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ABSTRACT

Visual Foundation Models (VFMs) such as the Segment Anything Model (SAM)
have significantly advanced segmentation tasks. However, SAM and its variants
necessitate substantial manual effort for prompt generation and additional training
for specific applications. Recent approaches have addressed these limitations by
integrating SAM into one-shot and few-shot segmentation, enabling auto-prompting
through semantic alignment between query and support images. Despite these
advancements, they still generate inadequate prompts that degrade segmentation
quality due to visual inconsistencies between support and query images. To tackle
this limitation, we introduce ReGRAF (Refinement via Gradient Flow), a training-
free method that refines prompts through gradient flow derived from SAM’s mask
decoder. ReGRAF easily integrates into auto-prompting segmentation frameworks
and is theoretically proven to refine segmentation masks with high efficiency and
precision. Extensive evaluations demonstrate that ReGRAF consistently improves
segmentation quality across various benchmarks, effectively mitigating inadequate
prompts without requiring additional training or architectural modifications.

1 INTRODUCTION

Large models have paved a new era of foundation models, e.g., Large Language Models (LLMs)
(Zeng et al., 2022; Touvron et al., 2023; Brown et al., 2020), demonstrating exceptional versatility
and generality across various tasks. In computer vision, Visual Foundation Models (VFMs) have
emerged to revolutionize vision tasks such as image classification (Dosovitskiy et al., 2021; Touvron
et al., 2021), object detection (Carion et al., 2020; Liu et al., 2021) and segmentation (Cheng et al.,
2021; Strudel et al., 2021) by leveraging advanced architectures and enormous data. Specifically in
segmentation, Segment Anything Model (SAM) (Kirillov et al., 2023) arises as a universal VFM
which addresses challenges of segmenting objects with diverse appearance by taking prompts such as
points, bounding boxes, and coarse masks.

While SAM is versatile, it often struggles with coarse mask boundaries and small holes scattered
throughout the segmentation mask in complex situations. (e.g. segmenting multiple objects or small
parts of an object.) This limitation has led to utilizing fine-tuning methods aimed at improving its
precision (Chen et al., 2023; Ke et al., 2024; Wu et al., 2023). These approaches introduce additional
optimization for SAM with different segmentation scenarios to handle diverse object appearances and
complexities. However, notice that SAM and its fine-tuned variants are not automated; they require
label-intensive efforts to identify “proper prompts” for segmenting objects of interest. Additionally,
these fine-tuned variants necessitate extra learnable parameters and training on additional datasets.

Recent works address the issues above by integrating SAM and its variants into one-shot and few-shot
segmentation scheme, enabling auto-prompting by leveraging the semantic alignment between a query
and support images. For instance, PerSAM (Zhang et al., 2024) relies on one-shot data, comprising a
support image and a rough mask of the target object. It utilizes a similarity map between a query and
target object embeddings to locate the target object precisely to facilitate prompt generation. Further
more, PerSAM-F, a fine-tuning variant of PerSAM, introduces learnable parameters to fine-tune
SAM, producing a linear combination of potential segmentation masks of different hierarchical levels
to resolve ambiguity (Zhang et al., 2024). Similarly, Matcher effectively combines pre-existing VFMs
to tackle one/few-shot segmentation tasks without additional training (Liu et al., 2024).
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(a) Support Image (b) PerSAM-F (c) Matcher (d) ReGRAF (e) Ground Truth

Figure 1: Example of prompts (green dots) and segmentation results from VFM. (a) Support Image
(elephant), (b) and (c) Misaligned prompts and segmentation results from PerSAM and Matcher, (d) Result from
Matcher refined by ReGRAF, (e) Ground Truth.

While the aformentioned methods have been successful, variations in appearance (e.g., color, view-
point, and shape) between query and support images often lead to misleading similarity maps. This
causes auto-prompting segmentation frameworks (e.g. PerSAM-F and Matcher) to generate inade-
quate prompts (false-positive, semantically ambiguous, or semantically insufficient prompts) that
confuse SAM’s decoder in capturing the target object(s), thereby compromising the quality of the
segmentation mask. For example, Fig. 1b and Fig. 1c illustrate instances where PerSAM-F and
Matcher generate semantically insufficient prompts, failing to fully capture the entire target object
(e.g., the elephant) within the scene. In such a scenario, we hypothesized that the gradient flow
from the mask decoder encapsulates comprehensive contextual information learned during SAM’s
pretraining. By iteratively refining the initial prompts based on this information, we expect obtaining
higher-quality segmentation masks, as illustrated in Fig. 1d.

To this end, we propose a framework Refinement via GRAdient Flow (ReGRAF) of mask decoder
which minimizes the entropy-regularized Kullback-Leibler (KL) divergence between the query and
support embeddings through the gradient flow derived from the mask decoder. This flow aligns the
query embedding with the semantics of the target object, improving the similarity map and eventually
enhancing the quality of segmentation masks. Additionally, we provide a rigorous theoretical
analysis that guarantees the convergence of this process. Specifically, we prove that the gradient flow
converges exponentially to the optimal probability density function (pdf) of the VFM’s embedding
space, ensuring robust refinement with a limited number of iterations. As the existing methods
significantly rely on similarity, our method improves upon existing methods that are grounded on
auto-prompting segmentation frameworks. In summary, our key contributions are as follows:

• Simple and Effective Training-Free Refinement Method: We introduce a novel, training-
free refinement method that improves the segmentation mask quality of promptable segmen-
tation models, without additional learnable parameters or datasets.

• Broad Applicability to Auto-Prompting Segmentation Frameworks: Our method offers
wide adaptability and can be easily integrated with any existing segmentation framework
that utilizes auto-prompting techniques.

• Theoretical Guarantee of Convergence: We provide a convergence analysis demonstrating
that ReGRAF drives query embeddings to converge exponentially to the optimal embedding
distribution for segmentation masks.

We empirically show the effect of ReGRAF through qualitative and quantitative experimental results.
ReGRAF is validated on five independent datasets with two different tasks (i.e., semantic and part
segmentations), which demonstrate improvements as we initially hypothesized.

2 RELATED WORKS

2.1 ONE/FEW-SHOT SEGMENTATION

Few-shot segmentation aims to develop models capable of segmenting new classes using only a few
annotated samples (e.g., one to five) (Shaban et al., 2017), making it particularly useful in scenarios
where acquiring large amounts of annotated data is difficult. Typically, these models use a pre-trained
feature extractor to process both support and query images, combining information from support
images to perform segmentation (Zhang et al., 2022; Hong et al., 2022).
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Recently, several approaches leveraging SAM as a pre-trained model have been proposed. PerSAM
relies solely on one-shot data, comprising a support image and a rough mask of the target object. It
utilizes a similarity map between a query and target object embeddings to locate the target object
precisely, facilitating prompt generation. However, PerSAM faces challenges in cases of visual
ambiguity, such as objects with visually distinct subparts or hierarchical structures (Zhang et al.,
2024).

PerSAM-F, fine-tuning variant of PerSAM, addresses this problem by introducing two learnable
parameters to fine-tune SAM, producing a linear combination of potential segmentation masks of
different hierarchical levels to resolve ambiguity (Zhang et al., 2024). This approach improves seg-
mentation accuracy and prevents overfitting on one-shot data, demonstrating enhanced performance
in challenging scenarios.

Similarly, Matcher (Liu et al., 2024), effectively combines pre-existing VFMs to tackle one/few-shot
segmentation tasks without additional training. Matcher utilizes DINOv2 (Oquab et al., 2024) as an
encoder to compute a similarity map with semantic understanding to accurately identify the location
of a target object in the query image. It then employs SAM as a segmenter to obtain segmentation
masks, benefiting from the zero-shot segmentation performance of the SAM.

2.2 FINE TUNING VARIANTS OF SAM

For efficient adaptation of SAM to various downstream tasks, a range of fine-tuning variants has
emerged. HQ-SAM, for instance, adds a high-quality output token and trains on the HQSeg-44K
dataset to improve mask precision (Ke et al., 2024). VRP-SAM (Sun et al., 2024) implements a
visual reference prompt encoder, requiring specific reference images and detailed training. SAM-
Adapter (Chen et al., 2023) modifies the architecture by adding lightweight adapter layers while
keeping most of SAM’s original parameters frozen, reducing training effort. MobileSAM (Zhang
et al., 2023) replaces the heavy ViT-H encoder with Tiny-ViT, reducing the model size and complexity
while still requiring adaptation.

All of these methods, however, necessitate additional training data and structural changes to the
model architecture. These fine-tuning strategies still heavily depend on manual prompts, with training
datasets requiring carefully crafted prompt annotations alongside segmentation data. This reliance on
curated prompts limits their applicability in real-world settings, where obtaining accurate prompts
and consistent user interaction may be challenging.

2.3 PROMPT TUNING

Prompt tuning has emerged as a lightweight and efficient fine-tuning strategy, enabling models to
leverage their extensive pre-trained knowledge without the need to significantly modify their internal
parameters (Lester et al., 2021; Sun et al., 2023).

In computer vision, especially with vision foundation models like SAM, prompt tuning can be thought
of as modifying the visual clues that are provided to guide the model in segmentation (e.g. points,
bounding boxes, or masks). Instead of retraining SAM for new segmentation tasks, prompt tuning
focuses on refining these input prompts to better capture object boundaries and features.

Recent works like PerSAM-F and Matcher are specialized forms of prompt tuning, refining the
input prompts or embeddings for segmentation tasks. However, these methods primarily rely on
similarity between query and support images, which can lead to inadequate prompts and sub-optimal
segmentation performance when the images have appearance variations.

3 METHOD

This section describes the overall process of ReGRAF. We first introduce the key concepts of the
gradient flow of entropy-regularized KL-divergences, followed by a detailed explanation of refinement
via gradient flow of segmentation mask decoder.

3.1 GRADIENT FLOW OF ENTROPY-REGULARIZED KL-DIVERGENCES

This subsection briefly describes the construction of the gradient flow of entropy-regularized KL-
divergences; more details can be found in the overview in Santambrogio (2017) and discriminator
gradient flow (Ansari et al., 2021) that forms the basis of our research.
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Let v be a vector of interest (e.g. a latent vector of a query image), and let ρ(v) and µ(v) be the
candidate and target (ideal) pdfs over v, For theoretical simplicity, we restrict our discussion to pdfs
defined on the latent vector space v that belong to the 2-Wasserstein space W2.

We now employ the gradient flow to update v in order to make the candidate distribution ρ approx-
imate the target distribution µ. Specifically, our focus lies in minimizing the entropy-regularized
KL-divergence Fµ(ρ) between the target distribution µ and its candidate distribution ρ as:

min
ρ

Fµ(ρ) = min
ρ

{KL(µ∥ρ)− γH(ρ)}

= min
v

{
−
∫

log(ρ(v)/µ(v))ρ(v)dx+ γ

∫
ρ(v) log(ρ(v))dv

}
,

(1)

where KL(µ∥ρ) denotes the KL-divergence between two distributions µ and ρ, H(·) denotes the
entropy function, and γ > 0 is a hyperparmeter that controls the strength of the entropy regularization.
Then, the gradient flow of the functional Fµ(ρ) is given by:

∂ρ

∂t
= −∇Fµ(ρt), (2)

where the subscript t refers to the time (iteration) index throughout this work. Equivalently, equa-
tion (1) follows a partial differential equation as:

∂tρt(v)−∇v · (ρt(v)∇v log(ρt(v)/µ(v)))− γ∆vvρt(v) = 0, (3)

where ∇v and ∆vv denote the divergence and the Laplace operators respectively (Ansari et al., 2021).
For the equation (3), we have the equivalent stochastic differential equation defined as:

dvt = −∇v log(ρt(v)/µ(v))dt+
√

2γdwt, (4)

where wt follows the standard Wiener process (Risken, 1996).

We can simulate a sample v0 ∼ ρ0 = ρ using equation (4) to obtain a sample close to µ. In practice,
this simulation is approximated using the Euler-Maruyama method:

vt+1 = vt − η∇v log(ρt(v)/µ(v)) +
√

2γηξt, (5)

where η > 0 is the step size, ξt ∼ N (0, I), and t ∈ [0, T ] for the predefined number of iterations T .
Furthermore, we can address intractability of µ(v) in equation (5) by approximating the density ratio,
ρt(v)/µ(v) by ρ0(v)/µ(v), as ρt(v)/µ(v) ≈ ρ0(v)/µ(v) for small t and η → 0. Given a classifier
Dϕ(v) (e.g., mask decoder parameterized by ϕ) that represents the conditional probability of v being
a sample from µ, the following expression provides an approximation for the density ratio (Sugiyama
et al., 2012):

ρ0(v)
µ(v)

=
1−Dϕ(v)
Dϕ(v)

= exp (−dϕ(v)). (6)

Substituting equation (6) into equation (5) yields the following results:

vt+1 = vt − η∇v log

(
1−Dϕ(v)
Dϕ(v)

)
+

√
2γηξt

= vt + η∇vdϕ(v) +
√

2γηξt,

(7)

where dϕ(v) = −log((1−Dϕ)/Dϕ) is the logit output of the classifier Dϕ.

In this work, ρ is the distribution of query image embeddings generated by SAM’s encoder, µ
represents the distribution of the optimal embedding with respective to the mask decoder, and Dϕ is
SAM’s mask decoder (i.e., pixel-wise classifier). The Dϕ can take prompts such as bounding boxes
and prompt points as inputs in addition to v, we omitted them in equation (6) and equation (7) for
clear explanation.

3.2 SEGMENTATION REFINEMENT VIA MASK DECODER GRADIENT FLOW

Here, we elaborate how gradient flow can be adopted for refining predicted masks. We describe
the general framework of few-shot segmentation using promptable segmentation models, and then
discuss our method for improving mask quality using gradient flow. As illustrated in Fig. 2, the first
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Figure 2: Overview of ReGRAF. Encoder box denotes image encoder, sim box denotes simliarity mesuring
module, and Mask Decoder box denotes SAM’s mask decoder. SAM’s prompt encoder is omitted here to show
clear flow of our method. ReGRAF is a training-free approach that utilizes a query image, a support image,
and its associated mask (blue region on the support image) to generate segmentation masks. First, the encoder
extracts query embeddings zq0 and support embeddings zs0. Prompts are obtained based on the similarity between
the embeddings zq0 and zs0. Thereafter, the mask decoder of a promptable segmentation model computes logits
given the prompts and query image embeddings. The logits dϕ and the query embeddings are then passed to
the gradient flow module to update the query embeddings zqt to zqt+1. Finally, the refined segmentation mask is
obtained using the binary mask decoder Dbin

ϕ at the last iteration index.

step of the framework is to extract image embeddings of a support image Is and a query image Iq by
an image encoder Eθ as

zs0 = Eθ(Is) , zq0 = Eθ(Iq), (8)

where zs0 and zq0 are initial image embeddings of Is and Iq respectively. Across an image, equation (8)
yields two sets of embeddings, {zs0,i}Ni=1 and {zq0,i}Ni=1 where N is the number of pixels in the
embedding space. Then, we compute the initial similarity matrix S0 between the query embeddings
and the support embeddings. The ith row and jth column of the matrix, S0[i, j] is computed as:

S0[i, j] = sim(zs0,i, zq0,j), (9)

where sim denotes a similarity function between two vectors, representing the similarity measurement
module of the few-shot segmentation model. Finally, we sample prompts P0 representing the position
of the target object, and obtain an initially predicted mask m̂0 using a binary mask decoder Dbin

ϕ :

P0 = prompt_sampler(S0), (10)

m̂0 = Dbin
ϕ (zq0;P0), (11)

where P0 is a set of prompts obtained from the similarity map S0, and examples of prompt_sampler
include top-k sampling (Zhang et al., 2024) and robust sampler (Liu et al., 2024). During this process,
some prompts in the set P0 are false positives or semantically confusing. Several suboptimal methods
have been proposed to address this issue, such as cascaded refinement, mask filtering, and robust
sampling (Zhang et al., 2024; Liu et al., 2024). While these approaches yield reasonably refined
masks, they still leave room for improvement. (see Fig. 1)

Thus, we propose our novel process of aligning prompts with the query image semantics using the
gradient flow of the mask decoder. In particular, we enhance mask quality by iteratively updating the
query embeddings, ensuring that predicted masks are more closely aligned with samples from the
true mask distribution. Formally, we have the following gradient flow in the embedding space:

zqt+1 = zqt + η∇zqt dϕ(z
q
t , Pt) +

√
2γηξt, (12)

St+1[i, j] = sim(zs0,i, zqt+1,j), (13)

Pt+1 = prompt_sampler(St+1), (14)

m̂T = Dbin
ϕ (zq0;PT ). (15)

At the tth iteration, we refine the query embedding zqt through the gradient flow derived from the
mask decoder as equation (12). Then we compute the updated similarity matrix St+1 following
equation (13), and sample prompts Pt+1 from the St+1 (equation (14)). Ultimately, we obtain refined

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

(a) Support Image (b) Baseline (c) t = 1 (d) t = 5 (e) Ground Truth

Figure 3: Refinement process of ReGRAF. Curated illustrations of ReGRAF’s refinement process with
PerSAM-F as the baseline. a) Target objects in the support images with blue masks (bear (top) and airplane
(bottom)), b) Segmentation results from PerSAM-F with point prompts in green dots. c), d) Refined prompt and
segmentation after one and five iterations, e) Ground truth.

mask m̂T using the binary mask decoder Dbin
ϕ (equation (15)). Our overall algorithm is summarized

in Alg. 1, and Fig. 3 illustrates the progressive refinement process of our method, where points located
at the same position are pruned.

Algorithm 1 Mask refinement via ReGRAF

Require: image encoder (θ), mask decoder (ϕ), iterations (T ), step size (η), noise factor (γ)
Obtain initial image embeddings (equation (8))
Compute initial similarity and prompts (equation (9)).
for t = 0 to T − 1 do

Update query embedding (equation (12)).
Compute similarity and prompts (equation (13, 14))

end for
Obtain refined mask (equation (15)).

return refined mask

3.3 THEORETICAL ANALYSIS

This section discusses the convergence of ReGRAF. We pose the following key questions:

How does the gradient flow approach the optimal probability density function (pdf) µ∗,
and what is the rate at which this convergence occurs?

This question is crucial for two reasons: First, ReGRAF should be theoretically designed to be
a convergent algorithm, which underscores its foundational robustness. Second, considering the
approximation of the density ratio used in ReGRAF, even a limited number of iterations should lead
to improvements in the quality of segmentation masks. In the following theorem, we demonstrate
that ReGRAF addresses the questions above.
Theorem 1. Let ρt be a candidate pdf in 2-Wasserstein space W2 evolving according to the gradient
flow of the entropy-regularized KL divergence Fµ(ρ) with local minimum µ∗. If the initial pdf ρ0 lies
in a neighborhood of µ∗, then ρt converges to µ∗ exponentially as t → ∞.

The proof of Theorem 1 is given in Appendix A, where we outline each step to establish the
convergence. We assume that the initial probability density function (pdf) ρ0 is close to the optimal
pdf µ∗. By applying a second-order Taylor expansion around µ∗, we approximate the entropy-
regularized KL divergence Fµ(ρ) which confirms that it reaches its minimum at µ∗. This results in a
differential equation demonstrating that the squared distance between ρt and µ∗ decreases over time,
leading to exponential convergence toward µ∗ as t approaches infinity.
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Given that the VFM has been trained on a diverse and extensive dataset, enabling it to generalize
across various tasks, it is reasonable to assume that the distribution of the VFM’s image embedding
ρ0 lies in the neighborhood of the optimal embedding distribution µ∗ for the VFM’s mask decoder.
Consequently, Theorem 1 guarantees that ρ0 converges to µ∗ at an exponential rate.

In summary, Theorem 1 yields two important implications: 1) it validates the density ratio approxi-
mation of ReGRAF, thereby reinforcing the model’s theoretical foundation, and 2) it underscores
ReGRAF’s robustness in refining segmentation masks as a convergent algorithm.

4 EXPERIMENTS

4.1 EXPERIMENT SETTING

Baseline method and backbone models. We utilize PerSAM-F and Matcher as our baseline methods
and demonstrate that ReGRAF enhances the segmentation mask for both methods. PerSAM-F uses
SAM as its backbone model, fully leveraging it to capture visual clues of target objects in the support
images. In contrast, Matcher employs DINOv2 (Oquab et al., 2023) with the ViT-L/14 architecture
(Dosovitskiy et al., 2021) as an image encoder to extract embeddings from both query and support
images, and uses SAM’s decoder as the segmenter. To illustrate that ReGRAF can be seamlessly
integrated with various SAM variants, we incorporate HQ-SAM (Ke et al., 2024) into both baselines,
resulting in HQ-PerSAM-F and HQ-Matcher. HQ-PerSAM-F substitutes HQ-SAM for SAM, while
HQ-Matcher replaces the SAM’s mask decoder and prompt encoder with those from HQ-SAM,
leaving the other modules unchanged.

Hyperparameter setting of PerSAM-F/HQ-PerSAM-F. The hyperparameters for fine-tuning
PerSAM-F and HQ-PerSAM-F adhere to the experimental settings outlined in Zhang et al. (2024).
We used the SAM with ViT-H as the segmenter for both PerSAM-F and HQ-PerSAM-F, utilizing the
AdamW optimizer (Loshchilov, 2017) with a weight decay of 0.01, betas of (0.9, 0.999), and epsilon
set to 1e−8. The learning rate was fixed at 1e−3, and the model was fine-tuned for 1000 epochs on
each query image.

Hyperparameter setting of Matcher/HQ-Matcher. We slightly modified the prompt filtering
options for Matcher and HQ-Matcher while keeping the other hyperparameters unchanged. This
adjustment was made to enhance the robustness of the selection process for accepted masks among
the proposal masks generated by Matcher, ultimately reducing the number of accepted masks. The
reduction aims to decrease the GPU resources required for computing gradient flow and to minimize
optimization errors caused by false positive candidate masks.

Hyperparameter setting of ReGRAF. We describe the hyperparameter settings used for ReGRAF.
Across all the datasets, we set the number of iterations T = 5, as equation (6) implies that the gradient
estimation in equation (12) becomes inaccurate with a large number of iterations. The coefficient
of the entropy regularization γ was set as 0.1 without any tuning process, while the step size η
was determined from 10 randomly sampled images from left-aside validation sets of COCO-20i

and PACO-part. Specifically, η of semantic segmentation was 0.001, and that of part segmentation
was 0.0001. Since the tuning for semantic/part segmentation has already been completed during
validation, these values were directly applied to other datasets or methods. Additionally, the number
of points selected based on similarity (in the case of Matcher, the final number of clustering centers)
was set as follows: for semantic segmentation, Matcher used 8 points, HQ-Matcher used 7 points,
and PerSAM-F and HQ-PerSAM-F extracted 5 points as prompts to perform the task. For part
segmentation, the number of points was reduced to 5 for the Matcher/HQ-Matcher and to 3 for the
PerSAM-F/HQ-PerSAM-F, to improve the localization of smaller objects. We used sim as proposed by
Matcher for Matcher, and as proposed by PerSAM-F for PerSAM-F. Finally, the gradients computed
during ReGRAF were clipped to ensure stability throughout the overall process.

Datasets and evaluation. We evaluated ReGRAF through two experiments: 1) semantic and 2)
part segmentations. The former assesses a broad understanding of objects, while the latter evaluates
a fine-grained understanding. Semantic segmentation performance of ReGRAF was assessed on
three datasets: FSS-1000 (Li et al., 2020), LVIS-92i (Liu et al., 2024), and COCO-20i (Nguyen &
Todorovic, 2019). For the part segmentation, we used two datasets: PASCAL-Part (Everingham
et al., 2010; Chen et al., 2014; Li et al., 2020) and PACO-Part (Liu et al., 2024; Ramanathan et al.,
2023). For all datasets, we adhered to the data preprocessing and evaluation protocols introduced
in Liu et al. (2024), and additionally reported the few-shot (5-shot) segmentation performance of
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(a) Support Image (b) Baseline (c) Refined (Ours) (d) Ground Truth

Figure 4: Qualitative result of semantic segmentation. Refinement process of ReGRAF with various baselines,
presented in the following order (top to bottom) : PerSAM-F, HQ-PerSAM-F, Matcher, and HQ-Matcher. Target
objects in support images are highlighted with blue masks, and point prompts are denoted by green dots.

Matcher/HQ-Matcher and ReGRAF paired with Matcher/HQ-Matcher. To verify the effectiveness
of our method, we measured mean Intersection of Union (mIoU) and also listed the mIoU gain of
ReGRAF from baselines across iterations (T = 5). The best average mIoU of each dataset within
the total iterations of both semantic and part segmentation are reported in Tab. 1 and Tab. 2, while
the average mIoU progression and the oracle results are presented in Appendix D. Furthermore, we
conducted the sensitivity analysis on our hyperparameters (η and T ) in Appendix F.

4.2 EXPERIMENT RESULT

We present comprehensive experimental results for semantic and part segmentations, along with
a discussion of the additional computational costs associated with our method. For each type of
task, one-shot segmentation was performed for PerSAM-F and HQ-PerSAM-F, while both one-shot
and few-shot (5-shot) segmentation were performed for Matcher and HQ-Matcher. Experiments
on the former were conducted using an NVIDIA GeForce RTX 3090, while the latter were tested
on an NVIDIA RTX A6000. Due to space limitations, The qualitative results of semantic and part
segmentation for each baseline method, as well as the qualitative results for 5-shot segmentation, are
included in Appendix B. Additionally, some failure cases of ReGRAF is provided in Appendix C.

4.2.1 SEMANTIC SEGMENTATION.

To evaluate the model’s comprehensive understanding of a scene, we conducted a comparative analy-
sis of ReGRAF with baseline methods in semantic segmentation. We evaluated ReGRAF on three
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(a) Support Image (b) Baseline (c) Refined (Ours) (d) Ground Truth

Figure 5: Qualitative result of part segmentation. Refinement process of ReGRAF with various baselines,
presented in the following order (top to bottom) : PerSAM-F, HQ-PerSAM-F, Matcher, and HQ-Matcher. Target
objects in the support images are highlighted with blue masks and enclosed in green boxes, while point prompts
are denoted by green dots and also emphasized within green boxes.

datasets: COCO-20i, FSS-1000, and LVIS-92i, all of which were preprocessed to ensure consistent,
mask-annotated segmentation tasks. We followed the established evaluation schemes on COCO-20i
and FSS-1000, and tested all baseline methods directly on their respective test sets. Additionally,
LVIS-92i was curated as a challenging benchmark to test cross-dataset generalization with balanced
class folds and randomly sampled evaluation episodes. Tab. 1 quantitatively demonstrates consistent
mIoU improvements across a variety of experimental settings. These results demonstrate ReGRAF’s
effectiveness in refining segmentation mask quality in diverse one/few-shot scenarios. The enhance-

Table 1: Semantic segmentation. (mIoU)

FSS-1000 COCO-20i LVIS-92i

Baseline (#-shot) Base + ReGRAF Base + ReGRAF Base + ReGRAF

PerSAM-F 50.90 54.47 +3.57 16.12 16.59 +0.47 7.30 7.78 +0.49

HQ-PerSAM-F 69.70 72.17 +2.47 24.84 25.17 +0.34 10.88 10.99 +0.11

Matcher 92.07 92.09 +0.02 69.80 70.45 +0.66 62.13 62.52 +0.40

HQ-Matcher 92.50 92.80 +0.30 70.06 70.55 +0.49 60.04 60.37 +0.34

Matcher (5) 93.08 93.26 +0.18 67.61 68.48 +0.88 57.12 58.08 +0.97

HQ-Matcher (5) 93.25 93.29 +0.05 67.77 68.20 +0.43 57.44 58.14 +0.71

Table 2: Part segmentation. (mIoU)

PACO-part Pascal-part
Baseline (#-shot) Base + ReGRAF Base + ReGRAF

PerSAM-F 19.39 19.68 +0.29 24.44 24.57 +0.13

HQ-PerSAM-F 20.84 20.91 +0.08 26.96 27.05 +0.09

Matcher 50.25 50.33 +0.08 54.61 54.91 +0.31

HQ-Matcher 51.13 51.32 +0.19 56.23 56.46 +0.23

Matcher (5) 48.70 48.84 +0.14 54.50 54.66 +0.17

HQ-Matcher (5) 49.39 49.66 +0.27 56.30 56.40 +0.10

ments in semantic segmentation quality reflect ReGRAF’s comprehensive understanding of the scene.
As illustrated in Fig. 4, baseline methods occasionally struggle to segment the target object in the
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query image, primarily due to false positives resulting from a limited understanding of the target
object’s semantics. In such scenarios, baseline approaches often fail to accurately delineate the target
object’s outline (1st row in Fig. 4), localize it effectively due to dominant features such as color (2nd
row in Fig. 4), or generate diverse prompts that fully capture entire target objects in a scene (3rd
and 4th row in Fig. 4). In contrast, ReGRAF effectively resolves these challenges within just five
refinement iterations.

4.2.2 PART SEGMENTATION.
Part segmentation assesses how effectively a model comprehends fine-grained semantics and accu-
rately performs segmentation tasks. We measured the gains in mIoU by ReGRAF from each baseline
methods on two datasets, PASCAL-part and PACO-part. Both datasets are constructed in the work
of Liu et al. (2024) to create a robust framework for evaluating part segmentation models, utilizing
cropped objects with bounding boxes to focus on segmentation quality, facilitating more precise
one-shot segmentation tasks.

As shown in Tab. 2, ReGRAF makes consistent refinement of segmentation masks across different
baselines. While the gains in mIoU may appear modest, note that part segmentation presents unique
challenges due to the granularity and complexity of the object details. Despite limited numerical
improvements in some cases, ReGRAF excels in capturing the delicate structure of the fine grained
target part. While the outputs from various baseline methods often struggle to align precisely with
the delicate structures of the target parts (e.g. placing some prompts on the object containing the part,
rather than on the part itself (1st and 3rd row in Fig. 5), mislocalizing prompts (2nd row in Fig. 5), or
failing to capture the entire part (the last row in Fig. 5)), ReGRAF effectively aligns prompts with
the fine-grained parts of the target objects, as shown in the second column of Fig. 5. This enhanced
alignment results from ReGRAF’s capability to refine the query image embeddings in relation to a
VFM’s mask decoder, which leads to more accurate prompt localization.

4.2.3 DISCUSSION ON COMPUTATION OF REGRAF.

ReGRAF requires at least 20GB and 8GB GPU memory when used with Matcher and PerSAM-
F respectively. We argue that the advantages of our approach outweigh the associated memory
consumption because ReGRAF enhances the quality of segmentation masks without requiring
additional learnable parameters and new training datasets for fine-tuning or modifications to the
model architecture as in previous approaches. This efficiency not only reduces the complexity of the
implementation but also facilitates broader applicability across various segmentation frameworks.

Moreover, the additional time required for gradient flow computation per image is minimal compared
to the total iteration time. For instance, the gradient update takes only 0.02 seconds per iteration, while
the running time for PerSAM-F with ReGRAF is 8.02 seconds (Tab. 3). Thus, the computational
overhead introduced by our method is negligible, further reinforcing its practicality and effectiveness
in enhancing segmentation mask quality.

Table 3: Per-image running time of baselines and ReGRAF

Method Running time of baselines (sec) ReGRAF (sec/iteration)
PerSAM-F+ReGRAF 8.02 0.02
Matcher+ReGRAF 2.16 0.08

5 CONCLUSION

In this paper, we introduce a novel training-free refinement method that enhances the quality of
segmentation masks using a promptable segmentation model. Our method is widely applicable to
auto-prompting frameworks, and we comprehensively evaluated the effectiveness of our approach
through extensive quantitative and qualitative assessments, demonstrating its superiority. ReGRAF
effectively refines visual clues for SAM’s mask decoder, allowing it to understand the semantics of
target objects within a scene. Furthermore, theoretical analysis on the convergence of ReGRAF and
the experiment results emphasize the robustness and adaptability of our method across both semantic
and part segmentation tasks. Our methodology stands out from existing approaches by eliminating
the need for learnable parameters, modifications to model architecture, and reliance on additional
training datasets. This is highly efficient, as it requires significantly less time for refinement. These
advantages highlight the practicality and effectiveness of our method in enhancing segmentation
mask quality without the complexities.
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6 REPRODUCIBILITY

Hyperparameters of each baselines and ReGRAF are described in Sec 4.1, and we will make the
code public that produce the same result in this paper. In addition, to ensure the reproducibility of our
work, we provided a detailed figure of ReGRAF in Fig. 2 along with the pseudo code of our general
framework in Alg. 1. The key script of the code is included in the supplementary materials.
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A PROOF OF THEOREM 1

Theorem 1. Let ρt be a candidate pdf in 2-Wasserstein space W2 evolving according to the gradient
flow of the entropy-regularized KL divergence Fµ(ρ) with local minimum µ∗. If the initial pdf ρ0 lies
in a neighborhood of µ∗, then ρt converges to µ∗ exponentially as t → ∞.

Proof. To prove Theorem 1, We begin by the assumption that ρ0 is a neighborhood of µ∗, and
approximate Fµ(ρ) near µ∗ by the second Taylor expansion as:

Fµ(ρ) = Fµ(µ
∗) +∇Fµ(µ

∗)(ρ− µ∗) +
1

2

〈
F

′′

µ (µ
∗)(ρ− µ∗), ρ− µ∗

〉
+O

(
∥ρt − µ∗∥3

)
= Fµ(µ

∗) +
1

2

〈
F

′′

µ (µ
∗)(ρ− µ∗), ρ− µ∗

〉
,

(16)

where ⟨ , ⟩ is an inner product operator, O is the big-O notation, and the second line of equation (16)
holds because µ∗ is the minimizer of Fµ (i.e. ∇Fµ(µ

∗) = 0). Furthermore, since µ∗ is the minimizer
of the functional Fµ, the Hessian F

′′

µ is positive definite.

Differentiating Fµ(ρt) with respective to ρt in equation (16), we obtain the following approximation
for ∇Fµ(ρt):

∇Fµ(ρt) ≈ F
′′

µ (µ
∗)(ρt − µ∗). (17)

The above approximation reduces equation (2) to:

∂ρt
∂t

= −F
′′

µ (µ
∗)(ρt − µ∗). (18)

To show that equation (18) describes a linear system with exponential convergence, consider the
following differential equation:

d

dt
∥ρτ − µ∗∥2 = 2

〈
ρτ − µ∗,

∂ρτ
∂τ

〉
= 2

〈
ρτ − µ∗,−F

′′

µ (µ
∗)(ρτ − µ∗)

〉
,

(19)

where τ ≥ 0. The second line of the above equation holds by equation (17). Using the positive
definiteness of F

′′

µ (µ
∗), the following equation holds for the minimal eigenvalue λmin of F

′′

µ (µ
∗),〈

ρτ − µ∗, F
′′

µ (µ
∗)(ρτ − µ∗)

〉
> λmin∥ρτ − µ∗∥2. (20)

Considering equation (19) and equation (20), we obtain:

d

dt
∥ρτ − µ∗∥2 < −2λmin∥ρτ − µ∗∥2. (21)

By dividing both sides of equation (20) by ∥ρτ − µ∗∥2 and integrating from τ = 0 to τ = t, we have:

log ∥ρt − µ∗∥2 < −2λmint+ log ∥ρ0 − µ∗∥2. (22)

Exponentiating both sides yield:

∥ρt − µ∗∥2 < e−2λmint∥ρ0 − µ∗∥2, (23)

which implies that ρt converges to µ∗ exponentially as t → ∞ when ρ0 is a neighborhood of µ∗.
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B ADDITIONAL QUALITATIVE RESULTS

B.1 ONE SHOT SEMANTIC SEGMENTATION

(a) Support Image (b) Baseline (c) Refined (Ours) (d) Ground Truth

Figure 6: Qualitative result of ReGRAF with PerSAM-F/ HQ-PerSAM-F in semantic segmentation.
The upper section: ReGRAF with PerSAM-F, and lower section : ReGRAF with HQ-PerSAM-F.
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(a) Support Image (b) Baseline (c) Refined (Ours) (d) Ground Truth

Figure 7: Qualitative result of ReGRAF with Matcher/ HQ-Matcher in semantic segmentation. The
upper section shows ReGRAF with Matcher, while the lower section displays ReGRAF with HQ-
Matcher.
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B.2 ONE SHOT PART SEGMENTATION

(a) Support Image (b) Baseline (c) Refined (Ours) (d) Ground Truth

Figure 8: Qualitative result of ReGRAF with PerSAM-F/ HQ-PerSAM-F in part segmentation. The
upper section shows ReGRAF with PerSAM-F, while the lower section displays ReGRAF with
HQ-PerSAM-F.
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(a) Support Image (b) Baseline (c) Refined (Ours) (d) Ground Truth

Figure 9: Qualitative result of ReGRAF with Matcher/ HQ-Matcher in part segmentation. The upper
section shows ReGRAF with Matcher, while the lower section displays ReGRAF with HQ-Matcher.
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B.3 FIVE SHOT SEMANTIC SEGMENTATION (MATCHER)

Figure 10: Qualitative result of five shot semantic segmentation (Matcher). The test samples are
separated by dividers. For each sample, the upper row shows the support images, while the lower
row displays, from left to right, the baseline result, the result of ReGRAF across iterations, and the
ground truth.
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B.4 FIVE SHOT SEMANTIC SEGMENTATION (HQ-MATCHER)

Figure 11: Qualitative result of five shot semantic segmentation (HQ-Matcher). The test samples are
separated by dividers. For each sample, the upper row shows the support images, while the lower
row displays, from left to right, the baseline result, the result of ReGRAF across iterations, and the
ground truth.
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B.5 FIVE SHOT PART SEGMENTATION (MATCHER)

Figure 12: Qualitative result of five shot part segmentation (Matcher). The test samples are separated
by dividers. For each sample, the upper row shows the support images, while the lower row displays,
from left to right, the baseline result, the result of ReGRAF across iterations, and the ground truth.
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B.6 FIVE SHOT PART SEGMENTATION (HQ-MATCHER)

Figure 13: Five shot part segmentation (HQ-Matcher). The test samples are separated by dividers.
For each sample, the upper row shows the support images, while the lower row displays, from left to
right, the baseline result, the result of ReGRAF across iterations, and the ground truth.
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B.7 COMPARISON OF THE EFFECTS OF REGRAF ACROSS DIFFERENT BASELINES.

(a) Support Image (b) PerSAM-F (c) HQ-PerSAM-F (d) Matcher (e) HQ-Matcher

(f) Ground Truth (g) (b)+ReGRAF (h) (c)+ReGRAF (i) (d)+ReGRAF (j) (e)+ReGRAF

Figure 14: Illustration of prompt refinement of ReGRAF
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C FAILURE CASES OF REGRAF

In this section, we demonstrate certain challenging scenarios where prompt refinement is less effective,
helping to identify areas for improvement in the method’s robustness. When the visual semantics
between the reference and target images differ significantly (e.g., the 1st and 4th rows of Fig. 15),
prompt refinement becomes challenging, often resulting in performance degradation. Furthermore,
when the visual clues in the reference images are ambiguous—such as difficulty in distinguishing
specific parts of a bicycle, or when the reference depicts a general tray while the segmentation target
focuses on the tray’s edge—ReGRAF encounters challenges in refining the prompts effectively (e.g.,
the 2nd, 3rd, and 5th rows of Fig. 15)

(a) Support Image (b) Baseline (c) ReGRAF (T = 1) (d) ReGRAF (T = 5) (e) Ground Truth

Figure 15: Failure cases of ReGRAF. The upper two rows compare ReGRAF with PerSAM-F as
the baseline, while the lower three rows compare ReGRAF with Matcher as the baseline. Each
comparison illustrates the failure cases of ReGRAF.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

D AVERAGE MIOU PROGRESSION AND ORACLE RESULTS OF REGRAF

In the following, we present average mIoU segmentation results of each dataset as well as the oracle
results. The oracle results are obtained by selecting the most accurate segmentation masks across the
maximum iterations (T = 5) based on a comparison with the ground truth. This approach closely
resembles real-world usage of ReGRAF, as it allows selecting the most suitable segmentation result
from different iterations.

Baselines (#-shot) Datasets
Iterations (ReGRAF Gain)

Oracle
Baseline mIoU 1 2 3 4 5

PerSAM-F

COCO-20i

16.12 0.00 0.02 0.16 0.47 0.26 7.52

HQ-PerSAM-F 24.84 0.00 0.33 0.18 0.24 0.25 5.29

Matcher 69.80 -0.15 0.21 0.07 0.31 0.66 7.09

HQ-Matcher 70.06 0.08 0.03 0.25 0.36 0.49 7.22

Matcher (5) 67.61 0.17 -0.20 -0.05 0.50 0.88 7.98

HQ-Matcher (5) 67.78 -0.22 -0.08 -0.15 -0.04 0.42 7.95

PerSAM-F

LVIS-92i

7.30 0.00 0.18 0.23 0.44 0.48 4.26

HQ-PerSAM-F 10.88 0.00 0.05 0.11 0.05 0.06 2.93

Matcher 62.13 -0.06 -0.24 -0.12 0.31 0.40 6.41

HQ-Matcher 60.04 0.09 0.07 0.15 0.18 0.34 6.41

Matcher (5) 57.12 -0.05 -0.04 0.17 0.54 0.97 7.54

HQ-Matcher (5) 57.44 -0.11 -0.13 0.09 0.33 0.70 7.54

PerSAM-F

FSS-1000

50.90 0.00 0.99 2.06 2.73 3.57 15.62

HQ-PerSAM-F 69.70 0.00 1.06 1.10 1.74 2.47 9.62

Matcher 92.07 -0.19 -0.10 0.02 -0.05 -0.05 1.42

HQ-Matcher 92.50 0.15 0.17 0.30 0.16 0.13 1.60

Matcher (5) 93.21 0.11 0.01 0.09 0.00 -0.01 1.15

HQ-Matcher (5) 93.25 0.02 0.02 -0.03 0.02 0.04 1.15

PerSAM-F

PACO-part

19.39 0.00 0.13 0.29 0.18 0.22 4.67

HQ-PerSAM-F 20.84 0.00 -0.13 -0.05 -0.03 0.07 3.66

Matcher 64.31 0.07 0.08 -0.03 -0.14 -0.20 6.38

HQ-Matcher 51.13 0.19 0.11 0.13 -0.11 0.00 6.96

Matcher (5) 64.31 0.07 0.08 -0.03 -0.14 -0.20 6.48

HQ-Matcher (5) 49.39 0.15 -0.22 0.14 0.14 0.27 7.14

PerSAM-F

PASCAL-part

24.44 0.00 0.00 0.05 0.12 0.13 9.52

HQ-PerSAM-F 26.96 0.00 -0.03 -0.09 0.06 0.09 8.53

Matcher 54.62 0.05 0.00 0.30 0.04 -0.04 6.49

HQ-Matcher 56.23 -0.06 -0.07 -0.12 0.07 0.23 6.49

Matcher (5) 54.50 -0.21 0.17 0.04 -0.08 -0.26 6.93

HQ-Matcher (5) 57.63 -0.10 -0.03 0.19 0.06 0.03 6.93

Table 4: Average mIoU progression and oracle results of ReGRAF.
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Tab. 4 demonstrates that while the optimal iteration may vary across samples, ReGRAF consistently
refines segmentation masks effectively, yielding significant performance improvements in practical
applications (e.g., approximately a 10% mIoU gain for Matcher and HQ-Matcher).

E SEGMENTATION RESULTS ON FINE-GRAINED DATASET

To further validate the performance of ReGRAF on fine-grained objects, we also tested it on the
DIS5K dataset (Qin et al., 2022). DIS5K is specifically designed for segmentation tasks where
fine-grained objects are difficult to distinguish and require more accurate segmentation masks. We
applied the same hyperparameter settings for ReGRAF as those used in part segmentation.

Tab. 5 shows that ReGRAF performs well even on the challenging data. Although the progression of
average mIoU gains suggests challenges in selecting the optimal maximum iterations T , the oracle
results demonstrate that our method effectively enhances segmentation quality, even for this difficult
task.

Baselines Datasets
Iterations (ReGRAF Gain)

Oracle
Baseline mIoU 1 2 3 4 5

PerSAM-F

DIS5K

27.47 0.00 0.24 0.33 0.02 -0.24 6.33

HQ-PerSAM-F 52.62 0.00 -0.12 0.06 0.17 0.11 5.55

Matcher 46.77 -0.29 0.14 -0.19 -0.23 0.14 10.87

HQ-Matcher 58.39 0.09 0.58 -0.06 0.18 0.52 10.65

Table 5: Segmentation results of ReGRAF on DIS5K.

F SENSITIVITY ANALYSIS OF THE STEP SIZE AND ITERATIONS

Figure 16: Sensitivity analysis of the step size η and iterations T .

We randomly sampled 100 examples from the set-aside dataset (derived from the COCO-20i training
dataset) to conduct the sensitivity analysis on the step size (η) and the number of iterations (T ). For
the analysis, we evaluated the mIoU over iterations, testing up to 30 iterations with step sizes of
10−2, 10−3, 10−4, and 10−5. Fig. 16 shows a moving average with a window size of 2 to smooth
fluctuations and better reveal overall trends.
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The result highlights the significant impact of the step size (η) on the segmentation performance
and stability. Among the tested values, η = 10−3 demonstrated the most consistent and superior
performance. In contrast, η = 10−2 showed rapid initial improvement but suffered from performance
degradation over time, indicating a lack of long-term stability. Smaller step sizes, such as η = 10−4

and η = 10−5, exhibited increased variability and slower convergence.

This underscore the importance of tuning the step size, however ReGRAF can be easily tuned and
applicable to various scenarios. As shown in Tab. 3, incorporating ReGRAF into the baselines
introduces minimal additional running time. Furthermore, Tab. 4 and Tab. 5 demonstrate that even
with hyperparameters tuned on 10 randomly sampled instances from COCO-20i, ReGRAF effectively
improves the baseline’s segmentation performance across diverse datasets.

27


	Introduction
	Related works
	One/few-shot segmentation
	Fine tuning Variants of SAM
	Prompt tuning

	Method
	Gradient flow of entropy-regularized KL-divergences
	Segmentation refinement via mask decoder gradient flow
	Theoretical Analysis

	Experiments
	Experiment setting
	Experiment Result
	Semantic segmentation.
	Part segmentation.
	Discussion on computation of ReGRAF.


	Conclusion
	Reproducibility
	Proof of Theorem 1
	Additional Qualitative Results
	One shot Semantic segmentation
	One shot Part segmentation
	Five shot semantic segmentation (Matcher)
	Five shot semantic segmentation (HQ-Matcher)
	Five shot Part segmentation (Matcher)
	Five shot Part segmentation (HQ-Matcher)
	Comparison of the Effects of ReGRAF Across Different Baselines.

	Failure cases of ReGRAF
	Average mIoU progression and oracle results of ReGRAF
	Segmentation results on fine-grained dataset
	Sensitivity analysis of the step size and iterations

