment of latent vector fields*:  
498 finally, following recent findings in representation alignment (Moschella et al., 2022; Fumero et al.,  
499 2024; Huh et al., 2024) inspecting how latent vector fields of networks trained are related is an open  
500 question for future works, to possibly use this representations to compare different neural models.

501  
502  
503  
504  
505  
506  
507  
508  
509  
510  
511  
512  
513  
514  
515  
516  
517  
518  
519  
520  
521  
522  
523  
524  
525  
526  
527  
528  
529  
530  
531  
532  
533  
534  
535  
536  
537  
538  
539

540 ETHICS STATEMENT  
541

542 This work is primarily methodological and theoretical, focusing on the dynamics of autoencoder  
543 networks. We do not foresee any direct negative societal impacts. All datasets used are publicly  
544 available benchmark datasets (e.g., MNIST, CIFAR, Imagenet, Laion2B) or openly released via  
545 HuggingFace (Lhoest et al., 2021). No sensitive, private, or personally identifiable information  
546 is involved. Our experiments are designed for scientific analysis only, and no human subjects  
547 or protected groups are included. While the methodology in Section 4.1 provides tools to probe  
548 information about trained data in autoencoders foundation models, it does not directly improve  
549 fairness, robustness, or safety. In principle, insights into memorization could be misused to develop  
550 algorithms to recover information from pretrained models in unintended ways. However, our study is  
551 limited to publicly available models and datasets, and we emphasize that the proposed techniques  
552 should be applied responsibly in research contexts. We hope our findings contribute to a better  
553 understanding of neural representations and their generalization/memorization properties, which may  
554 inform the design of more transparent and robust models. We provide details and hyperparameters  
555 for each experiment for reproducibility and formal statements and proof of our theoretical results in  
556 the Appendix.

557 REPRODUCIBILITY STATEMENT  
558

559 All formal statements and proofs of theorems are reported in Appendix A. We implement all our  
560 experiments using PyTorch (Paszke et al., 2019) and HuggingFace libraries Lhoest et al. (2021);  
561 Wolf et al. (2020). We experiment solely with openly available models and datasets available on  
562 HuggingFace Hub. We will open-source our codebase for all the experiments upon acceptance. Unless  
563 otherwise noted in the experiment-specific sections, all hyperparameters are listed in Section D.

564  
565 REFERENCES  
566

567 Droniou Alain and Sigaud Olivier. Gated autoencoders with tied input weights. In *International  
568 Conference on Machine Learning*, pages 154–162. PMLR, 2013.

569 Guillaume Alain and Yoshua Bengio. What regularized auto-encoders learn from the data-generating  
570 distribution. *The Journal of Machine Learning Research*, 15(1):3563–3593, 2014.

571 Loubna Ben Allal, Anton Lozhkov, Elie Bakouch, Gabriel Martín Blázquez, Guilherme Penedo,  
572 Lewis Tunstall, Andrés Marafioti, Hynek Kydlíček, Agustín Piqueres Lajarín, Vaibhav Srivastav,  
573 et al. Smollm2: When smol goes big–data-centric training of a small language model. *arXiv  
574 preprint arXiv:2502.02737*, 2025.

575 Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio, Maxinder S  
576 Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al. A closer look at  
577 memorization in deep networks. In *International conference on machine learning*, pages 233–242.  
578 PMLR, 2017.

579 Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. *Advances in neural  
580 information processing systems*, 32, 2019.

581 Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new  
582 perspectives. *IEEE transactions on pattern analysis and machine intelligence*, 35(8):1798–1828,  
583 2013.

584 Leon Bungert, Ester Hait-Fraenkel, Nicolas Papadakis, and Guy Gilboa. Nonlinear power method for  
585 computing eigenvectors of proximal operators and neural networks. *SIAM Journal on Imaging  
586 Sciences*, 14(3):1114–1148, 2021.

587 Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary  
588 differential equations. *Advances in neural information processing systems*, 31, 2018.

589 Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Descri-  
590  
591  
592  
593  
594  
595  
596  
597  
598  
599  
600  
601  
602  
603  
604  
605  
606  
607  
608  
609  
610  
611  
612  
613  
614  
615  
616  
617  
618  
619  
620  
621  
622  
623  
624  
625  
626  
627  
628  
629  
630  
631  
632  
633  
634  
635  
636  
637  
638  
639  
640  
641  
642  
643  
644  
645  
646  
647  
648  
649  
650  
651  
652  
653  
654  
655  
656  
657  
658  
659  
660  
661  
662  
663  
664  
665  
666  
667  
668  
669  
670  
671  
672  
673  
674  
675  
676  
677  
678  
679  
680  
681  
682  
683  
684  
685  
686  
687  
688  
689  
690  
691  
692  
693  
694  
695  
696  
697  
698  
699  
700  
701  
702  
703  
704  
705  
706  
707  
708  
709  
710  
711  
712  
713  
714  
715  
716  
717  
718  
719  
720  
721  
722  
723  
724  
725  
726  
727  
728  
729  
730  
731  
732  
733  
734  
735  
736  
737  
738  
739  
740  
741  
742  
743  
744  
745  
746  
747  
748  
749  
750  
751  
752  
753  
754  
755  
756  
757  
758  
759  
760  
761  
762  
763  
764  
765  
766  
767  
768  
769  
770  
771  
772  
773  
774  
775  
776  
777  
778  
779  
779  
780  
781  
782  
783  
784  
785  
786  
787  
788  
789  
789  
790  
791  
792  
793  
794  
795  
796  
797  
798  
799  
800  
801  
802  
803  
804  
805  
806  
807  
808  
809  
809  
810  
811  
812  
813  
814  
815  
816  
817  
818  
819  
819  
820  
821  
822  
823  
824  
825  
826  
827  
828  
829  
829  
830  
831  
832  
833  
834  
835  
836  
837  
838  
839  
839  
840  
841  
842  
843  
844  
845  
846  
847  
848  
849  
849  
850  
851  
852  
853  
854  
855  
856  
857  
858  
859  
859  
860  
861  
862  
863  
864  
865  
866  
867  
868  
869  
869  
870  
871  
872  
873  
874  
875  
876  
877  
878  
879  
879  
880  
881  
882  
883  
884  
885  
886  
887  
888  
889  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898  
899  
900  
901  
902  
903  
904  
905  
906  
907  
908  
909  
909  
910  
911  
912  
913  
914  
915  
916  
917  
918  
919  
919  
920  
921  
922  
923  
924  
925  
926  
927  
928  
929  
929  
930  
931  
932  
933  
934  
935  
936  
937  
938  
939  
939  
940  
941  
942  
943  
944  
945  
946  
947  
948  
949  
949  
950  
951  
952  
953  
954  
955  
956  
957  
958  
959  
959  
960  
961  
962  
963  
964  
965  
966  
967  
968  
969  
969  
970  
971  
972  
973  
974  
975  
976  
977  
978  
979  
979  
980  
981  
982  
983  
984  
985  
986  
987  
988  
989  
989  
990  
991  
992  
993  
994  
995  
996  
997  
998  
999  
1000  
1001  
1002  
1003  
1004  
1005  
1006  
1007  
1008  
1009  
1009  
1010  
1011  
1012  
1013  
1014  
1015  
1016  
1017  
1018  
1019  
1019  
1020  
1021  
1022  
1023  
1024  
1025  
1026  
1027  
1028  
1029  
1029  
1030  
1031  
1032  
1033  
1034  
1035  
1036  
1037  
1038  
1039  
1039  
1040  
1041  
1042  
1043  
1044  
1045  
1046  
1047  
1048  
1049  
1049  
1050  
1051  
1052  
1053  
1054  
1055  
1056  
1057  
1058  
1059  
1059  
1060  
1061  
1062  
1063  
1064  
1065  
1066  
1067  
1068  
1069  
1069  
1070  
1071  
1072  
1073  
1074  
1075  
1076  
1077  
1078  
1079  
1079  
1080  
1081  
1082  
1083  
1084  
1085  
1086  
1087  
1088  
1089  
1089  
1090  
1091  
1092  
1093  
1094  
1095  
1096  
1097  
1097  
1098  
1099  
1099  
1100  
1101  
1102  
1103  
1104  
1105  
1106  
1107  
1108  
1109  
1109  
1110  
1111  
1112  
1113  
1114  
1115  
1116  
1117  
1118  
1119  
1119  
1120  
1121  
1122  
1123  
1124  
1125  
1126  
1127  
1128  
1129  
1129  
1130  
1131  
1132  
1133  
1134  
1135  
1136  
1137  
1138  
1139  
1139  
1140  
1141  
1142  
1143  
1144  
1145  
1146  
1147  
1148  
1149  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156  
1157  
1158  
1159  
1159  
1160  
1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1169  
1170  
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1179  
1180  
1181  
1182  
1183  
1184  
1185  
1186  
1187  
1188  
1189  
1189  
1190  
1191  
1192  
1193  
1194  
1195  
1195  
1196  
1197  
1198  
1199  
1199  
1200  
1201  
1202  
1203  
1204  
1205  
1206  
1207  
1208  
1209  
1209  
1210  
1211  
1212  
1213  
1214  
1215  
1216  
1217  
1218  
1219  
1219  
1220  
1221  
1222  
1223  
1224  
1225  
1226  
1227  
1228  
1229  
1229  
1230  
1231  
1232  
1233  
1234  
1235  
1236  
1237  
1238  
1239  
1239  
1240  
1241  
1242  
1243  
1244  
1245  
1246  
1247  
1248  
1249  
1249  
1250  
1251  
1252  
1253  
1254  
1255  
1256  
1257  
1258  
1259  
1259  
1260  
1261  
1262  
1263  
1264  
1265  
1266  
1267  
1268  
1269  
1269  
1270  
1271  
1272  
1273  
1274  
1275  
1276  
1277  
1278  
1279  
1279  
1280  
1281  
1282  
1283  
1284  
1285  
1286  
1287  
1288  
1289  
1289  
1290  
1291  
1292  
1293  
1294  
1295  
1295  
1296  
1297  
1298  
1299  
1299  
1300  
1301  
1302  
1303  
1304  
1305  
1306  
1307  
1308  
1309  
1309  
1310  
1311  
1312  
1313  
1314  
1315  
1316  
1317  
1318  
1319  
1319  
1320  
1321  
1322  
1323  
1324  
1325  
1326  
1327  
1328  
1329  
1329  
1330  
1331  
1332  
1333  
1334  
1335  
1336  
1337  
1338  
1339  
1339  
1340  
1341  
1342  
1343  
1344  
1345  
1346  
1347  
1348  
1349  
1349  
1350  
1351  
1352  
1353  
1354  
1355  
1356  
1357  
1358  
1359  
1359  
1360  
1361  
1362  
1363  
1364  
1365  
1366  
1367  
1368  
1369  
1369  
1370  
1371  
1372  
1373  
1374  
1375  
1376  
1377  
1378  
1379  
1379  
1380  
1381  
1382  
1383  
1384  
1385  
1386  
1387  
1388  
1389  
1389  
1390  
1391  
1392  
1393  
1394  
1395  
1395  
1396  
1397  
1398  
1399  
1399  
1400  
1401  
1402  
1403  
1404  
1405  
1406  
1407  
1408  
1409  
1409  
1410  
1411  
1412  
1413  
1414  
1415  
1416  
1417  
1418  
1419  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457  
1458  
1459  
1459  
1460  
1461  
1462  
1463  
1464  
1465  
1466  
1467  
1468  
1469  
1469  
1470  
1471  
1472  
1473  
1474  
1475  
1476  
1477  
1478  
1479  
1479  
1480  
1481  
1482  
1483  
1484  
1485  
1486  
1487  
1488  
1489  
1489  
1490  
1491  
1492  
1493  
1494  
1495  
1495  
1496  
1497  
1498  
1499  
1499  
1500  
1501  
1502  
1503  
1504  
1505  
1506  
1507  
1508  
1509  
1509  
1510  
1511  
1512  
1513  
1514  
1515  
1516  
1517  
1518  
1519  
1519  
1520  
1521  
1522  
1523  
1524  
1525  
1526  
1527  
1528  
1529  
1529  
1530  
1531  
1532  
1533  
1534  
1535  
1536  
1537  
1538  
1539  
1539  
1540  
1541  
1542  
1543  
1544  
1545  
1546  
1547  
1548  
1549  
1549  
1550  
1551  
1552  
1553  
1554  
1555  
1556  
1557  
1558  
1559  
1559  
1560  
1561  
1562  
1563  
1564  
1565  
1566  
1567  
1568  
1569  
1569  
1570  
1571  
1572  
1573  
1574  
1575  
1576  
1577  
1578  
1579  
1579  
1580  
1581  
1582  
1583  
1584  
1585  
1586  
1587  
1588  
1589  
1589  
1590  
1591  
1592  
1593  
1594  
1595  
1595  
1596  
1597  
1598  
1599  
1599  
1600  
1601  
1602  
1603  
1604  
1605  
1606  
1607  
1608  
1609  
1609  
1610  
1611  
1612  
1613  
1614  
1615  
1616  
1617  
1618  
1619  
1619  
1620  
1621  
1622  
1623  
1624  
1625  
1626  
1627  
1628  
1629  
1629  
1630  
1631  
1632  
1633  
1634  
1635  
1636  
1637  
1638  
1639  
1639  
1640  
1641  
1642  
1643  
1644  
1645  
1646  
1647  
1648  
1649  
1649  
1650  
1651  
1652  
1653  
1654  
1655  
1656  
1657  
1658  
1659  
1659  
1660  
1661  
1662  
1663  
1664  
1665  
1666  
1667  
1668  
1669  
1669  
1670  
1671  
1672  
1673  
1674  
1675  
1676  
1677  
1678  
1679  
1679  
1680  
1681  
1682  
1683  
1684  
1685  
1686  
1687  
1688  
1689  
1689  
1690  
1691  
1692  
1693  
1694  
1695  
1695  
1696  
1697  
1698  
1699  
1699  
1700  
1701  
1702  
1703  
1704  
1705  
1706  
1707  
1708  
1709  
1709  
1710  
1711  
1712  
1713  
1714  
1715  
1716  
1717  
1718  
1719  
1719  
1720  
1721  
1722  
1723  
1724  
1725  
1726  
1727  
1728  
1729  
1729  
1730  
1731  
1732  
1733  
1734  
1735  
1736  
1737  
1738  
1739  
1739  
1740  
1741  
1742  
1743  
1744  
1745  
1746  
1747  
1748  
1749  
1749  
1750  
1751  
1752  
1753  
1754  
1755  
1756  
1757  
1758  
1759  
1759  
1760  
1761  
1762  
1763  
1764  
1765  
1766  
1767  
1768  
1769  
1769  
1770  
1771  
1772  
1773  
1774  
1775  
1776  
1777  
1778  
1779  
1779  
1780  
1781  
1782  
1783  
1784  
1785  
1786  
1787  
1788  
1789  
1789  
1790  
1791  
1792  
1793  
1794  
1795  
1795  
1796  
1797  
1798  
1799  
1799  
1800  
1801  
1802  
1803  
1804  
1805  
1806  
1807  
1808  
1809  
1809  
1810  
1811  
1812  
1813  
1814  
1815  
1816  
1817  
1818  
1819  
1819  
1820  
1821  
1822  
1823  
1824  
1825  
1826  
1827  
1828  
1829  
1829  
1830  
1831  
1832  
1833  
1834  
1835  
1836  
1837  
1838  
1839  
1839  
1840  
1841  
1842  
1843  
1844  
1845  
1846  
1847  
1848  
1849  
1849  
1850  
1851  
1852  
1853  
1854  
1855  
1856  
1857  
1858  
1859  
1859  
1860  
1861  
1862  
1863  
1864  
1865  
1866  
1867  
1868  
1869  
1869  
1870  
1871  
1872  
1873  
1874  
1875  
1876  
1877  
1878  
1879  
1879  
1880  
1881  
1882  
1883  
1884  
1885  
1886  
1887  
1888  
1889  
1889  
1890  
1891  
1892  
1893  
1894  
1895  
1895  
1896  
1897  
1898  
1899  
1899  
1900  
1901  
1902  
1903  
1904  
1905  
1906  
1907  
1908  
1909  
1909  
1910  
1911  
1912  
1913  
1914  
1915  
1916  
1917  
1918  
1919  
1919  
1920  
1921  
1922  
1923  
1924  
1925  
1926  
1927  
1928  
1929  
1929  
1930  
1931  
1932  
1933  
1934  
1935  
1936  
1937  
1938  
1939  
1939  
1940  
1941  
1942  
1943  
1944  
1945  
1946  
1947  
1948  
1949  
1949  
1950  
1951  
1952  
1953  
1954  
1955  
1956  
1957  
1958  
1959  
1959  
1960  
1961  
1962  
1963  
1964  
1965  
1966  
1967  
1968  
1969  
1969  
1970  
1971  
1972  
1973  
1974  
1975  
1976  
1977  
1978  
1979  
1979  
1980  
1981  
1982  
1983  
1984  
1985  
1986  
1987  
1988  
1989  
1989  
1990  
1991  
1992  
1993  
1994  
1995  
1995  
1996  
1997  
1998  
1999  
1999  
2000  
2001  
2002  
2003  
2004  
2005  
2006  
2007  
2008  
2009  
2009  
2010  
2011  
2012  
2013  
2014  
2015  
2016  
2017  
2018  
2019  
2019  
2020  
2021  
2022  
2023  
2024  
2025  
2026  
2027  
2028  
2029  
2029  
2030  
2031  
2032  
2033  
2034  
2035  
2036  
2037  
2038  
2039  
2039  
2040  
2041  
2042  
2043  
2044  
2045  
2046  
2047  
2048  
2049  
2049  
2050  
2051  
2052  
2053  
2054  
2055  
2056  
2057  
2058  
2059  
2059  
2060  
2061  
2062  
2063  
2064  
2065  
2066  
2067  
2068  
2069  
2069  
2070  
2071  
2072  
2073  
2074  
2075  
2076  
2077  
2078  
2079  
2079  
2080  
2081  
2082  
2083  
2084  
2085  
2086  
2087  
2088  
2089  
2089  
2090  
2091  
2092  
2093  
2094  
2095  
2095  
2096  
2097  
2098  
2099  
2099  
2100  
2101  
2102  
2103  
2104  
2105  
2106  
2107  
2108  
2109  
2109  
2110  
2111  
2112  
2113  
2114  
2115  
2116  
2117  
2118  
2119  
2119  
2120  
2121  
2122  
2123  
2124  
2125  
2126  
2127  
2128  
2129  
2129  
2130  
2131  
2132  
2133  
2134  
2135  
2136  
2137  
2138  
2139  
2139  
2140  
2141  
2142  
2143  
2144  
2145  
2146  
2147  
2148  
2149  
2149  
2150  
2151  
2152  
2153  
2154  
2155  
2156  
2157  
2158  
2159  
2159  
2160  
2161  
2162  
2163  
2164  
2165  
2166  
2167  
2168  
2169  
21

594 Francesco D'Angelo, Maksym Andriushchenko, Aditya Vardhan Varre, and Nicolas Flammarion.  
 595 Why do we need weight decay in modern deep learning? *Advances in Neural Information*  
 596 *Processing Systems*, 37:23191–23223, 2024.

597

598 Salman Ul Hassan Dar, Arman Ghanaat, Jannik Kahmann, Isabelle Ayx, Theano Papavassiliu,  
 599 Stefan O Schoenberg, and Sandy Engelhardt. Investigating data memorization in 3d latent diffusion  
 600 models for medical image synthesis. In *International Conference on Medical Image Computing*  
 601 and *Computer-Assisted Intervention*, pages 56–65. Springer, 2023.

602 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale  
 603 hierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,  
 604 pages 248–255. Ieee, 2009.

605

606 Marco Fumero, Michael Möller, and Emanuele Rodolà. Nonlinear spectral geometry processing via  
 607 the tv transform. *ACM Transactions on Graphics (TOG)*, 39(6):1–16, 2020.

608

609 Marco Fumero, Marco Pegoraro, Valentino Maiorca, Francesco Locatello, and Emanuele Rodolà.  
 610 Latent functional maps: a spectral framework for representation alignment. In A. Globerson,  
 611 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, *Advances in Neural Information Processing Systems*, volume 37, pages 66178–66203. Curran Asso-  
 612 ciates, Inc., 2024. URL [https://proceedings.neurips.cc/paper\\_files/paper/2024/file/79be41d858841037987964e3f5caf76d-Paper-Conference.pdf](https://proceedings.neurips.cc/paper_files/paper/2024/file/79be41d858841037987964e3f5caf76d-Paper-Conference.pdf).

613

614 Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,  
 615 Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset of diverse text for  
 616 language modeling. *arXiv preprint arXiv:2101.00027*, 2020.

617

618 Leo Gao, Tom Dupré la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya  
 619 Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. *arXiv preprint*  
 620 *arXiv:2406.04093*, 2024.

621

622 Guy Gilboa, Michael Moeller, and Martin Burger. Nonlinear spectral analysis via one-homogeneous  
 623 functionals: overview and future prospects. *Journal of Mathematical Imaging and Vision*, 56:  
 300–319, 2016.

624

625 Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural  
 626 networks. In *Proceedings of the thirteenth international conference on artificial intelligence and*  
 627 *statistics*, pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

628

629 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing  
 630 human-level performance on imagenet classification. In *Proceedings of the IEEE international*  
 631 *conference on computer vision*, pages 1026–1034, 2015.

632

633 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image  
 634 recognition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*  
 (CVPR), June 2016.

635

636 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked  
 637 autoencoders are scalable vision learners. In *Proceedings of the IEEE/CVF conference on computer*  
 638 *vision and pattern recognition*, pages 16000–16009, 2022.

639

640 Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset  
 641 and deep learning benchmark for land use and land cover classification. *IEEE Journal of Selected*  
 642 *Topics in Applied Earth Observations and Remote Sensing*, 12(7):2217–2226, 2019.

643

644 John J Hopfield. Neural networks and physical systems with emergent collective computational  
 645 abilities. *Proceedings of the national academy of sciences*, 79(8):2554–2558, 1982.

646

647 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,  
 648 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

649

650 Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation  
 651 hypothesis. *arXiv preprint arXiv:2405.07987*, 2024.

648 Yibo Jiang and Cengiz Pehlevan. Associative memory in iterated overparameterized sigmoid autoen-  
 649 coders. In *International conference on machine learning*, pages 4828–4838. PMLR, 2020.  
 650

651 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,  
 652 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate  
 653 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.  
 654

655 Zahra Kadkhodaie, Florentin Guth, Eero P Simoncelli, and Stéphane Mallat. Generalization  
 656 in diffusion models arises from geometry-adaptive harmonic representations. *arXiv preprint*  
 657 *arXiv:2310.02557*, 2023.  
 658

659 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,  
 660 2014.  
 661

662 Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.  
 663

664 Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. *UoIT*,  
 665 2009.  
 666

667 Anders Krogh and John Hertz. A simple weight decay can improve generalization. *Advances in*  
 668 *neural information processing systems*, 4, 1991.  
 669

670 Yann LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. Efficient backprop. In *Neural*  
 671 *networks: Tricks of the trade*, pages 9–50. Springer, 2002.  
 672

673 Quentin Lhoest, Albert Villanova del Moral, Yacine Jernite, Abhishek Thakur, Patrick von Platen,  
 674 Suraj Patil, Julien Chaumond, Mariama Drame, Julien Plu, Lewis Tunstall, Joe Davison, Mario  
 675 Šaško, Gunjan Chhablani, Bhavitya Malik, Simon Brandeis, Teven Le Scao, Victor Sanh, Canwen  
 676 Xu, Nicolas Patry, Angelina McMillan-Major, Philipp Schmid, Sylvain Gugger, Clément Delangue,  
 677 Théo Matussière, Lysandre Debut, Stas Bekman, Pierrick Cistac, Thibault Goehringer, Victor  
 678 Mustar, François Lagunas, Alexander Rush, and Thomas Wolf. Datasets: A community library  
 679 for natural language processing. In *Proceedings of the 2021 Conference on Empirical Methods*  
 680 *in Natural Language Processing: System Demonstrations*, pages 175–184, Online and Punta  
 681 Cana, Dominican Republic, November 2021. Association for Computational Linguistics. URL  
 682 <https://aclanthology.org/2021.emnlp-demo.21>.  
 683

684 Geert Litjens, Peter Bandi, Babak Ehteshami Bejnordi, Oscar Geessink, Maschenka Balkenhol, Peter  
 685 Bult, Altuna Halilovic, Meyke Hermsen, Rob Van de Loo, Rob Vogels, et al. 1399 h&e-stained  
 686 sentinel lymph node sections of breast cancer patients: the camelyon dataset. *GigaScience*, 7(6):  
 687 giy065, 2018.  
 688

689 I Loshchilov. Decoupled weight decay regularization. *arXiv preprint arXiv:1711.05101*, 2017.  
 690

691 S.G. Mallat and Zhifeng Zhang. Matching pursuits with time-frequency dictionaries. *IEEE Transac-*  
 692 *tions on Signal Processing*, 41(12):3397–3415, 1993. doi: 10.1109/78.258082.  
 693

694 Koichi Miyasawa et al. An empirical bayes estimator of the mean of a normal population. *Bull. Inst.*  
 695 *Internat. Statist.*, 38(181–188):1–2, 1961.  
 696

697 Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Francesco Locatello, and  
 698 Emanuele Rodolà. Relative representations enable zero-shot latent space communication. *arXiv*  
 699 *preprint arXiv:2209.15430*, 2022.  
 700

701 Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep  
 702 double descent: Where bigger models and more data hurt. *Journal of Statistical Mechanics: Theory*  
 703 *and Experiment*, 2021(12):124003, 2021.  
 704

705 Andrew Ng et al. Sparse autoencoder. *CS294A Lecture notes*, 72(2011):1–19, 2011.  
 706

707 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,  
 708 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning  
 709 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.  
 710

702 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor  
 703 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward  
 704 Yang, Zach DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,  
 705 Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning  
 706 library, 2019. URL <https://arxiv.org/abs/1912.01703>.

707 Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential  
 708 expressivity in deep neural networks through transient chaos. *Advances in neural information*  
 709 *processing systems*, 29, 2016.

710 Alethea Power, Yuri Burda, Harri Edwards, Igor Babuschkin, and Vedant Misra. Grokking: Gen-  
 711 eralization beyond overfitting on small algorithmic datasets. *arXiv preprint arXiv:2201.02177*,  
 712 2022.

713 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 714 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual  
 715 models from natural language supervision. In *International conference on machine learning*, pages  
 716 8748–8763. PMLR, 2021.

717 Adityanarayanan Radhakrishnan, Mikhail Belkin, and Caroline Uhler. Overparameterized neural  
 718 networks implement associative memory. *Proceedings of the National Academy of Sciences*, 117  
 719 (44):27162–27170, 2020.

720 Hubert Ramsauer, Bernhard Schäfl, Johannes Lehner, Philipp Seidl, Michael Widrich, Thomas Adler,  
 721 Lukas Gruber, Markus Holzleitner, Milena Pavlović, Geir Kjetil Sandve, et al. Hopfield networks  
 722 is all you need. *arXiv preprint arXiv:2008.02217*, 2020.

723 Salah Rifai, Pascal Vincent, Xavier Muller, Xavier Glorot, and Yoshua Bengio. Contractive auto-  
 724 encoders: Explicit invariance during feature extraction. In *Proceedings of the 28th international*  
 725 *conference on international conference on machine learning*, pages 833–840, 2011.

726 Herbert E Robbins. An empirical bayes approach to statistics. In *Breakthroughs in Statistics:*  
 727 *Foundations and basic theory*, pages 388–394. Springer, 1992.

728 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-  
 729 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-  
 730 ence on computer vision and pattern recognition*, pages 10684–10695, 2022.

731 Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi  
 732 Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, et al. Laion-5b: An  
 733 open large-scale dataset for training next generation image-text models. *Advances in Neural*  
 734 *Information Processing Systems*, 35:25278–25294, 2022.

735 Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein. Diffusion  
 736 art or digital forgery? investigating data replication in diffusion models. In *Proceedings of the*  
 737 *IEEE/CVF conference on computer vision and pattern recognition*, pages 6048–6058, 2023.

738 Yang Song and Diederik P Kingma. How to train your energy-based models. *arXiv preprint*  
 739 *arXiv:2101.03288*, 2021.

740 Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced  
 741 transformer with rotary position embedding. *Neurocomputing*, 568:127063, 2024.

742 Yiyou Sun, Yifei Ming, Xiaojin Zhu, and Yixuan Li. Out-of-distribution detection with deep nearest  
 743 neighbors. In *International conference on machine learning*, pages 20827–20840. PMLR, 2022.

744 Michael Tschannen, Alexey Gritsenko, Xiao Wang, Muhammad Ferjad Naeem, Ibrahim Alabdul-  
 745 mohsin, Nikhil Parthasarathy, Talfan Evans, Lucas Beyer, Ye Xia, Basil Mustafa, et al. Siglip 2:  
 746 Multilingual vision-language encoders with improved semantic understanding, localization, and  
 747 dense features. *arXiv preprint arXiv:2502.14786*, 2025.

756 Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig Adam,  
 757 Pietro Perona, and Serge Belongie. The inaturalist species classification and detection dataset. In  
 758 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 8769–8778,  
 759 2018.

760 Pascal Vincent. A connection between score matching and denoising autoencoders. *Neural computa-*  
 761 *tion*, 23(7):1661–1674, 2011.

763 Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. Extracting and  
 764 composing robust features with denoising autoencoders. In *Proceedings of the 25th international*  
 765 *conference on Machine learning*, pages 1096–1103, 2008.

766 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,  
 767 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick  
 768 von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger,  
 769 Mariama Drame, Quentin Lhoest, and Alexander M. Rush. Transformers: State-of-the-art natural  
 770 language processing. In *Proceedings of the 2020 Conference on Empirical Methods in Natural*  
 771 *Language Processing: System Demonstrations*, pages 38–45, Online, October 2020. Associa-  
 772 *tion for Computational Linguistics*. URL [https://www.aclweb.org/anthology/2020.](https://www.aclweb.org/anthology/2020.emnlp-demos.6)  
 773 [emnlp-demos.6](https://www.aclweb.org/anthology/2020.emnlp-demos.6).

774 Jianxiong Xiao, Krista A Ehinger, James Hays, Antonio Torralba, and Aude Oliva. Sun database:  
 775 Exploring a large collection of scene categories. *International Journal of Computer Vision*, 119:  
 776 3–22, 2016.

778 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang  
 779 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*,  
 780 2025.

781 Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. Generalized out-of-distribution detection:  
 782 A survey. *International Journal of Computer Vision*, 132(12):5635–5662, 2024.

784 Shuangfei Zhai, Yu Cheng, Weining Lu, and Zhongfei Zhang. Deep structured energy based models  
 785 for anomaly detection. In *International conference on machine learning*, pages 1100–1109. PMLR,  
 786 2016.

787 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Michael C Mozer, and Yoram Singer. Identity  
 788 crisis: Memorization and generalization under extreme overparameterization. *arXiv preprint*  
 789 *arXiv:1902.04698*, 2019.

791 Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep  
 792 learning (still) requires rethinking generalization. *Communications of the ACM*, 64(3):107–115,  
 793 2021.

794 Boyang Zheng, Nanye Ma, Shengbang Tong, and Saining Xie. Diffusion transformers with represen-  
 795 *tation autoencoders*. *arXiv preprint arXiv:2510.11690*, 2025.

797 Chong Zhou and Randy C Paffenroth. Anomaly detection with robust deep autoencoders. In  
 798 *Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data*  
 799 *mining*, pages 665–674, 2017.

800 Rui-Jie Zhu, Tianhao Peng, Tianhao Cheng, Xingwei Qu, Jinfa Huang, Dawei Zhu, Hao Wang,  
 801 Kaiwen Xue, Xuanliang Zhang, Yong Shan, et al. A survey on latent reasoning. *arXiv preprint*  
 802 *arXiv:2507.06203*, 2025.

803  
 804  
 805  
 806  
 807  
 808  
 809

810 A PROOFS AND DERIVATION  
811812 A.1 THEOREM 1  
813814 We report here a detailed formulation of Theorem 1 alongside its proof.  
815816 **Assumption A.1** (Latent marginal). Let  $p_{\text{data}}(\mathbf{x})$  be the data distribution and  $q_{\phi}(\mathbf{z} \mid \mathbf{x})$  an encoder  
817 mapping inputs  $\mathbf{x} \in \mathbb{R}^n$  to latent codes  $\mathbf{z} \in \mathbb{R}^d$ . The latent marginal density is defined as:  
818

819 
$$q(\mathbf{z}) = \int p_{\text{data}}(\mathbf{x}) q_{\phi}(\mathbf{z} \mid \mathbf{x}) d\mathbf{x}.$$

820 We assume that  $q(\mathbf{z})$  is continuously differentiable, and that its gradient  $\nabla \log q(\mathbf{z})$  and Hessian  
821  $\nabla^2 \log q(\mathbf{z})$  are well-defined and continuous on an open domain containing  $\Omega \subseteq \mathbb{R}^d$ .  
822823 **Assumption A.2** (Fixed-point manifold). Let  $E : \mathbb{R}^n \rightarrow \mathbb{R}^d$  be an encoder and  $D : \mathbb{R}^d \rightarrow \mathbb{R}^n$  a  
824 decoder, both continuously differentiable. Define the composite map  
825

826 
$$f(\mathbf{z}) = E(D(\mathbf{z})) \in \mathbb{R}^d.$$

827 We define the fixed-point manifold of  $f$  as  
828

829 
$$\mathcal{M} = \{\mathbf{z} \in \mathbb{R}^d : f(\mathbf{z}) = \mathbf{z}\}.$$

830 **Assumption A.3** (Local contraction). There exists an open, convex set  $\Omega \subseteq \mathbb{R}^d$ , with  $\mathcal{M} \subseteq \Omega$ , and a  
831 constant  $0 < L < 1$ , such that:  
832

833 
$$\sup_{\mathbf{z} \in \Omega} \|J_f(\mathbf{z})\|_{\sigma} \leq L,$$

834 where  $J_f(\mathbf{z}) \in \mathbb{R}^{d \times d}$  denotes the Jacobian of  $f$  at  $\mathbf{z}$ , and  $\|\cdot\|_{\sigma}$  denotes the spectral norm (i.e., largest  
835 singular value). Therefore,  $f$  is a contraction mapping on  $\Omega$ .  
836837 **Assumption A.4** (Training optimality with Jacobian regularization). Let  $f(\mathbf{z}) = E(D(\mathbf{z}))$  be as  
838 above, with  $E, D$  trained to minimize the objective:  
839

840 
$$\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\|D(E(\mathbf{x})) - \mathbf{x}\|^2 + \lambda \|J_f(E(\mathbf{x}))\|_F^2] \quad \text{for } \lambda > 0.$$

841 For example, assume the encoder is deterministic, i.e.,  $q_{\phi}(\mathbf{z} \mid \mathbf{x}) = \delta(\mathbf{z} - E(\mathbf{x}))$ , so the latent marginal  
842 satisfies:  
843

844 
$$q(\mathbf{z}) = \int p_{\text{data}}(\mathbf{x}) \delta(\mathbf{z} - E(\mathbf{x})) d\mathbf{x}.$$

845 Then  $q(\mathbf{z})$  is supported and concentrated on the fixed-point manifold  $\mathcal{M}$ , and  $f$  is locally contractive  
846 around  $\mathcal{M}$ .  
847848 **Lemma A.5** (Directional ascent of the residual field). *Under the above assumptions, for every*  
849  $\mathbf{z} \in \Omega \setminus \mathcal{M}$ , *define the residual field:*  
850

851 
$$\mathbf{v}(\mathbf{z}) := f(\mathbf{z}) - \mathbf{z}.$$

852 *Then the directional derivative of  $\log q$  in direction  $\mathbf{v}(\mathbf{z})$  is strictly positive:*  
853

854 
$$\langle \nabla \log q(\mathbf{z}), \mathbf{v}(\mathbf{z}) \rangle > 0.$$

855 *Proof.* Let  $\mathbf{z} \in \Omega \setminus \mathcal{M}$  be arbitrary. Then  $f(\mathbf{z}) \neq \mathbf{z}$ , so  $\mathbf{v}(\mathbf{z}) = f(\mathbf{z}) - \mathbf{z} \neq \mathbf{0}$ . By contractiveness  
856 and training optimality,  $f(\mathbf{z})$  is closer to the fixed-point set  $\mathcal{M}$  than  $\mathbf{z}$  is. Since  $q(\mathbf{z})$  is concentrated  
857 on  $\mathcal{M}$ , we have:  
858

859 
$$q(f(\mathbf{z})) > q(\mathbf{z}) \quad \Rightarrow \quad \log q(f(\mathbf{z})) > \log q(\mathbf{z}).$$

860 We now Taylor-expand  $\log q$  at  $\mathbf{z}$  in direction  $\mathbf{v}(\mathbf{z})$ :  
861

862 
$$\log q(f(\mathbf{z})) = \log q(\mathbf{z}) + \langle \nabla \log q(\mathbf{z}), \mathbf{v}(\mathbf{z}) \rangle + R,$$

863 where  $R = \frac{1}{2} \mathbf{v}^{\top}(\mathbf{z}) \nabla^2 \log q(\xi) \mathbf{v}(\mathbf{z})$ , for some  $\xi$  between  $\mathbf{z}$  and  $f(\mathbf{z})$ . Since  $f$  is contractive,  $\|\mathbf{v}(\mathbf{z})\|$   
864 is small and  $R = o(\|\mathbf{v}(\mathbf{z})\|)$ . Therefore:  
865

866 
$$\langle \nabla \log q(\mathbf{z}), \mathbf{v}(\mathbf{z}) \rangle > -R \quad \Rightarrow \quad \langle \nabla \log q(\mathbf{z}), \mathbf{v}(\mathbf{z}) \rangle > 0.$$

867  $\square$

864 **Theorem A.6** (Convergence to latent-space modes). *Let Assumptions 1–4 hold. Let  $\mathbf{z}_0 \in \Omega$ , and*  
 865 *define the iterative sequence:*

866 
$$\mathbf{z}_{t+1} := f(\mathbf{z}_t) = E(D(\mathbf{z}_t)) \quad \text{for all } t \geq 0.$$

867 *Then:*

868 1. *The sequence  $\{\mathbf{z}_t\}$  converges exponentially fast to a unique fixed point  $\mathbf{z}^* \in \mathcal{M}$ , satisfying*  
 869 
$$f(\mathbf{z}^*) = \mathbf{z}^*.$$
  
 870 2. *At the limit point  $\mathbf{z}^*$ , we have  $\nabla \log q(\mathbf{z}^*) = 0$ .*  
 871 3. *Moreover,  $\mathbf{z}^*$  is a local maximum of the density  $q$ : the Hessian satisfies*

872 
$$\nabla^2 \log q(\mathbf{z}^*) \prec 0,$$

873 *meaning that the Hessian is negative definite.*

874 *Proof. Step 1: Contraction and convergence.* By Assumption 3,  $f : \Omega \rightarrow \Omega$  is a contraction  
 875 mapping with contraction constant  $L < 1$ . Since  $\Omega$  is convex and hence complete under  $\|\cdot\|$ ,  
 876 Banach's fixed-point theorem applies. Therefore:

877 • There exists a unique fixed point  $\mathbf{z}^* \in \Omega$  such that  $f(\mathbf{z}^*) = \mathbf{z}^*$ .  
 878 • For any initial  $\mathbf{z}_0 \in \Omega$ , the iterates satisfy:

879 
$$\|\mathbf{z}_t - \mathbf{z}^*\| \leq L^t \|\mathbf{z}_0 - \mathbf{z}^*\| \rightarrow 0 \quad \text{as } t \rightarrow \infty.$$

880 **Step 2: Stationarity of the limit.** At the fixed point  $\mathbf{z}^*$ , we have:

881 
$$\mathbf{v}(\mathbf{z}^*) = f(\mathbf{z}^*) - \mathbf{z}^* = \mathbf{0}.$$

882 Assume for contradiction that  $\nabla \log q(\mathbf{z}^*) \neq \mathbf{0}$ . By continuity of  $\nabla \log q$ , there exists a neighborhood  
 883  $U \ni \mathbf{z}^*$  where  $\nabla \log q(\mathbf{z})$  stays close to  $\nabla \log q(\mathbf{z}^*)$ . Then for nearby  $\mathbf{z}$ , Lemma A.5 implies:

884 
$$\langle \nabla \log q(\mathbf{z}), \mathbf{v}(\mathbf{z}) \rangle > 0.$$

885 But continuity of  $f$  and the residual  $\mathbf{v}(\mathbf{z}) \rightarrow \mathbf{0}$  implies the ascent direction vanishes at  $\mathbf{z}^*$ , which  
 886 contradicts the assumption that  $\nabla \log q(\mathbf{z}^*) \neq \mathbf{0}$ . Hence, we conclude:

887 
$$\nabla \log q(\mathbf{z}^*) = \mathbf{0}.$$

888 **Step 3: Local maximality.** By Lemma A.5 and Assumption 4, the sequence  $q(\mathbf{z}_t)$  is strictly  
 889 increasing and converges to  $q(\mathbf{z}^*)$ . If  $\mathbf{z}^*$  were a saddle point or local minimum, there would exist a  
 890 direction  $\mathbf{u} \in \mathbb{R}^d$  such that the second-order Taylor expansion yields:

891 
$$\frac{d^2}{dt^2} \log q(\mathbf{z}^* + t\mathbf{u}) \Big|_{t=0} = \mathbf{u}^\top \nabla^2 \log q(\mathbf{z}^*) \mathbf{u} \geq 0,$$

892 which contradicts the fact that  $\mathbf{z}_t \rightarrow \mathbf{z}^*$  through ascent directions. Therefore, all second directional  
 893 derivatives must be negative, implying:

894 
$$\nabla^2 \log q(\mathbf{z}^*) \prec 0.$$

895 That is,  $\mathbf{z}^*$  is a strict local maximum of  $q$ . □

900 **A.2 PROPOSITION 3.1**

901 We report here a detailed formulation of Proposition 3.1 alongside its proof.

902 **Proposition A.7.** *Let  $f = E \circ D : \mathbb{R}^d \rightarrow \mathbb{R}^d$  be the composition of an autoencoder's decoder  $D$  and*  
 903 *encoder  $E$ , and define the residual vector field  $\mathbf{v}(\mathbf{z}) := f(\mathbf{z}) - \mathbf{z}$ . Consider the reconstruction loss*

904 
$$L(\mathbf{z}) := \|f(\mathbf{z}) - \mathbf{z}\|^2.$$

905 *Then, the iteration  $\mathbf{z}_{t+1} = f(\mathbf{z}_t)$  corresponds locally to gradient descent on  $L$  (i.e.,  $\mathbf{v}(\mathbf{z}) \propto$   
 906  $-\nabla_{\mathbf{z}} L(\mathbf{z})$ ) if either of the following conditions holds:*

918 1. The Jacobian  $J_f(\mathbf{z}) \approx \text{Id}$  (i.e.,  $f$  is locally an isometry).  
 919  
 920 2.  $\mathbf{z}$  is near an attractor point  $\mathbf{z}^*$  such that  $f(\mathbf{z}^*) = \mathbf{z}^*$  and  $J_f(\mathbf{z}^*) \approx 0$ .  
 921

922 *Proof.* We begin by expanding the loss:

$$923 L(\mathbf{z}) = \|f(\mathbf{z}) - \mathbf{z}\|^2 = \langle f(\mathbf{z}) - \mathbf{z}, f(\mathbf{z}) - \mathbf{z} \rangle.$$

924 Let  $\mathbf{v}(\mathbf{z}) := f(\mathbf{z}) - \mathbf{z}$ . Then,

$$925 L(\mathbf{z}) = \|\mathbf{v}(\mathbf{z})\|^2.$$

926 Now compute the gradient of  $L$ :

$$928 \nabla_{\mathbf{z}} L(\mathbf{z}) = \nabla_{\mathbf{z}} (\mathbf{v}(\mathbf{z})^\top \mathbf{v}(\mathbf{z})) \\ 929 = 2J_{\mathbf{v}}(\mathbf{z})^\top \mathbf{v}(\mathbf{z}),$$

930 where  $J_{\mathbf{v}}(\mathbf{z}) = J_f(\mathbf{z}) - \text{Id}$  is the Jacobian of the residual field.  
 931

932 So we obtain:

$$933 \nabla_{\mathbf{z}} L(\mathbf{z}) = 2(J_f(\mathbf{z}) - \text{Id})^\top \mathbf{v}(\mathbf{z}).$$

934 Therefore, if we ask whether  $\mathbf{v}(\mathbf{z}) \propto -\nabla_{\mathbf{z}} L(\mathbf{z})$ , we need:

$$935 \mathbf{v}(\mathbf{z}) \propto -(J_f(\mathbf{z}) - \text{Id})^\top \mathbf{v}(\mathbf{z}),$$

936 which simplifies to:

$$937 [(J_f(\mathbf{z}) - \text{Id})^\top + \alpha \text{Id}] \mathbf{v}(\mathbf{z}) = 0$$

938 for some  $\alpha > 0$ . This holds approximately in the two special cases:

939 • **Isometry:** If  $J_f(\mathbf{z}) \approx \text{Id}$ , then  $\nabla L(\mathbf{z}) \approx 0$ , so  $\mathbf{v}(\mathbf{z})$  is nearly stationary—i.e., we are at or  
 940 near a local minimum.  
 941

942 • **Attractor:** If  $\mathbf{z} \approx \mathbf{z}^*$  with  $f(\mathbf{z}^*) = \mathbf{z}^*$  and  $J_f(\mathbf{z}^*) \approx 0$ , then:  
 943 
$$\nabla L(\mathbf{z}^*) \approx -2\mathbf{v}(\mathbf{z}^*) = 0,$$
  
 944 and thus  $\mathbf{z}^*$  is a fixed point and local minimum of the loss.  
 945

946 In these two cases cases, the dynamics of  $\mathbf{z}_{t+1} = f(\mathbf{z}_t)$  follow the direction of steepest descent of  $L$ ,  
 947 up to scaling. Higher order terms dominate influence the dynamics in the general case.  
 948

949  $\square$

### 950 A.3 ATTRACTORS CONNECTS TO GENERALIZATION ERROR

951 We report here a detailed formulation of Proposition 3.2 alongside its proof.

952 **Proposition A.8** (Attractors as prototypes for generalization). *Let  $\mathbf{Z}^* \subset \Omega \subset \mathbb{R}^d$  be a (finite)  
 953 dictionary of attractors of  $f = E \circ D$  in a neighborhood  $\Omega$  of latent space, and let  $\Pi : \Omega \rightarrow \mathbf{Z}^*$   
 954 denote a (measurable) nearest-attractor map  $\Pi(\mathbf{z}) \in \arg \min_{\mathbf{u} \in \mathbf{Z}^*} \|\mathbf{z} - \mathbf{u}\|_2$  (with any fixed tie-  
 955 breaking rule). If the decoder  $D$  is  $L_D$ -Lipschitz on  $\Omega$ , then for any test point  $\mathbf{x}$  with  $\mathbf{z} = E(\mathbf{x}) \in \Omega$ :*

$$956 \|\mathbf{x} - F(\mathbf{x})\|_2^2 \leq \underbrace{\|\mathbf{x} - D(\Pi(\mathbf{z}))\|_2^2}_{\text{prototype error}} + \underbrace{L_D^2 \|\mathbf{z} - \Pi(\mathbf{z})\|_2^2}_{\text{coverage error}}.$$

957 Moreover, if  $\mathbf{Z}^*$  is an  $\varepsilon$ -cover of  $\text{supp } q$  (the latent marginal), then for all  $\mathbf{x}$  with  $E(\mathbf{x}) \in \text{supp } q$ ,

$$958 \|\mathbf{x} - F(\mathbf{x})\|_2^2 \leq \|\mathbf{x} - D(\Pi(E(\mathbf{x})))\|_2^2 + L_D^2 \varepsilon^2,$$

959 and the same bound holds in expectation over  $\mathbf{x} \sim p_{\text{test}}$  whenever  $E(\mathbf{x}) \in \text{supp } q$  almost surely.  
 960

961 We make the following mild assumptions:

962 (A1)  $\mathbf{Z}^* \subset \Omega$  is a (finite) set of attracting fixed points of  $f = E \circ D$  contained in an open  
 963 neighborhood  $\Omega \subset \mathbb{R}^d$ .  
 964 (A2)  $D$  is  $L_D$ -Lipschitz on  $\Omega$ , i.e.,  $\|D(\mathbf{z}) - D(\mathbf{u})\| \leq L_D \|\mathbf{z} - \mathbf{u}\|_2$  for all  $\mathbf{z}, \mathbf{u} \in \Omega$ .  
 965 (A3)  $\Pi : \Omega \rightarrow \mathbf{Z}^*$  is any measurable selection of nearest points, e.g.  $\Pi(\mathbf{z}) \in \arg \min_{\mathbf{u} \in \mathbf{Z}^*} \|\mathbf{z} - \mathbf{u}\|_2$ .

972 **Proof of Proposition A.8.** Let  $\mathbf{x}$  be any test point with  $\mathbf{z} = E(\mathbf{x}) \in \Omega$ . Add and subtract  $D(\Pi(\mathbf{z}))$ :

$$973 \quad \mathbf{x} - D(E(\mathbf{x})) = \underbrace{\mathbf{x} - D(\Pi(\mathbf{z}))}_{\text{prototype error}} + \underbrace{D(\Pi(\mathbf{z})) - D(E(\mathbf{x}))}_{\text{decoder distortion}}.$$

976 Taking norms and using Cauchy-Schwarz inequality gives:

$$977 \quad \|\mathbf{x} - D(E(\mathbf{x}))\|_2^2 \leq \|\mathbf{x} - D(\Pi(\mathbf{z}))\|_2^2 + \|D(\Pi(\mathbf{z})) - D(E(\mathbf{x}))\|_2^2.$$

979 By (A2),  $\|D(\Pi(\mathbf{z})) - D(E(\mathbf{x}))\| \leq L_D \|\Pi(\mathbf{z}) - \mathbf{z}\|_2$ , which yields:

$$980 \quad \|\mathbf{x} - F(\mathbf{x})\|_2^2 \leq \|\mathbf{x} - D(\Pi(\mathbf{z}))\|_2^2 + L_D^2 \|\mathbf{z} - \Pi(\mathbf{z})\|_2^2.$$

982 This proves the first inequality. If  $\mathbf{Z}^*$  is an  $\varepsilon$ -cover of  $\text{supp } q$ , then for any  $\mathbf{z} \in \text{supp } q$  we have  
983  $\|\mathbf{z} - \Pi(\mathbf{z})\| \leq \varepsilon$ , hence

$$984 \quad \|\mathbf{x} - F(\mathbf{x})\|_2^2 \leq \|\mathbf{x} - D(\Pi(E(\mathbf{x})))\|_2^2 + L_D^2 \varepsilon^2,$$

985 for all  $\mathbf{x}$  with  $E(\mathbf{x}) \in \text{supp } q$ . Taking expectations (when  $E(\mathbf{x}) \in \text{supp } q$  almost surely) gives the  
986 stated bound.  $\square$

988 **Remarks.** (i) The bound decomposes test error into a *prototype term*,  $\|\mathbf{x} - D(\Pi(E(\mathbf{x})))\|_2^2$ , and  
989 a *coverage term*,  $L_D^2 \|\mathbf{z} - \Pi(\mathbf{z})\|_2^2$ . (ii) Under the assumptions of Theorem 1,  $\mathbf{Z}^*$  are attractors  
990 with basins; then  $\Pi$  aligns with the destination of latent dynamics, tying the algebraic bound to the  
991 memorization-generalization picture.

#### 993 A.4 ATTRACTORS IN SIMPLE NETWORKS

995 In this section we characterize attractors in linear and homogeneous networks, showing that in this  
996 simple setting is possible to prove converge speed to attractors of the iteration in Eq 3. **Linear maps.**  
997 In the linear case, the encoding map  $E$  and decoding  $D$  are parametrized by matrices  $\mathbf{W}_1 \in \mathbb{R}^{N \times k}$   
998 and  $\mathbf{W}_2 \in \mathbb{R}^{k \times N}$  and the only fixed point of the map corresponds to the *origin* if the network is bias  
999 free or to a shift of it. The rate of convergence of the iteration in Eq 3 is established by the spectrum of  
1000  $\mathbf{W}_2^T \mathbf{W}_1$ , and the iteration is equivalent to shrinking the input in the direction of the eigenvectors with  
1001 associated eigenvalue  $\lambda < 1$ . In case the eigenvectors of the trained AEs are aligned with the optimal  
1002 solution given by the Principal Component Analysis (PCA) decomposition of the data  $\mathbf{X} = \Phi \Lambda \Phi^*$ ,  
1003 then the latent vector field vanished as the mapping is isometric and no contraction occurs.

1004 **Homogeneous maps.** In the case of homogeneous neural networks, the network satisfies  $F(c\mathbf{x}) =$   
1005  $c^\alpha F(\mathbf{x})$  with  $c \in \mathbb{R}$  for some  $\alpha$ . For example, this holds for ReLU networks without biases with  
1006  $\alpha = 1$ , which learn a piecewise linear mapping. The input-output mapping can be rewritten as:

$$1007 \quad F(\mathbf{x}) = J_F(\mathbf{x})\mathbf{x} \tag{6}$$

1008 A similar observation was made in for denoising networks in (Kadkhodaie et al., 2023), we remark  
1009 here its generality.

1010 This equality implies that we can rewrite Equation 3 as :

$$1012 \quad \mathbf{z}_{t+1} = J_f(\mathbf{z}_t)\mathbf{z}_t = \sum_i \lambda_i \phi_i \mathbf{z}_t \tag{7}$$

1014 Where  $\sum_i \lambda_i \phi_i$  is the eigendecomposition of  $J_f(\mathbf{z})$ . Since in the proximity of an attractor  
1015  $\max \lambda(J_f(\mathbf{z}^*)) \leq 1$ , the iterations shrink directions corresponding to the eigenvectors of the  
1016 Jacobian by the corresponding eigenvalue. This allows us to derive the following result on the speed  
1017 of convergence.

1018 **Proposition A.9** (informal, proof in Appendix A.5). *The error  $e_t = \|\mathbf{z}_t - \mathbf{z}^*\|$  converge exponentially*  
1019 *to an  $\epsilon$  depending on the spectral norm  $\|J_f(\mathbf{z}^*)\|_\sigma$ , according to the formula  $\frac{\log(\frac{\epsilon}{\|\mathbf{z}_0\|})}{\log(\|J_f(\mathbf{z}^*)\|_\sigma)}$  that*  
1020 *provides an estimate for the number of iterations  $T$  to converge to the attractor.*

1022 In Figure 11 in the Appendix, we measure how well the convergence formula predicts the measured  
1023 number of iterations to converge to an attractor, on a fully non linear AE with biases, where the  
1024 assumptions of the current section are less likely to hold. The error in the estimate will be higher,  
1025 when the initial condition  $\mathbf{z}_0$  is far from the attractor, as higher order terms dominate the dynamics,  
1026 and the first order Taylor approximation accumulates more error.

1026 A.5 PROOF OF PROPOSITION A.9  
10271028 We report here a detailed formulation of Proposition A.9 alongside its proof.  
10291030 **Proposition A.10.** *Let  $f : \mathbb{R}^n \rightarrow \mathbb{R}^n$  be a differentiable function with a fixed point  $\mathbf{z}^* \in \mathbb{R}^n$  such that  
1031  $f(\mathbf{z}^*) = \mathbf{z}^*$ . Assume the Jacobian  $J_f(\mathbf{z}^*)$  has spectral norm  $\|J_f(\mathbf{z}^*)\|_\sigma = \rho < 1$ . Then, for initial  
1032 point  $\mathbf{z}_0$  sufficiently close to  $\mathbf{z}^*$ , the sequence  $\{\mathbf{z}_t\}$  defined by the iteration  $\mathbf{z}_{t+1} = f(\mathbf{z}_t)$  satisfies:*  
1033

1034 
$$\|\mathbf{z}_t - \mathbf{z}^*\| \leq \|\mathbf{e}_0\| \cdot \rho^t,$$
  
1035

1036 and the number of iterations  $T$  needed to reach an error  $\|\mathbf{z}_T - \mathbf{z}^*\| \leq \epsilon$  is bounded by:  
1037

1038 
$$T \geq \frac{\log(\epsilon/\|\mathbf{e}_0\|)}{\log(\rho)}.$$
  
1039

1039 *Proof.* Let  $\mathbf{e}_t = \mathbf{z}_t - \mathbf{z}^*$  denote the error at iteration  $t$ . We are given that  $f$  is differentiable around  
1040  $\mathbf{z}^*$ , and that  $f(\mathbf{z}^*) = \mathbf{z}^*$ . Applying the first-order Taylor expansion of  $f$  around  $\mathbf{z}^*$ , we obtain:  
1041

1042 
$$f(\mathbf{z}_t) = f(\mathbf{z}^*) + J_f(\mathbf{z}^*)(\mathbf{z}_t - \mathbf{z}^*) + R(\mathbf{z}_t),$$
  
1043

1043 where  $R(\mathbf{z}_t)$  is the Taylor remainder satisfying  $\|R(\mathbf{z}_t)\| = o(\|\mathbf{z}_t - \mathbf{z}^*\|)$ . Since  $f(\mathbf{z}^*) = \mathbf{z}^*$ , this  
1044 becomes:  
1045

1046 
$$\mathbf{z}_{t+1} = f(\mathbf{z}_t) = \mathbf{z}^* + J_f(\mathbf{z}^*)(\mathbf{z}_t - \mathbf{z}^*) + R(\mathbf{z}_t).$$
  
1047

1047 Thus, the error evolves as:  
1048

1049 
$$\mathbf{e}_{t+1} = \mathbf{z}_{t+1} - \mathbf{z}^* = J_f(\mathbf{z}^*)\mathbf{e}_t + R(\mathbf{z}_t).$$
  
1050

1050 For  $\mathbf{z}_t$  sufficiently close to  $\mathbf{z}^*$ , we can neglect the higher-order term  $R(\mathbf{z}_t)$  in comparison to the  
1051 leading linear term. Hence, the error evolves approximately as:  
1052

1053 
$$\|\mathbf{e}_{t+1}\| \leq \|J_f(\mathbf{z}^*)\|_\sigma \cdot \|\mathbf{e}_t\| + o(\|\mathbf{e}_t\|).$$
  
1054

1054 By continuity of  $f$ , there exists a neighborhood  $\mathcal{U}$  of  $\mathbf{z}^*$  where  $\|J_f(\mathbf{z})\|_\sigma \leq \rho + \delta < 1$  for some  
1055  $\delta > 0$ . Choosing  $\mathbf{z}_0 \in \mathcal{U}$  and letting  $R(\mathbf{z}_t) = 0$  (first-order approximation), the error satisfies:  
1056

1057 
$$\|\mathbf{e}_t\| \leq \|\mathbf{e}_0\| \cdot \rho^t.$$
  
1058

1058 We now ask: for which  $T$  does  $\|\mathbf{e}_T\| \leq \epsilon$ ? We solve:  
1059

1060 
$$\|\mathbf{e}_0\| \cdot \rho^T \leq \epsilon.$$
  
1061

1061 Dividing both sides by  $\|\mathbf{e}_0\|$  and taking logarithms yields:  
1062

1063 
$$\rho^T \leq \frac{\epsilon}{\|\mathbf{e}_0\|} \Rightarrow T \cdot \log(\rho) \leq \log\left(\frac{\epsilon}{\|\mathbf{e}_0\|}\right).$$
  
1064

1064 Since  $\log(\rho) < 0$ , we reverse the inequality when dividing:  
1065

1066 
$$T \geq \frac{\log(\epsilon/\|\mathbf{e}_0\|)}{\log(\rho)}.$$
  
1067

1069 This proves that the error converges exponentially and that the number of iterations required to reach  
1070 error  $\epsilon$  is lower bounded by the expression above.  $\square$   
10711072 B ADDITIONAL EXPERIMENTS  
10731074 B.1 BIAS AT INITIALIZATION  
10751077 As stated in the method section of the main paper, To empirically measure to what extent model are  
1078 contractive at initialization we sample  $N = 1000$  samples from  $\mathcal{N}(0, I)$ , and we map them through  
1079 12 different vision backbones, initialized randomly across 10 seeds. We measure the ratio between  
the input variance  $\sigma_{in} = 1$  and output variance  $\sigma_{out}$  and we report in Figure 6 .

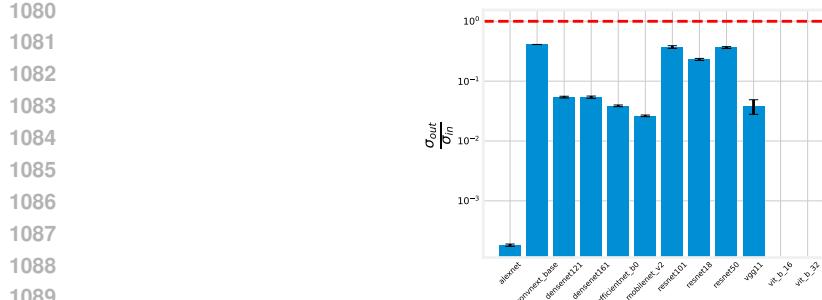


Figure 6: *Contraction at initialization* Variance preserving ratio at initialization of torchvision models: all models considered have a ratio  $< 1$ , indicating that the map at initialization is contractive.

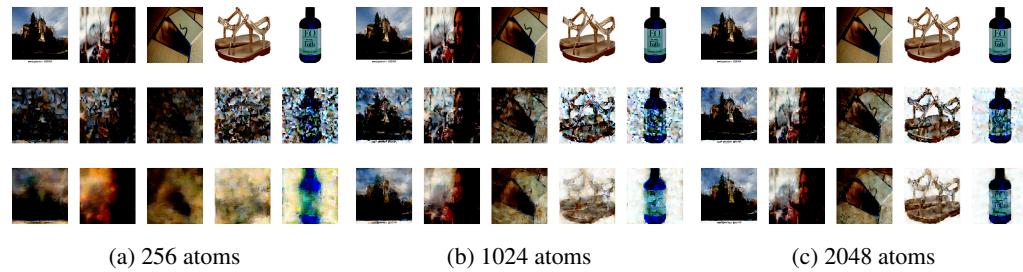


Figure 7: Visualization of reconstructions from the data-free sample recovery experiment of Figure 4: Visualizing on Laion2B reconstructions of five random samples. First row: input samples; second row: reconstructions from orthogonal basis; third row reconstructions from attractors of noise.

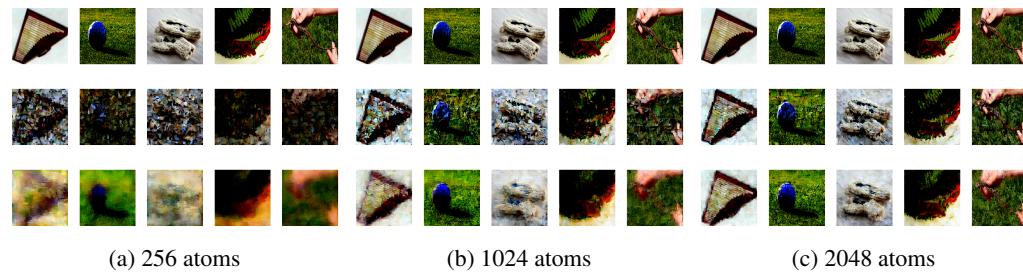


Figure 8: Visualization of reconstructions from the data-free sample recovery experiment of Figure 4: Visualizing on Imagenet1k reconstructions of five random samples. First row: input samples; second row: reconstructions from orthogonal basis; third row reconstructions from attractors of noise.

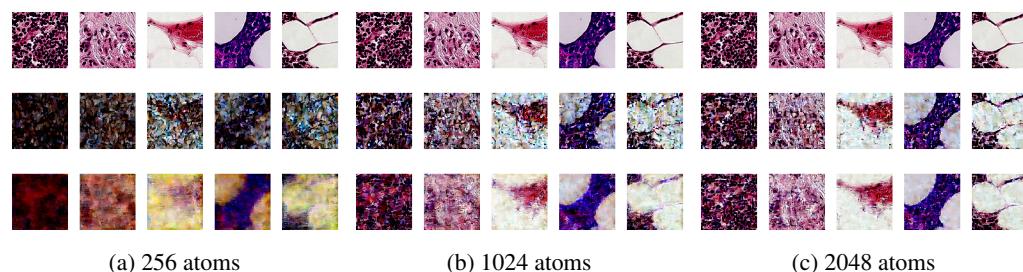


Figure 9: Visualization of reconstructions from the data-free sample recovery experiment of Figure 4: Visualizing on Camelyon17 reconstructions of five random samples. First row: input samples; second row: reconstructions from orthogonal basis; third row reconstructions from attractors of noise.

1134  
1135

## B.2 QUALITATIVE RESULTS: DATA-FREE WEIGHT PROBING

1136  
1137  
1138  
1139

We report additional qualitative results from the data free weight probing experiment in section 4.1, in Figures 7,8,9, observing that the reconstructions from attractors as a functions of the number of atoms used, are superior with respect to the orthogonal basis baseline.

1140  
1141

## B.3 HISTOGRAMS OOD DETECTION

1142  
1143  
1144

We report in Figure 10 additional histograms of In-Distribution vs Out-Of-Distribution scores, corresponding to the experiment in Section 4.2.

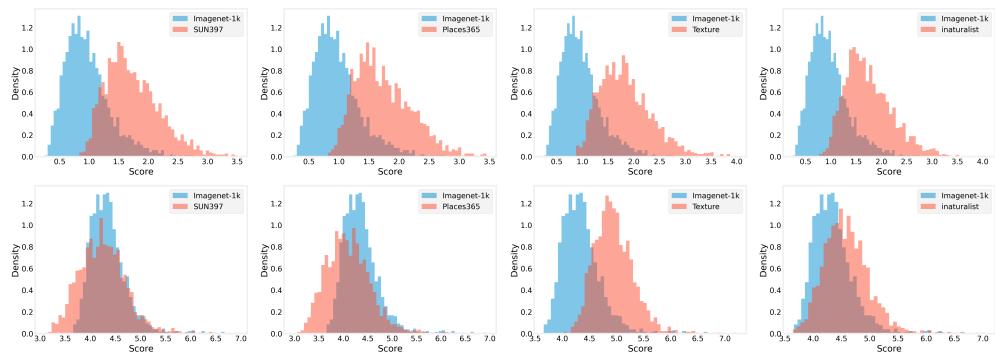
1145  
1146  
1147  
1148  
1149  
1150  
1151  
1152  
1153  
1154  
1155  
1156

Figure 10: Histograms from OOD detections

1157  
1158  
1159  
1160

## B.4 ANALYSIS SPEED OF CONVERGENCE

1161  
1162  
1163  
1164  
1165  
1166  
1167  
1168  
1169  
1170

In figure 11 we report an empirical validation of proposition A.9, for a 2 dimensional bottleneck convolution autoencoder trained on MNIST, by sampling points in the training set and measuring their convergence speed in terms of number of iteration. We remark that assumptions for the proposition don't hold for this model, as the farer an initial condition is from an attractor the more higher order terms will dominate in the dynamics, making the evaluation of the spectrum of the Jacobian at the attractor insufficient. We observe nevertheless, that the convergence speed bounds still correlates, providing a looser estimate for the number of iteration needed to converge towards an attractors with error  $\epsilon$ .

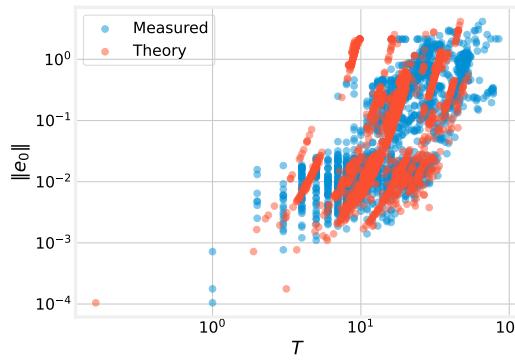
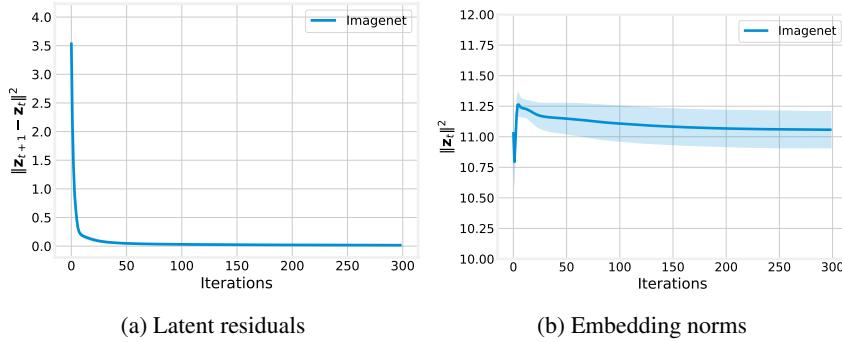
1171  
1172  
1173  
1174  
1175  
1176  
1177  
1178  
1179  
1180  
1181  
1182  
11831184  
1185  
1186  
1187

Figure 11: *Converge speed analysis* We plot the convergence speed in terms of number of iterations vs the error (distance to the attractors) of the initial condition on a convolutional autoencoders trained on MNIST. The estimated convergence has a Pearson correlation coefficient of 0.67 to the true number of iterations to converge. Higher error in the estimates occur for farer initial conditions.

1188 B.4.1 CONVERGENCE RATES IN PRETRAINED MODELS  
1189

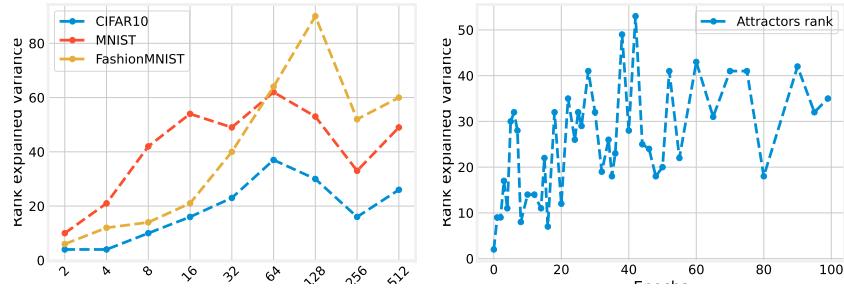
1190 In Figure 12 we plot the rate of convergence in terms of latent residuals norms of the latent trajectories  
1191 in ViT MAE autoencoders from 2000 samples drawn from the Imagenet dataset. We plot (a) the  
1192 latent residual norm as function of the number of the iteration, showing that it approaches zero  
1193 exponentially fast; (b) the norm of the embedding at each iteration. showing that they are bounded  
1194 and the trajectory don't diverge.



1205 Figure 12: *Latent trajectories in masked autoencoders are contractive.*: we plot norms of the latent  
1206 residuals across iterations in a ViTMAE model (a) and norms of embeddings across iterations (b).  
1207

1210 B.5 RANK OF ATTRACTOR MATRIX  
1211

1212 In Figure 13 we report an alternative measure of generalization of the attractors computed in the  
1213 experiment in Figure 2 and in Figure 3. Specifically, we consider the matrix  $\mathbf{X}^* = D(\mathbf{Z})^*$ , and  
1214 we compute its singular value decomposition  $\mathbf{U}^* \text{diag}(\mathbf{s}^*) \mathbf{V}^* = \mathbf{X}^*$ . We define the generalization  
1215 entropy as the number of eigenvectors needed to explain 90% of the variance of the matrix. We report  
1216 this measure for both the models employed in the experiment in Figure 2 and in Figure 3, showing  
1217 that attractors are more expressive as the model generalized better, as well during training.  
1218

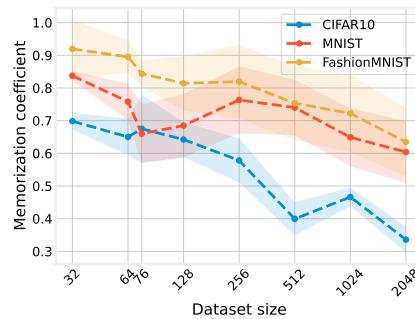


1220 Figure 13: *Generalization increase ranks of attractors matrix*: entropy rank as a function of the  
1221 bottleneck dimension (left) and during training, as a function of the number of epochs (right).  
1222 Transitioning from memorization to generalization  
1223

1234 B.6 MEMORIZATION OVERFITTING REGIME  
1235

1236 In this section, we test the memorization capabilities of models in different (strong) overparametriza-  
1237 tion regimes, similarly as tested in (Kadkhodaie et al., 2023) for diffusion models and in (Radhakrish-  
1238 nan et al., 2020; Zhang et al., 2019) for the extremely overparametrized case (network trained on few  
1239 samples). We remark that this case corresponds to an overfitting regime of the network, as opposed  
1240 as underfitting (over-regularized) regime showed in the main paper. We train a convolutional autoen-  
1241 coder on subsamples of the CIFAR, MNIST, FashionMNIST datasets, with bottleneck dimension  
1242  $k = 128$  and weight decay  $1e - 4$ . In Figure 14 we plot the memorization coefficient as a function

1242 of the dataset size, showing that networks trained on less data( strong overparametrization) tend to  
 1243 memorize more the training data.  
 1244



1256 Figure 14: *Strong overparametrization favors memorization*: Memorization coefficient as a function  
 1257 of the dataset size on CIFAR, MNIST, FashionMNIST, showing that networks trained on less data  
 1258 (*strongly overparametrized*) tend to memorize more the training data.  
 1259

## 1260 B.7 DATA-FREE WEIGHT PROBING: ADDITIONAL RESULTS

1262 We replicate the experiment in 4.1, on the larger XL version of the Stable diffusion architecture  
 1263 (Rombach et al., 2022), observing that attractors from noise still form an informative dictionary of  
 1264 signals which scales better w.r.t, to a random orthogonal basis.  
 1265

## 1266 B.8 BEYOND AUTOENCODERS MODEL

1268 In this section we preliminary explore the extent to which latent vector exist beyond pretrained  
 1269 autoencoder models.  
 1270

### 1271 B.8.1 LATENT VECTOR FIELDS IN SELF SUPERVISED MODELS

1272 We first consider the case discriminative self-supervised (SSL) models such as DINOv2 Oquab et al.  
 1273 (2023) and SigLIP2 Tschannen et al. (2025). A straightforward idea to extend our framework to  
 1274 encoder-only models, is the one of training a decoder on top of the frozen encoder model. To this end  
 1275 we employ the decoders trained in Zheng et al. (2025), which provide pretrained decoders models for  
 1276 DINOv2 and SigLIP2.  
 1277

1278 To assess how the latent vector field behaves, we sample 500 samples from the Imagenet 1k training  
 1279 dataset, and compute 300 iterations of Eq 3. We monitor (a) the norm of the residuals in the output  
 1280 space (i.e. reconstruction error with respect to previous iteration) (b) the norm of the residuals in the  
 1281 latent space (i.e. the elements vector field at current time step) (c) the average norm of the embeddings  
 1282 at every step. We show the results in Figure 16 observe that the reconstruction residuals and the  
 1283 latent space residuals both monotonically decrease at the beginning, with the former approaching  
 1284 0, demonstrating a contraction behavior and then stabilize. This together with the observation that  
 1285 the norm of the embeddings is bounded and does not increase across iterations makes us conclude  
 1286 that the latent vector field exists, does not diverge, and is well behaved. The latent space residuals  
 1287 stabilizing around iteration 150 highlight that the eigenvalues of  $J_f(z_t)$  are approaching 1, indicating  
 1288 either that the iteration has reached an attractor region (as opposed to a point) or that the the map is  
 1289 still contractive but with a constant very close to 1.  
 1290

### 1291 B.8.2 LATENT VECTORS FIELDS IN LLMs

1292 We now consider the case of next token predictors models, in particular case light weight large  
 1293 language models. In this case we consider the input-output mapping in representation space, by  
 1294 iterating representation computed after the embedding layer to the final layer before the softmax,  
 1295 therefore  $f$  corresponds to the entire residual stream of the model. As models we consider Qwen3-0.6  
 1296 B Yang et al. (2025) and Smol-LM2 Allal et al. (2025). To test whether the latent vectors field are  
 1297 we sample 1000 sample from the Pile dataset Gao et al. (2020) and iterate Eq. 3 for 300 iteration  
 1298

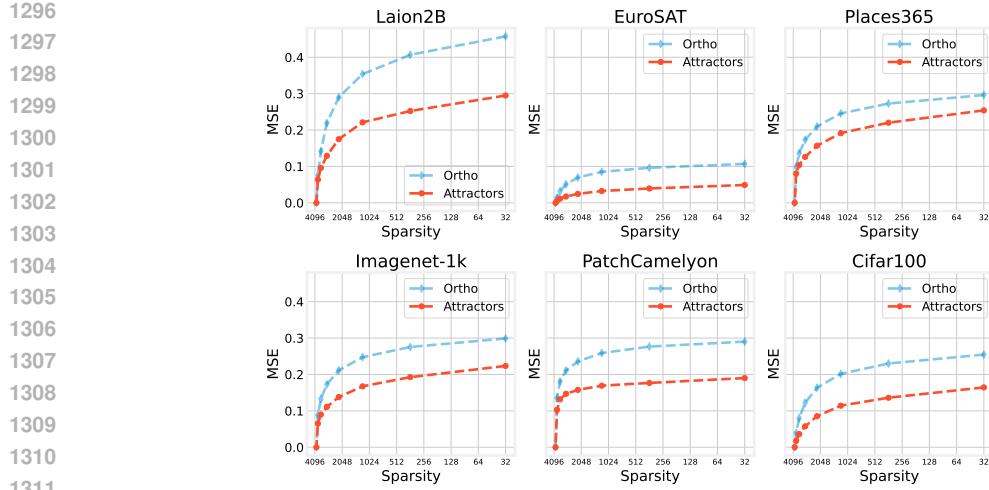


Figure 15: *Data-free weight probing Stable diffusion XL AE* : the results on the larger version of the table diffusion autoencoder confirm that attractors from noise form an informative dictionary of signals to reconstruct different datasets.

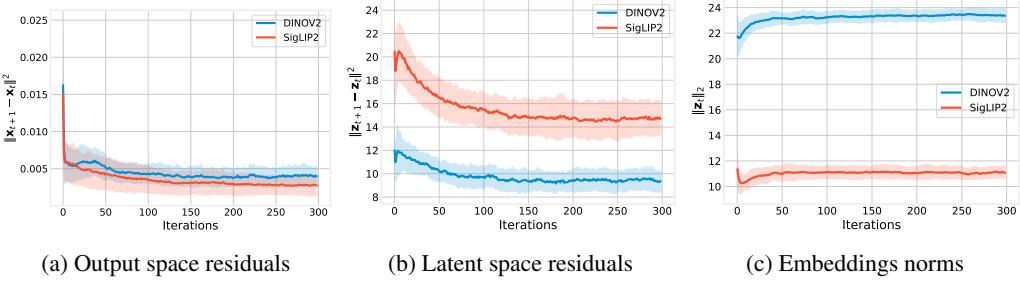


Figure 16: *SSL models induce well-behaved latent vector fields*: For latent space iterations in DINOv2 and SigLIP2, we plot norm of residuals in output space (a);latent residuals norms (b); and norms of embeddings across iterations (c).

monitoring residuals in the latent space (final layer) (a) and the norm of the final layer embeddings (b). In Figure 17 we plot the results, observing that both models show contractive behavior (a) without diverging, given the bounded norms (b).

Taken together these results give us preliminary evidence that latent vector fields exist and are well defined beyond the case of autoencoder model, but we stress that further analysis should be performed in order to study them, and analyze their attractor modes whenever they exists. Also the impact of different architectural elements, for example for LLMs the role of positional embeddings, (e.g. rotary position embeddings Su et al. (2024) as opposed to absolute ones) pose questions on the resulting dynamics. We believe that studying properties of the latent vector field induced by models beyond autoencoders hold promise to understand mechanistically the properties of the models, and we find promising to study recent phenomenon such as latent space reasoning Zhu et al. (2025).

## B.9 QUALITATIVE VISUALIZATION OF ATTRACTORS

In this section we provide more visualizations from decoded attractors other than the ones in Figure 2 (c). In Figure 18 we report examples of decoded attractors from the latent space of the Stable Diffusion autoencoder. Attractors don't show semantically meaningful patterns but rather geometrical and texture patterns, resembling elements of a basis, similarly to the last rows of Figure 2 (c).

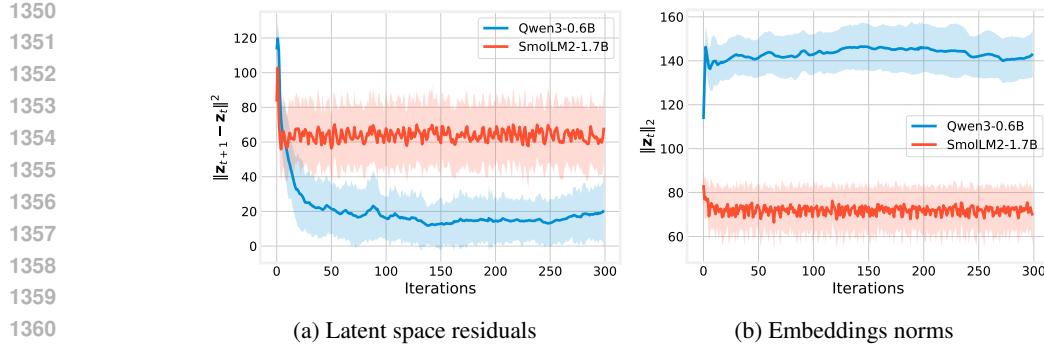


Figure 17: *LLM models can induce well-behaved latent vector fields*: For latent space iterations in Qwen3-0.6B and SmoLLM2-1.7b, we plot the latent residuals norms(a); and norms of embeddings across iterations (b).

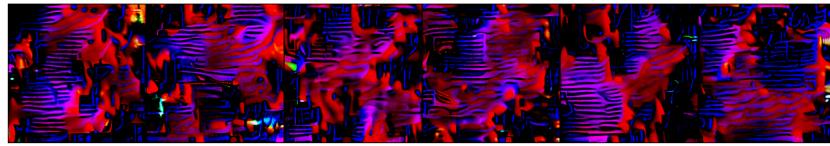


Figure 18: *Visualization of decoded attractors from Stable Diffusion AE.*

### C REGULARIZED AUTOENCODER ENFORCE CONTRACTIVENESS

In Table 2, we list many AE variants including denoising AEs (DAEs) (Vincent et al., 2008), sparse AEs (SAEs) (Ng et al., 2011), variational AEs (VAEs) (Kingma et al., 2013) and other variants (Rifai et al., 2011; Alain and Bengio, 2014; Gao et al., 2024) and show how their objectives enforce local contractive solutions around training points.

We provide below a precise connection for the case of weight decay and feed-forward networks.

**Example: weight decay** Consider an  $L$ -layer feed-forward autoencoder  $F_\theta = D_\theta \circ E_\theta$ , where each layer is defined as  $h_\ell = \phi_\ell(W_\ell h_{\ell-1} + b_\ell)$  and the activations  $\phi_\ell$  are 1-Lipschitz (e.g., ReLU, GELU, SiLU, *tanh*). The overall map can be written as

$$F_\theta(x) = W_L \phi_{L-1}(W_{L-1} \cdots \phi_1(W_1 x)).$$

Let  $D_\ell(x) = \text{diag}(\phi'_\ell(W_\ell h_{\ell-1}(x)))$  be the diagonal Jacobian of the activation at layer  $\ell$ . By the chain rule,

$$J_\theta(x) = W_L D_{L-1}(x) W_{L-1} \cdots D_1(x) W_1.$$

Since each activation is 1-Lipschitz,  $\|D_\ell(x)\|_2 \leq 1$  for all  $\ell$ , and therefore

$$\|J_\theta(x)\|_2 \leq \prod_{\ell=1}^L \|W_\ell\|_2.$$

A sufficient condition for local contraction is thus

$$\prod_{\ell=1}^L \|W_\ell\|_2 < 1 \quad \Rightarrow \quad \|J_\theta(x)\|_2 < 1.$$

Training with weight decay minimizes  $\mathcal{L}(\theta) + \lambda \sum_{\ell=1}^L \|W_\ell\|_F^2$ , and since  $\|W_\ell\|_2 \leq \|W_\ell\|_F$ , this suppresses the product of spectral norms appearing above:

$$\prod_{\ell=1}^L \|W_\ell\|_2 \leq \prod_{\ell=1}^L \|W_\ell\|_F,$$

biasing the solution toward  $\|J_\theta(x)\|_2 < 1$  even without an explicit Jacobian penalty.

Table 1: Architecture of the AutoencoderKL in Stable Diffusion

| Layer                              | Details                    | Output Shape    |
|------------------------------------|----------------------------|-----------------|
| <b>Encoder</b>                     |                            |                 |
| Input                              | 3 × 256 × 256 image        | 3 × 256 × 256   |
| Conv2D                             | 3 → 128, 3 × 3, stride 1   | 128 × 256 × 256 |
| ResNet Block                       | 128 channels               | 128 × 256 × 256 |
| Conv2D                             | 128 → 256, 3 × 3, stride 2 | 256 × 128 × 128 |
| ResNet Block                       | 256 channels               | 256 × 128 × 128 |
| Conv2D                             | 256 → 512, 3 × 3, stride 2 | 512 × 64 × 64   |
| ResNet Block                       | 512 channels               | 512 × 64 × 64   |
| Conv2D                             | 512 → 512, 3 × 3, stride 2 | 512 × 32 × 32   |
| ResNet Block                       | 512 channels               | 512 × 32 × 32   |
| Conv2D                             | 512 → 512, 3 × 3, stride 2 | 512 × 16 × 16   |
| ResNet Block                       | 512 channels               | 512 × 16 × 16   |
| Conv2D                             | 512 → 512, 3 × 3, stride 2 | 512 × 8 × 8     |
| ResNet Block                       | 512 channels               | 512 × 8 × 8     |
| Mean and Log Variance              | 512 → 4, 1 × 1             | 4 × 8 × 8       |
| Sampling                           | Reparameterization trick   | 4 × 8 × 8       |
| <b>Decoder</b>                     |                            |                 |
| Conv2D                             | 4 → 512, 3 × 3, stride 1   | 512 × 8 × 8     |
| ResNet Block                       | 512 channels               | 512 × 8 × 8     |
| Upsample                           | Scale factor 2             | 512 × 16 × 16   |
| ResNet Block                       | 512 channels               | 512 × 16 × 16   |
| Upsample                           | Scale factor 2             | 512 × 32 × 32   |
| ResNet Block                       | 512 channels               | 512 × 32 × 32   |
| Upsample                           | Scale factor 2             | 512 × 64 × 64   |
| ResNet Block                       | 512 channels               | 512 × 64 × 64   |
| Upsample                           | Scale factor 2             | 256 × 128 × 128 |
| ResNet Block                       | 256 channels               | 256 × 128 × 128 |
| Upsample                           | Scale factor 2             | 128 × 256 × 256 |
| ResNet Block                       | 128 channels               | 128 × 256 × 256 |
| Conv2D                             | 128 → 3, 3 × 3, stride 1   | 3 × 256 × 256   |
| <b>Output: Reconstructed Image</b> |                            |                 |

| Autoencoder                                                        | Regularizer $\mathcal{R}_\theta(\mathbf{x})$                                                                                                            | Description                                                                   | Effect on Contractiveness                                                                                                                               |
|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Standard AE (rank <math>\leq k</math>)</b>                      | – (bottleneck dimension $k$ )                                                                                                                           | No explicit regularization, but dimensionality constraint induces compression | Bottleneck limits Jacobian rank: $\text{rank}(J_{f_\theta}(\mathbf{x})) \leq k$                                                                         |
| <b>Plain AE with Weight Decay</b>                                  | $\ \mathbf{W}_E\ _F^2 + \ \mathbf{W}_D\ _F^2$                                                                                                           | L2 penalty on encoder and decoder weights                                     | Reduces $\ J_{f_\theta}(\mathbf{x})\  \leq L_\sigma^2 \ \mathbf{W}_D\  \ \mathbf{W}_E\ $ by shrinking weight norms                                      |
| <b>Deep AE with Weight Decay</b>                                   | $\sum_\ell \ \mathbf{W}_E^{(\ell)}\ _F^2 + \ \mathbf{W}_D^{(\ell)}\ _F^2$                                                                               | Weight decay across multiple layers of deep encoder/decoder                   | Layerwise shrinkage enforces smoother, more contractive composition $J_{f_\theta}(\mathbf{x})$                                                          |
| <b>R-Contractive AE (Alain and Olivier, 2013)</b>                  | $\ J_{f_\theta}(\mathbf{x})\ _F^2$                                                                                                                      | Penalizes Jacobian of the full map $f_\theta = D_\theta \circ E_\theta$       | Encourages stability of reconstructions: $f_\theta(\mathbf{x}) \approx f_\theta(\mathbf{x} + \delta)$                                                   |
| <b>Contractive AE (Rifai et al., 2011)</b>                         | $\ J_{E_\theta}(\mathbf{x})\ _F^2 = \sum_{i=1}^k \ J_{E_i}(\mathbf{x})\ ^2$                                                                             | Penalizes encoder Jacobian norm                                               | Explicitly enforces local flatness of encoder                                                                                                           |
| <b>Sparse AE (KL, sigmoid) (Ng et al., 2011)</b>                   | $\sum_{i=1}^k \text{KL}(\rho \parallel \hat{\rho}_i), \quad \hat{\rho}_i = \mathbb{E}_{\mathbf{x} \sim [E_i(\mathbf{x})]} \rho$                         | Enforces low average activation under sigmoid                                 | Saturated units $\Rightarrow J_{E_i}(\mathbf{x}) \approx 0 \Rightarrow \ J_{E_\theta}(\mathbf{x})\ $ small                                              |
| <b>Sparse AE (L1, ReLU) (Ng et al., 2011)</b>                      | $\ E_\theta(\mathbf{x})\ _1$                                                                                                                            | Promotes sparsity of ReLU activations                                         | Inactive ReLU units have zero derivatives $\Rightarrow$ sparse Jacobian $J_{E_\theta}(\mathbf{x})$                                                      |
| <b>Denoising AE (Vincent et al., 2008; Alain and Bengio, 2014)</b> | $\mathbb{E}_{\tilde{\mathbf{x}} \sim q(\tilde{\mathbf{x}} \mathbf{x})} \ \mathbf{x} - f_\theta(\tilde{\mathbf{x}})\ ^2$                                 | Reconstructs from noisy input                                                 | For small noise: $f_\theta(\mathbf{x}) - \mathbf{x} \approx \sigma^2 \nabla \log p(\mathbf{x})$ , a contractive vector field $J_{f_\theta}(\mathbf{x})$ |
| <b>Variational AE (VAE) (Kingma et al., 2013)</b>                  | $\text{KL}(q_\theta(\mathbf{z} \mathbf{x}) \parallel p(\mathbf{z})), \quad q(\mathbf{z} \mathbf{x}) = \mathcal{N}(\mu(\mathbf{x}), \Sigma(\mathbf{x}))$ | where $\mu(\mathbf{x}), \Sigma(\mathbf{x})$ are learned parameters            | Encourages latent distribution to match prior                                                                                                           |
| <b>Masked AE (MAE) (He et al., 2022)</b>                           | $\mathbb{E}_M [\ M \odot (\mathbf{x} - f_\theta(M \odot \mathbf{x}))\ ^2]$                                                                              | Learns to reconstruct from partial input $M$                                  | Smooths $\mu(\mathbf{x}), \Sigma(\mathbf{x})$ ; penalizes sharp variations in encoder $J_\mu(\mathbf{x}), J_\Sigma(\mathbf{x})$                         |
|                                                                    |                                                                                                                                                         |                                                                               | Promotes invariance to missing entries $\Rightarrow \ J_{f_\theta}(\mathbf{x})\ $ low                                                                   |

Table 2: Unified formulation of autoencoder variants as minimizing reconstruction error plus a regularizer that encourages local contractiveness.

## D ADDITIONAL IMPLEMENTATION DETAILS

For the experiments in Figures 2, 3, 14 we considered convolutional autoencoders with architecture specified in Table 3. We train the models with Adam (Kingma, 2014) with learning rate  $5e-4$ , linear step learning rate scheduler, and weight decay  $1e-4$  for 500 epochs. For the experiments in section 4.1, we use the pretrained autoencoder of (Rombach et al., 2022). We report in Table 1 the architectural details and we refer to the paper for training details. For the experiments in section 4.2, we use the pretrained autoencoder of (He et al., 2022), considering the base model. We refer to the

1458 Table 3: Architecture of the autoencoder employed in experiments on CIFAR, MNIST,  
1459 FashionMNIST datasets

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475 paper for training details. For computing attractors in experiments in Figures 2,3, 14, we compute  
 1476 the iterations  $\mathbf{z}_{t+1} = f(\mathbf{z}_t)$  until  $\|f(\mathbf{z}_{t+1}) - f(\mathbf{z}_t)\|_2^2 < 1e - 6$  or reaching  $t = 3000$ . Similarly in  
 1477 experiments in Sections 4.1, 4.2, we compute the iterations  $\mathbf{z}_{t+1} = f(\mathbf{z}_t)$  until  $\|f(\mathbf{z}_{t+1}) - f(\mathbf{z}_t)\|_2^2 <$   
 1478  $1e - 5$  or reaching  $t = 500$ . All experiments are performed on a GPU NVIDIA 3080TI in Python  
 1479 code, using the PyTorch library (Paszke et al., 2019).

1480

1481

## E USE OF LARGE LANGUAGE MODELS (LLMs)

1482

1483

In this work, we used LLMs for occasionally polishing and improving the readability of the paper.  
 All substantive research contributions, analysis, and interpretations were carried out by the authors.

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

| Layer                              | Details                                                         | Output Shape                                 |
|------------------------------------|-----------------------------------------------------------------|----------------------------------------------|
| <b>Encoder</b>                     |                                                                 |                                              |
| Input                              | $C \times H \times W$ image                                     | $C \times H \times W$                        |
| Conv2D                             | $C \rightarrow d, 3 \times 3$ , stride 2, pad 1                 | $d \times \frac{H}{2} \times \frac{W}{2}$    |
| Conv2D                             | $d \rightarrow 2d, 3 \times 3$ , stride 2, pad 1                | $2d \times \frac{H}{4} \times \frac{W}{4}$   |
| Conv2D                             | $2d \rightarrow 4d, 3 \times 3$ , stride 2, pad 1               | $4d \times \frac{H}{8} \times \frac{W}{8}$   |
| Conv2D                             | $4d \rightarrow 8d, 3 \times 3$ , stride 2, pad 1               | $8d \times \frac{H}{16} \times \frac{W}{16}$ |
| Flatten                            | —                                                               | $8d \cdot \frac{H}{16} \cdot \frac{W}{16}$   |
| Bottleneck                         | Linear layer or projection                                      | $z$ (latent code)                            |
| <b>Decoder</b>                     |                                                                 |                                              |
| Unflatten                          | $z \rightarrow 8d \times \frac{H}{16} \times \frac{W}{16}$      | $8d \times \frac{H}{16} \times \frac{W}{16}$ |
| ConvTranspose2D                    | $8d \rightarrow 4d, 3 \times 3$ , stride 2, pad 1, output pad 1 | $4d \times \frac{H}{8} \times \frac{W}{8}$   |
| ConvTranspose2D                    | $4d \rightarrow 2d, 3 \times 3$ , stride 2, pad 1, output pad 1 | $2d \times \frac{H}{4} \times \frac{W}{4}$   |
| ConvTranspose2D                    | $2d \rightarrow d, 3 \times 3$ , stride 2, pad 1, output pad 1  | $d \times \frac{H}{2} \times \frac{W}{2}$    |
| ConvTranspose2D                    | $d \rightarrow C, 3 \times 3$ , stride 2, pad 1, output pad 1   | $C \times H \times W$                        |
| <b>Output: Reconstructed Image</b> |                                                                 |                                              |