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Abstract

We explore the application of expressions for the expected maxima of sets of random vari-
ables to compute the mean of the distribution of fixed points of the Bellman optimality
equation for large state space Markov decision processes (MDPs), under a Bayesian frame-
work. Current approaches to computing the statistics of the value functions in reinforcement
learning rely on bounds and estimates that do not exploit statistical properties of the Bell-
man equation which can arise in the large system limit. Specifically, we utilise a recently
developed mean field theory called dynamic mean field programming, to compute the mo-
ments of the value function. Under certain conditions on the MDP structure and beliefs
this mean field theory is exact. Computing the solution to the mean field equations however
relies on computing expected maxima, and previous approaches were limited to identically
distributed rewards. We improve the existing estimates and generalise to non-identical set-
tings. We analyse the resulting approximations to the mean field equations, establishing
Lyapunov stability and contractive properties.

1 Introduction

An outstanding challenge in Bayesian reinforcement learning is to accurately compute or approximate the
posterior distribution of solutions to the Bellman optimality equation, known as the optimal value functions.
In principle, with the posterior one can then design sample efficient learning algorithms, in the style of
so-called multi-armed bandit problems (Lattimore and Szepesvari, [2020)).

Index policies provide excellent solutions for the multi-armed bandit, a Markov decision process (MDP) with a
single state and a number of actions, each of which returns a random reward. An index represents the benefit
of choosing a particular action at a particular time, given observed rewards. A good index policy balances,
in expectation, the reward one might receive with the information one gains by choosing a particular action.
Sample efficient algorithms act by choosing the action with the highest index, for example, the highest upper
confidence on the mean-reward for each action, a principled heuristic known as the “optimism in the face of
uncertainty".

A prominent example in the frequentist setting are the upper confidence bound algorithms (Lattimore and
Szepesvari, [2020), which have an analogue in the Bayesian approach (Kaufmann et all |[2012)). Often the
index has the form of a mean estimate, plus a constant multiplied by the standard deviation in the estimate,
where the constant scales inversely with the number of times the action has been selected.

Extending this approach to general MDPs is difficult because the quantity that corresponds to a mean-
reward in the bandit setting is the optimal state-action value function, also known as optimal Q-values. The
problem is that one can not obtain direct samples to estimate these functions (even if one had the optimal
policy!). As (O’Donoghue et al., 2018) describe,

"If we had access to the true posterior distribution over the Q-values then we could take
actions that lead to states with higher uncertainty by, for example, using Thompson sam-
pling (Thompson, [1933); (Strens, [2000), or constructing Q-values that are high probability
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upper bounds on the true Q-values and using the [optimism in the face of uncertainty| prin-
ciple (Kaufmann et al., |2012). However, calculating the true posterior is intractable for all
but very small problems. Due to this difficulty prior work has sought to approximate the
posterior distribution (Osband and Van Roy, [2017), and use that to drive exploration."

Our paper takes this statement as a challenge and our starting point. We attempt to estimate the moments
of the optimal Q-values directly, beginning with the first moment, which itself presents difficulty and also
considerable insight into how uncertainty propagates. In contrast to existing methods, we estimate the mean
using a recently developed mean field theory for reinforcement learning (Stamatescu, [2022)).

1.1 New approaches to quantifying uncertainty over the optimal Q-values

Although one can not sample the optimal state-action values directly, as an agent interacts with an MDP,
one does observe directly the rewards and state transitions and can then estimate the MDP parameters.
Thus, current approaches to deriving an index over optimal Q-values are based on translating confidence
sets or Bayesian credibility sets for the MDP parameters, to confidence intervals on the state-action values.

This translation is generally hard due to the interdependence induced by the Bellman optimality equation,
as described in the quote from (O’Donoghue et al., 2018]) above. Moreover, methods for translating these
sets to the state-action value functions are generally evaluated via a regret bound, that is, at the end of an
asymptotic analysis of the learning algorithm. In practice however, such translations have result in both
biased estimates for the mean and in loose confidence intervals for the state-action value functions (Osband
and Van Roy, 2017)).

A recent approach to this problem introduces a statistical mean field theory for Bayesian reinforcement
learning called dynamic mean field theory (DMFT), (Stamatescu, |2022). The DMFT results in a set of mean
field equations dubbed dynamic mean field programming (DMFP), that propagate parameter uncertainty
through the Bellman optimality equation exactly, under certain conditions.

The DMFP approach is based on a entirely different method of analysis, which was shown to calculate exactly
the mean and higher moments of the state-action value functions, under certain assumptions. If we weaken
the assumptions, the DMFP equations become an approximation, which may still be applied with success.

The mean field or DMFP equations, as the name suggests, propagate the moments through the Bellman
optimality equation, or dynamic programming equations. In the finite horizon case, these are the moments
of the time-dependent value functions, and in the infinite horizon case, these are the moments of the iterates
of the Bellman equation, whose fixed point is the optimal value function.

This idea is analogous, in a certain way, to message passing algorithms for approximate inference, such as
belief propagatiorﬂ This connection was not made explicitly in the work of (Stamatescu, 2022)), which
focused on the identical prior case where there is one representative mean field equation for all state-action
values. The present paper improves the computation of the existing mean field equations and extends them
to the case of non-identical beliefs.

Explicitly, in order to solve the mean field equations, one must compute expectations over the maximum of
the state-action value functions. The approach presented in (Stamatescu, 2022|) applies an extreme value
theory approximation, and is thus restricted to the large action space limit and the identical reward case.
The task of computing the expected maxima under general conditions is the starting point for the present
paper, from which our main contributions follow.

1.2 Summary of the contributions

The current paper forms crucial building blocks for new methods to quantify uncertainty over state-action
value functions in Bayesian reinforcement learning (RL). Here we tackle head on the problem of estimating
the moments of the state-action value functions, by improving the computation of mean field approximations.

1Precisely, the dynamic mean field theory is analagous to the average case analysis of dynamic message passing algorithms
for an inference problem.
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We focus on the mean of the optimal Q-values, which itself is difficult to estimate. While the prior work of
(Stamatescul, [2022) focused on the case of identical beliefs over the MDP parameters, we study the mean
field equation for general non-identical beliefs.

In the statistical inference language, the mean field equations are equivalent to so-called message passing
algorithms, albeit for dynamic random variables. Message passing algorithms such as belief propagation
or expectation propagation allow one to compute the marginal moments of unobserved or latent variables
(which are static, having no dynamic time index). Such an approach has not been studied in Bayesian
reinforcement learning, to the best of our knowledge.

A summary of our contributions are as follows,

+ (Review and numerical study of the expected maximum)

We provide a comprehensive review of disparate exact formulae, approximations and bounds of
the expected maximum, largely from the statistics literature. We then numerically investigate the
reviewed formulae, thus providing the basis for the efficient and accurate computation of new mean
field equations for uncertainty propagation in reinforcement learning.

o (Bayesian RL and uncertainty quantification via mean-field equations)

Based on the expressions for the expected maximum, we compute new sets of mean field equations for
general beliefs, thus generalising the work of (Stamatescul,2022)), which considered one representative
mean field equation. Numerical studies are presented which reveal the accuracy of the equations,
under conditions for which the mean field theory is expected to hold, and how the equations’ accuracy
breaks down outside of these conditions. We emphasise in particular the role of sparsity in the break
down in the mean field theory and the equations’ accuracy. We compare this accuracy to other
estimates of the posterior means, showing the breakdown appears to be smooth. We also compare
our equations to the implicit estimates of several Bayesian RL algorithms under the mean field
settings.

o (Certainty equivalence as a lower bound)

Notably, we show that under the mean field conditions, the certainty equivalence heuristic, which
replaces the model parameters with their means, is in fact a lower bound to the mean of the value
functions. In the literature this is often erroneously termed the “mean MDP" (Sorg et all [2012).
This simple fact follows from an application of Jensen’s inequality to the mean field equations.

o (Contraction mappings and stability)

A suite of approximate or exact mean field equations are proven to be either contraction mappings,
stable, or both. We demonstrate the analytical difficulty for proving these results for the DMFP
equations in general, an important and open mathematical challenge.

1.3 OQutline of the paper

After introducing some background material on MDPs and the dynamic mean field theory (DMFT), the paper
divides into three parts. The first contains an exhaustive review of formulas, approximations and bounds for
the expected value of the maximum of a set of random variables. We provide a simple comparative analysis
of the bounds, exact formulae and sample estimation to obtain insights into the numerical performance of
each approach. The second part turns to the reinforcement learning problem. We simulate the DMFP,
computing the mean of the Bellman optimality equation based on our comparative analysis of formulae for
the expected maximum. We study the performance of the mean field equations for MDPs under different
Dirichlet priors, including improper priors, and then consider the effect of sparsity in the transition function
and in turn Dirichlet beliefs. From this we then compare the bias of existing Bayesian RL algorithms. The
final part of the paper is dedicated to establishing the stability and contractive properties of the DMFP
equations and their approximations. We present both positive and negative results and an open problem.
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2 Background

We briefly discuss the foundational concepts underlying this paper. These concepts are Markov decision
processes and the dynamic mean field theory. In both of these cases our interest is not to develop the
general theory of these ideas, but to provide the context within which our work makes sense. We provide
significantly more detail on the dynamic mean field theory than on Markov decision processes, as the former
is a relatively recent development, see (Stamatescu, 2022)). For more details on Markov decision processes
see (Kallenbergy 2011)), (Thomas) [2007)) or (Bertsekas, 2022]).

2.1 Markov decision processes and Bayesian reinforcement learning
We define a Markov decision process (MDP) as a tuple; M = (S, A, P, R,~y). The sets
S={s:s=1,.,N} and A={a:a=1,.. K}

are the state space and the action space, respectively. The mapping P : S x A — A(S) denotes the transition
dynamics of the system. For each state-action pair, P(s,a) = Ps 4, is a probability distribution over states.
We write

Pooo =Prisgii=8:s.=s,a=a
5@, + ’

for the probability of transitioning, at time ¢, from state s to state s’ under action a. For our purposes we
do not consider the rewards as deterministic function but instead as random variables. For example, if the
rewards are Normally distributed: 75 4 ~ N (ps,q, 052,7@). The mean-rewards are bounded, as are the variances
of the reward distributions. The number v € [0, 1] is the discount factor.

We may use value iteration to solve our MDP, (Thomas| [2007)). The equation; V! = max, Q;a, (Bertsekas,

2012), connects the standard value functions to Q)-value functions. The Q-value iteration equation, based
on the Bellman optimality equations for the optimal @-value functions, is given by

1
i—:’(_] = Ps,a + 72 Ps,a,s’ : H}?X Qg',a“ (1)

S

If we consider parameter uncertainty in the distribution rewards and transition probabilities, and take
a Bayesian approach, the @-value functions are then random variables. We denote the mean, variance
and covariance of the random Q-values as: E(Q% ,) = pu ,, Var(Q% ,) = v, and Cov(Q% ,, Q% /) = ¥,
respectively. The mean field theory, from (Stamatescul, [2022) provides a way of approximating the posterior
parameters over state-action values. Under certain conditions, which we specify below, this theory tells us
that the posterior statistics for the state-action values is given by the solution to a set of mean field equations.

It is these equations that we refer to when we use the term dynamic mean field programming.

2.2 Dynamic mean field programming: the identical belief case

Dynamic mean field theory is an application of statistical field theory to the equations of dynamic program-
ming, specifically in the case that the underlying MDP is uncertain and one maintains a set of Bayesian
beliefs on its parameters. The general motivation behind the development of the dynamic mean field theory
comes from the successful application of methods from statistical physics to topics in computer science, and
specifically neural network theory. Such interaction between the fields of computer science and statistical
field theory has already occurred with results in both theoretical neuroscience, see (Sompolinsky et al., [1988)),
and deep neural networks, see (Poole et al., [2016).

The result of (Stamatescu, 2022) is asymptotically exact under the following assumptions. Notably, the
theory was derived under the identical prior setting, across all state-actions.

Assumption 1. (Mean-reward and transition independence assumption.) Across state action pairs, we
assume independence of the mean-rewards and transition functions; ps.o L p(s,a), Ps,a L P(s,a) and psa L
P(s,qy for all pairs s,a and (s,a)’.
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Assumption 2. (Flat or centred, identical Dirichlet parameters) The Dirichlet parameters are o 4,5 = ¢,
with ¢ > 1, for all s’ and (s,a) pairs. Note that with ¢ = 1 we have a flat Dirichlet distribution for all state
action pairs.

Assumption 3. (Identical mean-reward distribution) The mean-reward p, , has an arbitrary distribution
with a moment generating function that exists. We denote its mean and variance as y,, , and aﬁm. Notably,
we do not assume bounded rewards.

Assumption 4. (Bounded effective horizon) The discount factor v € [0,1) is fixed, meaning that the
effective horizon H.g = ﬁ is bounded.

Results of the DMFP theory. With the above condition satisfied, one obtains the following consequences
in the large state space limit. The first consequence is an asymptotic independence result for the Q-value
functions. Namely, the Q-value functions are independent across different state-action pairs, for a given
iteration ¢ (or time step, in the finite horizon case). Such a result is known as the propagation of chaos
property |Sznitman| (1991)).

As a consequence of these independence assumptions it is possible, when taking the expectation of an
arbitrary Q-value function, to effectively pass the expectation over each of the terms in Equation , giving
the following evaluation:

E(Q;’zl) = Ep,P,Qt (ps,a + ’}/Z Ps7a7s/ . HLQJX Qé,,a, )
= ]E(ps,a) +7 ZE(Ps,a,s/) : E(HE}X Qi/,a/)

= Ups,a T Vzps,a,a’ : E(HEE}X QZ/,a/).

S

Note that the expectation does not move through the maximum function. Here, p,_ , is the mean of the
distribution of the means of the rewards, while ]55’&’5/ is the mean over the distribution of the random
variable P; , . Additionally note that P; , is the Dirichlet vector, and P; , s is an element of that vector.
The independence across vectors is needed for the factorisation of the expectation as the Q-value function
at time ¢ is a function of all of the Dirichlet vectors, i.e., the transition probabilities.

Henceforth we write the above expectation of the Q-value function with the notation: E(Q%%') = ulfl,
giving us:

Hal = o 7D Praw  E(maxQy ) (2)
S/
which we refer to as the mean field equation.

2.3 Dynamic mean field programming: the general belief case

The work of (Stamatescul [2022) derived the DMFT for the case of identical beliefs on all mean-rewards
and flat Dirichlet beliefs. This implies that there is, and the derivation in fact delivers, a single mean
field or DMFP equation, representative of the mean of all state-action value functions. Despite this, the
DMFP equation can be straightforwardly extended to non-identical beliefs over the MDP parameters, and
one obtains instead a set of N x K equations, for each mean of the Q-values.

Non-identical beliefs can arise in several ways, and it is useful to then categorise beliefs over MDP parameters
in the following ways, noting that we however maintain the independence assumption between all state-action
pairs. We categorise the beleifs for the mean rewards as being (i) identical or (ii) non-identical, and the
Dirichlet beliefs as being (a) flat or (b) non-flat. Based on insights from mean field theory and disordered
systems, one might expect that in the case that the beleifs are (a) flat, the mean-field theory will hold
regardless of whether the mean-rewards are identical (i) or not (ii).
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However, as the Dirichlet beliefs become non-flat, we are essentially introducing sparisity and we would not
expect the mean field theory to hold. The question of exactly how sparse, or at what rate relative to the
system size N, is generally a very difficult technical question.

Nevertheless, we expect the set of DMFP equations to be a good first order approximation. However, one
must first of all be able to actually compute solutions to the equations. This motivates the following section,
that is, how to actually propagate moments when the random variables over which we take the maximum
are non-identical, which was not properly considered in (Stamatescu, [2022)).

2.4 Discussion of DMFP theory

One way to visualise the case where the dynamic mean field theory holds throughout episodes of reinforcement
learning, and one that will especially serve the purpose of illustrating how we utilize it within this paper,
is to envision a large, highly connected, Markov decision process. By high connectivity it is meant that an
agent can transition from one state to another state from a large set of potential next states.

For a Bayesian agent, the transition probabilities, rewards, and thus value functions are random variables
due to Bayesian uncertainty. Under the highly connected assumption then, at any point during learning,
the agent will believe they can transition to many states. Thus the influence of the uncertainty of any state-
action value function on another is negligible, because the agent beliefs about the transitions are themselves
dense. As the number of states increases this influence of the uncertainty approaches zero. In other words,
an effective independence between value functions at different state-action pairs is obtained in the large state
space limit.

In general MDPs will not be highly connected, but have sparse connections. Thus as an agent learns they
will eventually not believe they can transition anywhere, and the mean field result will break down. For
this reason, the mean field result may be thought to describe well the start of learning, though it may hold
for long periods during learning, or for highly connected MDPs. Our simulation study below investigates
certain sparse systems, showing that this prediction appears to hold.

We can see from the mean field equation that we should expect that the mean state-action value u’;ﬁll is
equal to i, , + C for some constant C. Essentially, our first objective in this work is to determine this
constant precisely, so that we may obtain exact numerical values for the Q-values. This objective motivates
our study of the expected value of the maximum of sets of Normally distributed random variables.

Outside of the mean field settings, the DMFP equations will not be of the form p, , + C, and the constant
C will depend on the state-action pair, in general.

Ezample. Suppose that the mean rewards are Normal, that is psa ~ N (i, ., Vs,a), then for each state-
action pair, the fixed point Q% , ~ N (pp, , +C,vsq). Similarly we could take mean rewards from any other
univariate distribution, such as a Beta distribution, and our fixed points would be distributed with this
distribution.

As a final remark, let us consider the variance of the state-action values. The DMFP theory predicts that the
variance is that of the mean rewards. However, outside of the mean field settings, we can generally expect
higher variance due to stronger dependence between Q-values. The exception to this of course is if we have
many samples for each state-action pair, and the parameters are essentially known.

3 Comparison of bounds and estimates

In this section we introduce the different methods for computing and approximating the expected value of
a set of independently distributed random variables. We focus in particular on Normal random variables,
though we find the best approximation formulae holds for arbitrary distributions.

Bounds for the expected maximum are perhaps what one might consider first, especially in the discipline
of cmputert science. These are often justified by whether they are “tight" or not, but this refers to the
number of elements considered in the maximum going to infinity. In the RL context this corresponds to the
action space, which is fixed and usually small, thus tightness of bounds is not particularly relevant. Here we
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investigate a range of exact and approximate methods for calculating the expected maximum and compares
to various bounds, including tight ones.

Formulas for the expected maxima that have closed forms, including those involving special functions, are
referred to as ‘exact’. Upper and lower bounds are referred to as either ‘bounds’ or ‘approximations’. Anything
requiring numerical integration is strictly an approximation, and Monte-Carlo samples are ‘estimates’

In Section we introduce equations for the expectation of the maximum. We detail their parameter
constraints, derivations, and we provide a short summary of some of the limitations we have found through
simulation work and also in theoretical work. The different upper and lower bounds that we study are also
introduced in Sections to , and are given the same treatment as the exact formulae. Our only
approximation method that is not a bound or exact formula is the method of Monte-Carlo sample estimation.
While we ultimately settle on one of the exact formulas as our ‘standard’, against which we measure the rest,
the Monte-Carlo sample estimations also provide a decent benchmark for determining the general degree of
accuracy that each bound and exact value provides.

Lastly we summarise the results of our simulations in Section (3.9). We tabulate the numerical results of
each expression for a quick evaluation of the difference in precision between them, and we generate plots
for selected expressions, showing the change in the numerical values as the number of random variables is
increased.

3.1 Exact formula for independent, non-identical random variables

For independent, non-identical random variables from an arbitrary distribution we can derive a useful formula
for the expected maximum, as follows. Let X be a random variable with cumulative distribution function
F(z); by definition

E(X) = /_OO xdF(x). (3)

A well known way to write the expectation, see (Feller, [1991)), is as

oo 0
E(X):/O 1—F(a;)dx—/_ F(z)dx. (4)

Equation can then be written as

IE(X):/0001—F(x)—F(—;lc)alac7 (5)

which can be found in a more general form in (David} [1981), which can be derived from formulas in (Tippett,
1925) and (Cox, 1954). It is then shown in (Ross, 2003) that if X7, ..., X} are independent random variables

with cdf’s Fx,, ..., Fx, respectively, then the above formula can be used to write,

00 k k
E(max X;) = /O 1— HFXi(z) - HFXZ,(*;E) dz. (6)

In our simulations the cumulative distribution functions will be Normal c.d.f’s written as error functions.
We will sometimes also refer to this equation as the “Ross” exact formula.

3.2 Exact formula for multivariate Normal variables

A less well known exact formula for the expected maximum can be found in a paper by Biyi Afonja,
(Afonjal [1972). For a multivariate Normal random variable of dimension k, we write X ~ Ny (u, ), with k-
dimensional probability density function fi (X, u, 3) to emphasise the mean vector g and covariance matrix
3 used in the formula for the multidimensional Normal p.d.f., (Moran, [1968). We denote the standardized
p.d.f. for the standardised variable z; = (X; — u;)/0; by fr(z;R) where R is the correlation matrix of X.
We write ; ; for the covariance between X; and X, and 07 = % ;.
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For a k-dimensional vector b = (by, ..., b;) we write the complementary cumulative distribution function for
the standardised probability density function as

FoR) = [ R [ [T @R i (7)

bk

We now define the following piece-wise function:

1=

If we then define a vector A; = (A1, ..., A ) in R¥, we can then define another vector in R¥~1 of the form
A; = A\; with the ith element removed. For example: A1 = (A12,..., A1 k), A2 = (A2.1,A2,3, ..., A2 i), and so
on.

We also define another vector, this time in R¥=2, as A; ; = {\; j;} for j # 5/, j, i’ # i, where each element
is defined by the equation:

Nijt = NijTijg
e 9)

1—7"”]

with the symbol r; j;+ defined in accordance with the matrix R; below.

We construct a new correlation matrix of correlations between differences of the random variables: R; =
{W,jj’}?,j/:p where for j, j' # 4, the symbol r; j;» denoted the correlation between X; — X; and X; — Xj/.
Similar to before, we can then define another matrix: Rf as the matrix R; with the ith row and column
removed. Lastly, we define the matrix R; ; = 7 45.5, Wwhere 7 4,.; is the partial correlation between X; — X,
and X; — X, given X; — X;. It is shown in (Baba et al., [2004)) that for multivariate Normal distributions
the partial correlation is equivalent to the conditional correlation, a fact that can be useful for calculating
the values of R ;.

Letting f1(z) be the standard Normal probability density function in 1-dimension, we define a new symbol

Mog(e) = —2 =20 p (o) (10)

ﬂ/o'i2+0-32'_22ij

which allows us to write the “Afonja” equation for the expected maximum of a set of Normal random
variables, as given in Equation (3.1) of (Afonjal [1972) as

E(max X;) Z“sz LA RS +ZZA” i) Fe_2(Nij;Rij) (11)

i=1 j#i

where
1

Fo1(ARY) / / exp[ 2)' [Rf] (2)] dz (12)

Aing 'L"k 1\/ 27Tk 1‘R+
FaQhsiRig) = [ exp[ - 3@ R @] de (1)

> p A - )\i,mkfz 27T k—2| Ri,j 2 5

N1, ...,Mg_1 and myq, ..., mr_o being the appropriate indices, according to the expansion of . This is why
we specified the matrix included in the definitions of the probability density function and the cumulative
distribution function earlier. Equation is equivalent to Fquation 3.1 in (Afonja) 1972), we have simply
altered the notation for succinctness.



Under review as submission to TMLR

3.3 Exact formula for standardised, independent and identical Normal variables

In the more restricted setting of standardised I.I.D. Normal random variables, an exact formula for the
expected maximum is given by (Kamathl [2015). Suppose X; ~ N (0,1) for s = 1, ..., k, then the equation

o0

E(mzaXXi) = / zkfx(x)Fx(x)* 1 dz (14)

— 00

can be derived by taking the derivative of the product of cumulative distribution functions. fx(z) and Fx (z)
are the standard Normal density function and cumulative distribution function respectively. Substituting
the particular expressions for a Normal distribution gives the equation

®opk w2 [11 i
Here, erf(x/+/2) is the error function evaluated at x/v/2, see (Andrews, 1998). Because this expression for
the expected maximum is only applicable for I.I.D. Normal variables we do not include the results of our
simulations of it in this paper. However we note that during those simulations Eq. agreed with both
Afonja and Ross @ to at least 16 decimal places.

3.4 Limitations of the exact formulae

Each of the exact formulas above has its own advantages and disadvantages. The exact formula given by
(Afonja, 1972) works for multivariate correlated Normal variables, that is, it places no restrictions on the
parameters of the distribution. It also has many simplifications when the means of the random variables
are equal. One unfortunate drawback of Equation is that there seems to be no way to avoid higher
dimensional numerical integration. This prevents us from effectively studying the DMFP using this formula
when there are more than 3 random variables. Even with the simplifications when the means are equal, we
are limited to & < 5 random variables when doing our expected maximum comparisons. As found in (Afonja,
1972), (Guptay |1963) and (Tallis, [1961)), formulas exist for computing the multiple integrals in Equation
for values of k greater then 5, however they are largely impractical for simulation work and so we do not use
them. Equation , as we have already stated, is restricted by its parameters, however it is much faster
to compute. Equation @ is the most useful of the three that we have found. It has broader applicability
than , and can be applied in higher dimensions without any significant decrease in accuracy, unlike .
These conclusions we draw from our simulations which we present in Section .

As previously mentioned, in our case the cumulative distribution functions are those of a Normal distribution
and we can write @ as the integral over products of error functions. The reason for the accuracy given
by this formula is that error functions can be computed to very high precision numerically. Further, since
we only have a single integral to compute regardless, we are not hampered by any dimensionality issues
which gives us the relatively greater accuracy. Additionally, these facts hold true for any number of random
variables, meaning we can use this formula to run DMFP simulations in much higher dimensions, when our
action space is larger than 2. We will see the effect that this has on through our simulations later in Section
and in Section @

Before we discuss the upper and lower bounds we would like to address the question as to why, if exact
formulae for the expected maximum exist, do people still consider bounds and other approximations. Other
than the limitations already specified there are two broad issues that the exact formulas face. The first is that
the numerical computations are not simple when using the exact formulas, unless the number of variables
is very small, or the parameters are heavily restricted. Even Equation @, which was found to be the most
applicable throughout our work, requires one to integrate over products of cumulative distribution functions,
which in our simulations almost always meant error functions. When compared to some of the bounds this
extra computational work may be excessive. A second possibility is that the exact formulas do not lend
themselves to the simple algebraic manipulations desirable in theoretical work. As we will make clear in the
later sections using the exact formulas is technically more difficult than using many of the bounds.
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3.5 A lower bound via Jensen’s inequality and the certainty equivalence heuristic

Jensen’s inequality provides us a straightforward lower bound on the expected maximum:
E(max X;) > max ;. (16)
1 K3

In the context of the DMFP equations, we note that this implies that the Jensen lower bound provides the so-
called “certainty equivalent” control (Duff, 2002)). Explicitly, the DMFP equations under this approximation
read as,

WO = Hpoa +7 ) Poays -maxpls . (17)
a

s/

We see that this expression simply replaces the model parameters by their averages. In general in discrete
state and action RL this is considered a good approximation to the mean of the value functions, which we
can interpret as the certainty equivalent (CE) approximation. Originally, CE was derived for the case of
linear quadratic Gaussian control, where the state variable is uncertain but the model is known (Theil, [1957)),
in which case it is the optimal strategy. In the case of model uncertainty it has heuristically been applied
for decades, and more recently adapted to provide algorithms with learning guarantees for linear quadratic
control (Mania et al.l [2019).

The relationship between CE and the posterior mean, for which it is a lower bound, was not noted in the
earlier work introducing DMFP (Stamatescul [2022).

3.6 Upper bounds for multivariate Normal variables

The first upper bound we consider is given by (Ross| 2003]):
k o0
E(max X;) < ¢ + Z/ PriX; > 2] dx (18)

where the optimal value of ¢, that is, the one that gives the lowest upper bound, is found by solving:
> Pr[X; > ¢] = 1. The practice of finding ¢ makes this upper bound somewhat slower and more complicated
than the exact equation given in (Ross, 2003, Equation @ We determined c exactly for the 2-dimensional
cases only, in all other simulations ¢ = 2.

One upper bound that we study, and will be useful in a later analysis of the exact expression of the expected
maximum for bivariate Normal random variables, is given in a paper by (Aven, |1985). We have for an
arbitrary set of Normal random variables, “Aven’s” upper bound:

1

E(m;cxx X;) < max ju; + % ( (k—1) zi:gi?) z (19)

which importantly for our simulations, is true for Normal random variables under any parameter domain.
We will use this bound repeatedly when drawing conclusions from the DMFP simulations and comparing it
to the exact formula @

From (Bertsimas et al., |2006) we find the following upper bounds for the expected maxima when X ~g
(1,0%). While it is not specified in (Bertsimas et al., 2006) exactly what type of distribution @ is, in
this paper we will consider it a Normal distribution with arbitrary means and variances with all variables
independent. Writing

n k—2
Q= [y )
a 20’1‘ k—1
we can then write the two upper bounds as:
1 2
E(max X;) < 3 Z i + \/(Hz —maxa;)? + 07 ) +(2— k) -max oy (20)

10
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and

1
IE(mlaX X;) < 5 % <,u1 + \/(uZ min a;)? + al> +(2-k) min a; (21)

Under certain parameter conditions described below, these two upper bounds can be reduced to equation

(L9)-

3.7 Tight upper bound for identical Normal variables

(Bertsimas et al., [2006) also give us a tight upper bound on the expected maxima for variables with equal
means and variances, that is, when X; ~g (1, 0?) for all i:

E(max X;) <p+ovk—1 (22)

An important point to make is that because our MDP is not asymptotic in the action space, tightness of the
upper bound is not relevant.

3.8 Bounds for zero mean, i.i.d. Normal variables

From (Kamath, [2015) we get an upper and lower bound for k£ many independent Normal variables X; ~

N(0,02):
E(max X;) < o+/log k2 (23)

and

1
E X;) > ———o0+/logk. 24
(mix X) 2 /g (24)

While the parameter domain of these bounds are limited to zero mean and equal variances, we will find in
our analysis that the lower bound performs much better, both to Equation and to some of the other
upper bounds.

Since the different bounds above have different parameter constraints we compute numerical values for each
of them over specific parameter domains on which they are well defined. Numerical results for all allowed
parameter domains under consideration are given for completeness, and for a more comprehensive comparison
of the bounds, approximations and exact values.

3.9 Numerical simulation results

The Monte-Carlo sample estimation results are given in the table below for 108 samples of maxima of k-many
random variables. It is important to note that the Monte-Carlo sample estimation has a very slow rate of
convergence to the true value, and so a high number of samples is required even for the generally weak
agreement we see between the Monte-Carlo and exact values in the tabulated data below.

As mentioned earlier, there are certain parameter limitations for which the various exact values and bounds
are defined. For this reason we compute numerical values for the formulas across a range of different
parameter conditions. Again, throughout this paper we are interested in the DMFP for Normally distributed
random variables, and this section is no different. Due to a desire to obtain as many numerical results for
the exact formula given by Afonja , we generated tables for k£ = 2,3,4 and 5 many random variables.
All of the random variables come from a k-dimensional Normal distribution, in each column our means and
variances, when not 0 or 1, were randomly generated from a Uniform(0, 1) distribution, and kept the same
for each equation in that column.

11
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N5(0, 0'2)

N5(,u7 02)

N5(:u70'i2)

Ns(pi,0})

Monte-Carlo

1.1261417367

1.4278245252

1.9965215452

1.4667868827

6) Ross 1.1261270919 1.4278005320 1.9965940928 1.4668164213
11) Afonja 1.1261270919 1.4278005320 1.9965940928 -
18) Ross upper 1.1515498802 1.4885300836 2.6062061621 2.0133558752
19) Aven 1.9366491711 1.7477860941 2.7272233051 2.5949895751

20) Bertsimas MAX

1.9366491711

1.7477860941

2.7231229198

2.204443024

21) Bertsimas MIN

1.9366491711

1.7477860941

2.7244871754

2.3534389117

22) Bertsimas T

1.9366491711

1.7477860941

23) (Kamath upper)

1.7372930018

24)) (Kamath lower)

0.8324734769

Table 1: Numerical values for E(max; X;) using exact values, bounds and Monte-Carlo estimation under
different parameters constraints on the Normally distribution random variables. k =5

Aside from the convergence of the Monte-Carlo sample estimation, there are a few key features that can be
observed from the information given in the table above. The first point of interest is the equivalent numerical
values given by Equations 7 7 , and under the parameter condition of all random variables
having equal means and variances, as alluded to in the previous subsection. The second point is the accuracy
of the upper bound given in (Ross, 2003), Equation .

10

e ROSS, Eq. (6)

=== «= Aven, Eq. (19)
== o » Kamath L, Eq. (24)
MC estimate

Actions

Figure 2: Numerical values of eq. (@, eq. (@ and eq. , We use Normal distributions, Ni(0,0?)
k=2,3,...,10. We also plot the Monte Carlo estimate of the expected maximum from 2000 samples, which
agrees with the estimate of (@

In Figure 3 we visualise some of the results above for higher dimensional Normal random variables. Due to

the relatively similar performance of the expressions , , and we only simulate among
these bounds. Of the three exact formulas for the expected maximum we only simulate Equation @ as it

12
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can be extended to higher dimensional spaces and holds for arbitrary means and variances. Lastly we have
added the lower bound given by (Kamath) 2015)), and a spread of samples obtained via Monte-Carlo sample
estimation, represented by a series of points distributed above the number of random variables in the Normal
distribution.

Only 20 samples are used to obtain our Monte-Carlo estimates as anything above this reduces the spread in
the empirical distribution to the point of collapsing them onto one another.

4 DMPFP simulation study

In this section we present simulations of the approximate DMFP mean field equations, based upon equation

and obtained using equations @, , , and respectively. The simulations are organised
in two parts.

First, we demonstrate that under the conditions where we expect the mean field theory to hold (detailed in
Section, the DMFP mean field equation accurately computes the mean of the distribution of fixed points.
We demonstrate this by comparing the Monte Carlo estimates of the mean of the optimal Q-values to the
DMEFP estimate, based on the various approximations. The calculations based on numerical integration, put
forward by Ross, performs best.

Second, we study the DMFP equations outside of the mean field setting. We focus on two cases, both of
which increase the level of sparsity in the beliefs over the transition probabilities of the MDP. Specifically, we
first demonstrate that as the prior becomes improper, the mean field equations lose accuracy. Secondly, we
show that if a particular MDP has sparse transitions (eg. only a few states are accesible from any one state),
and we have interacted with this system and our beliefs become sparse, then the equations lose accuracy.
The promising result is that as the system becomes sparse, the mean field theory breaks down gradually, in
what appears to be a smooth manner.

4.1 Empirical evaluation of new DMFP equations

We first compare several DMFP approximations based on the best performing approximations in Section
3. We compare the methods by measuring the average absolute difference between the empirical Q-value
mean, derived from Monte Carlo estimates, and the mean derived from the approximate DMFP equation.
Tabulated below is the average absolute difference corresponding to the formula used in place of the expected
maximum in Algorithm 1. We restrict ourselves to only k& = 2 actions, since this allows use to use a closed
form exact value for the expected maximum. We define

1
,u:,a - %Z Q:,a .

Avg absolute difference =

as the average absolute difference, and derive the following;:

Equation used in DMFP Avg absolute difference
eq. (6) ‘Ross’ 0.041109405623055206
eq. (11) ‘Afonja’ 0.04110940562305454
eq. (19) ‘Aven’ 1.057967634414033

eq. (20) ‘Bert MAX’ 1.057967634414033

eq. (21) ‘Bert MIN’ 1.057967634414033

Table 3: k = 2. Average absolute differences between posterior means computed using the DMFP and Monte-
Carlo sample estimation. 500 samples, using the same IID Normal parameters for each DMFP expression,
and using N2(0,1) distributed variables.
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While it is clear from the numerical results that Equation @ provides the most accurate results, we point
out that when compared in the previous analysis, both the exact formula from , Equation
(11) and the exact formula of Equation @ gave almost identical results. This tells us that the discrepancy
in outcome between the two versions of the mean field equation is a result of the code that we used in
simulation, and more specifically, the numerical methods employed in that code.

It is important to note that when running the DMFP simulations and computing the posterior mean via
Equation , we have multiple sources of error accumulation to consider. The first is that the numerical
integration required to evaluate the expected maximum using Ross @ is not truly exact, and that any
numerical discrepancy will accumulate throughout the iterations. Additionally we have observed certain
limitations with the method of numerical integration used in our simulations. All of our simulations have
been run using the Julia programming language, and our numerical integration is performed by using the
QuadGK.jl package. This package uses the Gauss-Kronrod quadrature method of numerical integration,
see (Calvetti et al.l |2000). While this method is very accurate and we have attuned its parameters for the
best possible evaluations, we have also found that around the point of inflection of error functions, if the
tangent becomes too steep, there is a noticeable break down in the accuracy of the numerical integration as
the number of actions increases. The decrease in accuracy is not very strong however, and is consistent with
the slow convergence of the expected maximum to the Gumbel distribution. Coupled with the accumulation
of error that the iterations entail, and this could contribute to significant differences between the DMFP
derived posterior mean and the Monte-Carlo sample estimation of the posterior mean.

We also present how well (@ performs in comparison to some of the bounds in larger actions spaces. In
Figure 6 we show the overlay of the Normal distribution defined using the parameters uj , and v , from the
mean field equations, placed on top of the empirical distribution consisting of the samples of @ ,. We know
that v{ , is unchanged, and 5 , is derived using Algorithm 1 and Equation @, as well as Equation .

Sample distribution
— — — = DMFP with Ross Eq. (6)
————— DMFP with Aven Eq. (19)

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Fixed point distribution

Figure 4: Owerlay of two Normal distributions with parameters derived from DMFP approximations, using
eq. (@ and eq. (@ respectively, onto the sample distribution of the fized points Q* for a single state-action
pair. Our MDP had 200 states, 5 actions, a discount factor of 0.7, and we ran value iteration for 30 time-
steps. We took 700 samples of Q*.

14



Under review as submission to TMLR

2.0
== «= == DMFP with “Ross' (6)
==« ==-= DMFP with “Aven' (19)
e=ee==- DMFP with "Bert Max' (20)
-------- - DMFP with ‘Bert Min' (21)
1.5
10
‘2
0.5
0.0 ‘
1 2 3 4 5
Actions

Figure 5: Numerical values of the absolute difference between p*, as calculated by DMFP, and the Monte
Carlo estimate denoted [i, for a particular state-action pair and particular iteration, as the number of actions
(and hence random variables in our expected mazima calculations) increases. The values of u* were computed

using equations @, (@, (@) and respectively.

We also provide a comparison plot of the accuracy of the DMFP derived posterior mean using a suite of
different formulas for the expected maximum. We use Ross (6]), Aven , and two bounds from (Bertsimas
et al., 2006]), ‘Bertsimas MAX’ and ‘Bertsimas MIN’ . We add the lines y = 2 and y = In(x) to
provide an idea of the inaccuracy of the bounds as the number of actions increases.

We can see from the results of the simulations above that the ‘exact’ DMFP using (@ in place of the
expected maximum, computes the posterior mean almost perfectly. Even with the qualifications on the
actual and potential sources of error that we mentioned at the beginning of this section. This is achieved
by iterating the mean field equation, Equation , a total of 30 times for each formula. By comparison, at
least 500 samples for Monte-Carlo estimation were required to achieve a small difference between posterior
mean values. Additionally, as we have seen with the Monte-Carlo convergence rate to the exact value of the
DMFP, it would require a much larger number of samples than 500, to see significant agreement between
the two posterior means, proving the utility of the DMFP.

4.2 DMFP performance outside of mean field conditions

We now present plots demonstrating the decline in accuracy that occurs as the transition sparsity assumed
in our beliefs over the underlying MDP increases. There are two ways in which we model this. The first is by
varying the Dirichlet parameters o directly. We set o 4,5 = ¢, letting c range from a larger positive value,
towards zero. A large value of ¢ means the Dirichlet is peaked in the centre of the simplex, meaning the
agent believes they can transition anywhere (essentially they believe they are in a contextual bandit). The
smaller values of ¢ correspond to having something closer to an improper prior, meaning the agent believes
the transitions are sparse.

The second way we model beliefs about sparsity is to create a sparse MDP, with transitions P, , sampled
from a Dirichlet with some «i;ye, and then subsequently sample from the multinomial distribution with
parameters Ps ,. We consider a small number of multinomial samples, from increasingly sparse crye-
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In either case, we see that the DMFP equation accuracy breaks down in a gradual way. As a way of
comparison we also present the certainty equivalent heuristic, or Jensen lower bound. We present this as
well, since in some literature, for example 2012)), this is referred to as the “mean MDP". Clearly,
this does not produce estimates of the mean state-action values, and is thus a misleading term.

1.5

—— 101
—— 10045
—— 100
———  — 10’0-5
—— o — 10’1
— 10*1-5

= 1.0 — =107

Sl
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Iteration t

Figure 6: Plot of the errors between the Monte-Carlo sample estimate of the DMFP, and the erxact DMFP
along the time-steps of a single state-action pair, for differing values of the Dirichlet parameter a = « -
(1,...,1). The simulated MDP has 200 states, 2 actions, a discount factor of 0.95, mean rewards with
N(0,1) distribution, and we take 1000 Monte-Carlo samples.
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Figure 7: Plot of the errors between the Monte-Carlo sample estimate of the DMFP, and the exact DMFP
along the time-steps of a single state-action pair, for differing values of our true Dirichlet parameter Qtyrye =
e - (1, ..., 1). The simulated MDP has 200 states, 2 actions, a discount factor of 0.95, mean rewards with
N(0,1) distribution, and we take 1000 Monte-Carlo samples.
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Figure 8: Here we plot the errors between the Monte-Carlo sample estimate of the DMFP, and the certainty
equivalent DMFP using Jensens inequality, for differing values of our Dirichlet parameter o = o - (1,...,1).
Our MDP has 200 states, 2 actions, a discount factor of 0.95, our mean reward are N'(0,1) distributed, and
we take 400 Monte-Carlo samples.
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Figure 9: Here we plot the errors between the Monte-Carlo sample estimate of the DMFP, and the certainty
equivalent DMFP using Jensens inequality, along the time-steps of a single state-action pair, for differing
values of our true Dirichlet parameter otrye = trye - (1,...,1). Our MDP has 200 states, 2 actions, a
discount factor of 0.95, our mean rewards are N'(0,1) distributed, and we take 400 Monte-Carlo samples.

As we can see, the DMFP accuracy at estimating the prior or posterior means remains quite accurate, in
particular in comparison to the certainty equivalent estimate. This is promising for the utility of the theory
since most MDPs in the RL literature have sparse transitions. We can report that, as one would expect, the
variance of the state-action values increases as sparsity increases. This is due to the increasing dependence
between the state-action values. A next-to-leading-order correction to the mean field theory would attempt
to estimate this increase in the variance.

5 RL algorithm comparison

We now wish to provide some more direct insight into the role that the DMFP can provide in the development
of reinforcement learning algorithms. We consider this in the case of a flat Dirichlet prior, where the mean
field theory is exact. Under this setting, the theory predicts that beyond the first moment, the higher
moments of the optimal Q-values are those of the mean rewards. This result enables us to provide some
insight into the accuracy of other RL algorithms’ exploration bonuses, which are often implicit.

Specifically, we consider the RL algorithms: Bayesian Exploration Bonus (BEB), (Kolter and Ng} [2009) and
Variance Based Reward Bonus (VBRB) (Sorg et all [2012). We also consider a more recently developed
algorithm, K-learning (O’Donoghue, 2021)). This algorithm is closer in some ways to the DMFP approach,
as it explicitly considers that the Q-values are random, and tries to propagate this through a risk sensitive
version of the Bellman equation.

The idea of our comparison is that the algorithms have essentially taken the certainty equivalent (or Jensen
lower bound) approach, that is, plugged into the Bellman equation the mean estimates of the MDP parame-
ters, and then added an exploration bonus for each state-action pair. As discussed in the introduction, this is
the general idea of forming an index policy in the bandit approach. As such, we can infer from the certainty
equivalent solution (which [Sorg et al.| (2012) refer to as the “mean MDP"), how large the exploration bonus
is. Furthermore, given the mean field setting, we can compare this bonus to the true mean-reward standard
deviation, providing valuable insight.
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5.1 BEB algorithm

The Bayesian exploration bonus algorithm (Kolter and Ng, |2009), designed for the finite horizon setting,
chooses actions greedily, following the ()-value function,

IB D At—1
—_— g P, o 25
14+ ’I’L(S, a) + > $,Q,S Hlaé}X Qs ,a ( )

Qg,a = lups,a +

where n(s,a) is the count for the number of times the agent has been in state s and taken action a. Note
that the same bonus type can be added when the reward is unknown, as discussed in [Kolter and Ng| (2009).
It is this setting we compare DMFP to.

The results of our simulations presented in Figure [I0] demonstrate the slight bias introduced through the
modified value function in BEB. When compared to the DMFP equation for the posterior mean we can see
that this bias is relatively significant, especially in the large system limit, where the mean field equation
approaches perfect numerical accuracy.

CE
DMFP+ SD
00 BEB
7.5 r
& 5.0
25 ¢
0.0
2 4 6 8 10
Iteration t

Figure 10: Convergence of the BEB optimistic Q-value function (@/, the certainty equivalence lower bound
, and the DMFP mean field equation @ + the standard deviation (= 1). Our MDP has 200 states, 2
actions, with a discount factor of 0.7. We use 3 = 2(20)2.

In Figure our comparison of the DMFP equation, and the BEB Equation , with the reward variance
plotted around the DMFP estimate with dotted lines. We also include the certainty equivalent or Jensen
lower bound estimate. We see the BEB optimistic Q-value is overly optimistic.

5.2 Variance based reward bonus (VBRB) and K-Learning

The variance based reward bonus algorithm, (Sorg et al., 2012), has an optimistic value function defined via

V7 (s) = max {R(s, a) + Raq + Z P(s' | 5,a)V;" (s, )} (26)

€A
“ s'eS
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where the exploration bonus is given by

Ry 50 = BROR(s.g.a) + B Z TP(s/[s.na)° (27)
s'eS

The constants Sr and Sp control the magnitude of the exploration bonus, while the variances in Equation
are defined respectively as:

‘712-2(5,¢>,a) = /QR(S7 0, a)2 b(0)df — R(s, ¢, a)27 (28)

0}29(5,|S’¢’a) = /6P<S/ | 5,0,a)?b(0)d0 — P(s' | s,¢,a)> (29)

which are the variances of the rewards and Dirichlet transition probabilities respectively. Of course the
optimistic Q-value function is

Q'(s,a) = R(s,a) + Ry o + Z P(s' | 5,a) - max (Qt_l(s', a')) ) (30)
al
S/
For our comparisons we use values for the parameters Sr and Bp taken from the respective paper. From,
(]Sorg et al. I, |2012P we set g = —= and Bp = —N,YT with the probability p = 0.9.
2000 DMFP+ SD
VBRB
K — Learning
1500
< 1000
500 |
0 1 1 1 L 1
2 4 6 8 10
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Figure 11: Convergence of the DMFP mean field equation (@ + the standard deviation (= 1), the VBRB
algorithm value function (@) and the K-Learning algorithm value function (@) Our MDP has 200 states,
2 actions, a discount factor of 0.7. We use p =0.9 and 7 = 3.

In Figure (9) above we compare the Variance based reward bonus equation for a finite horizon, to the DMFP
equation, and we include the ‘K-learning’ Bellman optimality equation given by (O’Donoghuel 2021)) for a
single episode. Specifically we are interested in comparing the DMFP mean field equation to the optimistic
Bellman operator (Eqn. (6) of (O’Donoghuel, |2021|) . This Bellman operator is defined as

+ (L —
Bl(ry)s.a) =ty + o ED s (riog S esp o)/ 7) (31)

27(nk(s,a) \/ 1) e
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where 7 > 0, y € RI%I*4 where nl(s, a) is the visitation count of the learning agent to state-action (s, a) at

i
time-step ! before episode ¢, and the function (- V 1) := max{-, 1}.

As we only consider a single episode, and an infinite horizon setting, we modify Equation to be able to
properly compare it to DMFP and VBRB.

Via—l—(L—l

? -
B y)(5:0) = pp.y + =547 Paaw(rlog ) exp[y(s',a)/7]) (32)

Note that Equation (10) from (O’Donoghue, 2021) provides a formula for the “temperature” parameter 7
that gives a bound on the posterior expected maximum. With the parameters of the MDP that we establish
for our simulation inf Figure 9, this formula comes out to approximately 370, well above the value 7 = 3 in
our simulation, from which we see already that the function upper bounds both the DMFP equation
and the VBRB equation.

5.3 Additional Bayesian RL algorithms

There are many other deterministic Bayesian reinforcement learning algorithms that work by altering the
value function in some way, with the goal of improving some learning outcome. See (Ghavamzadeh et al.|
2016)) for a large collection of Bayesian reinforcement learning algorithms. Some of the algorithms seem more
obviously amenable to treatment with use of the DMFT than others. Of course, there exist non-deterministic
Bayesian RL algorithms. Most prominent are those based on Thompson sampling (Osband and Van Roy,
2017), but other approaches exist as well, such as the Best Of Sampled Set (BOSS) algorithm (Asmuth et al.
2012]).

6 Stability analysis

Here we consider the DMFP iterations from a dynamical systems perspective and study the stability and
contractive properties. As we will see the point around which we expect stability is the fixed point pj ,, which
we do not prove exists, but can observe empirically through our simulations. Throughout this section we
will simply assume that the mean field equation has a fixed point, pj ,, and that this fixed point is arrived at
through iterations in exactly the same way as when finding the fixed point of the standard Bellman equation.

Formally we examine the stability of the equilibrium solution to the dynamical system corresponding to the
function iteration of ij;l. As we have considered different bounds on the expected maximum in our DMFP
simulations we consider the stability of the mean field equation when the expected max is replaced by one of
these formulas, specifically we look at the exact formula given in (Afonjaj [1972) when the number of actions
is k = 2, the upper bound approximation to the expected maximum from (Aven, 1985), Equation . We
also consider the stability of the mean field equation in the large action space limit, where our expected
maximum becomes a parameter for a Gumbel distribution, (Gumbel, |1954]).

To show that a system is stable at a fixed point we have to compute the Jacobian matrix of the system, and
determine the corresponding eigenvalues of the Jacobian. If they have absolute values less than 1, then the
system is stable at that fixed point. It is clear that our fixed point is the optimal value, obtained via the
iteration process on the mean field equation.

6.1 Avens upper bound (Aven)| [1985)

Proposition 1. If the expected maximum term of the mean field equation is substituted by the upper
bound , then the resulting iterative function is stable around an equilibrium point is stable provided the
ratio v/N is strictly less than 1.
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Proof. Consider the DMFP equation with the upper bound given by (Avenl [1985) in place of the expected
value of the maximum:

_ k—1
/ﬁ;:ll =i, . + ’YZPs/\s,a . (n}ﬁx /lz/,a' + 7 z:(of,’a,)t)7 (33)
s’ a’

where k is the number of actions/random variables. In order to show stability we compute eigenvalues of
the Jacobian and show that they are strictly less than 1. We compute an arbitrary element of the Jacobian
matrix, taking derivatives as follows:

opLt) 0
Otsay  O(say

_ k-1
Hps.a +7 Z Ps’|s,a : (H}ﬁ‘x Mg’,a’ + T Z(Jg’,a’)t)] (34)

Here we have taken the partial derivative with respect to the previous time mean, at an arbitrary state-action
pair.

opttl v ) . k—1
S7a pp— -~ + ’ ’ - 5 2/ ’ t 35
auﬁs ay N > 8”25 oy (Inﬁ'x Hs ,a =+ k ~ (Js ,a ) ) ( )
v
=L ; max f, a,) (36)
N s/ 8y‘(s,a)’ @
Y
= N 5#25,0)’ max,s pf, (37)
where 6#2 maxg pt, is the Kronecker delta function, defined here as
1 maxeg: ,ut/ ;= Mt ’
Ot max.s ut = shHe (s.0) 38
(s ay 8% al s o {0 otherwise. 33

We again write the Jacobian of the system using a different indexing system, for greater clarity. The Jacobian
is

it o
t t
Oy Mis)x)a|
J= : : (39)
t+1 t+1
a”mfw a“\tswxw
Oy Mis)x)a|

and then once again becomes a matrix consisting of a single column of /N with every other entry 0. To
see this, suppose that max, pf, ,, = pf, for some k. Then the indicator function will return 1, only when

the derivative is taken with respect to uf, and it will do this for pﬁ“ for all ¢. This is true also at the fixed
point uf, the point around which we expect stability. Writing out the Jacobian in terms of basis vectors we
will have

-
J:ﬁek+0~2ej. (40)
Jj#k

Taking the determinant of J — AI to find the eigenvalues, will always give us v/N — A times the determinant
of a minor matrix equal to —I. This gives

det(J — AI) = (/N — X)(=A)ISIx14l=1

and subsequently, eigenvalues of \y = /N with all others equal to 0. As v and N are always positive but
less than 1, the eigenvalues of J have absolute value strictly less than 1, so long as both v and N are not
both equal, and the ratio remains strictly less than 1. O
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6.2 Exact formula for k = 2

The analysis of the stability of the mean field equation for an arbitrary number of random variables runs
into technical challenges, specifically the ordering of the expectations does not satisfy many of the usual
inequalities of absolute differences. Some work in this are has been done. For this reason we study the
Lyapunov stability of the mean field equation for bivariate normal random variables. We use a special form
of the expected maximum for bivariate random variables that can be derived directly from Equation ,
but can also be found in (Clark} 1961, (Ker} 2001) and (Ross, 2003)).

Proposition 2. The mean field equation is stable around an equilibrium point when the action space
of our MDP has cardinality 2; |A| = 2, and the discount factor + is strictly less than 1.

Proof. Suppose we have a random variable X = (X1, X5) ~ Na(u, ) with X7 L X5, we can write
E(max X;) — 11, <maﬂz> g <N2a/l1> v ad <ﬂ2au1> (a1)

where a = \/0? 4+ 03 — 2% ». Putting this expression into the mean field equation and then taking a partial
derivative with respect to the mean of the first variable we have

t t t t t t
Yy 0 t Hegr a1 g as t Mg as 1% al Hgr as Mg ai
— S | ——/——= P — _ = . 42
Noul ,, [ﬂs “ < a ) T Hst e ! +ad « (42)

Consider the partial derivative of the first cumulative distribution function. We have

Ht/ . —M.t, .

‘ t _s.a1 s .ag
, —ut, « 1 1,2
8 ® (lus ,a1 'uﬂ ,a2> _ 6 / e ét dt (43)

ap“g”al « - aui",m V21

2
]- ]- Mg’al_ﬂé/aQ
- xp{ — = [ Derar " Fshas ) L (44)

——e
aV2m 2 o

From which it is easy to see that the derivative of the second cumulative distribution function is

2
o ~ 1 1 1y — 12l
‘ P M2 — 1 _ _ expd —= Fgr ay = Mg ay (45)
MWy g, @ a/2r 2 !
and for the other derivative with respect to pf, ,, we have
2
0 - 1 1 (1, — 1l
‘ q) M2 H1 _ exp 4 p“s ,as /j‘s ,a1 (46)
O,us,m « a2 2 «
2
0 - 1 1 (1 g, — 1l
o (M) e g e ) (a7)
O,us,m « aVv2r 2 «
The derivative of the probability density function is simply
o 0 0? R
p) ta ¢ (#5/7{12 MS/"“) = 12 e T E ot ta e T e (48)
Iu’s/,al «Q V aT Iu’s’,al
where
W o Py ¢ W o) Py ; W o) Py
3 ta le_ 82:121 e — 212 ; 2] = HL’;Qe_ 2(;21 e ’ L? =2 HL’;“@_ 2;21 e ; L? ; 2_ (49)
/”Ls’,al o @
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We simplify notation, letting ,ui/m = p; and ug,ya = po, and writing g12
allows us to write the full partial derivative with respect to pp as:

e Z [ (g12) + 1 (Mle—%gfz _ Mze—%gil) + & (@ _ Ml) 1(#1-#2)2} (50)

Y el — fa— ~
2 and go1 = #2*. This

a2 v 2T a?

The corresponding partial derivative with respect to pg is

N 1 ( _1g2 _1g2 o (p1 M2 1 (s —pa)?
+ — e 2921 — yqe 2912) 4+ — <7 — 7) H1—p2 . 51
Z[ (921) oA G H1 or o2 (51)

Writing Equation at the fixed point with A, and Equation at the fixed point with B, the Jacobian
matrix and characteristic equation are:
A B

Lo |r XAaEB =0 (52)

with eigenvalues of 0 and A + B. In the notation defined above, A+ B = /N -, [®(g12) + ®(g21)], which
is further expanded as

A+ B= % Z [(I) ('us/val a”sﬂ’”) + P (Mslv‘“ ;‘uslaal )] . (53)

It is clear that the expression inside the summation can be written as

(I)(glg) + (I)(7912 1— E /ggli (54)

assuming g1z > 0. If go1 < 0 we integrate over [—ga1, go1] instead. It is clear that is bounded above by
1 (true when go; < 0 also), which implies

A+B Z|: (lu'é , a1 'ué a2> +(I)<Msl,ll2 ausl,(ll):| (55)
Sﬁzl (56)

Therefore, so long as the discount factor is strictly less than 1, the 2-action space mean field equation is
stable. O

6.3 Gumbel distribution

Consider a set X1, ..., X} of Normal IID random variables. As the number of random variables increases
to infinity, that is, as k — oo, the cumulative distribution function of the maximum of this set of random
variables tends to the cumulative distribution function of the Gumbel distribution, see (Von Mises| [1936)
and (Fisher and Tippett], [1928]).

Define constants a,, = 1/n¢(b,) and b, = ®~1(1 — 1/n), then

lim F(apz +by)* =e ¢ = G(z;0,1) (58)

k—o0

where G(z;0,1) is the cumulative distribution function of the Gumbel distribution with location parameter
v = 0 and scale parameter 8 = 1. Therefore if we have IID Normal random variables, constants exist such
that
Primax X; < z| = HPT[Xi <z]=F(z)f 2o G(z31,B). (59)
Q .
]
We can absorb the constants a,, and b, into the random variables X; and so maintain convergence to the
standardized Gumbel distribution.
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Proposition 3. As the number of actions tends to infinity, the mean field equation is stable.

Proof. As the number of actions in our MDP model tends to infinity, max, Q'(s,a) becomes a Gumbel
distributed random variable, and hence its expected value is just the mean value v + 879em, where e, is our
notation for the Euler-Mascheroni constant. With v = 0 and § = 1 we can substitute this into the mean
field equation as

:uiizl = Hps o + Z ps,a,s/ * Yem (60)
= tpro + = - Nem (61)

ps.a N
= fpso T Vem- (62)

It is easy to see that all partial derivatives will be zero, hence all eigenvalues of the Jacobian matrix will be
zero, that is, strictly less than 1 and hence stable. O

7 Contraction mappings

Throughout this section we use the standard definition of a contraction mapping defined on a metric space:
Given a map F : X — X on a metric space X, we call F' a contraction if for all x,y € X, there exists some
real k € [0,1) such that

dx (F(x), F(y)) < kdx(z,y) (63)

where dx is the metric defined on X.

In this section we show that different forms of the mean field equation are contractions. We do this by
considering the mean field equation over all state-action pairs as an operator

Fpupp : RISKIAT S RISXIAL 0 — B yipp (pf).

Similar to the consideration of stability, we begin by using the upper bound in place of the expected
maximum. After this we consider the case when the number of action goes to infinity & — oo, and we have
a Gumbel distributed random variable for our expected maximum.

Proposition 4. If the expected maximum term in the mean field equation is substituted with the upper
bound , then this form of the mean field equation is a contraction.

Proof. Let us write v*(s) = max, E(Q"(s,a)) = maxq p! ,, and (v')(s) = max,(p} ). The proof of the
contraction property follows identically the one given by (Bertsekas, 2012), and found in (Agarwal et al.,
2019). As in those proofs, we have

| max g, — max(prg )" | < max|pg, = (16,0)" | (64)

!
S,

For a moment let us consider pft! and (p) ) from p!™t and (p')!! respectively.

s,a

— k-1
Ppsa t ’YZPS’Is,a ) (II}I@XNZ’@/ + 5 Z(Ug/,a/)t) (65)

bona +7 D Pon (mas(ply ) + \/ it > (oha)) (66)

As we can see, the mean of the mean rewards is the same for both expressions. Additionally, the sum over
the square root term is the same in both expressions, and since the summation is distributive, the sum over
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the square root term will be the same in both expressions, hence when we take the absolute difference of the
two we get

vy Z Ps’|s7a ' ITZ&/X ,ué’,a’ -7 Z Ps'\s,a ' H}?’X(/L;’,a’)t (67)
s’ s’

which we write succinctly as hpsﬂut(s) — Py o (V)E(5) | With this notation specified we can now prove
the main result. Using the ¢*°-norm we have

1 = @) = [Pt = P o
<l =N, (69)
= ymax| v (s) — (/) (s) | (70)
< ymaxmax| i, = (1 )" | (71)
— [l = ()| (72)

which concludes the proof. O

A trivial lower bound on the expected maxima that we have not covered so far is one we call the Jensen
lower bound, since via the convexity of the maximum function, the expected maximum is greater than the
maximum of the expected values, see (Feller, [1971)). It is trivial to see that the mean field equation is a
contraction when the expected maximum is substituted with the maximum of the expected values. As both
the ‘Aven’ and Jensen mean field equation variants are contractions, they have fixed points, and since these
variants bound the exact mean field equation, we know that the sequence of points of the exact mean field
equation over iterations is bounded. If it could be shown that the sequence {p3 ,, si{ ,, ...} is monotonic, this
would also furnish a proof that the mean field equation, , has a fixed point, without resorting to a proof
that it is a contraction.

Similar to the Jensen bound form of the mean field equation, the mean field equation where k& — oo and we
use the Gumbel mean for the expected maximum is trivially a contraction. Looking at the Gumbel mean
field equation from the previous section:

Nz-,tzl = peo TV Yem, (73)
we can see that there is no dependency on the previous mean values, and so the difference between any two
w’s will be zero. This satisfies the definition of a contraction for any value of k € [0, 1).

Similar to our examination of stability, our results for contraction mappings are limited to a handful of
special cases and estimations of the mean field equation. While extending these results to the general mean
field equation is beyond the scope of this paper, we note that the cumulative evidence for this conjecture
being true prompts us to study this in future work.

8 Final remarks

Improving methods of sample efficiency in Bayesian reinforcement learning is a difficult task. The mean field
approach taken here approaches this problem from a different perspective, aiming to compute approximate
statistics based on a theory that is asymptotically exact under certain mean field conditions. A general hope
is that such methods may provide less biased and tighter estimates of the statistics over state-action value
functions, which in turn should help in the design of new learning algorithms.

Our study has reviewed and clarified a suite of methods for computation or approximation of the expected
maximum. We have measured the accuracy of different estimation formulas for the expected maximum of
a set of Normal random variables, a comparative study that we have then shown significantly affects the
computation of posterior statistics of the Bellman optimality equation. We have demonstrated the accuracy
of the equations in the non-identical belief setting, under the mean field conditions and outside of these
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conditions. Specifically, we have tested the performance of the DMFP equations as the Dirichlet beliefs
reflect a higher degree of sparsity in the MDP transitions.

An open theoretical challenge, discussed in the preceding section, is to establish whether the DMFP equations
for the discounted infinite horizon case, are in general contraction mappings just as the Bellman optimality
equation is. This has proven a very challenging theorem to study and we look forward to any attempts
to establish the result or to be provided counterexamples. Alternatively, one may attempt to establish the
dynamical stability of DMFP in general.

Other possible challenges for this line of work include investigating the performance of the mean field equation
approximations we have developed here during the course of learning. For the highly connected MDPs
discussed in [4] the mean field theory will hold throughout learning, but as sparsity is introduced this will
no longer hold, as shown. More advanced statistical field theories, beyond mean field theory, will likely
require the use of the analytic and approximate forms for the expected maximum used here. Specifically, we
anticipate that second and higher order corrections to the “first order" DMFP will require derivatives of the
expected maximum (Helias and Dahmen) 2020)). It is these corrections which may assist in the construction
of new upper confidence bound type Bayesian algorithms.

References

Biyi Afonja. The moments of the maximum of correlated normal and t-variates. Journal of the Royal
Statistical Society: Series B (Methodological), 34(2):251-262, 1972.

Alekh Agarwal, Nan Jiang, Sham M Kakade, and Wen Sun. Reinforcement learning: Theory and algorithms.
CS Dept., UW Seattle, Seattle, WA, USA, Tech. Rep, pages 10—4, 2019.

Larry C Andrews. Special functions of mathematics for engineers, volume 49. Spie Press, 1998.

John Asmuth, Lihong Li, Michael L Littman, Ali Nouri, and David Wingate. A bayesian sampling approach
to exploration in reinforcement learning. arXiv preprint arXiv:1205.2664, 2012.

Terje Aven. Upper (lower) bounds on the mean of the maximum (minimum) of a number of random variables.
Journal of applied probability, 22(3):723-728, 1985.

Kunihiro Baba, Ritei Shibata, and Masaaki Sibuya. Partial correlation and conditional correlation as mea-
sures of conditional independence. Australian €& New Zealand Journal of Statistics, 46(4):657-664, 2004.

Dimitri Bertsekas. Dynamic programming and optimal control: Volume I, volume 1. Athena scientific, 2012.
Dimitri Bertsekas. Abstract dynamic programming. Athena Scientific, 2022.

Dimitris Bertsimas, Karthik Natarajan, and Chung-Piaw Teo. Tight bounds on expected order statistics.
Probability in the Engineering and Informational Sciences, 20(4):667-686, 2006.

Daniela Calvetti, G Golub, W Gragg, and Lothar Reichel. Computation of gauss-kronrod quadrature rules.
Mathematics of computation, 69(231):1035-1052, 2000.

Charles E Clark. The greatest of a finite set of random variables. Operations Research, 9(2):145-162, 1961.

DR Cox. The mean and coefficient of variation of range in small samples from non-normal populations.
Biometrika, 41(3-4):469-481, 1954.

Herbert A David. Order statistics. John Wiley & Sons, 1981.

Michael O’Gordon Duff. Optimal Learning: Computational procedures for Bayes-adaptive Markov decision
processes. University of Massachusetts Amherst, 2002.

William Feller. Probability theory and its applications, volume ii, 1971.

William Feller. An introduction to probability theory and its applications, Volume 2, volume 81. John Wiley
& Sons, 1991.

27



Under review as submission to TMLR

Ronald Aylmer Fisher and Leonard Henry Caleb Tippett. Limiting forms of the frequency distribution of
the largest or smallest member of a sample. In Mathematical proceedings of the Cambridge philosophical
society, volume 24, pages 180-190. Cambridge University Press, 1928.

Mohammad Ghavamzadeh, Shie Mannor, Joelle Pineau, and Aviv Tamar. Bayesian reinforcement learning:
A survey. arXiv:1609.04436, 2016.

EJ Gumbel. The maxima of the mean largest value and of the range. The Annals of Mathematical Statistics,
pages 76-84, 1954.

Shanti S Gupta. Probability integrals of multivariate normal and multivariate t1. The Annals of mathematical
statistics, pages 792828, 1963.

Moritz Helias and David Dahmen. Statistical field theory for neural networks, volume 970. Springer, 2020.
Lodewijk Kallenberg. Markov decision processes. Lecture Notes. University of Leiden, pages 2-5, 2011.

Gautam Kamath. Bounds on the expectation of the maximum of samples from a gaussian. URL http://www.
gautamkamath. com/writings/gaussian max. pdf, 2015.

Emilie Kaufmann, Olivier Cappe, and Aurelien Garivier. On bayesian upper confidence bounds for
bandit problems. In Neil D. Lawrence and Mark Girolami, editors, Proceedings of the Fifteenth In-
ternational Conference on Artificial Intelligence and Statistics, volume 22 of Proceedings of Machine
Learning Research, pages 592-600, La Palma, Canary Islands, 21-23 Apr 2012. PMLR. URL https:
//proceedings.mlr.press/v22/kaufmanni2.html.

Alan P Ker. On the maximum of bivariate normal random variables. Exztremes, 4(2):185-190, 2001.

J Zico Kolter and Andrew Y Ng. Near-bayesian exploration in polynomial time. In Proceedings of the 26th
annual international conference on machine learning, pages 513—-520, 2009.

Tor Lattimore and Csaba Szepesvari. Bandit algorithms. Cambridge University Press, 2020.

Horia Mania, Stephen Tu, and Benjamin Recht. Certainty equivalence is efficient for linear quadratic control.
Advances in Neural Information Processing Systems, 32, 2019.

Patrick Alfred Pierce Moran. An introduction to probability theory. Clarendon Press, Oxford, 1968.

Brendan O’Donoghue. Variational bayesian reinforcement learning with regret bounds. Advances in Neural
Information Processing Systems, 34:28208-28221, 2021.

Tan Osband and Benjamin Van Roy. Why is posterior sampling better than optimism for reinforcement
learning? In International conference on machine learning, pages 2701-2710. PMLR, 2017.

Brendan O’Donoghue, Tan Osband, Remi Munos, and Volodymyr Mnih. The uncertainty bellman equation
and exploration. In International Conference on Machine Learning, pages 3836—3845, 2018.

Ben Poole, Subhaneil Lahiri, Maithra Raghu, Jascha Sohl-Dickstein, and Surya Ganguli. Exponential ex-
pressivity in deep neural networks through transient chaos. Advances in neural information processing
systems, 29, 2016.

Andrew M Ross. Useful bounds on the expected maximum of correlated normal variables. Industrial and
Systems Engineering, 2003.

Haim Sompolinsky, Andrea Crisanti, and Hans-Jurgen Sommers. Chaos in random neural networks. Physical
review letters, 61(3):259, 1988.

Jonathan Sorg, Satinder Singh, and Richard L Lewis. Variance-based rewards for approximate bayesian
reinforcement learning. arXiv preprint arXiv:1203.3518, 2012.

George Stamatescu. Dynamic mean field programming. arXiv preprint arXiv:2206.05200, 2022.

28


https://proceedings.mlr.press/v22/kaufmann12.html
https://proceedings.mlr.press/v22/kaufmann12.html

Under review as submission to TMLR

Malcolm Strens. A bayesian framework for reinforcement learning. In ICML, volume 2000, pages 943-950,
2000.

Alain-Sol Sznitman. Topics in propagation of chaos. Fcole d’été de probabilités de Saint-Flour XIX—1989,
1464:165-251, 1991.

Georges M Tallis. The moment generating function of the truncated multi-normal distribution. Journal of
the Royal Statistical Society: Series B (Methodological), 23(1):223-229, 1961.

Henri Theil. A note on certainty equivalence in dynamic planning. Econometrica: Journal of the Econometric
Society, pages 346-349, 1957.

Garrett Thomas. Markov decision processes. hitps://ai.stanford.edu/ gwthomas/notes/, 2007.

William R Thompson. On the likelihood that one unknown probability exceeds another in view of the
evidence of two samples. Biometrika, 25(3-4):285-294, 1933.

Leonard HC Tippett. On the extreme individuals and the range of samples taken from a normal population.
Biometrika, pages 364-387, 1925.

Richard Von Mises. La distribution de la plus grande de n valuers. Rev. math. Union interbalcanique, 1:
141-160, 1936.

29



	Introduction
	New approaches to quantifying uncertainty over the optimal Q-values
	Summary of the contributions
	Outline of the paper

	Background
	Markov decision processes and Bayesian reinforcement learning
	Dynamic mean field programming: the identical belief case
	Dynamic mean field programming: the general belief case
	Discussion of DMFP theory

	Comparison of bounds and estimates
	Exact formula for independent, non-identical random variables
	Exact formula for multivariate Normal variables
	Exact formula for standardised, independent and identical Normal variables
	Limitations of the exact formulae
	A lower bound via Jensen's inequality and the certainty equivalence heuristic
	Upper bounds for multivariate Normal variables
	Tight upper bound for identical Normal variables
	Bounds for zero mean, i.i.d. Normal variables
	Numerical simulation results

	DMFP simulation study
	Empirical evaluation of new DMFP equations
	DMFP performance outside of mean field conditions

	RL algorithm comparison
	BEB algorithm
	Variance based reward bonus (VBRB) and K-Learning
	Additional Bayesian RL algorithms

	Stability analysis
	Avens upper bound aven1985upper
	Exact formula for k = 2
	Gumbel distribution

	Contraction mappings
	Final remarks

