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Abstract
We provide an exactly solvable example for inter-
preting In-Context Learning (ICL) with one-layer
attention models as conditional retrieval of dense
associative memory models. Our main contribu-
tion is to interpret ICL as memory reshaping in
the modern Hopfield model from a conditional
memory set (in-context examples). Specifically,
we show that the in-context sequential examples
induce an effective reshaping of the energy land-
scape of a Hopfield model. We integrate this in-
context memory reshaping phenomenon into the
existing Bayesian model averaging view of ICL
[Zhang et al., AISTATS 2025] via the established
equivalence between the modern Hopfield model
and transformer attention. Under this unique per-
spective, we not only characterize how in-context
examples shape predictions in the Gaussian lin-
ear regression case, but also recover the known
ϵ-stability generalization bound of the ICL for the
one-layer attention model. We also give explana-
tions for three key behaviors of ICL and validate
them through experiments.

1 Introduction
We show that In-Context Learning (ICL) reshapes a model’s
internal associative memory using prompt examples, analo-
gous to how a modern Hopfield network adjusts its stored
memories in response to new cues. To be precise, we pro-
vide an exactly solvable example for interpreting ICL in
one-layer attention models as conditional retrieval of dense
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associative memory models (Krotov, 2023). With the suc-
cess of large language models (Guo et al., 2025; Grattafiori
et al., 2024; Jiang et al., 2024a), ICL enables large language
models to adapt to diverse tasks by leveraging task-specific
examples embedded in the input prompts, without updat-
ing model parameters (Min et al., 2022; Garg et al., 2022;
Brown et al., 2020). This “learning in the forward pass”
raises fundamental questions about how models represent
and reuse knowledge, and challenges our understanding of
how a fixed model can implement new task behaviors on
the fly (Von Oswald et al., 2023; Akyürek et al., 2022; Xie
et al., 2022). Understanding that mechanism is theoretically
compelling and practically valuable: better mental models
of ICL can guide prompt construction and improve the re-
liability of LLM-based systems or Transformer models in
general (Zhang et al., 2025; Wu et al., 2024c; Han et al.,
2024; Bai et al., 2023; Li et al., 2023; Xie et al., 2022).

In this work, we approach ICL through the lens of asso-
ciative memory (Krotov, 2023; Krotov & Hopfield, 2020;
2016; Hopfield, 1982; Amari, 1972). In particular, we draw
inspiration from transformer-compatible modern Hopfield
networks (Ramsauer et al., 2020). These networks are
continuous-state dense associative memories with an en-
ergy landscape that stores memory patterns as local minima.
Recent studies establish a formal equivalence between the
transformer’s attention mechanism and the update dynamics
of a modern Hopfield network (Santos et al., 2024a;b; Hu
et al., 2024b; Wu et al., 2024b; Krotov & Hopfield, 2020;
Ramsauer et al., 2020). In a Hopfield network, a query
pattern is iteratively matched to the closest stored memory
pattern (a local minimum of the energy function). Analo-
gously, a transformer’s attention module can be viewed as
retrieving a stored vector (from the key–value pairs) that
best matches a query embedding. Consequently, training
attention weights can be viewed as shaping the Hopfield
energy landscape so that training examples become stable
memories (Wu et al., 2024a; Hu et al., 2024a). This per-
spective suggests that a transformer may be remembering
and retrieving relevant information from its weights when
performing ICL, akin to an associative memory recalling
patterns in response to cues. This unique perspective re-
casts prompt-based inference as a memory retrieval process,
potentially offering a more concrete mechanism to explain
how in-context examples influence model predictions.
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Building on this connection, we posit to interpret ICL as
a conditioned memory retrieval process in a dense asso-
ciative memory model (in particular, a modern Hopfield
model). Surprisingly, when each in-context example acts as
a query to the Hopfield model, we show that the sequence
of examples induces an effective reshaping of the energy
landscape: attractors relevant to the prompt move closer to
the query, while irrelevant ones recede. Although the perma-
nent weights are unchanged, the effective memory is biased
toward the task at hand, so the final test query retrieves in-
formation consistent with the demonstrated patterns. This
in-context memory reshaping explains why in-context learn-
ing improves prediction without fine-tuning.

Concretely, we analyze an exactly solvable one-layer at-
tention model. The model reveals that memory reshaping
corresponds to a linear transformation of both key and value
matrices determined by the prompt, and it links this mech-
anism to the Bayesian model averaging view of in-context
learning (Zhang et al., 2025). Thus, we bridge an abstract
Bayesian statistical explanation with analytic network dy-
namics from neuroscience. Under this unique perspective,
we derive new insights and recover key results about ICL.

Contributions. Our contributions are as follows:

• In-Context Memory Reshaping. We present an exact
formulation of in-context memory reshaping for ICL
using a one-layer attention model. Under this stylized
setting, we prove that an input prompt of t in-context
examples induces an implicit linear mapping on the
model’s pre-trained attention weights (comparing sce-
narios without and with prompt examples). Effectively,
this reshaping modulates the model’s stored knowl-
edge without any parameter updates. Together, these
insights offer a model-based explanation for ICL’s in-
ternal mechanism and its effects in a simple attention.

• Link to Bayesian Theory. We embed this in-context
memory reshaping phenomenon into the Bayesian
model averaging framework for ICL (Zhang et al.,
2025). This connection yields a solvable example that
complements existing Bayesian theory of ICL and high-
lights how memory reshaping provides a complemen-
tary, mechanistic interpretation of the same behavior.

• New Insights and Validations. We derive and vali-
date new insights: (i) In Gaussian linear regression,
prompts steer predictions toward the Bayes-optimal
solution by dynamically re-weighting stored memo-
ries. This serves as an explicit characterization of
how prompts “guide” predictions. (ii) We recover the
known ϵ-stability bound for ICL (Li et al., 2023) within
one-layer attention. This confirms that models follow-
ing our memory retrieval interpretation achieve the
same established generalization guarantees for ICL.

(iii) We give explanations for three key behaviors of
ICL and validate through synthetic and real datasets.
These behaviors include sensitivity to covariance shifts,
sensitivity to response’s accuracy, and sensitivity to the
similarity between prompts and test query.

In sum, we interpret ICL as conditioned associative-memory
retrieval. The resulting theory and experiments provide a
unified and concrete account of how prompting examples
modulate a transformer’s computations on the fly.

Organization. Section 2 introduces the background on
large language models, in-context learning, memory reshap-
ing in modern Hopfield models, and related work. Section 3
shows the details of our proposed in-context memory reshap-
ing phenomenon. Section 4 provides experimental studies.
Section 5 provides discussion and conclusion.

Notations. We denote the set {1, ..., N} as [N ]. For a
Polish space S, let ∆(S) denote the set of all probability
measures over S . For a matrix M ∈ Rd1×d2 (d1, d2 ∈ N+),
we define the lp,q norm as ∥M∥p,q = (

∑d2

i=1 ∥Mi∥qp)1/q,
where Mi ∈ Rd1 denotes the i-th column of M . Let c, r
denote the query and response. For simplicity, we consider
the setting where both c and r are single tokens.

2 Background and Related Work
In this section, we provide background on the following
topics: (i) the formulation of ICL in large language models
in Section 2.1, (ii) existing theory for ICL based on generic
latent variable models in Section 2.2, and (iii) memory re-
shaping in modern Hopfield models in Section 2.3. We also
review related work in Section 2.4.

2.1 In-Context Learning in Large Language Model

Let Pθ be a pre-trained large language model with param-
eters θ. We consider the scenario where both queries and
responses are single tokens in the large language model.
Let c ∈ Rdc and r ∈ Rdr denote the query and re-
sponse. Given T ∈ N+, for any t ∈ [T ], we denote the
sequence of t prompt examples (query-response pairs) as
Dt := {ci, ri}ti=1. Let Ct = [c1, . . . , ct] ∈ Rdc×t and
Rt = [r1, . . . , rt] ∈ Rdr×t. In ICL, the input to the pre-
trained large language model is the prompt Pt = (Dt, ct+1),
where ct+1 is the (t + 1)-th query, also known as the test
query. The large language model outputs a predicted re-
sponse for ct+1 without further parameter updates. The
corresponding true label is rt+1.

2.2 A Generic Latent Variable Model for ICL

To interpret ICL, Zhang et al. (2025) define a function f
that maps a query, a latent variable, and noise to a response:

ri = f(ci, hi, ζi), (1)
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where hi a latent variable connecting ci and ri, and ζi are
independently and identically distributed random noise for
each i ∈ [T ]. They also introduce a hidden concept Z,
from the space Z . The hidden concept represents a shared
property across the prompt examples. Based on this concept,
the evolution of hi follows the stochastic process:

P (hi | ci, {cs, rs, hs}s<i) = HZ⋆({hs}s<i, ϵi), (2)

for some function HZ⋆ and exogenous noises {ϵi}i∈[T ].
This indicates that the distribution of hi depends on both
the hidden concept Z⋆ and the prior observations, while it
is independent of ci.

The model in (1) assumes that the hidden concept Z⋆ implic-
itly determines the transition of the conditional distribution
P (ri = · | ci) by affecting the evolution of the latent vari-
ables {hi}i∈[T ], without making any assumptions on the
distribution of ci.
Remark 2.1. The model is general and encompasses previ-
ous models, such as the hidden Markov chain (Xie et al.,
2022) and the causal graph (Wang et al., 2023b).

Then Zhang et al. (2025) formulate ICL as follows.

Lemma 2.1 (Proposition 4.1 of (Zhang et al., 2025)). Under
the model in (1), it holds

P (ri+1 = · | Pi) =

∫
Z
dZ · P (ri+1 = · | Pi, Z) · P (Z | Di).

Proof. Please see Appendix C.1 for a detailed proof.

2.3 Memory Reshaping in Modern Hopfield Model

In this part, we introduce modern Hopfield models and re-
view their equivalence to transformer attention mechanisms.
We then highlight how memory reshaping in modern Hop-
field models corresponds to training transformer attentions.

Modern Hopfield Model. Let x ∈ Rd represent the query
pattern, and Ξ := [ξ1, · · · , ξM ] ∈ Rd×M denote the M
stored memory patterns. The objective of modern Hopfield
model is to encode memory patterns Ξ into its energy land-
scape and retrieve a memory pattern ξµ based on a given
query x. Following Ramsauer et al. (2020), the energy
function for modern Hopfield model is

E(x) = −lse(β,Ξ⊤x) +
1

2
x⊤x, (3)

where β is a scaling factor, and lse(β,Ξ⊤x) is the log-sum-
exp function defined by

lse(β,Ξ⊤x) :=
1

β
log

(
M∑
i=1

exp
(
βξ⊤i x

))
.

With the energy function (3), the retrieval dynamics is

T (xt) := ΞSoftmax
(
βΞ⊤xt

)
= xt+1. (4)

Recent studies establish a formal equivalence between the
transformer’s attention mechanism and the update dynamics
of a modern Hopfield network (Hu et al., 2024b; Wu et al.,
2024b; Ramsauer et al., 2020).
Remark 2.2. This guarantees that the memories {ξµ}µ∈[M ]

coincide with the stationary points of E(x), because (4)
arises from the stationary condition of the Convex–Concave
Procedure (CCCP) (Yuille & Rangarajan, 2001).

Memory Reshaping. Memory reshaping in modern Hop-
field models refers to modifying the Hopfield energy land-
scape by relocating its local minima, which encode stored
memories. A simple approach to achieve this is by applying
a linear transformation to the memory patterns, as demon-
strated by Wu et al. (2024a, Eqn. (2.1)). They show that a
more uniform distribution of memory representations (i.e.,
local minima) reduces the number of metastable states in
the energy function, thereby enhancing memory capacity
and reducing memory confusion. In our work, we analyze
an exactly solvable one-layer attention model, and interpret
ICL as memory reshaping in the modern Hopfield model
from a conditional memory set (in-context examples).

2.4 Related Work: In-Context Learning

Several works aim to enhance understanding of ICL from
both experimental and theoretical perspectives.

Empirical Analyses. Empirically, Zhang et al. (2024) and
Min et al. (2022) investigate how covariance shifts affect
ICL performance. Yoo et al. (2022) demonstrate that the
correctness of input-label mappings is critical for down-
stream ICL success. Further, Liu et al. (2022) and Rubin
et al. (2022) find that increased similarity between prompt
examples and test instances enhances ICL performance.

Theoretical Perspectives. Theoretically, several studies
explain ICL in attention-based models from the gradient de-
scent viewpoint (Von Oswald et al., 2023; Mahankali et al.,
2023; Akyürek et al., 2022). In addition, Li et al. (2023)
frame ICL as an algorithm learning problem and provide
generalization bounds, while Bai et al. (2023) show that
ICL performs an implicit algorithm selection based on input
sequences. A different line of work adopts a Bayesian frame-
work: Wies et al. (2024), Wang et al. (2023a), Jiang (2023),
and Xie et al. (2022) all use Bayesian models to formalize
ICL. Notably, Zhang et al. (2025) propose a Bayesian model
averaging theory to interpret ICL. We incorporate our pro-
posed in-context memory reshaping phenomenon into their
theory. As a result, we provide an exactly solvable example
for interpreting ICL with one-layer attention models and
complement their results. Further extending the Bayesian
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perspective, Han et al. (2024) propose an encoding-decoding
mechanism for ICL.

A parallel line of work interprets transformers and ICL
through the lens of associative memory. Jiang et al. (2024b)
examine context hijacking and show that retrieval of facts
in large language models is fragile via an associative mem-
ory model. Building on this, Wang & Sato (2024) analyze
the interaction between global and in-context knowledge to
illustrate how large language models leverage global knowl-
edge in ICL tasks. Bietti et al. (2023) also study ICL from
an associative memory perspective. They focus on two-layer
transformers, and find that single-layer transformers cannot
perform ICL, while two-layer models develop induction
heads and succeed. However, their analysis is based on
bigram data and does not address the generalization error
reduction of ICL. Finally, Cabannes et al. (2024) character-
ize transformer mechanisms as associative memories and
derive scaling laws for large language models. They empha-
size scaling behavior, while our work concentrates on the
mechanism of ICL itself.

3 Main Theory
In this section, we provide an exactly solvable example
for interpreting in-context learning with one-layer attention
models. First, we derive a memory reshaping formulation of
the one-layer attention model under ICL (Section 3.1). We
then integrate the proposed in-context memory reshaping
into the existing Bayesian model averaging theory of ICL
proposed by Zhang et al. (2025), thereby complementing
their results and highlighting the advantages of our perspec-
tive (Section 3.2). Finally, we characterize how in-context
examples “guide” predictions in the Gaussian linear regres-
sion and recover the known ϵ-stability generalization bound
of the ICL for the one-layer attention model (Section 3.3).

3.1 Memory Reshaping for In-Context Learning

In this part, we consider each in-context example as a query
to the Hopfield model. Then we show that the sequence of
examples induces an effective reshaping of the energy land-
scape. Specifically, we analyze a one-layer attention model,
and illustrate the in-context memory reshaping process by
comparing the attention mechanism with and without in-
context prompt examples. As a result, we derive an explicit
formulation of memory reshaping as a linear transformation
of both key and value matrices determined by the prompt.

With Prompt Pt = (Ct, Rt, ct+1). We consider the case
when we have prompt examples for ICL. To align with
practice, we map query ci ∈ Rdc to key ki ∈ Rdk by
a pre-trained linear layer k⋆. Specifically, k⋆ is the linear
transformation by the pre-trained W ⋆

K matrix in the attention
head. Then, for any given Ct, we have Kt = [k1, · · · , kt] ∈
Rdk×t. Similarly, we map response ri ∈ Rdr to vi ∈ Rdv

by another pre-trained linear layer v⋆ with v⋆ being a linear
transformation by the pre-trained W ⋆

V matrix. Then, for any
Rt, we have Vt = [v1, · · · , vt] ∈ Rdv×t. To calculate the
prediction vt+1 for the test query ct+1, we follow (Zhang
et al., 2025) and use

vt+1 = Vt Softmax
(
K⊤

t qt+1

)
, where qt+1 = k⋆ (ct+1) .

(5)
Remark 3.1. Notice that (5) does not represent the actual
attention in the LLM. Instead, it serves as a proxy attention
mechanism for ICL, based on the Bayesian model averaging
formulation in Zhang et al. (2025). It provides analytical
feasibility for characterizing ICL. By proxy, we refer to the
fact that it is an effective attention mechanism derived by
framing the ICL as a conditional mean estimation problem.
The resulting estimator approximates (5) under a large t
limit (Zhang et al., 2025).

With Prompt P0 = (ct+1). To align with the expression
of the attention mechanism in (5) and to characterize the
effects of ICL, we need an equivalent formulation of (5) for
scenarios where no in-context prompt examples are included
in the input, i.e., P0 = (ct+1). We achieve this by two steps:

First, we define (5) with only test query ct+1 as

vt+1 := W ⋆
V ct+1. (6)

Second, we prepend P0 with t ghost examples (denoted by
{c̃i, r̃i}i∈[t]) such that “(5) with the ghost prompt P̃t :=
({c̃i, r̃i}i∈[t], ct+1)” has the same output as “(5) with only
test query ct+1”, i.e., (6). We construct such ghost examples
{c̃i, r̃i}i∈[t] by formulating an optimization problem with
parameters {c̃i, r̃i}i∈[t]. The objective of this optimization
problem is to measure the discrepancy between outputs gen-
erated with P0 and P̃t. Refer to experiments in Section 4.2.
The solution to this problem gives the t ghost examples. An
example of this type of problem is prompt tuning, notable
for its universality (Wang et al., 2024).
Remark 3.2 (Ghost Example). We use ghost examples to
substitute the real examples in ICL, allowing us to compare
scenarios with and without in-context prompt examples
while maintaining the same input structure. This setup
highlights how the attention mechanism facilitates ICL.

Third, we denote the generated examples as

C̃t = [c̃1, · · · , c̃t] , R̃t = [r̃1, · · · , r̃t] ,

where c̃i ∈ Rdc , r̃i ∈ Rdr . Using k̃i = k⋆ (c̃i) , ṽi =
v⋆ (r̃i), we have

K̃t =
[
k̃1, · · · , k̃t

]
, Ṽt = [ṽ1, · · · , ṽt] .

To calculate ṽt+1 for query ct+1, we use

ṽt+1 = Ṽt Softmax
(
K̃⊤

t qt+1

)
. (7)
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In-Context Memory Reshaping. Comparing (5) and (7),
we interpret the two cases as forward passes of an equivalent
attention head with reshaped pre-trained attention weight
matrices. Under this perspective, in-context learning corre-
sponds to applying linear transformations to K̃t, Ṽt using
matrices W1 ∈ Rdv×dv , W2 ∈ Rdk×dk respectively, i.e.,

Kt = W1K̃t, Vt = W2Ṽt. (8)

K̃t and Ṽt are usually rectangular singular matrixs (Feng
et al., 2022). Thus, we use Moore–Penrose pseudoinverse
to denote the solution to (8). Specifically, we obtain:

W1 = KtK̃
†
t , W2 = VtṼ

†
t .

In this way, the ICL reshapes (k⋆, v⋆) to (W1 ◦k⋆,W2 ◦ v⋆)
through the linear transformations, where ◦ denotes the
function composition.
Remark 3.3. In (8), we assume a linear transformation from
K̃t to Kt, and from Ṽt to Vt. However, this approach breaks
down when K̃t and Ṽt are low-rank, as they lack the capacity
to express full-rank transformations. In such cases, using
the pseudoinverse only minimizes the approximation error
but does not yield an exact reconstruction.

We now incorporate the specific form of the attention
mechanism to compute W1 and W2, using the mappings
k⋆(ci) = W ⋆

Kci, v⋆(ri) = W ⋆
V ri. Under this formulation,

we show that ICL is equivalent to applying the following
memory reshaping on the memory set, i.e., the key and value
matrices:

W ⋆
K → W ⋆

KCt

(
W ⋆

KC̃t

)†
W ⋆

K ,

W ⋆
V → W ⋆

V Rt

(
W ⋆

V R̃t

)†
W ⋆

V . (9)

Therefore, the ICL prediction in (5) with t in-context exam-
ples becomes:

vt+1 = W̃ ⋆
V Rt · Softmax

(
(W̃ ⋆

KCt)
⊤W ⋆

Kct+1

)
, (10)

where

W̃ ⋆
K := W ⋆

KCt(W
⋆
KC̃t)

†W ⋆
K ,

W̃ ⋆
V := W ⋆

V Rt(W
⋆
V R̃t)

†W ⋆
V .

In this way, we provide the first exactly solvable example
for interpreting ICL with one-layer attention models, by
deriving the in-context memory reshaping formulation based
on linear transformations.

3.2 Memory Reshaping as a Complement to Bayesian
Model Averaging in ICL (Zhang et al., 2025)

In this part, we integrate our proposed in-context memory
reshaping phenomenon into the existing Bayesian model

averaging theory of ICL (Zhang et al., 2025), and provide
an exactly solvable example to complement the results in
(Zhang et al., 2024). We employ the same Gaussian linear
model to clearly illustrate how the attention mechanism
performs ICL following (Zhang et al., 2025):

vt+1 = Z⋆ϕ (k⋆ (ct+1)) + ηt+1, (11)

where ϕ : Rdk → Rdϕ denotes the feature mapping in
reproducing kernel Hilbert space, Z⋆ ∈ Rdv×dϕ denotes the
hidden concept, and ηt+1 ∈ N(0, σ2

1Idv ) with σ1 > 0 are
independently and identically distributed Gaussian noises.
Besides, we assume that Z⋆ follows Gaussian distribution
N(0, λ2Idv×dϕ

). By incorporating the specific attention
mapping k⋆ and the memory reshaping formulation (9), we
obtain the following for the Gaussian linear model:

vt+1 = Z⋆ϕ
(
W ⋆

KCt(W
⋆
KC̃t)

†W ⋆
Kct+1

)
+ ηt+1. (12)

By Lemma 2.1, we have the following result:

Proposition 3.1 (Bayesian Model Averaging in Gaussian
Linear Model, Modified from (Zhang et al., 2024)). By (12),
Lemma 2.1 implies

P (vt+1 | Pt) =

∫
Z
dZ · P (vt+1 | Z, qt+1)P (Z | Dt)

∝ exp

(
−
∥∥vt+1 − Z̄tϕ(qt+1)

∥∥2
2

2Σt

)
, (13)

where

Kt = W ⋆
KCt(W

⋆
KC̃t)

†W ⋆
KCt,

Vt = W ⋆
V Rt(W

⋆
V R̃t)

†W ⋆
V Rt,

qt+1 = W ⋆
KCt(W

⋆
KC̃t)

†W ⋆
Kct+1,

Z̄t = Vt(σ
2
1λ

−2I + ϕ(Kt)ϕ(Kt)
⊤)−1ϕ(Kt)

⊤,

ΣZ,t = λ−2I + σ−2
1 ϕ(Kt)ϕ(Kt)

⊤,

Σt = σ2
1I + ϕ(qt+1)

⊤Σ−1
Z,tϕ(qt+1).

Proof. Please see Appendix C.2 for a detailed proof.

Remark 3.4. In Proposition 3.1, Z̄tϕ (qt+1) measures the
similarity between the query and keys. This is similar to
the attention mechanism. However, the normalization of
similarity is not softmax. This motivates us to define a new
structure of attention and explore the relationship between
the newly defined attention and the original one.
Remark 3.5. Z̄tϕ (qt+1) represents the weighted average
of values {vi}i∈[t] in Vt. As t increases, Z̄t converges to a
more stable and robust hidden state.

To connect with the actual transformer attention mecha-
nism, we restate the variant of attention (Bayesian model
averaging attention) defined in (Zhang et al., 2025).
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Definition 3.1 (Bayesian Model Averaging Attention
(Zhang et al., 2025)). Z̄tϕ(qt+1) measures the similarity
between the query and the keys, similar to the role of the at-
tention mechanism. We restate the newly defined variant of
the attention mechanism in (Zhang et al., 2025) as follows:

A(q,Kt, Vt) = Vt

(
σ2
1λ

−2I + K(K⊤
t ,K⊤

t )
)−1

K(K⊤
t , q),

(14)

where K(·, ·) denotes the kernel function of the reproducing
kernel Hilbert space induced by ϕ.

Next, we restate the results in (Zhang et al., 2025) to show
that the attention in (14) is equivalent to softmax attention.

Assumption 3.1. Assume key-value pairs {kt, vt}Tt=1 are
independently and identically distributed. Further, assume
that each vector satisfies ∥ki∥2,2 = ∥vi∥2,2 = 1, and that
any query q ∈ Rdk also satisfies ∥q∥2,2 = 1.

Remark 3.6. Assumption 3.1 further assumes that
{ct, rt}Tt=1 are independently and identically distributed.
However, this assumption may not hold for the ghost ex-
amples due to dependencies introduced by the joint opti-
mization (Section 3.1). To mitigate this issue, we propose
introducing a covariance-based regularization term that en-
courages the covariance matrix of the ghost examples to
approximate the identity matrix.

Lemma 3.1 (Bayesian Model Averaging Attention Approx-
imates Softmax Attention, Proposition 4.3 of (Zhang et al.,
2025) ). For any absolute constant C > 0, we have:

lim
t→∞

A(q,Kt, Vt) = C · lim
t→∞

Vt Softmax(K⊤
t q).

Proof. Please see (Zhang et al., 2025, Appendix E.4) for a
detailed proof.

Remark 3.7. That is, when the number of prompt examples
goes to infinity, the attention in Definition 3.1 is equal to
Softmax-attention up to a constant.
Remark 3.8. We use memory reshaping to demonstrate how
prompt examples influence model performance, thereby
complementing the results in (Zhang et al., 2025). We
interpret this effect as a linear transformation applied to the
pre-trained attention weights.

3.3 Memory Reshaping for Characterizing Gaussian
Linear Model and ICL Generalization Bound

In this part, we use our proposed in-context memory reshap-
ing phenomenon to characterize how in-context examples
shape predictions in the Gaussian linear regression and re-
cover the known ϵ-stability generalization bound of the ICL
for the one-layer attention model.

Bayes-Optimal Prediction of Gaussian Linear Regres-
sion. For the Gaussian linear model in (11), we character-
ize the bayes-optimal prediction using Proposition 3.1:

Z̄t = Vt(σ
2
1λ

−2I + ϕ(Kt)ϕ(Kt)
⊤)−1ϕ(Kt)

⊤,

where

Kt = W ⋆
KCt(W

⋆
KC̃t)

†W ⋆
KCt,

Vt = W ⋆
V Rt(W

⋆
V R̃t)

†W ⋆
V Rt.

This formulation shows how prompts steer predictions
toward the Bayes-optimal solution by dynamically re-
weighting stored memories. This serves as an explicit char-
acterization of how prompts “guide” predictions.

In-Context Learning Generalization Bound. Let rt+1

be the true response corresponding to the query ct+1. Then
the true target for prediction in (10) is W̃ ⋆

V rt+1. We de-
fine the loss function for predicting vt+1 as L(Dt, ct+1) =

L(vt+1, W̃
⋆
V rt+1), where L is a task-specific loss function,

e.g., mean squared error loss. The generalization error of
in-context learning with prompt Dt and test query ct+1

is R(Dt) = Ect+1 [L(Dt, ct+1)]. The empirical risk is
Remp(Dt) = 1/t ·

∑t
i=1 L(Dt, ci), i.e., the average loss

when each ci in the prompt acts as the test query.

We make the following assumptions on the boundedness of
the weight matrices and the inputs, as well as the Lipschitz
continuity of the loss function L.
Assumption 3.2 (Norm Bounds). Assume the following
boundedness conditions hold:

∥(W̃ ⋆
K)⊤W ⋆

K∥2,2 ≤ Γ, ∥W̃ ⋆
V ∥2,2 ≤ 1.

Further assume that ci and ri lie in the unit ball, i.e.,

∥Ct∥2,∞, ∥Rt∥2,∞, ∥ct+1∥2 ≤ 1.

Assumption 3.3 (M -Lipschitz of L).

|L(v1, vtrue)− L(v2, vtrue)| ≤ M∥v1 − v2∥2.

Remark 3.9. The three assumptions are reasonable. As-
sumption 3.1 and Assumption 3.2 conform to most real-
world situations due to the layer normalization in the Trans-
former architecture and the regularization loss term used
in the model training (Li et al., 2023; Xiong et al., 2020;
Lewkowycz & Gur-Ari, 2020). These mechanisms help
ensure numerical stability and prevent overfitting, making
the assumptions practically applicable. In addition, Assump-
tion 3.3 is a common assumption in machine learning theory
(Li et al., 2023; Edelman et al., 2022).
Theorem 3.1 (Generalization Bound of ICL for One-Layer
Attention Model). The generalization bound of ICL for the
one-layer attention model is as follows:

E
Dt

[R(Dt)−Remp(Dt)] ≤
MC0(4Γ + 1)e2Γ

t
,

where C0 > 0 is an absolute constant.
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Figure 1. Behaviors of In-Context Learning Measured by R-Squared in Linear Regression Problem. The true response to the query
is generated by a linear model. (a) shows the performance of ICL under different covariance shifts. (b) shows the performance of ICL
under different accuracies of responses in prompts. (c) shows the performance of ICL under different similarities between prompts and
the test query. “Least Squares” denotes the result using the least squares method directly. Unless otherwise specified, the baseline setting
uses the query distribution as N(−2, I), the response’s accuracy as 100%, and the similarity level with the test query as normal.

Proof Sketch. Our proof utilizes the connection between ϵ-
stability andthe generalization bound. Firstly, we view ICL
as the algorithm described in Li et al. (2023). Secondly, we
calculate the ϵ-stability of the one-layer attention model for
ICL (Li et al., 2023). Finally, we derive the generalization
bound of the one-layer attention model for ICL, leveraging
the connection between ϵ-stability and generalization bound
(Bousquet & Elisseeff, 2002). Please see Appendix C.3 for
a detailed proof.

Remark 3.10. The generalization bound recovers the known
ϵ-stability bound for ICL (Li et al., 2023) within our one-
layer attention setting. This confirms that models following
our memory retrieval interpretation achieve the same estab-
lished generalization guarantees for ICL. Furthermore, the
generalization bound supports the intuition that ICL perfor-
mance improves with more reliable in-context examples.

4 Experimental Studies
In this section, we use the in-context memory reshaping
phenomenon to interpret and design experiments to validate
three key properties of ICL: the model’s sensitivity to (i)
covariance shifts, (ii) response accuracy, and (iii) the simi-
larity between prompts and test examples. Furthermore, our
experimental results validate that the generalization bound
improves with more prompt examples in Theorem 3.1. At
last, we demonstrate our ability to construct t ghost exam-
ples {c̃i, r̃i}i∈[t] with prompt tuning.

Our experiments cover both synthetic and real-world tasks:
(i) Following (Garg et al., 2022), we use the GPT-2 model
on synthetic problems, including linear regression, decision
trees, and 2-layer neural networks; (ii) We use the GPT-J
model on a sentiment classification task. Take the linear
regression setting with GPT-2 as an example, we define the
target function as f(x) = βTx, β ∼ Rd, where d = 20.
The distribution of x ∈ Rd is from a Gaussian Mixture
model ω1N(−2, I) + ω2N(2, I),where ω1 = 1, ω2 = 0
in the pre-training. The pre-training process refers to the
method in (Garg et al., 2022), and please see Appendix D.1

for the details. For other tasks, we leave more details in
Appendices D.5 and D.6.

4.1 Memory Reshaping for Three Behaviors of ICL

Here we consider three behaviors of in-context learning:
sensitivity to (i) covariance shifts, (ii) response accuracy,
and (iii) the similarity between prompts and test query.

Table 1. Sensitivity to Covariance Shifts: R-Squared under Dif-
ferent Test Data Distributions. 15, 30, 45, 60, 75 denote the in-
context example size. The training data distribution is N(−2, I),
and in-context sample size is 50. ”Least Squares” denotes the
baseline by least squares regression.

Test Distribution 15 30 45 60 75

Least Squares 0.8811 1.0 1.0 1.0 1.0
N(−2, I) 0.9366 0.9998 0.9999 0.9838 0.9641
0.9N(−2, I) + 0.1N(2, I) 0.9202 0.9997 0.9998 0.9797 0.9677
0.7N(−2, I) + 0.3N(2, I) 0.4043 0.6613 0.7337 0.6678 0.6792

Table 2. Sensitivity to Response’s Accuracy: R-Squared under
Different Response Accuracies of In-Context Examples. 15,
30, 45, 60, 75 denote the in-context example size. The in-context
sample size in the training data is 50. ”Least Squares” denotes the
baseline by least squares regression.

Response Accuracy 15 30 45 60 75

Least Squares 0.8811 1.0 1.0 1.0 1.0
100% 0.9144 0.9998 0.9999 0.9800 0.9578
90% 0.9144 0.9614 0.9677 0.9507 0.9075
80% 0.8266 0.8607 0.9230 0.8955 0.8512

Sensitivity to Covariance Shifts. An important factor
affecting the effectiveness of in-context learning is the dif-
ference between the query distribution in the pre-training
dataset and the testing dataset, i.e., covariance shifts (Zhang
et al., 2024; Min et al., 2022). In-context learning performs
worse when the difference is larger.

We explain covariance shifts through memory reshaping as
follows: When there are no covariance shifts, the reshaped
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Figure 2. Behaviors of In-Context Learning Measured by R-Squared in Decision Tree Problem. The true response to the query is
generated by a decision tree. (a) shows the performance of ICL under different covariance shifts. (b) shows the performance of ICL under
different accuracies of responses in prompts. (c) shows the performance of ICL under different similarities between prompts and the test
query. “Decision Tree” denotes the baseline, i.e., using the decision tree method directly. Unless otherwise specified, the baseline setting
uses the query distribution as N(−2, I), the response’s accuracy as 100%, and the similarity level with the test query as normal.
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Figure 3. Behaviors of In-Context Learning Measured by R-Squared in 2-Layer Neural Network Problem. The true response to the
query is generated by a 2-layer feed-forward neural network. (a) shows the performance of ICL under different covariance shifts. (b)
shows the performance of ICL under different accuracies of responses in prompts. (c) shows the performance of ICL under different
similarities between prompts and the test query. “2-Layer NN” denotes the baseline, i.e., using the 2-layer neural network trained with
prompt examples for 100 gradient descent steps. Unless otherwise specified, the baseline setting uses the query distribution as N(−2, I),
the response’s accuracy as 100%, and the similarity level with the test query as normal.

memory’s distribution matches the initial memory distribu-
tion after pre-training. With distribution shifts, the distribu-
tion of reshaped memory differs from the initial memory’s
distribution. A larger shift in covariance means a greater dif-
ference between the distribution before and after reshaping.
The model struggles to reshape the memory perfectly with
a different memory distribution. The difficulty of reshaping
increases as the distributions become more different.

We conduct the experiments to test the model’s perfor-
mance with different distributions of queries in the testing
dataset. We use three different Gaussian mixture distribu-
tion ω1N(−2, I) + ω2N(2, I) with different ω1, ω2: (i).
ω1 = 1, ω2 = 0, (ii). ω1 = 0.9, ω2 = 0.1, (iii). ω1 = 0.7,
ω2 = 0.3. Here the distribution in the first setting matches
the distribution in pre-training. During testing, we generate
samples similar to those used in pre-training. We extend the
prompt length from 50 to 75 to evaluate the performance of
ICL with longer prompts than those used in pre-training. For
each in-context length j ∈ [75], we measure performance
using the R-squared between the estimation and the true
value. See Appendix D.2 for the details.

We show the results in Figure 1 (a) and Table 1. The results
verify that in-context learning performs worse with larger

covariance shifts in the testing dataset.
Remark 4.1. We find that performance decreases when the
prompt length exceeds the pre-training length (i.e., 50), a
well-known issue. We believe this is due to the absolute
positional encodings, as noted in Zhang et al. (2024).

Table 3. Sensitivity to Similarity between Prompts and Test
Query: R-Squared Value under Different Similarity between
Prompts and Test Query. 15, 30, 45, 60, 75 denotes the in-context
example size. The in-context sample size in the training data is 50.
“Least Squares” denotes the baseline by least squares regression.

Similarity Degree 15 30 45 60 75

Least Squares 0.8811 1.0 1.0 1.0 1.0
Best 0.9563 0.9997 0.9998 0.9899 0.9756
Normal 0.9366 0.9998 0.9999 0.9838 0.9641
Worst 0.7704 0.9985 0.9993 0.9673 0.9290

Sensitivity to Response’s Accuracy. Another factor in-
fluencing the performance of ICL is the response format
(Yoo et al., 2022). Replacing the response set with a ran-
dom set reduces the performance of ordinary auto-regressive
LLMs. We explain this using memory reshaping as follows:
The prompt response contributes to the equivalent memory
reshaping process. The wrong response set misleads the re-
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shaping process. Therefore, accurate responses in prompts
are crucial for effective ICL.

We conduct the following experiments to test the model
performance with varying response accuracies. We use the
same Gaussian mixture distribution as in pre-training, i.e.,
ω1N(−2, I) + ω2N(2, I), where ω1 = 1, ω2 = 0. We
generate samples with different accuracy of response, see
Appendix D.3 for the details. We use the same method to
calculate the R-squared as Section 4.1. Here we visualize the
performance with accuracies of 100% and 80% in Figure 1
(b) and show partial results in Table 2. The results confirm
that ICL performs worse when the accuracy of the response
in prompts is lower.

Sensitivity to Similarity between Prompts and Test Query.
The similarity between prompts and the test query is also one
important factor to influence the performance of in-context
learning (Liu et al., 2022; Rubin et al., 2022). The higher
similarity generates better in-context learning performance.
We give an explanation about this by memory reshaping as
follows: Similar queries have similar responses. For exam-
ple, in a linear regression problem, the difference between
the responses for similar queries is small. in-context learn-
ing reshapes Ṽt to W2Ṽt as in (8). Compared with Ṽt, the
values in W2Ṽt are much more approximate to the ideal
value of test query. Therefore, the higher similarity between
prompts and test query benefits the in-context learning.

We conduct the following experiments to test the model per-
formance with different similarities. We use the same Gaus-
sian mixture distribution as the pre-training, i.e., N(−2, I).
We use the cosine similarity between different queries as
the similarity measure, and generate prompts with different
similarity as the test query, see Appendix D.4 for the de-
tails. We calculate the R-squared as Section 4.1. Here we
visualize the performance in three settings in Figure 1 (c):
high, normal, and low similarity, and show partial results
in Table 3. The results verify that the in-context learning
performs better when the similarity is higher.

More Complex Datasets and Models. In this part, we
extend the experiment from linear regression to a decision
tree and 2-layer neural network. We use the decision tree
and 2-layer neural network to act as the function f . We leave
the details about the experiment setting in Appendix D.5.
We show the results of the decision tree in Figure 2 and
2-layer neural network in Figure 3.

Furthermore, we extend the analysis from GPT-2 to the
more capable GPT-J model and evaluate it on the real-world
“TweetEval: Hate Speech Detection” dataset (Nagel, 2016)
for a sentiment classification task. We show the detailed ex-
perimental settings and results in Appendix D.6. The results
follow a similar pattern to the linear regression setting.

Validation of Generalization Bound. We also validate
the generalization bound in Theorem 3.1. The results in
Figures 1 to 3 show that the R-squared value increases when
the number of in-context examples is below 50—the same
number used during pre-training. This supports the our
observation that the generalization bound improves with
more prompt examples.

4.2 Ghost Example Construction

We conduct experiments to demonstrate our ability to con-
struct t ghost examples {c̃i, r̃i}i∈[t] with prompt tuning.
We calculate the squared error between the outputs with
ct+1 or P̃t := ({c̃i, r̃i}i∈[t], ct+1) as the model inputs,
where t ∈ [75]. To generate ct+1, we use two distribu-
tions ω1N(−2, I) + ω2N(2, I), one is the same as the pre-
training data distribution, and another is different from it,
i.e., ω1 = 1, ω2 = 0 or ω1 = 0.5, ω2 = 0.5. The average
mean squared error for all t ∈ [75] is 0.0003 and 0.001
respectively. See Appendix D.7 for the details.

5 Discussion and Conclusion
In this work, we provide an exactly solvable example for
interpreting In-Context Learning (ICL) with one-layer at-
tention models as conditional retrieval of dense associative
memory models. We interpret ICL as memory reshaping in
the modern Hopfield model from a conditional memory set
(in-context examples), and propose the in-context memory
reshaping phenomenon (Section 3.1). We then integrate this
phenomenon into the existing Bayesian model averaging
theory of ICL (Zhang et al., 2025) to complement their re-
sults (Section 3.2). Moreover, under this unique perspective,
we not only characterize how in-context examples shape
predictions in the Gaussian linear regression case, but also
recover the known ϵ-stability generalization bound of the
ICL for the one-layer attention model (Section 3.3). We
also give explanations for three key behaviors of ICL and
validate them through experiments on both synthetic and
real datasets (Section 4). These behaviors include sensitivity
to covariance shifts, sensitivity to response’s accuracy, and
sensitivity to the similarity between prompts and test query.

Our findings enhance the understanding of ICL and its per-
formance dynamics, paving the way for further advance-
ments in LLM capabilities. By interpreting LLM as an
energy-based model, we have three practical guidelines for
practitioners: (i) As demonstrated in Section 4.1, selecting
prompts similar to the test query enhances in-context learn-
ing performance. This aligns with the findings of retrieval-
augmented generation (Lewis et al., 2020). (ii) By Theo-
rem 3.1, increasing the number of relevant prompt exam-
ples reduces the ICL generalization error. (iii) As stated
in Theorem 3.1, a smaller norm bound Γ (Assumption 3.2)
improves ICL response quality. Furthermore, we discuss
the limitations of our work in Appendix A.
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A Limitations
We also have the following four limitations in our work:

• One notable limitation is that the Softmax-attention in (5) does not represent the actual attention in the LLM. Although
this effective attention mechanism helps us better understand ICL in the Bayesian model averaging view, to ensure our
theory is more aligned with reality, we should consider the actual attention in the LLM.

• In our theory, we only consider the one-layer attention mechanism. We plan to study how a multi-layer attention
mechanism performs ICL in future work. We regard the multi-layer transformer as iteratively retrieving memory
patterns in the modern Hopfield model through the following four steps: (i) Design an energy function for multi-layer
modern Hopfield model: We design an energy function matching the multi-layer transformer (Hoover et al., 2023). The
memory pattern needs retrieval after reshaping and iteration. This step is challenging. (ii) Give a clear expression of
memory reshaping on model weights: This step is feasible following our framework in Section 3.1. (iii) Extend the
Bayesian method to a multi-layer transformer: The Bayesian method in (Zhang et al., 2025) and our work assumes
perfect pre-training. We must study perfect pre-training to match real multi-layer transformers. This step is challenging.
(iv) Obtain a generalization bound of ICL: This step is feasible following our framework in Appendix C.3. We need to
derive the ϵ-stability of the multi-layer transformer.

• Our analysis focuses on predicting a single next token. Traditional autoregressive large language models often use
in-context learning to predict multiple tokens. We now describe how to extend our method to this setting. This extension
involves iteratively applying the same single-step retrieval mechanism: (i) After generating the first token, append it to
the context to form a new query. (ii) Each updated query triggers the memory reshaping of ICL in large language models
to predict the next token. (iii) Repeating this process yields the full output sequence. For example, to predict two tokens,
the prompt queries and responses are Ct = [c1, r1,1, . . . , ct, rt,1] ∈ Rdc×2t and Rt = [r1,1, r1,2, . . . , rt,1, rt,2] ∈
Rdr×2t, with Dt := {ci, ri,1, ri,2}ti=1. The LLM takes prompt Pt = (Dt, ct+1) and predicts rt+1,1 and rt+1,2. The
joint probability follows P (ri+1,1 = ·, ri+1,2 = · | Pi) = P (ri+1,2 = · | ri+1,1 = ·, Pi) · P (ri+1,1 = · | Pi). Our
framework in Section 3.1 and Section 3.2 applies to ri+1,1. Once we predict ri+1,1, we apply the same method to obtain
P (ri+1,2 = · | ri+1,1 = ·, Pi). For generalization in Section 3.3, the bound for ri+1,1 uses the existing framework.
For ri+1,2, we treat prediction error in ri+1,1 as noise to the input. This matches the setting in our ϵ-stability analysis
(Lemma C.2). We only adjust a few hyperparameters to extend the bound to ri+1,2.

• We do not verify the exact memory reshaping setting in our current experiments. This is challenging. However, we
provide a potential solution under an ideal setting, and level it for future work. Following Appendix D, for each t ∈ [75],
we generate 6400 samples with the distribution N(−2, I). Each sample follows the pre-training setup with batch size
1. For the i-th sample, we define prompt Pi,t = (Ci,t, Ri,t, ci,t+1). We use ci,t+1 to construct t ghost examples via
prompt tuning (see Section 3.1). We denote the ghost query and response as {c̃i,j , r̃i,j}j∈[t]. The model outputs r̂i,t+1

when inputs are (Ci,t, Ri,t, ci,t+1). To simulate memory reshape, we input (C̃i,t, R̃i,t, ci,t+1) and modify attention
layers as follows: (i) In each attention layer, we compute K̃i,t and Ṽi,t. (ii) We compare with the original Ki,t, Vi,t,
and solve (8) to get reshape matrices Wi,1 and Wi,2. (iii) We apply them as Wi,1K̃i,t and Wi,2Ṽi,t in the forward pass.
This method simulates the effect of memory reshaping. However, implementing and validating this approach is difficult.
It requires fine-grained control over internal activations at each layer. It also involves layer-wise matrix inversion and
alignment for every sample and timestep, which can introduce instability and noise. Due to these challenges, we leave
full implementation and validation to future work. Nonetheless, the setup outlines a feasible path and offers useful
guidance for follow-up research.
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B Notation Table
We summarize our notations in the following table for easy reference.

Table 4. Mathematical Notations and Symbols

Symbol Description

dk Dimension of key vectors and query vectors
dv Dimension of value vectors
dϕ Dimension of the output of feature mapping ϕ

Ct Input query, defined as Ct = [c1, . . . , ct] ∈ Rdc×t

Rt Input response, defined as Rt = [r1, . . . , rt] ∈ Rdr×t

Dt Input prompt examples pair, defined as Dt := {ci, ri}ti=1

Pt Input prompt, defined as Pt = (Dt, ct+1)
k Key vector in Rdk

Kt Key matrix, defined as Kt = [k1, · · · , kt] ∈ Rdk×t

ϕ(·) Kernelized feature mapping: Rdk → Rdϕ

v Value vectors in Rdv

Vt Value matrix, defined as Vt = [v1, · · · , vt] ∈ Rdv×t

q Query vector in Rdk

A(q,Kt, Vt) Bayesian model averaging attention defined by Definition 3.1

Z⋆ Hidden concept representing a property shared across all prompt examples.
Z̄t Posterior Mean of Z⋆ given prompt Dt

ht Latent variable linking query ct to response rt
H Space of latent variable ht

Z Space of hidden concept Z
ΣZ,t Posterior covariance of Z⋆ given prompt Dt

Σt Predicted covariance of vt+1 conditional on Pt

σ1 Standard deviation of noise in Gaussian linear model
λ Prior standard deviation of elements in latent concept Z⋆

W ⋆
K Pre-trained key-projection matrix

W ⋆
V Pre-trained value-projection matrix

W̃ ⋆
K Reshaped key-projection matrix after memory reshaping

W̃ ⋆
V Reshaped value-projection matrix after memory reshaping

L(·, ·) Loss function with respect to (Dt, ct+1)
L(·, ·) Task-specific loss function, e.g., mean squared error
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C Proofs of Main Text
In this section, we provide the detailed proof of Lemma 2.1 and Proposition 3.1.

C.1 Proof of Lemma 2.1

Proof Sketch. This proof follows Zhang et al. (2025, Proposition 4.1). It is based on a general latent variable model and
uses the law of total probability to derive the desired result.

Proof. Recall that Pt = (Dt, ct+1), where Dt is the set of prompt examples and ct+1 is the test query. ht ∈ H denotes the
hidden variable, and Z ∈ Z is the hidden concept. Then, we have

P (rt+1 | Pt) =

∫
H
dht+1 · P (rt+1, ht+1 | Pt)

=

∫
H
dht+1 · P (rt+1 | Pt, ht+1)P (ht+1 | Pt)

=

∫
H
dht+1 · P (rt+1 | ct+1, ht+1,Dt) · P (ht+1 | ct+1,Dt)

=

∫
H
dht+1 · P (rt+1 | ct+1, ht+1) · P (ht+1 | Dt)

=

∫
H
dht+1 · P (rt+1 | ct+1, ht+1) ·

(∫
Z
dZ · P (ht+1 | Dt, Z) · P (Z | Dt)

)
=

∫
Z
dZ ·

(∫
H
dht+1 · P (rt+1 | ct+1, ht+1) · P (ht+1 | Dt, Z)

)
· P (Z | Dt)

=

∫
Z
dZ · P (rt+1 | Pt, Z) · P (Z | Dt),

where the first line is by the law of total probability to integrate over ht+1, the second line is by factorizing the joint
conditional density of rt+1 and ht+1 given Pt, the third line is by substituting Pt = (Dt, ct+1), the fourth line is by the the
independence of the query–response pairs {ci, ri}Ti=1 and the conditional independence of ht+1 and ct+1 in (2), the fifth
line is by the law of total probability to integrate over Z, the six line is by swapping the order of integral over ht+1 and Z,
and the seventh line is by substituting Pt = (Dt, ct+1) and the integral over ht+1.

This completes the proof.

C.2 Proof of Proposition 3.1

Proof Sketch. This proof utilizes Bayes’ rule and the properties of Gaussian distributions, such as the Gaussian marginaliza-
tion (see (Williams & Rasmussen, 2006, Chapter 2.1)).

Proof. Recall that vi = v⋆(ri) for i ∈ [T ], then we have the following by substituting ri with vi in Lemma 2.1

P (vt+1 | Pt) =

∫
Z
dZ · P (vt+1 | Pt, Z) · P (Z | Dt).

Following (Zhang et al., 2022), we derive the conditional distributions P (vt+1 | Pt, Z) and P (Z | Dt) as follows.

Deriving P (vt+1 | Pt, Z). By (11), given a hidden concept Z ∈ Rdv×dϕ , we have the formulation vt+1 =
Zϕ (k⋆ (ct+1)) + ηt+1, where ηt+1 ∈ N(0, σ2

1Idv
) are Gaussian noises. Recall that qt+1 = k⋆(ct+1), and vt+1 −

Zϕ(k⋆(ct+1)) follows distribution N(0, σ2
1Idv

), then we have

P (vt+1 | Pt, Z) ∝ exp

(
−
−∥vt+1 − Zϕ(qt+1)∥22

2σ2
1

)
.
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Deriving P (Z | Dt). Recall that Z follows Gaussian distribution N(0, λ2Idv×dϕ
), Dt = (Ct, Rt), Kt = k⋆(Ct), and

Vt = v⋆(Rt). By Bayes’ rule, we have

P (Z | Dt) =
P (Vt | Z,Dt)P (Z)

P (Vt | Dt)

∝ exp

(
− 1

2σ2
1

∥Vt − Zϕ(Kt)∥2F

)
· exp

(
− 1

2λ2
∥Z∥2F

)
= exp

(
− 1

2σ2
1

Tr
[
(Vt − Zϕ(Kt)) (Vt − Zϕ(Kt))

⊤
]
− 1

2λ2
Tr
[
ZZ⊤])

= exp

(
− 1

2σ2
1

Tr
[
VtV

⊤
t − 2Zϕ(Kt)V

⊤
t +

(
Zϕ(Kt)

)(
Zϕ(Kt)

)⊤]− 1

2λ2
Tr
[
ZZ⊤])

= exp

(
−Tr

[
1

2σ2
1

Zϕ(Kt)ϕ(Kt)
⊤Z⊤ +

1

2λ2
ZZ⊤

]
+Tr

[
1

σ2
1

Zϕ(Kt)V
⊤
t

]
− Tr

[
1

2σ2
1

VtV
⊤
t

])
= exp

(
−1

2
Tr

[
Z

(
1

λ2
I +

1

σ2
1

ϕ(Kt)ϕ(Kt)
⊤
)
Z⊤
]
+Tr

[
Z

(
ϕ(Kt)V

⊤
t

σ2
1

)]
− Tr

[
VtV

⊤
t

2σ2
1

])
∝ exp

(
−1

2
Tr

[
Z

(
1

λ2
I +

1

σ2
1

ϕ(Kt)ϕ(Kt)
⊤
)
Z⊤
]
+Tr

[
Z

(
ϕ(Kt)V

⊤
t

σ2
1

)])
,

where the first line is by Bayes’ rule, the second line is by Vt−Zϕ(Kt) ∼ N(0, Idv×t), Z ∼ N(0, Idv×dϕ
), and P (Vt | Dt)

is a constant value (Vt = v⋆(Rt) and Dt = (Ct, Rt)), the third line is by ∥A∥2F = Tr(A) for any matrix A ∈ Rd1×d1

(d1 ∈ N+), the fourth line is by Tr(A) = Tr
(
A⊤) for any matrix A ∈ Rd1×d1 , the fifth and sixth lines are by rearranging

terms, and the seventh line is by omitting constant terms with respect to the variable Z.

We define matrices

ΣZ,t :=
1

λ2
I +

1

σ2
1

ϕ(Kt)ϕ(Kt)
⊤, and M :=

ϕ(Kt)V
⊤
t

σ2
1

.

Then we have

P (Z | Dt) ∝ exp

(
−1

2
Tr

[
Z

(
1

λ2
I +

1

σ2
1

ϕ(Kt)ϕ(Kt)
⊤
)
Z⊤
]
+Tr

[
Z

(
ϕ(Kt)V

⊤
t

σ2
1

)])
= exp

(
−1

2
Tr
[
ZΣZ,tZ

⊤ − 2ZM
])

= exp

(
−1

2
Tr

[(
Z −M⊤Σ−1

Z,t

)
ΣZ,t

(
Z −M⊤Σ−1

Z,t

)⊤]
+

1

2
Tr
[
M⊤Σ−1

Z,tM
])

∝ exp

(
−1

2
Tr

[(
Z −M⊤Σ−1

Z,t

)
ΣZ,t

(
Z −M⊤Σ−1

Z,t

)⊤])
,

where the second line is by the definition of ΣZ,t and M , the third line is by adding and subtracting terms and rearranging
them, and the fourth line is by omitting constant terms with respect to the Z −M⊤Σ−1

Z,t.

We define

Z̄t = M⊤Σ−1
Z,t

= Vtϕ(Kt)
⊤(

σ2
1

λ2
I + ϕ(Kt)ϕ(Kt)

⊤)−1

= Vt(
σ2
1

λ2
I + ϕ(Kt)ϕ(Kt)

⊤)−1ϕ(Kt)
⊤.

(
By Woodbury identity

)
Deriving P (vt+1 | Pt). By the distribution P (vt+1 | Pt, Z) and P (Z | Dt), we have

P (vt+1 | Pt) =

∫
Z
dZ · P (vt+1 | Pt, Z) · P (Z | Dt)

=

∫
Z
dZ ·N(vt+1;Zϕ(qt+1), σ

2
1Idv

) ·N(Z; Z̄t,Σ
−1
Z,t).
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By standard results on Gaussian marginalization (Williams & Rasmussen, 2006, Chapter 2.1), P (vt+1 | Pt) also follows
Gaussian distribution, with mean µt and covariance Covt as follows:

µt = E [Zϕ(qt+1) + ηt+1 | Pt] == E [Z | Pt]ϕ (qt+1) = Z̄tϕ (qt+1) .

Covt = Cov [Zϕ (qt+1) + ηt+1 | Pt] = ϕ (qt+1)
⊤
Σ−1

Z,tϕ (qt+1) + σ2
1I.

Therefore, we obtain

P (vt+1 | Pt) ∝ exp

(
−
∥∥vt+1 − Z̄tϕ(qt+1)

∥∥2
2

2Σt

)
,

where

Z̄t = Vt(
σ2
1

λ2
I + ϕ(Kt)ϕ(Kt)

⊤)−1ϕ(Kt)
⊤, ΣZ,t =

1

λ2
I +

1

σ2
1

ϕ(Kt)ϕ(Kt)
⊤, Σt = σ2

1I + ϕ(qt+1)
⊤Σ−1

Z,tϕ(qt+1).

This completes the proof.

C.3 Generalization Bound for In-Context Learning

Proof of Theorem 3.1. Referring to (Li et al., 2023), we view in-context learning as an algorithm learning problem. Based
on this, we derive the generalization bound for in-context learning with the ϵ-stability of the algorithms.

First, we give the definition of ϵ-stability.

Definition C.1 (ϵ-Stability). Given a Softmax-attention model with parameter θ, and some possible input prompt examples
Dt := {ci, ri}ti=1 of a constant size t. For any test query ct+1, we denote the loss function with respect to (Dt, ct+1) as
L(Dt, ct+1). The in-context learning of this Softmax-attention model is ϵ-uniformly stable if, for any two prompt Dt and
D̄t with only one different prompt example, we have

sup
ct+1

E
Dt

[
L(Dt, ct+1)− L(D̄t, ct+1)

]
≤ ϵ, (15)

where the expectation is taken over the randomness of prompt examples Dt.

Next, we give the ϵ-stability of the one-layer attention model.

Lemma C.1 (Lemma B.1 of (Li et al., 2023)). Let x, ϵ ∈ Rn be vectors satisfying ∥x∥∞, ∥x+ ϵ∥∞ < c. Then, we have

∥Softmax(x)∥∞ ≤ e2c

n
, and ∥Softmax(x)− Softmax(x+ ϵ)∥1 ≤

2e2c∥ϵ∥1
n

.

Proof of Lemma C.1. For any x ∈ Rd, we define Softmax(xi) as

Softmax(xi) =
exi∑n
j=1 e

xj
, i = 1, . . . , d.

Then we have

Softmax(x) =


Softmax(x1)
Softmax(x2)

...
Softmax(xd)

 =
1∑n

j=1 e
xj


ex1

ex2

...
exd

 ∈ Rd.
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Using the monotonicity of Softmax function, we have

∥Softmax(x)∥∞ =
emaxi xi∑n

i=1 e
xi

(
By the definition of Softmax

)
≤ ec

ec +
∑n

i=2 e
xi

(
By the monotonicity and xi ≤ c

)
≤ ec

ec +
∑n

i=2 e
−c

(
By xj ≥ −c, j ̸= i

)
=

e2c

e2c + n− 1

≤ e2c

n
,

(
By e2c ≥ 1

)
where the fourth line is by multiplying ec to both the numerator and the denominator.

By taking the derivative of Softmax(xi) with respect to xk, we have

∂ Softmax(xi)

∂xk
=

∂

∂xk

(
exi∑n
j=1 e

xj

)
=

exi · δik ·
∑

j e
xj − exi · exk(∑n

j=1 e
xj

)2 = Softmax(xi) (δik − Softmax(xk)) ,

where δik is the Kronecker delta, which equals 1 if i = k and 0 otherwise.

By the definition of directional derivative along with direction vector ϵ ∈ Rd, we have

lim
δ→0

Softmax(x+ δϵ)− Softmax(x)

δ
=
[
diag (Softmax(x))− Softmax(x) Softmax(x)⊤

]
ϵ. (16)

Furthermore, we have the following norm bound∥∥[diag (Softmax(x))− Softmax(x) Softmax(x)⊤
]
ϵ
∥∥
1

≤
∥∥[diag (Softmax(x))− Softmax(x) Softmax(x)⊤

]∥∥
1,∞ · ∥ϵ∥1

= max
i

{( exi∑n
j=1 e

xj
− e2xi

(
∑n

j=1 e
xj )2

) +
∑
j ̸=i

exi · exj

(
∑n

j=1 e
xj )2

} · ∥ϵ∥1

= max
i

{
2exi ·

∑
j ̸=i e

xj

(
∑n

j=1 e
xj )2

} · ∥ϵ∥1

≤
2e2c∥ϵ∥1

n
,

where the second line is by the norm upper bound ∥Aϵ∥1 ≤ ∥A∥1,∞ · ∥ϵ∥1 for any A ∈ Rd×d (d ∈ N+), the third line is by
the definition of ℓ1,∞ norm of matrix, and the fourth line is by simple algebraic calculations.

Building on this observation, we bound the left-hand side of (16) by 2e2c∥ϵ∥1/n. Integrating that derivative (left side of
(16)) from δ = 0 to 1 then yields the desired result

∥Softmax(x)− Softmax(x+ ϵ)∥1 ≤
2e2c∥ϵ∥1

n
.

This complets the proof.

Then we have the following lemma to characterize the stability of the one-layer attention model under our in-context memory
reshaping phenomenon.

Lemma C.2 (Stability of One-Layer Attention, Modified from Lemma B.2 of (Li et al., 2023)). Let Ct = [c1 · · · ct] and
Rt = [r1 · · · rt]. We denote W̃ ⋆

K = W ⋆
KCt(W

⋆
KC̃t)

†W ⋆
K and W̃ ⋆

V = W ⋆
V Rt(W

⋆
V R̃t)

†W ⋆
V . Let the weight matrices be

bounded as ∥(W̃ ⋆
K)⊤W ⋆

K∥2,2 ≤ Γ and ∥W̃ ⋆
V ∥2,2 ≤ 1. Let E1 = [ϵ1,1 · · · ϵ1,t] and E2 = [ϵ2,1 · · · ϵ2,t] be the perturbation.
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We set C̄t = Ct + E1, c̄t+1 = ct+1 + ϵ1,t+1, and R̄t = Rt + E2. Assume that ci, ri, ci + ϵ1,i, and ri + ϵ2,i lies in the
unit ball, i.e., ∥Ct∥2,∞, ∥Rt∥2,∞, ∥Ct + E1∥2,∞, ∥Rt + E2∥2,∞, ∥ct+1 + ϵ1,t+1∥2, ∥rt+1 + ϵ2,t+1∥2 ≤ 1. Additionally,
for any i ∈ [t], we assume ∥ϵ1,i∥2, ∥ϵ2,i∥2 ≤ C0/t, and ϵ1,t+1 ≤ C0/t, where C0 > 0 is an absolute constant.

We define the output of Softmax-attention for the input examples as

vt+1 = W̃ ⋆
V Rt Softmax

(
(W̃ ⋆

KCt)
⊤W ⋆

Kct+1

)
, and v̄t+1 = W̃ ⋆

V R̄t Softmax
(
(W̃ ⋆

KC̄t)
⊤W ⋆

K c̄t+1

)
. (17)

Let Dt = {ci, ri}i∈[t], and D̄t = {c̄i, r̄i}i∈[t]. We further denote the true response of ct+1 as rt+1, and define the loss
function

L(Dt, ct+1) = L
(
vt+1, W̃

⋆
V rt+1

)
, and L(D̄t, ct+1) = L(v̄t+1, W̃

⋆
V rt+1),

where L is a task-specific loss function and follows Assumption 3.3, e.g., mean squared error loss with a bounded input
domain.

Then we have

∥v̄t+1 − vt+1∥2 ≤ C0(4Γ + 1)e2Γ

t
, (18)

and

sup
ct+1

E
Dt

[
L(D̄t, ct+1)− L(Dt, ct+1)

]
≤ MC0(4Γ + 1)e2Γ

t
. (19)

Specifically, ϵ-stability (Definition C.1) corresponds to perturbing only one prompt example. As a result, we obtain
ϵ = MC0(4Γ + 1)e2Γ/t.

Proof of Lemma C.2. Consider the output difference ∆ := v̄t+1 − vt+1. By (17), we have

∆ = W̃ ⋆
V R̄t Softmax

(
(W̃ ⋆

KC̄t)
⊤W ⋆

K c̄t+1

)
− W̃ ⋆

V Rt Softmax
(
(W̃ ⋆

KCt)
⊤W ⋆

Kct+1

)
= W̃ ⋆

V (Rt + E2) Softmax
(
(W̃ ⋆

KC̄t)
⊤W ⋆

K c̄t+1

)
− W̃ ⋆

V Rt Softmax
(
(W̃ ⋆

KCt)
⊤W ⋆

Kct+1

)
= W̃ ⋆

V Rt

[
Softmax

(
C̄⊤

t (W̃ ⋆
K)⊤W ⋆

K c̄t+1

)
− Softmax

(
C⊤

t (W̃ ⋆
K)⊤W ⋆

Kct+1

)]
︸ ︷︷ ︸

∆1

+ W̃ ⋆
V E2 Softmax

(
C̄⊤

t (W̃ ⋆
K)⊤W ⋆

K c̄t+1

)
︸ ︷︷ ︸

∆2

,

where the second line is by R̄t = Rt + E2, and the third line is by rearranging the terms.

To bound ∆1 and ∆2, we first establish the following norm estimates.

Recall that ∥(W̃ ⋆
K)⊤W ⋆

K∥2,2 ≤ Γ,
∥∥C̄t

∥∥
2,∞ = ∥Ct + E1∥2,∞ ≤ 1, and ∥ct+1∥2, ∥c̄t+1∥2 ≤ 1, then we have∥∥∥C̄⊤

t (W̃ ⋆
K)⊤W ⋆

K c̄t+1

∥∥∥
∞

≤
∥∥C̄t

∥∥
2,∞ ·

∥∥∥(W̃ ⋆
K)⊤W ⋆

K

∥∥∥
2,2

· ∥c̄t+1∥2 ≤ Γ, (20)

where the inequality is by ||ABx||∞ ≤ ||A⊤||2,∞||B||2,2||x||2 for any A ∈ Rd1×d2 , B ∈ Rd2×d3 , and x ∈ Rd3

(d1, d2, d3 ∈ N+).

Similarly, with ∥ct+1∥2 ≤ 1, we have∥∥∥C̄⊤
t (W̃ ⋆

K)⊤W ⋆
Kct+1

∥∥∥
∞

≤
∥∥C̄t

∥∥
2,∞ ·

∥∥∥(W̃ ⋆
K)⊤W ⋆

K

∥∥∥
2,2

· ∥ct+1∥2 ≤ Γ, (21)
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where the inequality is by ||ABx||∞ ≤ ||A⊤||2,∞||B||2,2||x||2 for any A ∈ Rd1×d2 , B ∈ Rd2×d3 , and x ∈ Rd3

(d1, d2, d3 ∈ N+).

By ∥Ct∥2,∞ ≤ 1, we have∥∥∥C⊤
t (W̃ ⋆

K)⊤W ⋆
Kct+1

∥∥∥
∞

≤ ∥Ct∥2,∞ ·
∥∥∥(W̃ ⋆

K)⊤W ⋆
K

∥∥∥
2,2

· ∥ct+1∥2 ≤ Γ, (22)

where the inequality is by ||ABx||∞ ≤ ||A⊤||2,∞||B||2,2||x||2 for any A ∈ Rd1×d2 , B ∈ Rd2×d3 , and x ∈ Rd3

(d1, d2, d3 ∈ N+).

We further have ∥∥∥C̄⊤
t (W̃ ⋆

K)⊤W ⋆
Kϵ1,t+1

∥∥∥
1
≤
∥∥C̄t

∥∥
2,1

·
∥∥∥(W̃ ⋆

K)⊤W ⋆
K

∥∥∥
2,2

· ∥ϵ1,t+1∥2

=

t∑
i=1

∥c̄i∥2 ·
∥∥∥(W̃ ⋆

K)⊤W ⋆
K

∥∥∥
2,2

· ∥ϵ1,t+1∥2

≤ C0Γ, (23)

where the first line is by ||ABx||1 ≤ ||A⊤||2,1||B||2,2||x||2 for any A ∈ Rd1×d2 , B ∈ Rd2×d3 , and x ∈ Rd3 (d1, d2, d3 ∈
N+), the second line is by the definition of ℓ2,1 norm of a matrix, and the third line is by ||c̄i||2 ≤ 1 and ||ϵ1,t+1||2 ≤ C0/t.

Similarly, we have ∥∥∥E⊤
1 (W̃ ⋆

K)⊤W ⋆
Kct+1

∥∥∥
1
≤ ∥E1∥2,1 ·

∥∥∥(W̃ ⋆
K)⊤W ⋆

K

∥∥∥
2,2

· ∥ct+1∥2

=

t∑
i=1

∥ϵ1,i∥2 ·
∥∥∥(W̃ ⋆

K)⊤W ⋆
K

∥∥∥
2,2

· ∥ct+1∥2

≤ C0Γ, (24)

where the first line is by ||ABx||1 ≤ ||A⊤||2,1||B||2,2||x||2 for any A ∈ Rd1×d2 , B ∈ Rd2×d3 , and x ∈ Rd3 (d1, d2, d3 ∈
N+), the second line is by the definition of ℓ2,1 norm of a matrix, and the third line is by ||ϵ1,i||2 ≤ C0/t and ||ct+1||2 ≤ 1.

Then we bound ∆1 and ∆2 using Lemma C.1 together with the above norm bounds.

Bounding ∆1. For ∆1, we have

∥∆1∥2 =
∥∥∥W̃ ⋆

V Rt

[
Softmax

(
C̄⊤

t (W̃ ⋆
K)⊤W ⋆

K c̄t+1

)
− Softmax

(
C⊤

t (W̃ ⋆
K)⊤W ⋆

Kct+1

)]∥∥∥
2

≤
∥∥∥W̃ ⋆

V Rt

∥∥∥
2,∞

∥∥∥Softmax
(
C̄⊤

t (W̃ ⋆
K)⊤W ⋆

K c̄t+1

)
− Softmax

(
C⊤

t (W̃ ⋆
K)⊤W ⋆

Kct+1

)∥∥∥
1

≤
∥∥∥Softmax

(
C̄⊤

t (W̃ ⋆
K)⊤W ⋆

K c̄t+1

)
− Softmax

(
C⊤

t (W̃ ⋆
K)⊤W ⋆

Kct+1

)∥∥∥
1

≤
∥∥∥Softmax

(
C̄⊤

t (W̃ ⋆
K)⊤W ⋆

K c̄t+1

)
− Softmax

(
C̄⊤

t (W̃ ⋆
K)⊤W ⋆

Kct+1

)∥∥∥
1

+
∥∥∥Softmax

(
C̄⊤

t (W̃ ⋆
K)⊤W ⋆

Kct+1

)
− Softmax

(
C⊤

t (W̃ ⋆
K)⊤W ⋆

Kct+1

)∥∥∥
1
,

where the second line is by ||Ax||2 ≤ ||A||2,∞||x||1 for any A ∈ Rd1×d2 , and x ∈ Rd2 (d1, d2 ∈ N+), the third line is by
||W̃ ⋆

V ||2,2, ||Rt||2,∞ ≤ 1, and ||W̃ ⋆
V Rt||2,∞ ≤ ||W̃ ⋆

V ||2,2 · ||Rt||2,∞ ≤ 1, and the fourth line is by triangle inequality.

Then we bound the above two terms. For the first term, we have:∥∥∥Softmax
(
C̄⊤

t (W̃ ⋆
K)⊤W ⋆

K c̄t+1

)
− Softmax

(
C̄⊤

t (W̃ ⋆
K)⊤W ⋆

Kct+1

)∥∥∥
1

=
∥∥∥Softmax

(
C̄⊤

t (W̃ ⋆
K)⊤W ⋆

K(ct+1 + ϵ1,t+1)
)
− Softmax

(
C̄⊤

t (W̃ ⋆
K)⊤W ⋆

Kct+1

)∥∥∥
1

≤ 2e2Γ

t

∥∥∥C̄⊤
t (W̃ ⋆

K)⊤W ⋆
Kϵ1,t+1

∥∥∥
1

(
By Lemma C.1, (20), and (21)

)
≤ 2C0Γe

2Γ

t
.

(
By (23)

)
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For the second term, we have:∥∥∥Softmax
(
C̄⊤

t (W̃ ⋆
K)⊤W ⋆

Kct+1

)
− Softmax

(
C⊤

t (W̃ ⋆
K)⊤W ⋆

Kct+1

)∥∥∥
1

=
∥∥∥Softmax

(
(Ct + E1)

⊤(W̃ ⋆
K)⊤W ⋆

Kct+1

)
− Softmax

(
C⊤

t (W̃ ⋆
K)⊤W ⋆

Kct+1

)∥∥∥
1

≤ 2e2Γ

t

∥∥∥E⊤
1 (W̃ ⋆

K)⊤W ⋆
Kct+1

∥∥∥
1

(
By Lemma C.1, (21), and (22)

)
≤ 2C0Γe

2Γ

t
.

(
By (24)

)
Combining the above two terms, we have

∥∆1∥2 ≤ 4C0Γe
2Γ

t
.

Bounding ∆2. For ∆2, we have

∥∆2∥2 =
∥∥∥W̃ ⋆

V E2 Softmax
(
C̄⊤

t (W̃ ⋆
K)⊤W ⋆

K c̄t+1

)∥∥∥
2

≤
∥∥∥W̃ ⋆

V

∥∥∥
2,2

· ∥E2∥2,1 ·
∥∥∥Softmax

(
C̄⊤

t (W̃ ⋆
K)⊤W ⋆

K c̄t+1

)∥∥∥
∞

≤
∥∥∥W̃ ⋆

V

∥∥∥
2,2

·
t∑

i=1

∥ϵ2,i∥2 ·
∥∥∥Softmax

(
C̄⊤

t (W̃ ⋆
K)⊤W ⋆

K c̄t+1

)∥∥∥
∞

≤ C0
e2Γ

t
,

where the second line is by ||ABx||2 ≤ ||A||2,2||B||2,1||x||2 for any A ∈ Rd1×d2 , B ∈ Rd2×d3 , and x ∈ Rd3 (d1, d2, d3 ∈
N+), the third line is by the definition of the ℓ2,1 norm of a matrix, and the fourth line is by ∥W̃ ⋆

V ∥2,2 ≤ 1, ∥ϵ2,i∥ ≤ C0/t,
Lemma C.1 and (20).

Combining the above results, we get the desired result:

∆ ≤ C0(4Γ + 1)e2Γ

t
. (25)

Recall that in general case, L(Dt, ct+1) = L(vt+1, W̃
⋆
V rt+1), and L(D̄t, ct+1) = L(v̄t+1, W̃

⋆
V rt+1) where L is a task-

specific loss function. Then for the difference of the loss function, we have

sup
ct+1

E
Dt

[
L(D̄t, ct+1)− L(Dt, ct+1)

]
= sup

ct+1

E
Dt

[
L(v̄t+1, W̃

⋆
V rt+1)− L

(
vt+1, W̃

⋆
V rt+1

)]
≤ sup

ct+1

E
Dt

[M∥ ¯vt+1 − vt+1∥2]
(
By Assumption 3.3

)
≤ MC0(4Γ + 1)e2Γ

t
.

(
By (25)

)
This completes the proof.

Now, we introduce one lemma about the relation between ϵ-stability and generalization bound, based on the Lemma 7 in
(Bousquet & Elisseeff, 2002). Here we transfer the description in the original lemma to the in-context learning setting.
Lemma C.3 (Connection between Generalization Bound and ϵ-Stability, Lemma 7 of (Bousquet & Elisseeff, 2002)). We
denote the generalization error of in-context learning with prompt Pt and test query ct+1 as R(Dt) = Ect+1

[L(Dt, ct+1)].
The empirical error as Remp(Dt) =

1
t

∑t
i=1 L(Dt, ci), i.e., the average loss value when using ci as the test query respectively.

Then the generalization bound is as follows:

E
Dt

[R(Dt)−Remp(Dt)] = E
Dt,(c̄i,r̄i)

[
L(Dt, c̄i)− L(D̄i

t, c̄i)
]
, (26)

where D̄i
t denotes replace (ci, ri) with (c̄i, r̄i) in Dt.
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We give the following proof of Theorem 3.1 based on the above results.

Proof of Theorem 3.1. Using Lemma C.3, we compare the right-hand side of (26) with left-hand side of (19) in Lemma C.2,
and thereby obtain the following generalization bound for in-context learning

E
Dt

[R(Dt)−Remp(Dt)] ≤
MC0(4Γ + 1)e2Γ

t
.

This completes the proof.
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D Experimental Details
Here we present our experimental details.

D.1 Pre-training GPT-2 for Linear Regression

In this part, we show the details about how to pre-train a GPT-2 model for a linear regression problem. Following the
pre-training method in (Garg et al., 2022), we use the batch size as 64. To construct one sample in a batch, we use the
following steps: (i). Sample linear regression coefficient βi ∈ R20 from N(0, I). (ii). Generate queries xi,j from the
Gaussian mixture model ω1N(−2, I)+ω2N(2, I),where ω1 = 1, ω2 = 0 in the pre-training. Then we formalize {xi,j}kj=1,
where k = 50. (iii). For each query xi,j , use yi,j = βT

i xi,j to calculate the true response. Now we generate one training
sample, the model input is [xi,1, yi,1, · · · , xi,49, yi,49, xi,50], and the training target is oi = [yi,1, · · · , yi,49, yi,50]. We use
the MSE loss between prediction and true value of oi. The pre-training process iterates for 500k steps. We implement
experiments on 1 NVIDIA A100 80GB GPU.

D.2 Sensitivity to Covariance Shifts

In this part, we show the details about how to evaluate the model performance in the testing process. We generate samples
similar to the pre-training process. The batch size is 64, and the number of batch is 100, i.e., we have 6400 samples totally.
For each sample, we extend the prompt length from 49 to 74, to learn the performance of in-context learning when the
prompt length is longer than we use in pre-training. The input to the model is [xi,1, yi,1, · · · , xi,74, yi,74, xi,75], and the
target is oi = [yi,1, · · · , yi,74, yi,75]. For each in-context length j ∈ [75], we calculate the R-squared between the estimation
and true value for all 6400 samples.

D.3 Sensitivity to Response’s Accuracy

In this part, we show the details about how to generate samples with different accuracy of the response. (i).
Firstly, we generate ith sample as the pre-training process in Appendix D.1, where queries xi,j are from the Gaus-
sian mixture model ω1N(−2, I) + ω2N(2, I), ω1 = 1, ω2 = 0, and the prompt length becomes 75. The input is
[xi,1, yi,1, · · · , xi,74, yi,74, xi,75], and the target is oi = [yi,1, · · · , yi,74, yi,75]. (ii). Next, we denote the response’s accuracy
as α (e.g., 80%). To predict yi,j in ith sample with j − 1 in-context prompts, we randomly permute the prompt labels
[yi,1, · · · , yi,j−1] in the input, with a permutation rate as 1 − α. In this way, we generate samples with the accuracy of
response as α.

D.4 Sensitivity to Similarity between Prompts and Test Query

In this part, we show the details about how to generate prompts with different similarities as the test query. (i). Firstly,
we generate ith sample as the pre-training process in Appendix D.1, where queries xi,j are from the Gaussian mixture
model ω1N(−2, I) + ω2N(2, I), ω1 = 1, ω2 = 0. Here we extend the prompt length from 49 to 1000. The target is
still oi = [yi,1, · · · , yi,74, yi,75], but the input changes according the level of similarity. (ii). Secondly, we construct
inputs according to the level of similarity. We consider three kinds of similarity levels: high, normal, and low similarity.
For each j ∈ [75] and j > 1, in the high similarity case, we select the most similar j − 1 prompts as xi,j from
{(xi,k, yi,k)}1000k=1 \{(xi,j , yi,j)}. The selected j − 1 prompts act as the model input to predict the yi,j . Similarly, in normal
similarity case, we just use {(xi,k, yi,k)}j−1

k=1 as input. In low similarity case, we select the least similar j − 1 prompts as
xi,j from {(xi,k, yi,k)}1000k=1 \{(xi,j , yi,j)} to act as input. In this way, we generate prompts with different similarities as the
test query.

D.5 Decision Tree and 2-Layer Neural Network

Following a similar setting as previous linear regression and (Garg et al., 2022), we show the following details about the
decision tree and 2-layer neural network. In addition to the results shown in Figure 2 and Figure 3, we report exact values at
specific points in Table 5, Table 6, and Table 7.

For the decision tree, we consider the function f as a decision tree with 20-dimensional inputs and a depth of 4. Each
function f uses a full binary tree with 16 leaf nodes. Non-leaf nodes specify input coordinates. Leaf nodes assign output
values. To compute f(x), begin at the root. Navigate through the tree. Move right if the coordinate value is positive. Move
left otherwise. The output f(x) comes from the leaf node reached. We choose random coordinates for non-leaf nodes from
{1, 2, . . . , 20}. Draw leaf values from a normal distribution N(0, 1).
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For the 2-layer neural network, we consider ReLU neural networks. We set each function f as f(x) =
∑r

i=1 αiσ(w
⊤
i x),

where αi ∈ R, wi ∈ Rd, and σ(·) = max(0, ·) is the ReLU activation function. We draw network parameters αi and wi

from N(0, 2/r) and N(0, Id). We use the number of hidden nodes r as 100.

Table 5. Sensitivity to Covariance Shifts. We select specific values for ICL prompt number at 15, 30, 45, 60 from Figure 2 and Figure 3.
Note that performance decreases when the prompt length exceeds the pre-training length (i.e., 50), a well-known issue (Dai et al., 2019;
Anil et al., 2022). We believe this is due to the absolute positional encodings in GPT-2, as noted in (Zhang et al., 2024)

Decision Tree 2-Layer Neural Network

Test Distribution 15 30 45 60 15 30 45 60

Baseline 0.806 0.862 0.854 0.875 0.886 0.946 0.953 0.962
N(−2, I) 0.866 0.943 0.972 0.943 0.901 0.968 0.979 0.956
0.9N(−2, I) + 0.1N(2, I) 0.863 0.874 0.967 0.943 0.902 0.954 0.968 0.952
0.7N(−2, I) + 0.3N(2, I) 0.408 0.658 0.671 0.654 0.765 0.845 0.881 0.858

Table 6. Sensitivity to Response’s Accuracy. We select specific values for in-context learning prompt number at 15, 30, 45, 60 from
Figure 2 and Figure 3.

Decision Tree 2-Layer Neural Network

Response Accuracy 15 30 45 60 15 30 45 60

Baseline 0.505 0.801 0.733 0.849 0.907 0.924 0.953 0.961
100% 0.737 0.964 0.967 0.858 0.921 0.960 0.978 0.964
90% 0.737 0.921 0.967 0.875 0.921 0.947 0.964 0.959
80% 0.737 0.921 0.948 0.796 0.902 0.903 0.946 0.940

D.6 GPT-J on Sentiment Classification Task

In this part, we evaluate the in-context learning (ICL) behavior of the GPT-J model, similar to (Min et al., 2022). We use the
sentiment classification task with the “TweetEval: Hate Speech Detection” dataset (Basile et al., 2019).

Sensitivity to Covariance Shifts. To assess how sensitive the model is to domain shifts in the in-context examples,
we conduct experiments using two settings: (i) in-distribution in-context examples from the TweetEval dataset, and (ii)
out-of-distribution (OOD) in-context examples from the CC-News corpus (Nagel, 2016), which consists of long-form,
formal news articles. To ensure fair results, we control for the average sentence length between the two sources during
sampling. We use GPT-J (6B parameters) following the protocol in (Min et al., 2022), and compare the performance across
two configurations: zero-shot (k = 0) and few-shot (k = 4) with both in-distribution and OOD examples. We show the
results Table 8.

Table 7. Sensitivity to Similarity with Test Query. We select specific values for in-context learning prompt number at 15, 30, 45, 60
from Figure 2 and Figure 3.

Decision Tree 2-Layer Neural Network

Similarity Degree 15 30 45 60 15 30 45 60

Baseline 0.880 0.880 0.871 0.895 0.917 0.943 0.960 0.962
Best 0.955 0.976 0.987 0.971 0.976 0.988 0.991 0.988
Normal 0.971 0.957 0.976 0.942 0.931 0.972 0.981 0.967
Worst 0.907 0.937 0.943 0.927 0.742 0.866 0.895 0.882
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Table 8. Sensitivity to Covariance Shifts on Real Dataset. Macro-F1 scores for sentiment classification (“TweetEval: Hate Speech
Detection” dataset (Basile et al., 2019)) with k = 0, 4 in-context examples under in-distribution (No-shift) and out-of-distribution (Shift)
settings.

In-context Examples 0 4

No-shift 0.3722 0.5313
Shift 0.3521 0.3830

Sensitivity to Response’s Accuracy. Beyond domain alignment, we further analyze the impact of in-context response
correctness on model performance. We use 4 in-context examples, and create variants of the in-context examples in which
the percentage of correct query-response pairs is from 100% to 25%. We show the results in Table 9.

Table 9. Sensitivity to Response’s Accuracy on Real Dataset. Macro-F1 scores for sentiment classification (“TweetEval: Hate Speech
Detection” dataset (Basile et al., 2019)) with k = 4 in-context examples under different proportions of correct labels.

Response’s Accuracy (%) 100% 75% 50% 25%

4 In-context Examples 0.5313 0.4212 0.4035 0.3640

D.7 Ghost Example Construction

In this part, we show the details about how to generate the required ghost examples. Firstly, we freeze all the model
parameters. For each t ∈ [75], we generate samples as the following: We randomly choose 100 samples. For the i-th sample,
we randomly select xi,t+1 from ω1N(−2, I) + ω2N(2, I), where ω1 = 1, ω2 = 0 or ω1 = 0.5, ω2 = 0.5. Then we set
{c̃i,j , r̃i,j}j∈[t] as the trainable parameters. We use MSE loss to train the parameters {c̃i,j , r̃i,j}j∈[t] in each batch, until the
loss convergences for this batch. We calculate the convergence loss value for one batch and use the batch loss as the ghost
example construction loss for the index t. In this way, we get the ghost example construction loss for each t ∈ [75] and two
distribution settings, where one is the same as the training data distribution and another is different from it. The following
Table 10 show the mean squared error of the ghost example construction for t ∈ [75].

Table 10. Mean Squared Error of Ghost Example Construction. The data are from two different distributions. 15, 30, 45, 60, 75
denote the in-context examples size.

Data Distribution 15 30 45 60 75

w1 = 1, w2 = 0 1.50e-06 1.17e-05 3.28e-05 0.006 0.0001
w1 = 0.5, w2 = 0.5 0.0010 0.0070 0.0049 0.0001 0.0011
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