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Abstract

Large language models (LLMs) have been widely deployed in
various applications, often functioning as autonomous agents
that interact with each other in multi-agent systems. While
these systems have shown promise in enhancing capabilities
and enabling complex tasks, they also pose significant ethical
challenges. This position paper outlines a research agenda
aimed at ensuring the ethical behavior of multi-agent systems
of LLMs (MALMSs) from the perspective of mechanistic in-
terpretability. We identify three key research challenges: (i)
developing comprehensive evaluation frameworks to assess
ethical behavior at individual, interactional, and systemic lev-
els; (ii) elucidating the internal mechanisms that give rise to
emergent behaviors through mechanistic interpretability; and
(iii) implementing targeted parameter-efficient alignment tech-
niques to steer MALMs towards ethical behaviors without
compromising their performance.

1 Introduction

Large language models (LLMs) equipped with memory and
tools can function as agents that perceive, reason, and act
within environments (Xi et al. 2025; Liu et al. 2025). Or-
chestrating multiple such agents in multi-agent systems can
enhance effectiveness (Masters et al. 2025; Guo et al. 2024)
and enable applications including collaborative assistants,
autonomous societies for social science research (Anthis et al.
2025; Gao et al. 2024), scientific discovery (Su et al. 2025),
and medical diagnosis (Zuo et al. 2025).

However, multi-agent interactions produce emergent be-
haviors (Park et al. 2023; Gao et al. 2024), which can be
both beneficial (coordinated problem-solving) and harmful
(compounding biases). Recent work identifies three funda-
mental failure modes: miscoordination, conflict, and collu-
sion (Hammond et al. 2025). Critically, ethical evaluations
on isolated LLMs may not transfer to multi-agent ensem-
bles (Erisken et al. 2025). Biases can propagate and intensify
through interaction (Ashery, Aiello, and Baronchelli 2025),
and alignment of individual LLMs may not be preserved in
multi-agent contexts, for instance, fine-tuning can introduce
value-alignment trade-offs and unintended harms (Choi et al.
2025; Qi et al. 2023; Lermen and Rogers-Smith 2024). With-
out proper assessment and governance, multi-agent systems
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of LLMs (MALMs) could develop unpredictable harmful
strategies. However, existing alignment techniques remain
black-box approaches that do not address underlying mech-
anisms. Multi-agent debate and role allocation (Chen et al.
2023; Pitre, Ramakrishnan, and Wang 2025) as well as re-
ward modeling and reinforcement learning (Lambert 2025;
Casper et al. 2023) are computationally expensive and opti-
mize outcomes without insight into why behaviors emerge.
Even carefully designed rewards lead to unexpected failures
when agents interact (Erisken et al. 2025), and prompt-based
strategies are fragile under paraphrase (Karvonen and Marks
2025). All in all, we lack causal, mechanistic understanding
of how ethical failures arise in MALMs.

Recent advances in mechanistic interpretability (Bereska
and Gavves 2024) dissect LLM internals to identify compu-
tational pathways producing behaviors, providing actionable
handles (Marks et al. 2025; Turner et al. 2024). This enables
us to: (i) diagnose why failures occur; (ii) design targeted
interventions addressing root causes; (iii) provide predictive
explanations robust to adversarial manipulation (Zou et al.
2025). Critically, mechanistic interpretability is uniquely
suited for MALMs because multi-agent failures arise from
complex cross-agent information flow that cannot be under-
stood by examining individual agents in isolation. By tracing
how representations propagate between agents—revealing
which attention heads copy harmful content from peers,
which layers amplify or suppress dissenting views, and which
circuits mediate coordination versus collusion—mechanistic
interpretability exposes the computational substrates of emer-
gent behaviors (Soligo et al. 2025). This provides intervention
points where we can surgically prevent groupthink without
destroying beneficial coordination, or block toxic agreement
while preserving constructive dialogue (Rimsky et al. 2024).

This paper outlines a research agenda for ensuring ethical
MALM behavior through mechanistic interpretability (Fig. 1).
Section 2 discusses emergent behaviors and their implications.
Section 3 outlines evaluation strategies. Section 4 examines
mechanistic interpretability for explaining failures. Section 5
proposes alignment interventions. Section 6 summarizes our
agenda.

2 Emergent Behaviors of MALMs

Multi-agent LLM interactions reveal emergent behav-
iors (Park et al. 2023)—patterns arising from interactions not
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Figure 1: Overview of the three research directions towards ethical multi-agent systems of large language models (MALMs). We
identify three interconnected challenges: evaluating ethical behaviors at individual, interactional, and systemic levels;

emergent failures through mechanistic interpretability to identify causal components; and enabling ethical behavior via targeted
interventions informed by mechanistic insights. Yellow boxes denote parameters that define the concrete setup of a MALM (e.g.,
agent profiles, memory states, and network scale), which can be systematically varied in experiments. Blue arrows indicate the
three levels of measurement: individual agents, their interactions, and overall system convergence.

explicitly programmed into individual agents. These can en-
hance effectiveness but introduce significant risks (Hammond
et al. 2025; Malfa et al. 2025). Hammond et al. (2025) iden-
tify three fundamental failures: (i) miscoordination (agents
working at cross purposes), (ii) conflict (direct opposition
producing harms), (iii) collusion (conspiracy for undesired
goals). These failures are amplified by network effects and
cannot be predicted from single-agents (Erisken et al. 2025).

To illustrate how mechanistic interpretability can address
ethical failures in MALMSs, we highlight two representa-
tive emergent behaviors that pose distinct ethical challenges.
Toxic agreement occurs when agents explicitly amplify harm-
ful content by mirroring toxic outputs, creating reinforcement
loops. This represents a content-level failure where harmful
information propagates and intensifies through direct cross-
agent copying mechanisms, which is a form of emergent
collusion where agents coordinate around harmful outputs.
In contrast, groupthink, where conformity pressure produces
irrational consensus despite contrary evidence (Janis 1982),
represents a distinct failure mode arising from social dy-
namics rather than deliberate coordination. Weng, Chen, and
Wang (2024) show LLMs exhibit conformity bias, suppress-
ing dissent even when individual agents would make better
decisions in isolation. This constitutes a dynamics-level fail-
ure where the interaction structure itself drives unwanted
agreement through conformity pressure, not intentional con-
spiracy. Together, these behaviors demonstrate how mech-
anistic interpretability must address both what information
flows between agents and how interaction dynamics shape
collective decisions.

Bakker et al. (2022) demonstrate LLMs can generate con-
sensus statements maximizing agreement across diverse pref-
erences, but reveal a critical vulnerability: when consensus
is built from incomplete subsets of stakeholders, excluded
individuals tend to dissent, highlighting risks of marginal-

ization. This tension becomes acute when consensus genera-
tion produces toxic agreement. Beyond these observations,
existing work documents destructive behavior (Chen et al.
2023), spontaneous deception (Curvo 2025), and collective
bias emergence (Ashery, Aiello, and Baronchelli 2025), but
remains at the behavioral level, i.e., existing work documents
failures without explaining why they emerge or providing
mechanistic actionable handles for intervention.

Understanding these emergent behaviors requires mov-
ing beyond behavioral observation to mechanistic analysis.
While behavioral studies can document what failures occur,
mechanistic interpretability can reveal how cross-agent infor-
mation flow produces these failures and where to intervene.
The next section examines how to evaluate these behaviors
systematically across individual, interactional, and systemic
levels.

3 Evaluating Ethical Behaviors in MALMs

Evaluating MALMs requires simulators and benchmarks
that define multi-agent tasks and measure performance. Re-
cent platforms include MA-Gym (Masters et al. 2025) for
teamwork orchestration, MultiAgentBench (Zhu et al. 2025)
for collaborative tasks, AgentSociety (Piao et al. 2025)
for large-scale social simulation, and Stanford’s Genera-
tive Agents (Park et al. 2023) demonstrating emergent so-
cial behaviors. While extensive work has addressed eth-
ical issues and bias in isolated LLMs (Attanasio et al.
2023), including benchmarks like RedditBias (Barikeri et al.
2021), Truthful QA (Lin, Hilton, and Evans 2022), RealToxi-
cityPrompts (Gehman et al. 2020), and HELM (Liang et al.
2023), these single-agent evaluations prove insufficient for
multi-agent contexts. Recent work reveals critical limitations:
toxicity detection varies across contexts (Koh et al. 2024),
Al models underestimate harm compared to affected commu-
nities (Phutane, Seelam, and Vashistha 2025), and entirely



new biases emerge in multi-agent settings, such as AI-Al
bias where agents prefer Al-generated content over human
input (Laurito et al. 2025).

Recent work on MALM safety (Zhang et al. 2024; Yu
et al. 2025; Zhou, Wang, and Yang 2025; Chen et al. 2025)
has explored temporal graph modeling, personality correc-
tion, and network topologies. However, these efforts re-
main largely behavioral, not exposing causal mechanisms.
MAEBE (Erisken et al. 2025) documents value drift in
groups, while PsySafe (Zhang et al. 2024) detects risk traits,
but neither provides mechanism-guided fixes.

Research Directions. Despite recent advances, systematic
assessment of ethical behavior in multi-agent settings remains
limited. Existing evaluation frameworks (e.g., Erisken et al.
2025; Zhang et al. 2024) focus predominantly on behavioral
outcomes without revealing underlying causal mechanisms.
Behavioral interventions may work for tested scenarios but
fail when contexts shift (Karvonen and Marks 2025), and
without mechanistic understanding, we cannot distinguish
whether failures arise from individual agent properties or
emergent dynamics (Hammond et al. 2025).

We propose integrating mechanistic interpretability into
MALM evaluation by developing frameworks that assess eth-
ical behavior at three complementary levels: (i) agent-centric
measurement examining individual behaviors and internal
representations; (ii) interaction-centric measurement analyz-
ing messages and computational pathways between agents;
(iii) system-centric measurement tracking aggregated status
and population-level emergent properties. For each level, one
can combine behavioral metrics with mechanistic analysis
(see Section 4) to identify causal components, developing
mechanism cards that document specific components causing
failures. This enables predictive hypotheses about when fail-
ures recur and provides actionable intervention targets. By
systematically varying network structure and agent roles, we
can map conditions under which mechanistic failures occur
and validate interventions across contexts.

4 Explaining Failure Modes via Mechanistic
Interpretability

To identify actionable intervention targets from the evaluation
frameworks proposed in Section 3, we need mechanistic in-
terpretability methods that expose the internal computational
pathways where ethical failures originate. Recent advances
in mechanistic interpretability (Bereska and Gavves 2024)
and activation steering (Turner et al. 2024; Zou et al. 2025)
reveal that many high-level features in LLMs are encoded
as linear directions in activation space. This paradigm pro-
vides causal explanations by identifying specific components
producing behaviors, enables predictive theories generaliz-
ing across contexts, and yields actionable intervention tar-
gets (Marks et al. 2025). For instance, activation-steering
and representation-engineering work has identified linear di-
rections corresponding to attributes like toxicity or helpful-
ness that can be manipulated to steer generations (Rimsky
et al. 2024; Turner et al. 2024; Zou et al. 2025), with steer-
ing vectors providing control across prompts (Karvonen and
Marks 2025). Soligo et al. (2025) demonstrate that subtract-

ing shared misalignment vectors from activations effectively
ablates toxic behavior at its source.

Beyond activation steering, circuit analysis (Bereska and
Gavves 2024; Olsson et al. 2022) identifies “causally impli-
cated subnetworks of human-interpretable features” (Marks
et al. 2025), providing testable hypotheses about where fail-
ures occur and how to intervene. For MALMs, circuit analysis
can reveal how information propagates between agents and
where to prevent groupthink without destroying beneficial
coordination. Recent work on concurrent multi-agent reason-
ing (Hsu et al. 2025) shows token-level collaboration can
enable both helpful coordination and harmful propagation—
a distinction requiring mechanistic analysis of cross-agent
information flow.

Research Directions. Current approaches to multi-agent
system safety (Zhang et al. 2024; Yu et al. 2025; Zhou, Wang,
and Yang 2025) operate primarily at the behavioral level with-
out identifying specific computational mechanisms causing
failures. This black-box approach limits generalization: inter-
ventions may work in testing but fail when contexts shift (Kar-
vonen and Marks 2025). Without mechanistic understanding,
we cannot distinguish correlation from causation.

We propose developing causal accounts connecting collec-
tive phenomena to internal components that mediate them.
For each target behavior (e.g., toxic agreement, groupthink),
map systematically computational pathways from inputs
through representations to outputs, identifying specific fea-
tures, attention heads, and neurons that causally contribute
(see Fig. 2). This requires combining activation patching to
isolate causal components (Marks et al. 2025), circuit dis-
covery to map information flow (Bereska and Gavves 2024),
and intervention experiments to validate claims (Geiger et al.
2024). The output should be mechanism cards documenting:
(i) annotated components with causal evidence, (ii) inter-
action diagrams showing cross-agent information propaga-
tion, (iii) testable predictions, (iv) recommended intervention
points, and (v) validation results.

5 Enabling Ethical Multi-Agent Behavior via
Alignment Interventions

Given the mechanism cards and intervention targets iden-
tified in Section 4, we now turn to how these mechanistic
insights enable parameter-efficient interventions. Modern
LLMs are aligned via supervised fine-tuning and reinforce-
ment learning from human feedback (RLHF) (Casper et al.
2023; Bai et al. 2022), but these methods face challenges in
multi-agent settings: computational cost when applied to mul-
tiple interacting agents, emergent failures despite individual
optimization (Erisken et al. 2025), and lack of mechanis-
tic grounding. Self-alignment and debate techniques (Pang
et al. 2024; Pitre, Ramakrishnan, and Wang 2025) improve
some benchmarks but remain behavioral. Prompting-based
methods (Zheng et al. 2024; Zhao et al. 2024; Xiong et al.
2025) are attractive but fragile under paraphrase and context
shifts (Karvonen and Marks 2025). Karvonen and Marks
(2025) show prompt-based bias mitigation breaks down with
additional context, whereas activation steering can be more
robust (Roytburg et al. 2025). This robustness stems from a
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Figure 2: An example scenario of mechanistic intervention. On prompt “Should we exclude Group X from the forum?” two-agent
discussion drifts into a harmful joint decision (“exclude Group X”) before intervention. The Interpretation panel shows the
discovered cause (an attention head that copies the peer’s last harmful token). The Intervention panel applies a context-gated
activation steering vector that dampens the copy-toxic direction. Post-intervention, the same exchange no longer yields exclusion.

fundamental difference: prompts modify input signals mod-
els can ignore, while activation steering directly manipulates
internal representations causally determining outputs (Turner
et al. 2024; Zou et al. 2025).

Mechanistic interpretability enables identifying specific
computational components responsible for failures and sur-
gically correcting them. This yields targeted effectiveness
(addressing root causes), robustness (harder to circumvent),
efficiency (fewer parameters than full fine-tuning), and trans-
parency (explanations enable auditing) (Bereska and Gavves
2024). For MALMs, mechanistic approaches can target cross-
agent pathways where failures originate, preventing toxic
agreement or groupthink at their source.

Parameter-efficient tuning (PEFT) methods like LoORA (Hu
et al. 2022) adapt LLMs by freezing base weights and training
few additional parameters. Prior work has successfully ap-
plied PEFT for bias mitigation (Lauscher, Lueken, and Glavas
2021). However, naive PEFT introduces risks: SaLoRA (Li
et al. 2025) shows innocuous fine-tuning can degrade align-
ment, and LoRA can inadvertently introduce biases (Qi et al.
2023; Lermen and Rogers-Smith 2024). Mechanistic inter-
pretability suggests PEFT should be mechanism-guided: tar-
geting specific layers and heads identified through circuit
analysis as causally responsible for failures (Marks et al.
2025). For instance, if toxic agreement is mediated by at-
tention heads copying harmful tokens between agents (see
Fig. 2), we can apply LoRA adapters precisely to those heads.
This targeted approach can offer minimal interference, com-
positional safety, and interpretable auditing.

Research Directions. Building on mechanism cards from
Section 4, we propose turning explanatory handles into
parameter-efficient interventions through four steps: (i) Se-
lection: identify the smallest mechanistic handle from the
discovered circuit; (ii) Steering: apply layer-scoped activa-
tion steering for validation; (iii) Consolidation: apply targeted
PEFT to validated components; (iv) Verification: stress-test
for faithfulness, composability, and robustness. For MALMs,
interventions must account for cross-agent dynamics. If toxic
agreement emerges from Agent B amplifying Agent A’s

harmful content, we can apply targeted steering or PEFT to
Agent B’s amplification heads, or coordinate interventions
across both agents (Hammond et al. 2025). Unlike black-box
fine-tuning risking unpredictable side effects (Li et al. 2025),
mechanism-guided interventions enable iterative refinement
and auditable alignment.

6 Conclusion

We have argued for a mechanistic interpretability approach
to ensuring ethical behavior in multi-agent systems of LLMs.
Existing approaches, e.g., multi-agent debate, reward model-
ing, and prompt-based interventions, are limited by their lack
of mechanistic grounding, optimizing behavioral outcomes
without understanding computational mechanisms causing
failures. This makes them brittle under distribution shift and
vulnerable to adversarial manipulation.

Mechanistic interpretability addresses these limitations
by exposing internal computational pathways where ethical
failures originate. We identified three research directions:
(1) Evaluation frameworks combining behavioral testing with
mechanistic analysis to trace failures from outcomes to causal
components; (ii) Mechanistic explanation through circuit
discovery providing falsifiable theories about emergent be-
haviors; (iii) Targeted intervention via mechanism-guided
parameter-efficient fine-tuning enabling surgical corrections
preserving capabilities.

However, significant challenges remain. Scaling mechanis-
tic analysis to large multi-agent populations remains compu-
tationally demanding, and trade-offs between interpretability
and system performance require careful navigation. Open
questions persist about how mechanistic insights general-
ize across different MALM architectures, task domains, and
deployment contexts. Future work should explore combin-
ing mechanistic interpretability with other alignment strate-
gies for MALMs, such as reinforcement learning with hu-
man feedback (RLHF), and with complementary approaches
to explainability that target higher-level intentions and deci-
sions (Gyevnar et al. 2025), ensuring explanations remain
accessible and actionable to non-specialist stakeholders.
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