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Abstract

Imitation learning (IL) has proven to be an effec-
tive method for learning good policies from ex-
pert demonstrations. Adversarial imitation learn-
ing (AIL), a subset of IL methods, is particularly
promising, but its theoretical foundation in the pres-
ence of unknown transitions has yet to be fully de-
veloped. This paper explores the theoretical under-
pinnings of AIL in this context, where the stochas-
tic and uncertain nature of environment transitions
presents a challenge. We examine the expert sam-
ple complexity and interaction complexity required
to recover good policies. To this end, we establish
a framework connecting reward-free exploration
and AIL, and propose an algorithm, MB-TAIL,
that achieves the minimax optimal expert sample
complexity of Õ(H3/2|S|/ε) and interaction com-
plexity of Õ(H3|S|2|A|/ε2). Here, H represents
the planning horizon, |S| is the state space size,
|A| is the action space size, and ε is the desired
imitation gap. MB-TAIL is the first algorithm to
achieve this level of expert sample complexity in
the unknown transition setting and improves upon
the interaction complexity of the best-known algo-
rithm, OAL, by O(H). Additionally, we demon-
strate the generalization ability of MB-TAIL by
extending it to the function approximation setting
and proving that it can achieve expert sample and
interaction complexity independent of |S|.

1 INTRODUCTION

In real-life scenarios, sequential decision-making tasks are
ubiquitous, where agents devise policies to maximize the

*Equal contribution. Author ordering is determined randomly
using a coin flip.

†Corresponding author.

long-term return. Reinforcement learning (RL) [Sutton and
Barto, 2018] is a popular paradigm for learning effective
policies through trial and error in unknown environments.
However, RL often requires a large amount of samples
and laborious reward engineering to achieve satisfactory
performance in practice. Alternatively, imitation learning
(IL) [Argall et al., 2009, Osa et al., 2018] provides a more
sample-efficient approach to policy optimization by directly
learning from expert demonstrations, and has been proven
successful in various applications [Levine et al., 2016, Shi
et al., 2019, Jang et al., 2022]. By leveraging existing expert
knowledge, IL methods enable efficient policy learning in
situations where RL might be infeasible or expensive. There-
fore, IL has become an increasingly popular and practical
alternative for real-world applications.

Imitation learning (IL) is a framework that aims to minimize
the difference between the expert policy and the imitated
policy [Ross and Bagnell, 2010, Xu et al., 2020, Rajaraman
et al., 2020]. The two prominent IL methods are behav-
ioral cloning (BC) [Pomerleau, 1991, Ross and Bagnell,
2010] and adversarial imitation learning (AIL) [Abbeel and
Ng, 2004, Syed and Schapire, 2007, Ziebart et al., 2008,
Ho and Ermon, 2016]. BC employs supervised learning to
minimize the discrepancy between the policy distribution
of the imitated policy and the expert policy. On the other
hand, AIL focuses on state-action distribution matching,
where the learner estimates an adversarial reward function
that maximizes the policy value gap and then learns a pol-
icy to minimize the gap with the inferred reward function
through a min-max optimization. Practical algorithms that
build upon these principles have been developed and applied
to various domains [Torabi et al., 2018, Fu et al., 2018, Ke
et al., 2019, Kostrikov et al., 2019, Brantley et al., 2020,
Garg et al., 2021, Dadashi et al., 2021, Viano et al., 2022].

A remarkable observation from empirical studies [Ho and
Ermon, 2016, Kostrikov et al., 2019, Ghasemipour et al.,
2019] is that adversarial imitation learning (AIL) often out-
performs behavioral cloning (BC) by a significant margin.
This phenomenon has spurred numerous theoretical investi-

Accepted for the 39th Conference on Uncertainty in Artificial Intelligence (UAI 2023).

mailto:<xut@lamda.nju.edu.cn>?
mailto:<ziniuli@link.cuhk.edu.cn>?
mailto:<yuy@nju.edu.cn>?
mailto:<luozq@cuhk.edu.cn>?


gations [Zhang et al., 2020, Wang et al., 2020b, Rajaraman
et al., 2020, 2021a, Xu et al., 2020, Liu et al., 2022, Xu et al.,
2022] aimed at understanding the mechanisms of AIL. How-
ever, analyzing AIL is challenging because both the expert
policy and environment transitions are unknown, making
expert estimation and policy optimization/evaluation inaccu-
rate. The complex min-max implementation of AIL further
compounds the theoretical analysis difficulty. As a result,
several prior works [Abbeel and Ng, 2004, Syed et al., 2008,
Rajaraman et al., 2020, 2021a, Xu et al., 2022] have made
the simplifying assumption of a known transition function
to facilitate the analysis.

However, the characterization of environment transitions
is often challenging in practical tasks, as noted in previ-
ous studies [Duan et al., 2016, Shi et al., 2019]. Therefore,
there has been growing interest in investigating AIL with
unknown transitions, where the learner does not have prior
knowledge of the transition function but can collect trajec-
tories by interacting with the environment. This setup is
widely used in empirical studies [Ho and Ermon, 2016, Fu
et al., 2018, Ke et al., 2019, Kostrikov et al., 2019, Brantley
et al., 2020, Garg et al., 2021, Li et al., 2022]. From a the-
oretical perspective, it is important to understand both the
expert sample complexity (i.e., the number of trajectories
collected by the expert) and the interaction complexity (i.e.,
the number of trajectories collected by the online learner)
to achieve good policies, as these are of practical interest.
In this paper, we investigate AIL with unknown transitions
and focus on analyzing the required expert sample and in-
teraction complexity.

Compared with the progress made in IL with known tran-
sitions, AIL with unknown transitions still lacks a well-
developed theoretical foundation. Earlier works, such as
FEM [Abbeel and Ng, 2005] and GTAL [Syed and Schapire,
2007], estimated the transition function from expert demon-
strations for imitation, rendering their algorithms impracti-
cal due to the prohibitively large expert sample complexity
(as shown in Table 1). To the best of our knowledge, the
online apprenticeship learning (OAL) algorithm in [Shani
et al., 2022] is a promising approach that updates the pol-
icy and reward function using no-regret algorithms dur-
ing environment interaction. In particular, OAL achieves
an expert sample complexity Õ(H2|S|/ε2) and interaction
complexity Õ(H4|S|2|A|/ε2)1, where |S| and |A| are the
state and action space sizes, H is the planning horizon, and
ε = V πE − V π is the desired imitation gap. However, even
with infinite environment interactions, OAL’s expert sam-
ple complexity is sub-optimal, as the best expert sample
complexity in the known transition setting is Õ(H3/2|S|/ε)

1In [Shani et al., 2022], a regret Õ(
√

H4|S|2|A|K +√
H3|S||A|K2/m) is proved, where K is the number of inter-

action episodes and m is the number of expert trajectories. We
convert this regret guarantee to the sample complexity guarantee
(see the Appendix).

[Rajaraman et al., 2020]. Thus, improving AIL with un-
known transitions is a significant area of research.

Table 1: Expert sample complexity and interaction complex-
ity of BC [Rajaraman et al., 2020], FEM [Abbeel and Ng,
2004], GTAL [Syed and Schapire, 2007], OAL [Shani et al.,
2022], and MB-TAIL (ours) with unknown expert and tran-
sitions. We use Õ to hide logarithmic factors.

Expert Sample
Complexity

Interaction
Complexity

BC Õ
(

H2|S|
ε

)
0

FEM Õ
(

H2|S|
ε2 + H8|S|3|A|

ε5

)
0

GTAL Õ
(

H2|S|
ε2 + H6|S|3|A|

ε3

)
0

OAL Õ
(

H2|S|
ε2

)
Õ
(

H4|S|2|A|
ε2

)
MB-TAIL Õ

(
H3/2|S|

ε

)
Õ
(

H3|S|2|A|
ε2

)
Contribution. This paper presents a new and general frame-
work (Algorithm 1) that overcomes the challenge of un-
known transitions and unknown expert policies. At a high
level, our framework establishes a connection between AIL
and reward-free exploration (RFE) [Jin et al., 2020, Ménard
et al., 2021, Chen et al., 2022], which is an emerging topic
in online RL. We prove that any effective AIL algorithm
that works with known transitions can be transferred to the
unknown transition setting using an efficient RFE method,
as shown in Proposition 1.

Further, we also introduce a new algorithm called MB-
TAIL2, which incorporates recent advances in AIL with
known transitions and RFE. MB-TAIL builds on MIMIC-
MD [Rajaraman et al., 2020] and RF-Express [Ménard et al.,
2021] but requires new designs to apply their main ideas in
the unknown transition setting. Notably, MB-TAIL achieves
an expert sample complexity of Õ(H3/2|S|/ε), meeting the
lower bound Ω(H3/2/ε) [Rajaraman et al., 2021b] in H
and ε. This sample complexity is nearly minimax optimal
and the first to be achieved in the unknown transition setting.
Additionally, MB-TAIL has an interaction complexity of
Õ(H3|S|2|A|/ε2), which improves upon the best-known
OAL algorithm by a factor of O(H).

Finally, we extend the MB-TAIL algorithm to the function
approximation setting and demonstrate its ability to achieve
the expert sample and interaction complexity independent
of the state space size |S|. Specifically, we investigate the
case of state abstraction [Li et al., 2006], which involves
approximating functions using piecewise constant functions.
By employing appropriate state abstractions, MB-TAIL can
estimate the abstract state-action distribution instead of the
tabular counterpart, which is crucial for generalization.

2MB-TAIL stands for model-based transition-aware adversar-
ial imitation learning.



2 RELATED WORK

In the realm of AIL with known transitions, there have
been numerous theoretical investigations into expert sam-
ple complexity [Abbeel and Ng, 2004, Syed and Schapire,
2007, Zahavy et al., 2020, Rajaraman et al., 2020, Swamy
et al., 2022, Xu et al., 2021, 2022]. For example, FEM and
GTAL, which are traditional AIL algorithms, have expert
sample complexity of Õ(H2|S|/ε2) 3. This upper bound
is proven to be tight in the worst-case [Xu et al., 2022,
Swamy et al., 2022]. Additionally, Rajaraman et al. [2020]
proposed a novel AIL technique, MIMIC-MD, which lever-
ages the transition function to obtain an enhanced expert
sample complexity of Õ(H3/2|S|/ε). MIMIC-MD meets
the information-theoretic lower bound of expert sample
complexity with known transitions, which is Ω̃(H3/2/ε)
[Rajaraman et al., 2021b], in terms of both H and ε. Re-
cently, horizon-free expert sample complexity was studied
in [Xu et al., 2022], which explains the superior perfor-
mance of AIL with known transitions. However, there are
only a limited number of theoretical investigations into AIL
with unknown transitions. We have already discussed these
in the previous section and thus will not repeat them here.

Our research establishes a connection between adversarial
imitation learning and reward-free exploration, which is an
emerging area of interest in online reinforcement learning.
The reward-free exploration framework was introduced in
[Jin et al., 2020] with two primary goals: 1) isolating the
exploration and planning problems within a standard RL
framework and 2) learning an environment that is robust
enough to cover all possible training scenarios. Since then,
several advances have been made in this field [Kaufmann
et al., 2021, Wang et al., 2020a, Zhang et al., 2021, Chen
et al., 2022]. Specifically, [Ménard et al., 2021] achieved
the minimax rate in the tabular setting.

It is worth noting that AIL is closely related to inverse re-
inforcement learning (IRL) [Ng and Russell, 2000], which
aims to infer the ground truth reward function from expert
demonstrations. Recent works in IRL include [Metelli et al.,
2021], which studied the error propagation of the obtained
policy’s performance when transferring the reward function
to a new environment, and [Zeng et al., 2022], which devel-
oped a single-loop algorithm to recover the reward function
under the maximum entropy IRL formulation. Addition-
ally, [Lindner et al., 2022] proposed an upper confidence
approach that actively explores the environment and expert
policy to learn the reward function. However, our focus dif-
fers from these studies as our goal is to solve the imitation
learning problem by learning a high-quality policy, rather

3Results from [Abbeel and Ng, 2004, Syed and Schapire, 2007]
are transformed from the infinite-horizon setting to the episodic
setting by 1) substituting the effective planning horizon 1/(1 −
γ) with the finite planning horizon H; 2) instantiating the linear
feature with the one-hot feature under the tabular setting.

than inferring the reward function.

3 BACKGROUND

Episodic Markov Decision Process. In this paper, we con-
sider episodic Markov decision process (MDP), which can
be described by the tuple M = (S,A, P, r,H, ρ). Here
S and A are the state and action space, respectively. H is
the planning horizon and ρ is the initial state distribution.
P = {P1, · · · , PH} specifies the non-stationary transition
function of this MDP; concretely, Ph(sh+1|sh, ah) deter-
mines the probability of transiting to state sh+1 conditioned
on state sh and action ah at time step h, for h ∈ [H],
where [x] denotes the set of integers from 1 to x. Sim-
ilarly, r = {r1, · · · , rH} specifies the reward function
of this MDP; without loss of generality, we assume that
rh : S × A → [0, 1], for h ∈ [H]. A non-stationary policy
π = {π1, · · · , πh} with πh : S → ∆(A), where ∆(A) is
the probability simplex and πh(a|s) gives the probability of
selecting action a on state s at time step h, for h ∈ [H].

The sequential decision process runs as follows: at the be-
ginning of an episode, the environment is reset to an initial
state according to ρ; then the agent observes a state sh and
takes an action ah based on πh(ah|sh); consequently, the
environment makes a transition to the next state sh+1 ac-
cording to Ph(sh+1|sh, ah) and sends a reward rh(sh, ah)
to the agent. This episode ends after H repeats.

The quality of a policy is measured by its policy value (i.e.,
the expected long-term return):

V π = E
[ H∑
h=1

rh(sh, ah)|s1 ∼ ρ; ah ∼ πh(·|sh),

sh+1 ∼ Ph(·|sh, ah),∀h ∈ [H]

]
.

To facilitate later analysis, we introduce the state-action
distribution induced by a policy π:

dπh(s, a) = P(sh = s, ah = a|s1 ∼ ρ; aℓ ∼ πh(·|sℓ),
sℓ+1 ∼ Pℓ(·|sℓ, aℓ), ∀ℓ ∈ [h]).

In other words, dπh(s, a) qualifies the visitation probability
of state-action pair (s, a) at time step h. In this way, we
get an equivalent dual form of the policy value [Puterman,
2014]:

V π =

H∑
h=1

∑
(s,a)∈S×A

dπh(s, a)rh(s, a), (1)

which will be used in later analysis.

Imitation Learning. The goal of IL is to learn a high quality
policy without the environment reward function. To this end,
we often assume there is a nearly optimal expert policy πE



that could interact with the environment to generate a dataset
(i.e., m trajectories of length H):

D ={tr = (s1, a1, s2, a2, · · · , sH , aH) ; s1 ∼ ρ;

ah ∼ πE
h (·|sh), sh+1 ∼ Ph(·|sh, ah),∀h ∈ [H]}.

Then, the learner can use the dataset D to mimic the expert
and to obtain a good policy. The quality of imitation is
measured by the imitation gap [Abbeel and Ng, 2004, Ross
and Bagnell, 2010, Rajaraman et al., 2020]: V πE − V π,
where π is the learned policy. That is, we hope the learned
policy can perfectly imitate the expert such that the imitation
gap is small. In this paper, we assume the expert policy is
deterministic, which is common in the literature [Rajaraman
et al., 2020, Swamy et al., 2022, Xu et al., 2022].

Notation. We denote Π as the set of all stochastic policies
for the learner. Furthermore, |D| is the number of trajectories
in D. We reserve the symbol m to denote the number of
expert trajectories. We write a(n) ≳ b(n) if there exist
constants C > 0, n0 ≥ 1 such that a(n) ≥ Cb(n) for
n ≥ n0.

4 WARM-UP: AIL WITH KNOWN
TRANSITIONS

To imitate the expert policy, AIL methods solve the state-
action distribution matching problem [Ho and Ermon, 2016,
Ke et al., 2019, Xu et al., 2020]. As an introduction to
general readers, we consider the known transition setting in
this section. Our starting point is the following state-action
distribution matching problem:

min
π∈Π

H∑
h=1

∥∥∥dπh − d̃π
E

h

∥∥∥
1
. (2)

where d̃π
E

h is an estimation of the expert state-action dis-
tribution dπ

E

h . We can explain why Equation (2) is a good
learning objective with the following two definitions.

Definition 1. An estimator d̃π
E

h is said to be εEST-accurate
for dπ

E

h if
∑H

h=1 ∥d̃π
E

h − dπ
E

h ∥1 ≤ εEST.

Definition 2. For optimization problem (2), a policy π

is said to be εOPT-optimal if
∑H

h=1 ∥dπh − d̃π
E

h ∥1 ≤
minπ∈Π

∑H
h=1 ∥dπh − d̃π

E

h ∥1 + εOPT.

Lemma 1. Given an εEST-accurate estimator d̃π
E

h , suppose
that π is εOPT-optimal for problem (2), then we have that
V πE − V π ≤ εOPT + 2εEST.

Proof of Lemma 1 can be found in the Appendix along with
other theoretical results. This lemma establishes a strong
theoretical foundation for state-action distribution matching.
It is worth noting that similar versions of this lemma have

been presented in prior works such as [Syed and Schapire,
2007, Rajaraman et al., 2020]. We will discuss how to con-
trol estimation and optimization errors in the next section.

While significant theoretical progress has been made in the
known transition setting, this assumption is not always prac-
tical in real-world applications where the transition function
is unknown. In such cases, empirical studies have been car-
ried out under the unknown transition setting, where the
interaction with environments is allowed but the analytic
form of transition function is not available. In addition to
expert sample complexity, the interaction complexity is also
of great interest in this scenario, which we will explore in
the next section.

5 MAIN RESULTS: AIL WITH
UNKNOWN TRANSITIONS

In this section, we consider the unknown transition setting
where dπh is not accessible, rendering the learning objective
in Equation (2) inapplicable. A sound solution is to replace
dπh with its estimated version d̂πh in Equation (2). We high-
light that the unknown transition leads to the exploration-
and-exploitation trade-off, which is shared with online RL
[Agarwal et al., 2022]. The prior work OAL addresses this
challenge by an optimistic estimation of the value function
[Shani et al., 2022].

In this paper, we explore an alternative model-based ap-
proach: we first learn the transition function from collected
trajectories and subsequently estimate dπh based on the re-
covered transition model. The key challenge is how to
recover a good transition model such that policy evalu-
ation/optimization can be conducted accurately. To this
end, we propose a general algorithmic framework, which
connects AIL with reward-free exploration (or RFE for
short) [Jin et al., 2020, Ménard et al., 2021], which is an
emerging topic in online RL. Under this framework, a proper
AIL algorithm that works under the known transition setting
could be transferred to the unknown transition setting by
leveraging an efficient RFE method. Before presenting the
details of our framework, we formally introduce RFE.

Definition 3 ([Ménard et al., 2021]). Given an MDPM
without reward function r, an algorithm is said to be (ε, δ)-
PAC for reward-free exploration (RFE) if

P
(
for any reward function r, |V π∗

r − V π̂∗
r | ≤ ε

)
≥ 1− δ,

where π∗
r is the optimal policy in the MDP with the reward

function r, and π̂∗
r is the optimal policy in the MDP with the

learned transition model P̂ by RFE and reward function r.

By algorithmic designs, RFE methods usually satisfy the so-
called uniform policy evaluation property, which is crucial
for the discussion of AIL.



Definition 4. Given an MDPM without reward function
r, an algorithm is said to be (ε, δ)-PAC for uniform policy
evaluation if

P
(
for any reward function r and policy π,

|V π,P,r − V π,P̂ ,r| ≤ ε
)
≥ 1− δ,

where V π,P,r and V π,P̂ ,r are the policy values of policy π
with reward function r under the real transition model P
and recovered transition model P̂ , respectively.

Examples of algorithms that satisfy Definition 4 include
RF-RL-Explore [Jin et al., 2020] (see their Lemma 3.6),
RF-UCRL [Kaufmann et al., 2021] (see their Lemma 1 and
the stopping rule) and RF-Express in [Ménard et al., 2021]
(see their Lemma 1 and the stopping rule).

Definition 4 is connected with AIL in the following way:

H∑
h=1

∥d̂πh − dπh∥1

= max
w∈W

H∑
h=1

∑
(s,a)

wh(s, a)(d̂
π
h(s, a)− dπh(s, a))

= max
w∈W

V π,P̂ ,w − V π,P,w ≤ ε.

Here the first equality follows the dual representation of
ℓ1-norm, andW = {w : ∥w∥∞ ≤ 1} is the unit ball. The
second equality follows Equation (1). The last inequality
follows Definition 4. In plain language, the above formula
shows that we can get an accurate estimation of dπh, based
on the recovered model by RFE.

Based on the above relation, with a transition model learned
by RFE, AIL can be implemented as if this empirical tran-
sition function were the same as the true transition func-
tion. More specifically, the state-action distribution match-
ing problem Equation (2) becomes

min
π∈Π

H∑
h=1

∥∥∥d̃πE

h − dπ,P̂h

∥∥∥
1

(3)

where dπ,P̂h is the state-action distribution of policy π with
the transition model P̂ . We outline the whole procedure in
Algorithm 1 and the theoretical guarantee is provided below.

Proposition 1. Suppose that

(a) a reward-free exploration algorithm A satisfies the uni-
form policy evaluation property (see Definition 4) up
to an error εRFE with probability at least 1− δRFE;

(b) an algorithm B has a state-action distribution estima-
tor for dπ

E

h , which satisfies
∑H

h=1 ∥d̃π
E

h − dπ
E

h ∥1 ≤
εEST, with probability at least 1− δEST;

(c) with the transition model in (a) and the estimator in
(b), an algorithm C solves the optimization problem in
Equation (3) up to an error εOPT.

Then applying algorithms A, B and C under the framework
in Algorithm 1 could return a policy π, which has a policy
value gap (i.e., V πE−V π) at most 2εEST+2εRFE+εOPT,
with probability at least 1− δEST − δRFE.

Algorithm 1 Meta-algorithm for AIL with Unknown Tran-
sitions
Input: Expert demonstrations D.

1: P̂ ← Invoke a reward-free exploration method to collect
n trajectories and learn a transition model.

2: d̃π
E

h ← Estimate the expert state-action distribution.
3: π ← Apply an AIL approach to perform imitation with

the expert estimation d̃π
E

h under transition model P̂ .
Output: Policy π.

Next, we show how to substantiate the framework in Al-
gorithm 1 with detailed procedures. We will consider the
tabular formulation, where the space of parameterized value
functions spans all possible functions. In this scenario, ex-
pert policies and reward functions are realizable. We discuss
how to control εRFE, εEST, and εOPT in a sequential order.

5.1 CONTROLLING REWARD-FREE
EXPLORATION ERROR

To ensure that condition (a) in Proposition 1 is satisfied,
we make use of the RF-Express algorithm, as described in
[Ménard et al., 2021]. This advanced algorithm allows us to
control εRFE effectively. Below, we provide the theoretical
property of RF-Express.

Lemma 2 (Theorem 1 in [Ménard et al., 2021]). Fix
ε ∈ (0, 1) and δ ∈ (0, 1). Consider the RF-Express algo-
rithm (see Algorithm 1 in Appendix) and P̂ is the empirical
transition function built on the collected trajectories, if the
number of trajectories collected by RF-Express satisfies

n ≳
H3|S||A|

ε2

(
|S|+ log

(
|S|H
δ

))
.

Then with probability at least 1 − δ, for any policy π
and any bounded reward function r between [−1, 1], we
have |V π,P,r − V π,P̂ ,r| ≤ ε/2; furthermore, for any
bounded reward function r between [−1, 1], we have
maxπ∈Π V π,P,r ≤ V π̂∗

r ,P,r + ε, where π̂∗
r is the optimal

policy under the empirical transition function P̂ with re-
ward function r.



5.2 CONTROLLING EXPERT STATE-ACTION
DISTRIBUTION ESTIMATION ERROR

In this part, we talk about how to control the expert state-
action distribution estimation error. Quite often, the maxi-
mum likelihood estimator (MLE) is considered in the litera-
ture [Abbeel and Ng, 2004, Syed and Schapire, 2007, Shani
et al., 2022]. Mathematically, MLE counts how frequently a
state-action pair appears in the observed expert trajectories:

d̂π
E

h (s, a) =

∑
tr∈D I {trh(·, ·) = (s, a)}

|D|
, (4)

where trh(·, ·) indicates the specific state-action pair of
trajectory tr in time step h. The sample complexity of MLE
is well-known.

Lemma 3 (Rajaraman et al. [2020]). Fix ε ∈ (0, H) and
δ ∈ (0, 1), if the number of expert trajectories in D satisfies

m ≳
H2|S|
ε2

log

(
H

δ

)
,

then with probability at least 1− δ, we have
∑H

h=1 ∥d̂π
E

h −
dπ

E

h ∥1 ≤ ε.

The above sample complexity of MLE is tight in the worst
case; see, e.g., [Kamath et al., 2015, Lemma 8]. Though
MLE can be implemented under our framework, this esti-
mator cannot lead to the minimax optimal expert sample
complexity Θ(H3/2|S|/ε). To address this issue, in light of
[Rajaraman et al., 2020], we develop a new estimator. For a
better presentation, let us introduce the following notations.

• Similar to trh(·, ·), trh(·) indicates the specific state
of trajectory tr in time step h.

• Without (·) or (·, ·), trh is the truncated version
of trajectory tr up to time step h, i.e., trh =
(s1, a1, · · · , sh, ah).

• Sh(D) = {s : ∃tr ∈ D such that s = trh(·)} is the
set of states visited at time step h in D.

• TrDh = {trh = (s1, a1, . . . , sh, ah) : sℓ ∈
Sℓ(D),∀ℓ ∈ [h]} is the set of truncated trajectories
(that may not appear in D), along which each state has
been visited in D up to time step h.

From the definition of state-action distribution, we have

dπh(s, a) = dπh(s)πh(a|s)

=
[∑
s′,a′

dπh−1(s
′, a′)Ph−1(s|s′, a′)

]
πh(a|s) (5)

This equation offers another perspective on visitation prob-
ability: dπh(s, a) represents the weighted average of flows.
Specifically, each flow path is determined by ancestral state-
action sequences that lead to the target state-action pair

(s, a), and the weight of this flow is influenced by both the
transition probability and the policy distribution.

However, when dealing with a finite sample regime, only
a subset of trajectories executed by the expert policy is ob-
served, while others remain unobserved. We can use the
transition function to calculate the visitation probability for
the observed trajectories, but we require statistical estima-
tion for the non-observed ones. This idea has been exploited
in [Rajaraman et al., 2020] in the known transition setting.

Now, consider the dataset D is randomly divided into two
equal parts, i.e., D = D1 ∪ Dc

1 and D1 ∩ Dc
1 = ∅ with

|D1| = |Dc
1| = m/2. We have the following decomposition:

dπ
E

h (s, a) =
∑

trh∈Tr
D1
h

PπE

(trh)I {trh(·, ·) = (s, a)}

︸ ︷︷ ︸
:=♣

+
∑

trh /∈Tr
D1
h

PπE

(trh)I {trh(·, ·) = (s, a)}

︸ ︷︷ ︸
:=♠

, (6)

where PπE

(trh) is the probability of the truncated tra-
jectory trh induced by the deterministic expert pol-
icy πE. As we have mentioned, if the transition func-
tion is known, we can calculate PπE

(trh) directly:
PπE

(trh) = ρ(s1)
∏h−1

ℓ=1 Pℓ(sℓ+1|sℓ, aℓ) with trh =
(s1, a1, · · · , sh, ah)

We explain two terms in Equation (6) separately. On the
one hand, term ♣ can be calculated exactly if we know
both the transition function and D1, as explained previ-
ously. However, this is not applicable in our case as the
transition function is unknown. We will discuss how to
deal with this trouble later. On the other hand, term ♠ ac-
counts for non-observed trajectories, which is not easy to
compute (because we have no clue about expert actions
on non-observed states). To address this issue, Rajaraman
et al. [2020] proposed to use trajectories in Dc

1 to make a
maximum likelihood estimation. This is because, Dc

1 is sta-
tistically independent of D1 and therefore can be viewed as
a new dataset. We follow the approach in [Rajaraman et al.,
2020] to estimate term ♠.

Now, we explain how to estimate term ♣ in the unknown
transition setting. Our solution has two steps. The first step
is to apply BC on D1 to learn policy π′:

π′
h(a|s) =

{
n1
h(s,a)

n1
h(s)

if n1
h(s) > 0

1
|A| otherwise

Here n1
h(s, a) (n1

h(s)) is the number of state-action (state)
pairs that appeared in D1 in step h. This step recovers the
expert behaviors on visited states in D1. The second step
is to let π′ interact with the environment to collect a new
dataset D′

env, from which we can estimate term ♣ by MLE.



To get a better sense, we mention that the uncertainty of
estimating term♣ comes from the transition function, rather
than the expert policy. Furthermore, by our design, trajec-
tories in D′

env are collected as if the expert policy were
roll-out (because π′ can perfectly match πE on S(D1), so
the randomness of MLE is only caused by the stochastic
transitions.

In summary, we arrive at the following estimator:

d̃π
E

h (s, a) =

∑
trh∈D′

env
I{trh(·, ·) = (s, a), trh ∈ TrD1

h }
|D′

env|

+

∑
trh∈Dc

1
I{trh(·, ·) = (s, a), trh ̸∈ TrD1

h }
|Dc

1|
. (7)

Two terms in Equation (7) give estimation for terms ♣ and
♠ in Equation (6), respectively. It is important to note that
the state-action distribution largely depends on the transi-
tion probability, as shown in Equation (5). In contrast to
the MLE in Equation (4), our proposed estimator addition-
ally leverages the transition information from the online
interactions; see the first term in RHS in Equation (7). This
advancement leads to a more accurate estimation of the
expert’s state-action distribution.

Lemma 4. Given the expert dataset D, let D be divided
into two equal subsets, i.e.,D = D1 ∪Dc

1 andD1 ∩Dc
1 = ∅

with |D1| = |Dc
1| = m/2. Fix π′ ∈ ΠBC (D1), let D′

env be
the dataset collected by π′ and |D′

env| = n′. Fix ε ∈ (0, 1)

and δ ∈ (0, 1); suppose H ≥ 5. Consider the estimator d̃π
E

h

shown in (7), if the expert sample complexity (m) and the
interaction complexity (n′) satisfy

m ≳
H3/2|S|

ε
log

(
|S|H
δ

)
, n′ ≳

H2|S|
ε2

log

(
|S|H
δ

)
,

then with probability at least 1− δ, we have

H∑
h=1

∥∥∥d̃πE

h − dπ
E

h

∥∥∥
1
≤ ε.

To our best knowledge, the estimator (7) is the first to enjoy
a better expert sample complexity than MLE in the unknown
transition setting. The nature of unknown transitions raises
a technical difficulty in analyzing the estimation error of
two sub-estimators in (7). We highlight that the classical
concentration inequality, used to analyze the MLE estimator
in Lemma 3, cannot be used to upper bound this estima-
tion error, as the distributions involved are not valid. To
overcome this obstacle, we employ Chernoff’s bound and
additional statistical arguments.

5.3 CONTROLLING OPTIMIZATION ERROR

We now consider the optimization issue. Again, we utilize
the dual representation of ℓ1-norm and the min-max the-
orem [Bertsekas, 2016] to obtain the following max-min

optimization problem:

max
w∈W

min
π∈Π

H∑
h=1

∑
(s,a)

wh(s, a)(d̃
πE

h (s, a)− dπ,P̂h (s, a)). (8)

whereW = {w : ∥w∥∞ ≤ 1} is the unit ball. We see that
the inner problem in (8) is to maximize the policy value
of π given the reward function wh(s, a) (see Equation (1)
for the dual form of policy value). For the outer optimiza-
tion problem, we can use online gradient descent methods
[Shalev-Shwartz, 2012] so that the overall objective can
finally reach an approximate saddle point. Formally, let us
define the objective f (t)(w):

H∑
h=1

∑
(s,a)∈S×A

wh(s, a)
(
dπ

(t),P̂
h (s, a)− d̃π

E

h (s, a)
)

︸ ︷︷ ︸
:=f(t)(w)

, (9)

where π(t) is the optimized policy in iteration t. Then the
update rule for w is:

w(t+1) := PW(w(t) − η(t)∇f (t)(w(t))),

where η(t) > 0 is the stepsize to be chosen later, and
PW is the Euclidean projection on the unit ball W , i.e.,
PW(w) := argminz∈W ∥z − w∥2. The procedure for solv-
ing (8) is outlined in Algorithm 2.

Algorithm 2 Gradient-based Optimization

Input: Transition model P̂ , and expert state-action distri-
bution estimator d̃π

E

h .
1: for t = 1, 2, · · · , T do
2: π(t) ← Solve the optimal policy with the transition

model P̂ and reward function w(t) up to an error εRL.

3: Compute the state-action distribution dπ
(t),P̂

h for π(t).

4: Update w(t+1) := PW
(
w(t) − η(t)∇f (t)(w(t))

)
with f (t)(w) defined in Equation (9).

5: end for
6: Compute the mean state-action distribution dh(s, a) =∑T

t=1 d
π(t),P̂
h (s, a)/T .

7: Derive πh(a|s)← dh(s, a)/
∑

a dh(s, a).
Output: Policy π.

Line 2 in Algorithm 2 formulates a typical reinforcement
learning (RL) optimization problem. We allow π(t) to be
εRL-optimal with respect to the optimal policy with reward
function w(t), i.e., V π(t),P̂ ,w(t) ≥ V π∗

w(t) ,P̂ ,w(t)

− εRL. In
the tabular case, εRL = 0 by value iteration with finite and
polynomial computation steps. For approximate methods
such as policy gradient ascent, we require that they can
guarantee εRL is small with low computational cost.



Lemma 5. Fix ε > 0. Consider the gradient-based opti-
mization procedure in Algorithm 2 with εRL ≤ ε/2. If we
take T ≳ H2|S||A|/ε2 and η(t) :=

√
|S||A|/(8T ), then

we have

H∑
h=1

∥∥∥dπ,P̂h − d̃π
E

h

∥∥∥
1
≤ min

π∈Π

H∑
h=1

∥∥∥dπ,P̂h − d̃π
E

h

∥∥∥
1
+ ε.

5.4 MB-TAIL: COMBING ALL TOGETHER

Combing the above all pieces together, we obtain the fi-
nal approach called MB-TAIL presented in Algorithm 3.
Here “MB-TAIL” stands for model-based transition-aware
adversarial imitation learning.

Algorithm 3 Model-based Transition-aware AIL

Input: Expert demonstrations D.
1: Invoke RF-Express to collect n trajectories and learn an

empirical transition function P̂ .
2: Randomly split D into two equal parts: D = D1 ∪ Dc

1.
3: Learn π′ ∈ ΠBC (D1) by BC and roll out π′ to obtain

dataset D′
env with |D′

env| = n′.
4: Obtain the estimator d̃π

E

h in (7) with D and D′
env.

5: π ← Apply Algorithm 2 with the estimation d̃π
E

h under
transition model P̂ .

Output: Policy π.

Theorem 1. Fix ε ∈ (0, 1) and δ ∈ (0, 1); suppose H ≥ 5.
Under the unknown transition setting, consider MB-TAIL
displayed in Algorithm 3 and π is output policy, assume that
the RL error εRL ≤ ε/2, the number of iterations and the
step size are the same as in Lemma 5, if the expert sample
complexity and the interaction complexity satisfy

m ≳
H3/2|S|

ε
log

(
H|S|
δ

)
, n′ ≳

H2|S|
ε2

log

(
H|S|
δ

)
,

n ≳
H3|S||A|

ε2

(
|S|+ log

(
H|S||A|

δε

))
,

then with probability at least 1− δ, we have V πE −V π ≤ ε.

Remark 1. Our MB-TAIL algorithm achieves expert
sample complexity m = Õ(H3/2|S|/ε) and total inter-
action complexity n + n′ = Õ(H3|S|2|A|/ε2), even
in the case of unknown transitions. In comparison, the
OAL algorithm in [Shani et al., 2022] has expert sam-
ple complexity Õ(H2|S|/ε2) and interaction complexity
Õ(H4|S|2|A|/ε2) in the same scenario. Theorem 1 vali-
dates that our approach provides significant improvements
over OAL in terms of both expert sample complexity and
interaction complexity.

The success of this improvement hinges on the design of our
algorithm. Unlike OAL, which uses a maximum likelihood

estimate of the expert’s state-action distribution for imita-
tion, MB-TAIL leverages transition information to construct
a more accurate estimator. In addition, OAL uses a tailored
optimistic value function in a model-free manner for explo-
ration, but MB-TAIL employs a model-based, reward-free
exploration method to efficiently explore the state-action
space. These algorithmic designs yield substantial enhance-
ments in both expert sample complexity and interaction
complexity.

Simulation Studies. Finally, we conclude by validating our
theoretical results through experiments, where we compare
the performance of MB-TAIL with four other state-of-the-
art algorithms: BC [Pomerleau, 1991], FEM [Abbeel and
Ng, 2005], GTAL [Syed and Schapire, 2007], and OAL
[Shani et al., 2022]. All algorithms are given 100 expert
trajectories, and we evaluate their performance on the Reset
Cliff MDP (shown in Figure 1 in Appendix), which is known
to be challenging for imitation learning algorithms [Rajara-
man et al., 2020, Xu et al., 2021]. We conduct experiments
with 20 random seeds, and provide more experimental de-
tails in the Appendix. The code to reproduce our results is
available at our GitHub repository 4.
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Figure 1: The imitation gap (i.e., V πE − V π) in Reset Cliff.

Figure 1 shows the imitation gap for each algorithm. Note
that BC, FEM, and GTAL do not leverage environment
interactions. Our results show that MB-TAIL outperforms
FEM and GTAL when the number of interactions exceeds
500. Additionally, we observe that MB-TAIL outperforms
OAL with the same number of interactions, which confirms
the superior theoretical bounds of MB-TAIL.

6 MB-TAIL WITH STATE ABSTRACTION

Previously, we considered the tabular representation, which
leads to theoretical bounds that depend on the size of the
problem |S|. However, as suggested by the lower bounds in
[Rajaraman et al., 2020, Theorem 6.1, 6.2], this dependence
is inevitable and could be unacceptable when |S| is huge.
In this section, we investigate the use of state abstractions
[Li et al., 2006] within MB-TAIL, so the dependence on |S|
can be eliminated.

4https://github.com/tianxusky/tabular-ail

https://github.com/tianxusky/tabular-ail


Specifically, we assume that we have a set of state abstrac-
tions {ϕh}Hh=1, where ϕh : S → Φ and Φ is the abstract
state space. State abstractions correspond to function ap-
proximations using a series of piecewise constant functions
[Chen and Jiang, 2019]. The abstract state space is much
smaller than the original state space, i.e., |Φ| ≪ |S|. We also
assume that {ϕh}Hh=1 satisfies a condition that is common
in the literature [Li et al., 2006, Jiang et al., 2015].

Assumption 1. There exists a set of known state abstrac-
tions {ϕh}Hh=1, which satisfies ∀h ∈ [H], for any s1, s2 ∈ S
such that ϕh(s

1) = ϕh(s
2),

bisimulation : ∀a ∈ A, x′ ∈ Φ, rh(s
1, a) = rh(s

2, a)

(10)∑
s′∈ϕ−1

h (x′)

Ph(s
′|s1, a) =

∑
s′∈ϕ−1

h (x′)

Ph(s
′|s2, a); (11)

πE-irrelevant : πE
h (s

1) = πE
h (s

2), (12)

where ϕ−1
h (x′) = {s′ ∈ S : ϕh(s) = x′}.

In bisimulation, the reward-consistent condition in (10) en-
sures that two different states mapped to the same abstract
state share an identical reward. We highlight that this condi-
tion is important for MB-TAIL to avoid the dependence of
expert sample complexity on |S|. In particular, the bottleneck
of the sample complexity of AIL methods is the estimation
of dπ

E

h (s, a). Under the reward-consistent condition, we can
calculate the expert policy value as

V πE

=

H∑
h=1

∑
(s,a)∈S×A

rh(s, a)d
πE

h (s, a)

=

H∑
h=1

∑
(x,a)∈Φ×A

rϕh(x, a)d
πE,ϕ
h (x, a),

where rϕh(x, a) = rh(s, a) for an arbitrary s ∈ ϕ−1
h (x)

and dπ,ϕh (x, a) = PπE

(ϕh(sh) = x, ah = a) =∑
s∈ϕ−1

h (x) d
π
h(s, a) is the abstract state-action distribution.

With the above formulation, to estimate the expert policy
value, we can estimate the abstract state-action distribution
rather than the tabular counterpart, which can remove the de-
pendence on |S|. Analogously, the transition-consistent con-
dition in (11) guarantees that two different states mapped to
the same abstract state share an identical transition. This con-
dition is crucial for removing the dependence of interaction
complexity on |S| since it allows estimating the “abstract
transition function”.

We now extend MB-TAIL to the state abstraction setting,
which we describe in detail in the Appendix due to space
limitations. We prove that under Assumption 1, MB-TAIL
achieves expert sample and interaction complexities that

are independent of |S|. However, the proof is not straight-
forward, and the primary challenge is to connect the state-
action distributions in the original and abstract MDPs. We
provide a detailed discussion of the specialized analysis
tools in the Appendix.

Theorem 2. Under Assumption 1, fix ε ∈ (0, 1) and
δ ∈ (0, 1); suppose H ≥ 5. Under the unknown transi-
tion setting, consider Algorithm 2 in Appendix and [πϕ]M

is output policy. Assume that the RL error εRL ≤ ε/2, the
number of iterations T ≳ H2|Φ||A|/ε2, and the step size
η(t) :=

√
|Φ||A|/(8T ). If the number of expert trajectories

(m), the number of interaction trajectories for estimation
(n′), and the number of interaction trajectories for reward-
free exploration (n) satisfy

m ≳
|Φ|H3/2

ε
log

(
|Φ|H
δ

)
, n′ ≳

|Φ|H2

ε2
log

(
|Φ|H
δ

)
,

n ≳
|Φ||A|H3

ε2

(
|Φ|+ log

(
|Φ||A|H

δε

))
,

then with probability at least 1− δ, we have the imitation
gap V πE − V [πϕ]M ≤ ε.

7 CONCLUSION

This paper contributes to the establishment of theoretical
foundations for AIL with unknown transitions. We propose
a new and general framework that enables AIL to explore
and imitate efficiently. As mentioned, AIL methods can have
much better theoretical guarantees on structured instances,
such as horizon-free bounds suggested in [Xu et al., 2022].
Thus, we believe that investigating AIL with unknown tran-
sitions on structured instances is an interesting and valuable
direction for future research.
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