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ABSTRACT

We introduce Premier-TACO, a novel multitask feature representation learn-
ing methodology aiming to enhance the efficiency of few-shot policy learning in
sequential decision-making tasks. Premier-TACO pretrains a general feature
representation using a small subset of relevant multitask offline datasets, capturing
essential environmental dynamics. This representation can then be fine-tuned to
specific tasks with few expert demonstrations. Building upon the recent temporal
action contrastive learning (TACO) objective, which obtains the state of art per-
formance in visual control tasks, Premier-TACO additionally employs a simple
yet effective negative example sampling strategy. This key modification ensures
computational efficiency and scalability for large-scale multitask offline pretraining.
Experimental results from both Deepmind Control Suite and MetaWorld domains
underscore the effectiveness of Premier-TACO for pretraining visual represen-
tation, facilitating efficient few-shot imitation learning of unseen tasks. On the
DeepMind Control Suite, Premier-TACO achieves an average improvement of
101% in comparison to a carefully implemented Learn-from-scratch baseline, and
a 24% improvement compared with the most effective baseline pretraining method.
Similarly, on MetaWorld, Premier-TACO obtains an average advancement of
74% against Learn-from-scratch and a 40% increase in comparison to the best
baseline pretraining method.
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Figure 1: Performance of Premier-TACO pretrained visual representation for few-shot imitation learning on
downstream unseen tasks from both Deepmind Control Suite and MetaWorld.

1 INTRODUCTION

In the dynamic and ever-changing world we inhabit, the importance of sequential decision-making
(SDM) in machine learning cannot be overstated. Unlike static tasks, sequential decisions reflect
the fluidity of real-world scenarios, from robotic manipulations to evolving healthcare treatments.
Just as foundation models in language, such as BERT (Devlin et al., 2019) and GPT (Radford
et al., 2019; Brown et al., 2020), have revolutionized natural language processing by leveraging
vast amounts of textual data to understand linguistic nuances, pretrained foundation models hold
similar promise for sequential decision-making (SDM). In language, these models capture the essence
of syntax, semantics, and context, serving as a robust starting point for a myriad of downstream
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tasks. Analogously, in SDM, where decisions are influenced by a complex interplay of past actions,
current states, and future possibilities, a pretrained foundation model can provide a rich, generalized
understanding of decision sequences. This foundational knowledge, built upon diverse decision-
making scenarios, can then be fine-tuned to specific tasks, much like how language models are
adapted to specific linguistic tasks.

The following challenges are unique to sequential decision-making, setting it apart from existing
vision and language pretraining paradigms. (C1) Data Distribution Shift: Training data usually
consists of specific behavior-policy-generated trajectories. This leads to vastly different data dis-
tributions at various stages—pretraining, finetuning, and deployment—resulting in compromised
performance (Lee et al., 2021). (C2) Task Heterogeneity: Unlike language and vision tasks, which
often share semantic features, decision-making tasks vary widely in configurations, transition dy-
namics, and state and action spaces. This makes it difficult to develop a universally applicable
representation. (C3) Data Quality and Supervision: Effective representation learning often relies
on high-quality data and expert guidance. However, these resources are either absent or too costly to
obtain in many real-world decision-making tasks (Brohan et al., 2023; Stooke et al., 2021b). Our
aspirational criteria for foundation model for sequential decision-making encompass several key
features: (W1) Versatility that allows the model to generalize across a wide array of tasks, even those
not previously encountered, such as new embodiments viewed or observations from novel camera
angles; (W2) Efficiency in adapting to downstream tasks, requiring minimal data through few-shot
learning techniques; (W3) Robustness to pretraining data of fluctuating quality, ensuring a resilient
foundation; and (W4) Compatibility with existing large pretrained models such as Nair et al. (2022).

In light of these challenges and desirables in building foundation models for SDM, our approach
to develop foundational models for sequential decision-making focuses on creating a universal and
transferable encoder using a reward-free, dynamics based, temporal contrastive pretraining objective.
This encoder would be tailored to manage tasks with complex observation spaces, such as visual
inputs. By excluding reward signals during the pretraining stage, the model will be better poised to
generalize across a broad array of downstream tasks that may have divergent objectives. Leveraging
a world-model approach ensures that the encoder learns a compact representation that can capture
universal transition dynamics, akin to the laws of physics, thereby making it adaptable for multiple
scenarios. This encoder enables the transfer of knowledge to downstream control tasks, even when
such tasks were not part of the original pretraining data set.

Existing works apply self-supervised pre-training from rich vision data such as ImageNet (Deng
et al., 2009) or Ego4D datasets (Grauman et al., 2022) to build foundation models (Nair et al., 2022;
Majumdar et al., 2023; Ma et al., 2023). However, applying these approaches to sequential decision-
making tasks is challenging. Specifically, they often overlook control-relevant considerations and
suffer from a domain gap between pre-training datasets and downstream visuo-motor tasks. In
this paper, rather than focusing on leveraging large computational vision datasets, we propose a
novel control-centric objective function for pretraining. Our approach, called Premier-TACO
(pretraining multitask representation via temporal action-driven contrastive loss), employs a temporal
action-driven contrastive loss function for pretraining. Unlike TACO, which treats every data point
in the batch as a potential negative example, Premier-TACO samples one negative example
from a nearby window of the next state, yielding a negative example that is visually similar to the
positive one. Consequently, the latent representation must encapsulate control-relevant information
to differentiate between the positive and negative examples, rather than depending on irrelevant
features such as visual appearance. This simple yet effective negative example sampling strategy
incurs zero computational overhead, and through extensive empirical evaluation, we verify with
extensive empirical evaluation that Premier-TACO works well with smaller batch sizes. Thus
Premier-TACO can be effortlessly scaled up for multitask offline pretraining.

Below we list our key contributions:

▷ (1) We introduce Premier-TACO, a new framework designed for the multi-task offline visual
representation pretraining of sequential decision-making problems. In particular, we develop a
new temporal contrastive learning objective within the Premier-TACO framework. Compared
with other temporal contrastive learning objectives such as TACO, Premier-TACO employs a
simple yet efficient negative example sampling strategy, making it computationally feasible for
multi-task representation learning.
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▷ (2) [(W1) Versatility (W2) Efficiency] Through extensive empirical evaluation, we verify the
effectiveness of Premier-TACO’s pretrained visual representations for few-shot learning on
unseen tasks. On MetaWorld (Yu et al., 2019), with 5 expert trajectories, Premier-TACO out-
performs the best baseline pretraining method by 37%. On Deepmind Control Suite (DMC) (Tassa
et al., 2018), using only 20 trajectories, which is considerably fewer demonstrations than (Sun
et al., 2023; Majumdar et al., 2023), Premier-TACO achieves the best performance across 10
challenging tasks, including the hard Dog and Humanoid tasks. This versatility extends even to
unseen embodiments in DMC as well as unseen tasks with unseen camera views in MetaWorld.

▷ (3) [(W3) Robustness (W4) Compatability] Furthermore, we demonstrate that
Premier-TACO is not only resilient to data of lower quality but also compatible with
exisiting large pretrained models. In DMC, Premier-TACO works well with the pretraining
dataset collected randomly. Additionally, we showcase the capability of the temporal contrastive
learning objective of Premier-TACO to finetune a generalized visual encoder such as
R3M (Nair et al., 2022), resulting in an averaged performance enhancement of around 50%
across the assessed tasks.

2 PRELIMINARY

2.1 MULTITASK OFFLINE PRETRAINING

We consider a collection of tasks
{
Ti : (X ,Ai,Pi,Ri, γ)

}N

i=1
with the same dimensionality in

observation space X . Let ϕ : X → Z be a representation function of the agent’s observation,
which is either randomly initialized or pre-trained already on a large-scale vision dataset such as
ImageNet (Deng et al., 2009) or Ego4D (Grauman et al., 2022). Assuming that the agent is given a
multitask offline dataset {(xi, ai, x′i, ri)} of a subset ofK tasks {Tnj}Kj=1. The objective is to pretrain
a generalizable state representation ϕ or a motor policy π so that when facing an unseen downstream
task, it could quickly adapt with few expert demonstrations, using the pretrained representation.
Below we summarize the pretraining and finetuning setups.
Pretraining: The agent get access to a multitask offline dataset, which could be highly suboptimal.
The goal is to learn a generalizable shared state representation from pixel inputs.
Adaptation: Adapt to unseen downstream task from few expert demonstration with imitation learning.

2.2 TACO: TEMPORAL ACTION DRIVEN CONTRASTIVE LEARNING OBJECTIVE

Temporal Action-driven Contrastive Learning (TACO) (Zheng et al., 2023) is a reinforcement learning
algorithm proposed for addressing the representation learning problem in visual continuous control.
It aims to maximize the mutual information between representations of current states paired with
action sequences and representations of the corresponding future states:

JTACO = I(Zt+K ; [Zt, Ut, ..., Ut+K−1]) (1)

Here, Zt = ϕ(Xt) and Ut = ψ(At) represent latent state and action variables. Theoretically, it could
be shown that maximization of this mutual information objective lead to state and action represen-
tations that are capable of representing the optimal value functions. Empirically, TACO estimate the
lower bound of the mutual information objective by the InfoNCE loss, and it achieves the state of
art performance for both online and offline visual continuous control, demonstrating the effectiveness
of temporal contrastive learning for representation learning in sequential decision making problems.

3 METHOD

We introduce Premier-TACO, a generalized pre-training approach specifically formulated to
tackle the multi-task pre-training problem, enhancing sample efficiency and generalization ability
for downstream tasks. Building upon the success of temporal contrastive loss, exemplified by
TACO (Zheng et al., 2023), in acquiring latent state representations that encapsulate individual task
dynamics, our aim is to foster representation learning that effectively captures the intrinsic dynamics
spanning a diverse set of tasks found in offline datasets. Our overarching objective is to ensure that
these learned representations exhibit the versatility to generalize across unseen tasks that share the
underlying dynamic structures.
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Figure 2: An illustration of Premier-TACO contrastive loss design. The two ‘State Encoder’s are identical,
as are the two ‘Proj. Layer H’s. One negative example is sampled from the neighbors of framework st+K .

Nevertheless, when adapted for multitask offline pre-training, the online learning objective of
TACO (Zheng et al., 2023) poses a notable challenge. Specifically, TACO’s mechanism, which
utilizes the InfoNCE (van den Oord et al., 2019) loss, categorizes all subsequent states st+k in the
batch as negative examples. While this methodology has proven effective in single-task reinforcement
learning scenarios, it encounters difficulties when extended to a multitask context. During multitask
offline pretraining, image observations within a batch can come from different tasks with vastly
different visual appearances, rendering the contrastive InfoNCE loss significantly less effective.
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Figure 3: Difference between
Premier-TACO and TACO for sam-
pling negative examples

Offline Pretraining Objective. We propose a straight-
forward yet highly effective mechanism for selecting
challenging negative examples. Instead of treating
all the remaining examples in the batch as negatives,
Premier-TACO selects the negative example from a
window centered at state st+k within the same episode.

This approach is both computationally efficient and more
statistically powerful due to negative examples which are
challenging to distinguish from similar positive examples
forcing the model capture temporal dynamics differen-
tiating between positive and negative examples. Specifi-
cally, given a batch of state and action sequence transitions
{(s(i)t , [a

(i)
t , ..., a

(i)
t+K−1], s

(i)
t+K)}Ni=1 , let z(i)t = ϕ(s

(i)
t ), u(i)t = ψ(a

(i)
t ) be latent state and latent

action embeddings respectively. Furthermore, let s̃(i)t+K be a negative example uniformly sam-
pled from the window of size W centered at st+K : (st+K−W , ..., st+K−1, st+K+1, ..., st+K+W )

with z̃(i)t = ϕ(s̃
(i)
t ) a negative latent state. Given these, define g(i)t = Gθ(z

(i)
t , u

(i)
t , ..., u

(i)
t+K−1),

h̃
(i)
t = Hθ(z̃

(i)
t+K), and h(i)t = Hθ(z

(i)
t+K) as embeddings of future predicted and actual latent states.

We optimize:

J Premier-TACO(ϕ, ψ,Gθ, Hθ) = − 1

N

N∑
i=1

log
g
(i)
t

⊤
h
(i)
t+K

g
(i)
t

⊤
h
(i)
t+K + g̃

(i)
t

⊤
h
(i)
t+K

. (2)

Pretraining of Premier-TACO. For representation pretraining, we construct an offline dataset
that includes control trajectories generated by behavioral policies across a diverse set of tasks.
Throughout the pretraining phase, we employ the Premier-TACO learning objective to update a
randomly initialized shallow ConvNet encoder. Unlike prior representation pretraining approach (Sun
et al., 2023; Nair et al., 2022; Majumdar et al., 2023), we firmly believe that the Premier-TACO
approach does not impose stringent requirements on the network structure of the representation
encoder. Concerning the selection of task data for pretraining, our strategy intentionally covers
various embodiments for Deepmind Control Suite and encompasses a wide range of motion patterns
and interactions involving robotic arms interacting with different objects for MetaWorld. Additionally,
we prioritize choosing simpler tasks for pretraining to demonstrate the pretrained model’s effective
generalization to more challenging unseen tasks.
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Few-shot Generalization. After pretraining the representation encoder, we leverage our pretrained
model Φ to learn policies for downstream tasks. To learn the policy π with the state representation
Φ(st) as inputs, we use behavior cloning (BC) with a few expert demonstrations. For different control
domains, we employ significantly fewer demonstrations for unseen tasks than what is typically used
in other baselines. This underscores the substantial advantages of Premier-TACO in few-shot
generalization. More details about the experiments on downstream tasks will be provided in Section 4.

4 EXPERIMENT

In our empirical evaluations, we consider two benchmarks, Deepmind Control Suite (Tassa et al.,
2018) for locomotion control as well as MetaWorld (Yu et al., 2019) for robotic manipulation tasks.

Figure 4: Pretrain and Test Tasks split for Deepmind Control Suite and MetaWorld. The left figures are
Deepmind Control Suite tasks and the right figures MetaWorld tasks.

Deepmind Control Suite (DMC) (Tassa et al., 2018): We consider a selection of 16 challenging
tasks from Deepmind Control Suite. Note that compared with prior works such as Majumdar et al.
(2023); Sun et al. (2023), we consider much harder tasks, including ones from the humanoid and dog
domains, which feature intricate kinematics, skinning weights and collision geometry. For pretraining,
we select six tasks (DMC-6), including Acrobot Swingup, Finger Turn Hard, Hopper Stand, Walker
Run, Humanoid Walk, and Dog Stand. We generate an exploratory dataset for each task by sampling
trajectories generated in exploratory stages of a DrQ-v2 (Yarats et al., 2022) learning agent. In
particular, we sample 1000 trajectories from the online replay buffer of DrQ-v2 once it reaches the
convergence performance. This ensures the diversity of the pretraining data, but in practice, such
a high-quality dataset could be hard to obtain. So, later in the experiments, we will also relax this
assumption and consider pretrained trajectories that are sampled from uniformly random actions.
MetaWorld (Yu et al., 2019): We select a set of 10 tasks for pretraining, which encompasses a variety
of motion patterns of the Sawyer robotic arm and interaction with different objects. To collect an
exploratory dataset for pretraining, we execute the scripted policy with Gaussian noise of a standard
deviation of 0.3 added to the action. By adding such a noise, the success rate of collected policies on
average is only around 20% across ten pretrained tasks.

Baselines. We compare Premier-TACO with the following representation pretraining baselines:

▷ Learn from Scratch: Behavior Cloning with randomly initialized shallow ConvNet encoder.
Different from Nair et al. (2022); Majumdar et al. (2023), which use a randomly initialized
ResNet for evaluation, we find that using a shallow network with an input image size of 84× 84
on both Deepmind Control Suite and MetaWorld yields superior performance. Additionally, we
also include data augmentation into behavior cloning following Hansen et al. (2022a).

▷ Policy Pretraining: We first train a multitask policy by TD3+BC (Fujimoto & Gu, 2021) on the
pretraining dataset. While numerous alternative offline RL algorithms exist, we choose TD3+BC
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DMControl Models

Tasks LfS SMART Best PVRs TD3+BC Inverse CURL ATC SPR TACO Premier-TACO

Seen
Embodiments

Finger Spin 34.8±3.4 44.2± 8.2 38.4± 9.3 68.8± 7.1 33.4±8.4 35.1±9.6 51.1±9.4 55.9±6.2 28.4± 9.7 75.2± 0.6

Hopper Hop 8.0± 1.3 14.2± 3.9 23.2± 4.9 49.1± 4.3 48.3±5.2 28.7±5.2 34.9±3.9 52.3±7.8 21.4± 3.4 75.3± 4.6

Walker Walk 30.4±2.9 54.1± 5.2 32.6± 8.7 65.8± 2.0 64.4±5.6 37.3±7.9 44.6±5.0 72.9±1.5 30.6± 6.1 88.0± 0.8

Humanoid Walk 15.1±1.3 18.4± 3.9 30.1± 7.5 34.9± 8.5 41.9±8.4 19.4±2.8 35.1±3.1 30.1±6.2 29.1± 8.1 51.4± 4.9

Dog Trot 52.7±3.5 59.7± 5.2 73.5± 6.4 82.3± 4.4 85.3±2.1 71.9±2.2 84.3±0.5 79.9±3.8 80.1± 4.1 93.9± 5.4

Unseen
Embodiments

Cup Catch 56.8±5.6 66.8± 6.2 93.7± 1.8 97.1± 1.7 96.7±2.6 96.7±2.6 96.2±1.4 96.9±3.1 88.7± 3.2 98.9± 0.1

Reacher Hard 34.6±4.1 52.1± 3.8 64.9± 5.8 59.6± 9.9 61.7±4.6 50.4±4.6 56.9±9.8 62.5±7.8 58.3± 6.4 81.3± 1.8

Cheetah Run 25.1±2.9 41.1± 7.2 39.5± 9.7 50.9± 2.6 51.5±5.5 36.8±5.4 30.1±1.0 40.2±9.6 23.2± 3.3 65.7± 1.1

Quadruped Walk 61.1±5.7 45.4± 4.3 63.2± 4.0 76.6± 7.4 82.4±6.7 72.8±8.9 81.9±5.6 65.6±4.0 63.9± 9.3 83.2± 5.7

Quadruped Run 45.0±2.9 27.9± 5.3 64.0± 2.4 48.2± 5.2 52.1±1.8 55.1±5.4 2.6± 3.6 68.2±3.2 50.8± 5.7 76.8± 7.5

Mean Performance 38.2 42.9 52.3 63.3 61.7 50.4 52.7 62.4 47.5 79.0

Table 1: [(W1) Versatility (W2) Efficiency] Few-shot Behavior Cloning (BC) for unseen task of DMC.
Performance (Agent Reward / Expert Reward) of baselines and Premier-TACO on 10 unseen tasks on
Deepmind Control Suite. Bold numbers indicate the best results. Agent Policies are evaluated every 1000
gradient steps for a total of 100000 gradient steps and we report the average performance over the 3 best epochs
over the course of learning. Premier-TACO outperforms all the baselines, showcasing its superior efficacy in
generalizing to unseen tasks with seen or unseen embodiments.

MetaWorld Models

Unseen Tasks LfS SMART Best PVRs TD3+BC Inverse CURL ATC SPR TACO Premier-TACO

Bin Picking 62.5± 12.5 71.3± 9.6 60.2± 4.3 50.6± 3.7 55.0± 7.9 45.6± 5.6 55.6± 7.8 67.9± 6.4 67.3± 7.5 78.5± 7.2

Disassemble 56.3± 6.5 52.9± 4.5 70.4± 8.9 56.9± 11.5 53.8± 8.1 66.2± 8.3 45.6± 9.8 48.8± 5.4 51.3± 10.8 86.7± 8.9

Hand Insert 34.7± 7.5 34.1± 5.2 35.5± 2.3 46.2± 5.2 50.0± 3.5 49.4± 7.6 51.2± 1.3 52.4± 5.2 56.8± 4.2 75.0± 7.1

Peg Insert Side 28.7± 2.0 20.9± 3.6 48.2± 3.6 30.0± 6.1 33.1± 6.2 28.1± 3.7 31.8± 4.8 39.2± 7.4 36.3± 4.5 62.7± 4.7

Pick Out Of Hole 53.7± 6.7 65.9± 7.8 66.3± 7.2 46.9± 7.4 50.6± 5.1 43.1± 6.2 54.4± 8.5 55.3± 6.8 52.9± 7.3 72.7± 7.25

Pick Place Wall 40.5± 4.5 62.8± 5.9 63.2± 9.8 63.8± 12.4 71.3± 11.3 73.8± 11.9 68.7± 5.5 72.3± 7.5 37.8± 8.5 80.2± 8.2

Shelf Place 26.3± 4.1 57.9± 4.5 32.4± 6.5 45.0± 7.7 36.9± 6.7 35.0± 10.8 35.6± 10.7 38.0± 6.5 25.8± 5.0 70.4± 8.1

Stick Pull 46.3± 7.2 65.8± 8.2 52.4± 5.6 72.3± 11.9 57.5± 9.5 43.1± 15.2 72.5± 8.9 68.5± 9.4 52.0± 10.5 80.0± 8.1

Mean 43.6 53.9 53.6 51.5 51.0 48.3 51.9 55.3 47.5 75.8

Table 2: [(W1) Versatility (W2) Efficiency] Five-shot Behavior Cloning (BC) for unseen task of MetaWorld.
Success rate of Premier-TACO and baselines across 8 hard unseen tasks on MetaWorld. Results are aggregated
over 4 random seeds. Bold numbers indicate the best results.

as a representative due to its simplicity and great empirical performance. After pretraining, we
take the pretrained ConvNet encoder and drop the policy MLP layers.

▷ Pretrained Visual Representations (PVRs): We evaluate the state-of-the-art frozen pretrained
visual representations including PVR (Parisi et al., 2022), MVP (Xiao et al., 2022), R3M (Nair
et al., 2022) and VC-1 (Majumdar et al., 2023), and report the best performance of these PVRs
models for each task.

▷ Control Transformer: SMART (Sun et al., 2023) is a self-supervised representation pretraining
framework which utilizes a maksed prediction objective for pretraining representation under
Decision Transformer architecture, and then use the pretrained representation to learn policies
for downstream tasks.

▷ Inverse Dynamics Model: We pretrain an inverse dynamics model to predict actions and use
the pretrained representation for downstream task.

▷ Contrastive/Self-supervised Learning Objectives: CURL (Laskin et al., 2020), ATC (Stooke
et al., 2021a), SPR (Schwarzer et al., 2021a;b). CURL and ATC are two approaches that apply
contrastive learning into sequential decision making problems. While CURL treats augmented
states as positive pairs, it neglects the temporal dependency of MDP. In comparison, ATC takes
the temporal structure into consideration. The positive example of ATC is an augmented view of
a temporally nearby state. SPR applies BYOL objecive (Grill et al., 2020) into sequential decision
making problems by pretraining state representations that are self-predictive of future states.

Pretrained feature representation by Premier-TACO facilitates effective few-shot adaptation
to unseen tasks. We measure the performance of pretrained visual representation for few-shot
imitation learning of unseen downstream tasks in both DMC and MetaWorld. In particular, for DMC,
we use 20 expert trajectories for imitation learning except for the two hardest tasks, Humanoid
Walk and Dog Trot, for which we use 100 trajectories instead. Note that we only use 1

5 of the number
of expert trajectories used in Majumdar et al. (2023) and 1

10 of those used in Sun et al. (2023).

6



Under review as a conference paper at ICLR 2024

We record the performance of the agent by calculating the ratio of
Agent Reward
Expert Reward

, where Expert

Reward is the episode reward of the expert policy used to collect demonstration trajectories. For
MetaWorld, we use 5 expert trajectories for all eight downstream tasks, and we use task success
rate as the performance metric. In Table 1 and Table 2, we present the results for Deepmind Control
Suite and MetaWorld, respectively. As shown here, pretrained representation of Premier-TACO
significantly improves the few-shot imitation learning performance compared with Learn-from-
scratch, with a 101% improvement on Deepmind Control Suite and 74% improvement on MetaWorld,
respectively. Moreover, it also outperforms all the baselines across all tasks by a large margin.

Figure 5: [(W1) Versatility]
DMControl: Generalization of
Premier-TACO pre-trained visual
representation to unseen embodiments.

Premier-TACO pre-trained representation enables knowl-
edge sharing across different embodiments. Ideally, a re-
silient and generalizable state feature representation ought not
only to encapsulate universally applicable features for a given
embodiment across a variety of tasks, but also to exhibit the
capability to generalize across distinct embodiments. Here,
we evaluate the few-shot behavior cloning performance of
Premier-TACO pre-trained encoder from DMC-6 on four
tasks featuring unseen embodiments: Cup Catch, Cheetah Run,
and Quadruped Walk. In comparison to Learn-from-scratch, as
shown in Figure 5, Premier-TACO pre-trained representa-
tion realizes an 82% performance gain, demonstrating the ro-
bust generalizability of our pre-trained feature representations.

View 1 View 2

Figure 6: [(W1) Versatility] Meta-
World: Few-shot adaptation to unseen
tasks from an unseen camera view.

Premier-TACO Pretrained Representation is also gener-
alizable to unseen tasks with camera views. Beyond gen-
eralizing to unseen embodiments, an ideal robust visual rep-
resentation should possess the capacity to adapt to unfamiliar
tasks under novel camera views. In Figure 6, we evaluate the
five-shot learning performance of our model on four previously
unseen tasks in MetaWorld with a new view. In particular,
during pretraining, the data from MetaWorld are generated us-
ing the same view as employed in (Hansen et al., 2022b; Seo
et al., 2022). Then for downstream policy learning, the agent
is given five expert trajectories under a different corner camera
view, as depicted in the figure. Notably, Premier-TACO also
achieves a substantial performance enhancement, thereby un-
derscoring the robust generalizability of our pretrained visual
representation.

Premier-TACO Pre-trained Representation is resilient
to low-quality data. We evaluate the resilience of
Premier-TACO by employing randomly collected trajectory
data from Deepmind Control Suite for pretraining and compare
it with Premier-TACO representations pretrained using an exploratory dataset and the learn-from-
scratch approach. As illustrated in Figure 7, across all downstream tasks, even when using randomly
pretrained data, the Premier-TACO pretrained model still maintains a significant advantage over
learning-from-scratch. When compared with representations pretrained using exploratory data, there
are only small disparities in a few individual tasks, while they remain comparable in most other tasks.
This strongly indicates the robustness of Premier-TACO to low-quality data. Even without the use
of expert control data, our method is capable of extracting valuable information.

Pretrained visual encoder finetuning with Premier-TACO. In addition to evaluating our pre-
trained representations across various downstream scenarios, we also conducted fine-tuning on
pretrained visual representations using in-domain control trajectories following Premier-TACO
framework. Importantly, our findings deviate from the observations made in prior works like (Hansen
et al., 2022a) and (Majumdar et al., 2023), where fine-tuning of R3M (Nair et al., 2022) on in-domain
demonstration data using the task-centric behavior cloning objective, resulted in performance degra-
dation. We speculate that two main factors contribute to this phenomenon. First, a domain gap exists
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Figure 7: [(W3) Robustness] Premier-TACO pretrained with exploratory dataset vs. Premier-TACO
pretrained with randomly collected dataset

between out-of-domain pretraining data and in-domain fine-tuning data. Second, fine-tuning with
few-shot learning can lead to overfitting for large pretrained models.

Figure 8: [(W4) Compatibility] Finetune R3M (Nair et al., 2022), a generalized Pretrained Visual Encoder
with Premier-TACO learning objective vs. R3M with in-domain finetuning in Deepmind Control Suite and
MetaWorld.

To further validate the effectiveness of our Premier-TACO approach, we compared the re-
sults of R3M with no fine-tuning, in-domain fine-tuning (Hansen et al., 2022a), and fine-tuning
using our method on selected Deepmind Control Suite and MetaWorld pretraining tasks. Fig-
ure 8 unequivocally demonstrate that direct fine-tuning on in-domain tasks leads to a perfor-
mance decline across multiple tasks. However, leveraging the Premier-TACO learning ob-
jective for fine-tuning substantially enhances the performance of R3M. This not only under-
scores the role of our method in bridging the domain gap and capturing essential control fea-
tures but also highlights its robust generalization capabilities. Furthermore, these findings
strongly suggest that our Premier-TACO approach is highly adaptable to a wide range of
multi-task pretraining scenarios, irrespective of the model’s size or the size of the pretrained data.

Figure 9: (Updated) Averaged perfor-
mance of Premier-TACO vs. TACO
on 10 Deepmind Control Suite Tasks
across different batch sizes

This implies the promising potential to significantly improve
the performance of existing pretrained models across diverse
domains. The full results of finetuning on all 18 tasks including
Deepmind Control Suite and MetaWorld are in Appendix B.1.

Ablation Study - Batch Size: Compared with TACO, the nega-
tive example sampling strategy employed in Premier-TACO
allows us to sample harder negative examples within the same
episode as the positive example. We expect Premier-TACO
to work much better with small batch sizes, compared with
TACO where the negative examples from a given batch could
be coming from various tasks and thus the batch size required
would scale up linearly with the number of pretraining tasks.
In ours previous experimental results, Premier-TACO is
pretrained with a batch size of 4096, a standard batch size used
in contrastive learning literature. Here, to empirically verify
the effects of different choices of the pretraining batch size, we

8
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train Premier-TACO and TACO with different batch sizes and compare their few-shot imitation
learning performance.

Figure 9 displays the average performance of few-shot imitation learning across all ten tasks in the
DeepMind Control Suite. As depicted in the figure, our model significantly outperform TACO across
all batch sizes tested in the experiments, and exhibits performance saturation beyond a batch size
of 4096. This observation substantiate that the negative example sampling strategy employed by
Premier-TACO is indeed the key for the success of multitask offline pretraining.

Figure 10: Averaged performance
of Premier-TACO on 10 Deepmind
Control Suite Tasks across different
window sizes

Ablation Study - Window Size: In Premier-TACO, the
window size W determines the hardness of the negative exam-
ple. A smaller window size results in negative examples that
are more challenging to distinguish from positive examples,
though they may become excessively difficult to differentiate
in the latent space. Conversely, a larger window size makes
distinguishing relatively straightforward, thereby mitigating the
impacts of negative sampling. In preceding experiments, a con-
sistent window size of 5 was applied across all trials on both the
DeepMind Control Suite and MetaWorld. Here we empirically
evaluate the effects of varying window sizes on the average
performance of our model across ten DeepMind Control Tasks,
as depicted in Figure X. Notably, our observations reveal that
performance is comparable when the window size is set to 3,
5, or 7, whereas excessively small (W = 1) or large (W = 9)
window sizes lead to worse performance.

5 RELATED WORK

Existing works, including R3M (Nair et al., 2022), VIP (Ma et al., 2023), MVP (Xiao et al., 2022),
PIE-G (Yuan et al., 2022), and VC-1 (Majumdar et al., 2023), focus on self-supervised pre-training
for building foundation models but struggle with the domain gap in sequential decision-making
tasks. Recent studies, such as one by Hansen et al. (2022a), indicate that models trained from
scratch often outperform pre-trained representations. Approaches like SMART (Sun et al., 2023) and
DualMind (Wei et al., 2023) offer control-centric pre-training, but at the cost of extensive fine-tuning
or task sets. Contrastive learning techniques like CURL (Laskin et al., 2020), CPC (Henaff, 2020),
ST-DIM (Anand et al., 2019), and ATC (Stooke et al., 2021a) have succeeded in visual RL, but mainly
focus on high-level features and temporal dynamics without a holistic consideration of state-action
interactions, a gap partially filled by TACO (Zheng et al., 2023). Our work builds upon these efforts
but eliminates the need for extensive task sets and fine-tuning, efficiently capturing control-relevant
features. This positions our method as a distinct advancement over DRIML (Mazoure et al., 2020)
and Homer (Misra et al., 2019), which require more computational or empirical resources.

A detailed discussion of related work is in Appendix A.

6 CONCLUSION

This paper introduces Premier-TACO, a robust and highly generalizable representation pretraining
framework for few-shot policy learning. We propose a temporal contrastive learning objective
that excels in multi-task representation learning during the pretraining phase, thanks to its efficient
negative example sampling strategy. Extensive empirical evaluations spanning diverse domains and
tasks underscore the remarkable effectiveness and adaptability of Premier-TACO’s pre-trained
visual representations to unseen tasks, even when confronted with unseen embodiments, different
views, and data imperfections. Furthermore, we demonstrate the versatility of Premier-TACO by
showcasing its ability to fine-tune large pretrained visual representations like R3M (Nair et al., 2022)
with domain-specific data, underscoring its potential for broader applications. In our future research
agenda, we plan to explore the use of Large Language Models (LLMs) for representation pretraining
in policy learning and investigate the applicability of our approach in a wider range of real-world
robotics applications, including pretraining visual representations with Premier-TACO on real
robot datasets such as RoboNet (Dasari et al., 2020) or Bridge-v2 (Walke et al., 2023) datasets.
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vances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019. URL https://proceedings.neurips.cc/paper_files/paper/2019/
file/6fb52e71b837628ac16539c1ff911667-Paper.pdf. 9, 15

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, Julian Ibarz, Brian Ichter,
Alex Irpan, Tomas Jackson, Sally Jesmonth, Nikhil J Joshi, Ryan Julian, Dmitry Kalashnikov,
Yuheng Kuang, Isabel Leal, Kuang-Huei Lee, Sergey Levine, Yao Lu, Utsav Malla, Deeksha
Manjunath, Igor Mordatch, Ofir Nachum, Carolina Parada, Jodilyn Peralta, Emily Perez, Karl
Pertsch, Jornell Quiambao, Kanishka Rao, Michael Ryoo, Grecia Salazar, Pannag Sanketi, Kevin
Sayed, Jaspiar Singh, Sumedh Sontakke, Austin Stone, Clayton Tan, Huong Tran, Vincent Van-
houcke, Steve Vega, Quan Vuong, Fei Xia, Ted Xiao, Peng Xu, Sichun Xu, Tianhe Yu, and Brianna
Zitkovich. Rt-1: Robotics transformer for real-world control at scale, 2023. 2

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 1877–1901. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf. 1

Sudeep Dasari, Frederik Ebert, Stephen Tian, Suraj Nair, Bernadette Bucher, Karl Schmeckpeper,
Siddharth Singh, Sergey Levine, and Chelsea Finn. Robonet: Large-scale multi-robot learning. In
Leslie Pack Kaelbling, Danica Kragic, and Komei Sugiura (eds.), Proceedings of the Conference on
Robot Learning, volume 100 of Proceedings of Machine Learning Research, pp. 885–897. PMLR,
30 Oct–01 Nov 2020. URL https://proceedings.mlr.press/v100/dasari20a.
html. 9

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2009. 2, 3

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), pp. 4171–4186, Minneapolis, Minnesota, June
2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https:
//aclanthology.org/N19-1423. 1

Scott Fujimoto and Shixiang (Shane) Gu. A minimalist approach to offline reinforcement learn-
ing. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.),
Advances in Neural Information Processing Systems, volume 34, pp. 20132–20145. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/a8166da05c5a094f7dc03724b41886e5-Paper.pdf. 5

Kristen Grauman, Andrew Westbury, Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit Gird-
har, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, Miguel Martin, Tushar Nagarajan,
Ilija Radosavovic, Santhosh Kumar Ramakrishnan, Fiona Ryan, Jayant Sharma, Michael Wray,
Mengmeng Xu, Eric Zhongcong Xu, Chen Zhao, Siddhant Bansal, Dhruv Batra, Vincent Car-
tillier, Sean Crane, Tien Do, Morrie Doulaty, Akshay Erapalli, Christoph Feichtenhofer, Adriano
Fragomeni, Qichen Fu, Abrham Gebreselasie, Cristina Gonzalez, James Hillis, Xuhua Huang,
Yifei Huang, Wenqi Jia, Weslie Khoo, Jachym Kolar, Satwik Kottur, Anurag Kumar, Federico

10

https://proceedings.neurips.cc/paper_files/paper/2019/file/6fb52e71b837628ac16539c1ff911667-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/6fb52e71b837628ac16539c1ff911667-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.mlr.press/v100/dasari20a.html
https://proceedings.mlr.press/v100/dasari20a.html
https://aclanthology.org/N19-1423
https://aclanthology.org/N19-1423
https://proceedings.neurips.cc/paper_files/paper/2021/file/a8166da05c5a094f7dc03724b41886e5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a8166da05c5a094f7dc03724b41886e5-Paper.pdf


Under review as a conference paper at ICLR 2024

Landini, Chao Li, Yanghao Li, Zhenqiang Li, Karttikeya Mangalam, Raghava Modhugu, Jonathan
Munro, Tullie Murrell, Takumi Nishiyasu, Will Price, Paola Ruiz Puentes, Merey Ramazanova,
Leda Sari, Kiran Somasundaram, Audrey Southerland, Yusuke Sugano, Ruijie Tao, Minh Vo,
Yuchen Wang, Xindi Wu, Takuma Yagi, Ziwei Zhao, Yunyi Zhu, Pablo Arbelaez, David Crandall,
Dima Damen, Giovanni Maria Farinella, Christian Fuegen, Bernard Ghanem, Vamsi Krishna
Ithapu, C. V. Jawahar, Hanbyul Joo, Kris Kitani, Haizhou Li, Richard Newcombe, Aude Oliva,
Hyun Soo Park, James M. Rehg, Yoichi Sato, Jianbo Shi, Mike Zheng Shou, Antonio Torralba,
Lorenzo Torresani, Mingfei Yan, and Jitendra Malik. Ego4d: Around the world in 3,000 hours of
egocentric video, 2022. 2, 3

Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre Richemond, Elena
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A DETAILED DISCUSSION OF RELATED WORK

Pretraining Visual Representations. Existing works apply self-supervised pre-training from rich
vision data to build foundation models. However, applying this approach to sequential decision-
making tasks is challenging. Recent works have explored large-scale pre-training with offline data in
the context of reinforcement learning. Efforts such as R3M (Nair et al., 2022), VIP (Ma et al., 2023),
MVP (Xiao et al., 2022), PIE-G (Yuan et al., 2022), and VC-1 (Majumdar et al., 2023) highlight
this direction. However, there’s a notable gap between the datasets used for pre-training and the
actual downstream tasks. In fact, a recent study (Hansen et al., 2022a) found that models trained
from scratch can often perform better than those using pre-trained representations, suggesting the
limitation of these approachs. It’s important to acknowledge that these pre-trained representations
are not control-relevant, and they lack explicit learning of a latent world model. In contrast to these
prior approaches, our pretrained representations learn to capture the control-relevant features with an
effective temporal contrastive learning objective.

For control tasks, several pretraining frameworks have emerged to model state-action interactions
from high-dimensional observations by leveraging causal attention mechanisms. SMART (Sun et al.,
2023) introduces a self-supervised and control-centric objective to train transformer-based models
for multitask decision-making, although it requires additional fine-tuning with large number of
demonstrations during downstream time. As an improvement, DualMind (Wei et al., 2023) pretrains
representations using 45 tasks for general-purpose decision-making without task-specific fine-tuning.
Besides, some methods (Sekar et al., 2020; Mendonca et al., 2021; Yarats et al., 2021; Sun et al.,
2022) first learn a general representation by exploring the environment online, and then use this
representation to train the policy on downstream tasks. In comparison, our approach is notably
more efficient and doesn’t require training with such an extensive task set. Nevertheless, we provide
empirical evidence demonstrating that our method can effectively handle multi-task pretraining.

Contrastive Representation for Visual RL Contrastive learning is a self-supervised technique that
leverages similarity constraints between data to learn effective representations (embeddings), and it
has demonstrated remarkable success across various domains. In the context of visual reinforcement
learning (RL), contrastive learning plays a pivotal role in training robust state representations from
raw visual inputs, thereby enhancing sample efficiency. CURL (Laskin et al., 2020) extracts high-
level features by utilizing InfoNCE(van den Oord et al., 2019) to maximize agreement between
augmented observations, although it does not explicitly consider temporal relationships between states.
Several approaches, such as CPC (Henaff, 2020), ST-DIM (Anand et al., 2019), and ATC (Stooke
et al., 2021a) , introduce temporal dynamics into the contrastive loss. They do so by maximizing
mutual information between states with short temporal intervals, facilitating the capture of temporal
dependencies. DRIML (Mazoure et al., 2020) proposes a policy-dependent auxiliary objective
that enhances agreement between representations of consecutive states, specifically considering
the first action of the action sequence. Recent advancements by Kim et al. (2022); Zhang et al.
(2021) incorporate actions into the contrastive loss, emphasizing behavioral similarity. TACO (Zheng
et al., 2023) takes a step further by learning both state and action representations. It optimizes the
mutual information between the representations of current states paired with action sequences and the
representations of corresponding future states. In our approach, we build upon the efficient extension
of TACO, harnessing the full potential of state and action representations for downstream tasks. On
the theory side, the Homer algorithm (Misra et al., 2019) uses a binary temporal contrastive objective
reminiscent of the approach used here, which differs by abstracting actions as well states, using an
ancillary embedding, removing leveling from the construction, and of course extensive empirical
validation.

Hard Negative Sampling Strategy in Contrastive Learning Our proposed negative example
sampling strategy in Premier-TACO is closely related to hard negative example mining in the
literature of self-supervised learning as well as other areas of machine learning. Hard negative
mining is indeed used in a variety of tasks, such as facial recognition (Wan et al., 2016), object
detection (Shrivastava et al., 2016), tracking (Nam & Han, 2016), and image-text retrieval (Pang et al.,
2019; Li et al., 2021), by introducing negative examples that are more difficult than randomly chosen
ones to improve the performance of models. Within the regime of self-supervised learning, different
negative example sampling strategies have also been discussed both empirically and theoretically
to improve the quality of pretrained representation. In particular, Robinson et al. (2021) modifies
the original NCE objective by developing a distribution over negative examples, which prioritizes
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pairs with currently similar representations. Kalantidis et al. (2020) suggests to mix hard negative
examples within the latent space. Ma et al. (2021) introduce a method to actively sample uncertain
negatives by calculating the gradients of the loss function relative to the model’s most confident
predictions. Furthermore, Tabassum et al. (2022) samples negatives that combine the objectives
of identifying model-uncertain negatives, selecting negatives close to the anchor point in the latent
embedding space, and ensuring representativeness within the sample population.

While our proposed approach bears some resemblance to existing negative sampling strategies in
contrastive learning literature, we are dealing with unique challenges in sequential decision making,
such as data distribution shift, task heterogeneity, and data qualities, as discussed in the introduction.
Building on top of the work of TACO (Zheng et al., 2023), which is specifically designed to capture the
control-relevant information in latent representation, Premier-TACO introduces a straightforward
yet effective negative sampling strategy. Tailored toward multitask representation pretraining, this
strategy involves sampling one negative example from a window centered around the anchor point,
which is both computationally efficient and demonstrates superior performance in few-shot adaptation.

B EXPERIMENTS

B.1 FINETUNING

Comparisons among R3M (Nair et al., 2022), R3M with in-domain finetuning (Hansen et al., 2022a)
and R3M finetuned with Premier-TACO in Deepmind Control Suite and MetaWorld are presented
in Figure 12 and 11.

Figure 11: [(W4) Compatibility] Finetune R3M (Nair et al., 2022), a generalized Pretrained Visual Encoder
with Premier-TACO learning objective vs. R3M with in-domain finetuning in Deepmind Control Suite and
MetaWorld.

Figure 12: [(W4) Compatibility] Finetune R3M (Nair et al., 2022), a generalized Pretrained Visual Encoder
with Premier-TACO learning objective vs. R3M with in-domain finetuning in Deepmind Control Suite and
MetaWorld.

B.2 PRETRAINED VISUAL REPRESENTATIONS

Here, we provide the full results for all pretrained visual encoders across all 18 tasks on Deepmind
Control Suite and MetaWorld.
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DMControl
Pretrained Visual Models

MetaWorld
Pretrained Visual Models

PVR MVP R3M VC-1 PVR MVP R3M VC-1

Finger Spin 11.5± 6.0 5.4± 7.1 6.9± 1.4 38.4± 9.3 Bin Picking 45.6± 5.6 46.1± 3.1 50.0± 12.0 60.2± 4.3

Hopper Hop 10.2± 1.5 7.8± 2.7 4.0± 0.1 23.2± 4.9 Disassemble 47.6± 5.8 32.4± 5.1 64.4± 12.4 70.4± 8.9

Walker Walk 10.3± 3.8 8.30± 1.6 16.7± 4.6 30.5± 6.2 Hand Insert 18.8± 4.0 10.4± 5.6 31.8± 6.21 35.5± 2.3

Humanoid Walk 7.6± 3.4 3.2± 0.5 2.6± 0.4 30.1± 7.5 Peg Insert Side 25.3± 10.4 28.9± 5.4 35.0± 3.95 48.2± 3.6

Dog Trot 20.5± 12.4 32.9± 6.0 46.6± 4.3 73.5± 6.4 Pick Out Of Hole 28.4± 5.7 42.3± 9.7 42.5± 6.4 66.3± 7.2

Cup Catch 60.2± 10.3 56.7± 8.9 93.7± 1.8 89.2± 13.2 Pick Place Wall 30.7± 8.5 42.5± 10.9 58.1± 16.7 63.2± 9.8

Reacher Hard 33.9± 9.2 40.7± 8.5 42.3± 5.6 64.9± 5.8 Shelf Place 19.5± 6.4 21.2± 8.3 18.7± 5.15 32.4± 6.5

Cheetah Run 26.7± 3.8 27.3± 4.4 33.1± 4.8 39.5± 9.7 Stick Pull 30.2± 4.6 28.5± 9.6 45.6± 17.3 52.4± 5.6

Quadruped Walk 15.6± 9.0 14.5± 7.2 18.2± 4.9 63.2± 4.0

Quadruped Run 40.6± 6.7 43.2± 4.2 64.0± 2.4 61.3± 8.5

Table 3: Few-shot results for pretrained visual representations (Parisi et al., 2022; Xiao et al., 2022; Nair et al.,
2022; Majumdar et al., 2023)

C IMPLEMENTATION DETAILS

Dataset For six pretraining tasks of Deepmind Control Suite, we train visual RL agents for individual
tasks with DrQ-v2 Yarats et al. (2022) until convergence, and we store all the historical interaction
steps in a separate buffer. Then, we sample 200 trajectories from the buffer for all tasks except
for Humanoid Stand and Dog Walk. Since these two tasks are significantly harder, we use 1000
pretraining trajectories instead. Each episode in Deepmind Control Suite consists of 500 time steps. In
terms of the randomly collected dataset, we sample trajectories by taking actions with each dimension
independently sampled from a uniform distribution U(−1., 1.) For MetaWorld, we collect 1000
trajectories for each task, where each episode consists of 200 time steps. We add a Gaussian noise of
standard deviation 0.3 to the provided scripted policy.

Pretraining For the shallow convolutional network, we follow the same architecture as in Yarats
et al. (2022) and add a layer normalization on top of the output of the ConvNet encoder. We set the
feature dimension of the ConNet encoder to be 100. In total, this encoder has around 3.95 million
parameters.

1 class Encoder(nn.Module):
2 def __init__(self):
3 super().__init__()
4 self.repr_dim = 32 * 35 * 35
5

6 self.convnet = nn.Sequential(nn.Conv2d(84, 32, 3, stride=2),
7 nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1),
8 nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1),
9 nn.ReLU(), nn.Conv2d(32, 32, 3, stride=1),

10 nn.ReLU())
11 self.trunk = nn.Sequential(nn.Linear(self.repr_dim, feature_dim),
12 nn.LayerNorm(feature_dim), nn.Tanh())
13

14 def forward(self, obs):
15 obs = obs / 255.0 - 0.5
16 h = self.convnet(obs).view(h.shape[0], -1)
17 return self.trunk(h)

Listing 1: Shallow Convolutional Network Architecture Used in Premier-TACO

For Premier-TACO loss, the number of timesteps K is set to be 3 throughout the experiments,
and the window size W is fixed to be 5. Action Encoder is a two-layer MLP with input size
being the action space dimensionality, hidden size being 64, and output size being the same as the
dimensionality of action space. The projection layer G is a two-layer MLP with input size being
feature dimension plus the number of timesteps times the dimensionality of the action space. Its
hidden size is 1024. In terms of the projection layer H , it is also a two-layer MLP with input and
output size both being the feature dimension and hidden size being 1024. Throughout the experiments,
we set the batch size to be 4096 and the learning rate to be 1e-4. For the contrastive/self-supervised
based baselines, CURL, ATC, and SPR, we use the same batch size of 4096 as Premier-TACO.
For Multitask TD3+BC and Inverse dynamics modeling baselines, we use a batch size of 1024.
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Imitation Learning A batch size of 128 and a learning rate of 1e-4 are used. During behavior
cloning, we finetune the Shallow ConvNet Encoder. However, when we applied Premier-TACO
for the large pre-trained ResNet/ViT model, we keep the model weights frozen.

In total, we take 100,000 gradient steps and conduct evaluations for every 1000 steps. For evaluations
within the DeepMind Control Suite, we utilize the trained policy to execute 20 episodes, subse-
quently recording the mean episode reward. In the case of MetaWorld, we execute 50 episodes and
document the success rate of the trained policy. We report the average of the highest three episode
rewards/success rates from the 100 evaluated checkpoints.

Computational Resources For our experiments, we use 8 NVIDIA RTX A6000 with PyTorch
Distributed DataParallel for pretraining visual representations, and we use NVIDIA RTX2080Ti for
downstream imitation learning.

D AN ADDITIONAL ABLATION STUDY ON NEGATIVE EXAMPLE SAMPLING
STRATEGY

In Premier-TACO, we sample one negative example from a size W window centered at the
positive example for each data point. However, in principle, we could also use all samples within
this window as negative examples instead of sampling only one. In the table below, we compare the
performance of two negative example sampling strategies across 10 unseen Deepmind Control Suite
tasks. Bold numbers indicate the better results.

Sampling 1 Sampling All
Finger Spin 75.2 ± 0.6 70.2 ± 8.4
Hopper Hop 75.3 ± 4.6 76.1 ± 3.0
Walker Walk 88.0 ± 0.8 88.5 ± 0.4
Humanoid Walk 51.4 ± 4.9 56.4 ± 8.9
Dog Trot 93.9 ± 5.4 92.1 ± 4.0
Cup Catch 98.9 ± 0.1 98.3 ± 1.6
Reacher Hard 81.3 ± 1.8 80.1 ± 5.8
Cheetah Run 65.7 ± 1.1 69.3 ± 2.3
Quadruped Walk 83.2 ± 5.7 85.4 ± 4.2
Quadruped Run 76.8 ± 7.5 82.1 ± 9.1
Overall 79.0 79.8

Table 4: Results of two different negative sampling strategies on 10 unseen Deepmind Control Suite Tasks.

As shown in Table 4, we find that using all samples from the size W window does not significantly en-
hance performance compared to Premier-TACO. Moreover, this approach considerably increases
the computational overhead. Given these results, we chose a more computationally efficient strategy
of sampling a single negative example from the size W window in Premier-TACO.
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