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Abstract

Video generation primarily aims to model authentic and customized motion across
frames, making understanding and controlling the motion a crucial topic. Most
diffusion-based studies on video motion focus on motion customization with
training-based paradigms, which, however, demands substantial training resources
and necessitates retraining for diverse models. Crucially, these approaches do
not explore how video diffusion models encode cross-frame motion information
in their features, lacking interpretability and transparency in their effectiveness.
To answer this question, this paper introduces a novel perspective to understand,
localize, and manipulate motion-aware features in video diffusion models. Through
analysis using Principal Component Analysis (PCA), our work discloses that robust
motion-aware feature already exists in video diffusion models. We present a new
MOtion FeaTure (MOFT) by eliminating content correlation information and filter-
ing motion channels. MOFT provides a distinct set of benefits, including the ability
to encode comprehensive motion information with clear interpretability, extraction
without the need for training, and generalizability across diverse architectures.
Leveraging MOFT, we propose a novel training-free video motion control frame-
work. Our method demonstrates competitive performance in generating natural
and faithful motion, providing architecture-agnostic insights and applicability in a
variety of downstream tasks.

1 Introduction

Video generation has experienced notable advancements in recent years, particularly in the realm
of video diffusion models, such as text-to-video (T2V) generation [15; 5; 45; 43] and image-to-
video (I2V) generation [2; 14; 6]. Apart from producing high-quality content in individual frames,
capturing authentic and customized motion across frames is a crucial feature of video generation.
Thus, understanding and controlling the motion play pivotal roles in video generation.

Most methods [46; 50; 42; 15; 44] that study video motion focus on motion customization, i.e.
allowing users to specify a moving direction [46] or a point-drag command [50]. These methods
typically adopt training-based paradigms [46; 50; 42; 15] that introduce motion conditions and
train additional modules to ensure that the output videos adhere to these conditions. Despite their
progress, these approaches require significant training resources and need retraining for different
models, and their effectiveness often remains black-box. More critically, they do not address a
fundamental question: How do video diffusion models encode cross-frame motion information within
their features?
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(c) MOFT as guidance for motion control

(b) Similarity heatmap of MOFT on various videos. (a) Reference

Figure 1: Characteristics of MOtion FeaTure (MOFT). (a-b) Rich Motion Information: We extract
MOFT at the red point in the reference video in (a) and draw similarity heatmaps in (b) across various
videos (yellow indicates higher similarity). The heatmap aligns well with the motion flow in the
bottom left. (c) MOFT serves as guidance for controlling motion direction in the light-masked region,
with the motion direction signal illustrated by red arrows in the first image.

Understanding the encoding of motion information is crucial for two reasons: a) it offers architecture-
agnostic insights, meaning that such knowledge can be applied across different models and their
checkpoints, an important consideration given the rapid evolution of video diffusion models; and
b) it supports various downstream applications. For instance, the DIffusion FeaTure [41] demon-
strates how diffusion features can encapsulate rich semantic information, enabling applications like
correspondence extraction [17; 23] and image/video editing [9; 30; 8].

To this end, this paper introduces a novel perspective to understand, localize, and manipulate
motion-aware features in video diffusion models. We first establish that removing content correlation
information helps to pronounce motion information in video diffusion features. By applying Principal
Component Analysis (PCA) [47] on these diffusion features, we observe a strong correlation between
the principal components and video motions. Further explorations reveal that certain channels of the
features play a more significant role in determining motion direction than others. Based on these
observations, we present a straightforward strategy to extract motion information embedded in the
features, termed MOtion FeaTure (MOFT). Through content correlation removal and motion channel
filter, MOFT establishes impressive correspondence on videos with the same motion direction, as
illustrated in Fig. 1 (a-b). Importantly, this strategy proves to be generalizable across various text-to-
video or image-to-video generation models [15; 14; 43; 4; 2] (Fig. 4), such as AnimatedDiff [15],
ModelScope [43], and Stable Video Diffusion [2].

Building upon the motion-aware MOFT, we propose a pipeline for video motion control in a training-
free manner, without the modification of model parameters. The approach leverages compositional
loss functions for content manipulation [9; 11; 31; 1; 19]. Specifically, we design loss functions to
optimize noisy latents in the denoising process with reference MOFT, which can be synthesized via
direction signal or extracted from reference videos. Furthermore, our pipeline can be extended for
point-drag manipulation. With MOFT guidance to generate coarse motion in the early denoising
stages, fine-grained point-drag manipulation with DIFT [41] guidance becomes feasible for videos.
Various experiments showcase the effectiveness of MOFT in controlling the motions of diverse
scenarios across different video diffusion models without the need for any training. Remarkably, our
training-free method even outperforms some data-driven methods in achieving natural and faithful
motion. Our main contributions are summarized as follows:

• We perform a deep analysis of motion information embedded in video generation models.
Our work discloses that robust motion-aware feature already exists in video diffusion models.

• Through our analysis, we present MOtion FeaTure (MOFT) that effectively captures motion
information. MOFT has several advantages: a) it encodes rich motion information with high
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interpretability; b) it can be extracted in a training-free way; and c) it is generalizable to
various architectures.

• We propose a novel training-free video motion control framework based on MOFT. Our
method demonstrates competitive performance with natural and faithful motion. Unlike pre-
vious training-based methods that need independent training for each different architecture
and checkpoint, our method is readily applicable to different architectures and checkpoints.

2 Related Works

Video Diffusion Models. The field of video generation has witnessed substantial progress in recent
years, particularly in the domain of video diffusion models. Noteworthy contributions include
advancements in text-to-video (T2V) generation [20; 15; 5; 45; 43; 32] which aim to generate high-
fidelity videos that align with textual descriptions. Besides, image-to-video (I2V) [2; 14; 6] takes
image conditions as inputs and generates videos aligned with the image. Beyond the production of
high-quality content within individual frames, the capability to capture authentic and customized
motion across frames stands out as a significant feature in the realm of video generation.

Diffusion Feature Understanding. The analysis and comprehension of diffusion features [41; 29; 10;
27; 37] have garnered increasing attention. A comprehensive understanding of diffusion features not
only yields architecture-agnostic insights applicable across diverse models and checkpoints but also
enhances various downstream applications. For instance, DIffusion FeaTure (DIFT) [41] demonstrates
that diffusion features embed impressive semantic correspondence and can be extracted with a simple
strategy. This strategy proves effective across various architectures, spanning image diffusion models
[34] to video diffusion models [15; 43]. Its versatility facilitates a range of applications, including
correspondence extraction [17; 23] and image/video editing [9; 30; 8]. Recently, Freecontrol [29]
applied PCA on diffusion features and extracted semantic basics for training-free spatial control. Its
method can be generalized to any conditional input and any model. Similarly, video diffusion models
encode rich motion information within the features. However, less effort has been made to analyze it.

Video Motion Control. Considerable efforts have been dedicated to tailoring video motion according
to user preferences [46; 44; 14; 50; 42; 16; 7; 13; 48]. For example, MotionCtrl [46] facilitates
precise control over camera poses and object motion, allowing for fine-grained motion manipulation.
VideoComposer [44] introduces motion control through the incorporation of additional motion
vectors, while DragNUWA [50] proposes a method for video generation that relies on an initial image,
provided point trajectories, and text prompts. These methodologies typically rely on training-based
paradigms, incorporating motion conditions during training and requiring additional modules to
ensure that the resulting videos adhere to these specified conditions. Despite their advancements,
these approaches demand substantial training resources, necessitating retraining for different models,
and often exhibit a black-box nature in terms of their effectiveness. In contrast, this paper introduces
a novel pipeline for controlling video motion using an interpretable motion-aware feature. Notably,
this approach is training-free and can be generalized across various architectural frameworks, offering
a more versatile and resource-efficient solution.

3 MOtion FeaTures (MOFT)

In this section, we first analyze how video diffusion models encode cross-frame motion information,
then provide the strategy to extract motion features from pre-trained video diffusion models.

Similar to [41; 49; 29], our analysis focuses on diffusion features extracted from the intermediate
blocks of diffusion models. We denote them as X ∈ RH×W×F×D, where H , W , F and D are
dimensions of height, width, frames, and channels, respectively. As proved by prior works [15; 51; 46],
cross-frame features play a crucial role in video motion control. For example, AnimateDiff [15] trains
temporal self-attention LoRAs [21] that operate on the temporal dimension to control the global
motion direction. Consequently, we argue that the temporal dimension encapsulates rich motion
information. However, extracting motion information from diffusion features is non-trivial, as they
also contain other information such as semantic and structural correlation.
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(a) PCA of vanilla feature (b) PCA of feature after correlation removal

Figure 2: Visualization of PCA on video diffusion features. The left side indicates the frame-
wise panning direction, with each color representing a specific direction pattern. We apply PCA to
diffusion features extracted from videos with different motion directions and plot their projections on
the leading two principle components. (a) The result does not exhibit a distinguishable correlation
with motion direction. (b) Features are clearly separated by their motion direction.

(a) PC weight hist. on channels (b) Value of a motion channel (c) Value of a motion channel (d) Value of non-motion channel

0-15: Pan right 0-5: Pan right, 5-10: Pan left, 10-15: Pan right 0-3: Pan right, 3-7: Pan left, 7-11: Pan right, 11-15: Pan right

Figure 3: Cross-frame Channel Value. (a) We plot the histogram of the weight of P1. It reveals
that only a few channels significantly contribute to determining the principal components. (b-c) The
motion channels exhibit a pronounced correlation with motion direction trends. (d) In contrast, the
non-motion channels show little correspondence with motion direction.

3.1 Content Correlation Removal

Inspired by VideoFusion [28] which uses shared noise to model content correlation across frames
and residual noise to model dynamic difference, we hypothesize that we can filter out the content
correlation by eliminating similar information across frames:

X norm = X − 1

F

F∑
i=1

Xi, (1)

where Xi indicates the ith frame of feature X . The shared latents, to which we refer as content
correlation information, encompass shared aspects such as semantic content and appearance. In
contrast, the residual latents primarily capture motion information, which also can be interpreted as
deformation in structure.

To validate the hypothesis, we apply Principal Component Analysis (PCA) [47] on X and X norm.
Specifically, we create a series of videos with the entire scene moving horizontally or vertically,
resulting in a set of features {X 1,X 2, ...,Xn} extracted from videos in the process of DDIM [39]
inversion. In this subsection, we omit the choice of video model architecture and feature selection
for simplicity. We analyze and project the D-dimensional features of the first frame on the leading
two principal components (P1 and P2). As shown in Fig. 2 (a), the result of the vanilla feature
does not exhibit a distinguishable correlation with motion direction. In contrast, as shown in Fig.
2 (b), normalized features are successfully separated by their motion direction. It reveals that the
normalization operation removes content correlation information and emphasizes motion information.
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(f) Mid  block (1x)

(g) Up block-1 (4x) (h) Up block-3 (8x) 

(e) Down block-1 (2x) (a) Reference video (b) Vanilla Feature

(i) AnimateDiff (j) ModelScope (l) SVD(k) ZeroScope

(c) + CR (d) + CR&MCF (MOFT) 

Figure 4: Similarity heatmap between feature of the source point and target features. Given the
red source point in (a), we plot the similarity heatmap on target videos. Yellow indicates regions with
higher similarity. We normalize all similarity to 0-1 for better illustration. (b-d) Similarity heatmap of
features with different designs. “CR” indicates “content removal”. “MCF” indicates motion channel
filter. (e-h) Similarity heatmap of MOFT in different layers in the U-Net. (2x) means relative spatial
resolution scale 2. (i-l) Similarity heatmap of MOFT in different video generation models.

3.2 Motion Channel Filter

Principal components can not only reduce dimension but also reflect the importance of each dimension
by the projection weights. We visualize the projection weights of P1 ∈ RD×1 in Fig 3 (a). It reveals
that only a few channels significantly contribute to determining the principal components, indicating
these channels encode richer motion information. We term them Motion Channels.

To further explore the relationship between these channels and the motion in videos, we create videos
panning in different directions at various frames and visualize the channel with the highest two
projection weights in P1. As depicted in Fig. 3 (b-c), the value trend is closely associated with the
panning direction of the video. Specifically, in Fig. 3 (b), the motion channel value decreases during a
rightward pan and increases during a leftward pan. In contrast, a channel with low projection weight
does not exhibit much correspondence (Fig. 3 (d)). These observations indicate that we can extract
motion-aware features by filtering these motion channels.

3.3 MOFT Extraction

With the above explorations, we introduce a straightforward strategy for extracting motion information
from video diffusion models, which we term Motion Feature (MOFT). Our method includes two
designs: content correlation removal and motion channel filter. The process can be represented as
follows

M = (X[j] −
1

F

F∑
i=1

Xi,[j]), j ∈ C, (2)

whereM is the extracted MOFT, i operates on the frame dimension, and j operates on channel
dimension. C is the channel index set of motion channels.

We illustrate how content correlation removal and motion channel filter improve the motion corre-
spondence in Fig. 4 (a-d). Vanilla video features demonstrate weak alignment with the reference
motion. The proposed content correlation removal significantly improves the alignment. Further
application of the motion channel filter enhances focus on the motion area (e.g., the rabbit head),
yielding higher correspondence.

We conduct an additional ablation study and visualize the impact of selecting different video diffusion
features from various blocks within the U-Net of AnimateDiff [15]. Fig. 4 (e-h) intuitively reveals
that features with relative medium resolutions achieve better motion correspondence. To this end, we
select the features after upper block 1.
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Latents
M×N×F×C

Features
H×W×F×D

MOFT
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Reference MOFT
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Motion Channel 
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Figure 5: Motion Control Pipeline. We use reference MOFT as guidance and optimize latents to
alter the sampling process. In one denoising step, we get the intermediate features and extract MOFT
from it with content correlation removal and motion channel filter. We optimize the latents to alter
the sampling process with the loss of masked MOFT and reference MOFT.

While the above analysis is based on AnimateDiff [15], the property of MOFT holds in different base
video models [15; 43; 4; 2] (Fig. 4 (i-l)), demonstrating that MOFT is versatile across different video
generation frameworks, consistently achieving reliable motion alignment.

While MOFT is reminiscent of optical flow, which also describes motion, a key limitation of optical
flow is that it cannot be directly extracted from video diffusion models during the denoising process
and hence cannot serve as the guidance for motion control. In contrast, MOFT is available even
at early denoising steps and is naturally suitable for motion control, as we will discuss in the next
section.

4 MOFT Guidance

With the motion-aware MOFT, we propose a pipeline for video motion control in a training-free
manner (Sec. 4.1). Furthermore, our pipeline can be extended for point-drag manipulation (Sec. 4.2).

4.1 Motion Control

We design a pipeline to control motion in the generated videos in a training-free way, as depicted in
Fig. 5. Following [36; 49], we optimize latents to alter the sampling process. The loss function Lc is

Lc =
1

|R|
∑

(i,j)∈R

||Mi,j −Mr
i,j ||, (3)

whereM is the MOFT we extract during the denoising phase,Mr is the reference MOFT feature,
andR is the position set of the region that we want to control motion. We provide two possible ways
to construct the reference MOFTMr: 1) Extract MOFT from reference videos. We perform DDIM
inversion [39] on reference videos and extract MOFT in the inversion stage. 2) Synthesize MOFT
based on the statistic regularity. As shown in Fig. 3 (b-c), frame-wise motion channel values exhibit
high correspondence with frame-wise motion. We can fit it into a piecewise linear function, where
each piece function ranges from statistic minimum to statistic maximum. In this way, we can flexibly
modulate frame-wise reference motion as guidance. The detailed process is shown in Alg. 1

Algorithm 1: Optimization Process
Input: Noisy latents z at timestep t, region maskR, reference MOFTMr, the network N ,

Motion Channel Mask C, learning rate η
Output: Optimized latents ẑ

1 begin
2 Get intermediate feature X from the network N ;
3 Given X , C, extract MOFT M̂ by Eq. 2;
4 GivenMr,M, andR, compute the loss L by Eq. 3;
5 Optimize ẑ by updating ẑ ← z − η∇L;
6 return ẑ;
7 end

4.2 Point-Drag Manipulation

Point-drag manipulation is designed to precisely relocate points within image and video frames to
reach specific target points. In the image domain, this manipulation method often relies on motion
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(f) Step 800 (g) Step 400 (h) Step 0(e) Reference(b) Step 800 (c) Step 400 (d) Step 0(a) Reference

DIFT MOFT

Figure 6: Effects of DIFT and MOFT on different denoising time steps. Given the source point in
(a) (for DIFT) and (e) (for MOFT), we plot the similarity heat map of DIFT (b-d) and MOFT (f-h)
of different denoising steps. Yellow indicates higher similarity. The red point in (b-d) indicates the
position with highest similarity. It suggests that MOFT can provide more valid information than
DIFT at the early denoising stages.

supervision and point-tracking [33; 36], ensuring the precise tracking of point trajectories to achieve
the desired target points. In the video domain, however, we can directly optimize whole point
trajectories by setting targets in each frame. The loss function for optimizing point trajectories
τ = p1, p2, ...pF is:

Lp =

F∑
i=2

||D(pi)− sg(D(p1))||, (4)

where D is the diffusion feature (DIFT) and sg is the "stop gradient" operation.

However, direct application of this method results in poor video motion control because DIFT
struggles with semantic correspondence at early denoising steps, as shown in Fig. 6 Row 1. Since
spatial and temporal structures are already determined at early steps, DIFT’s effectiveness is limited.
Conversely, MOFT provides relatively distinguished motion information in early denoising stage
performance (Fig. 6 Row 2), suggesting a strategy of using MOFT for initial coarse motion control
and DIFT for precise point-drag manipulation. Please refer to Supplementary Material for details.

5 Experiments

5.1 Implementation details

If not specified, the default video generation models of the following experiments are implemented in
AnimateDiff [15] (T2V) and SparseCtrl [14] (I2V). For T2V generation, we first generate a normal
video as the editing source, then apply motion direction and region mask to the video for motion
control. To preserve consistency with the source video, we apply (1) region gradient clip, and (2)
shared key and value. Details of these techniques and video results can be found in the Supplementary
Material. Our results are at a resolution of 512x512 and 16 frames unless otherwise specified. We
use DDIM with 25 denoising steps for each sample. It takes approximately 3 minutes to generate one
sample on an RTX 3090 GPU.

5.2 Qualitative Results

We showcase qualitative outcomes in Fig. 7. The figure illustrates the successful animation of videos
by our method, guided by diverse control signals while preserving a natural and authentic sense of
motion. Additionally, we exhibit the results of applying our motion control technique to alternative
video generation models, such as ModelScope [43] and ZeroScope [4], employing the same control
strategy (see Fig. 8). These results highlight the generalizability of MOFT across various video
generation models. We also showcase the application of our method on point-drag manipulation
(Sec. 4.2) in Fig. 9, where we successfully move the starting points to the targets.

5.3 Motion Feature Design

This subsection experiments on the effectiveness of motion feature designs with two metrics: a)
Motion Fidelity. Following [49], we use Motion Fidelity to assess the fidelity of our results in the
alignment of synthesis guidance or reference guidance. We use off-the-shelf tracking method [24] to
estimate the tracklets T = {τ1, ..., τM} in the generated videos. For guidance, we manually construct
synthesized tracklets for synthesis guidance and use estimated tracklets for reference guidance, we
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(a) Reference Control – Cameral Motion

(b) Reference Control – Object Motion

(c) Synthesized Control – Camera Motion

(d) Synthesized Control – Object Motion

Figure 7: Qualitative results. We illustrate several animation clips with different reference or
synthesized motion control signals. The red boxes in (a-b) stand for reference videos. We highly
recommend readers refer to the supplementary material for a better visual experience.

denote them both as T̃ = {τ̃1, ..., τ̃N} for simplicity. The motion fidelity score is defined as follows:
1

m

∑
τ̃∈T̃

max
τ∈T

corr(τ, τ̃) +
1

n

∑
τ∈T

max
τ̃∈T̃

corr(τ, τ̃). (5)

The correlation between two tracklets corr(τ, τ̃) is computed as:

corr(τ, τ̃) =
1

F

F∑
k=1

vxk · ṽxk + vyk · ṽ
y
k√

(vxk)
2 + (vyk)

2 ·
√
(ṽxk)

2 + (ṽyk)
2
, (6)

where (vxk , v
y
k), (ṽ

x
k , ṽ

y
k) are the kth frame displacement of tracklets τ , τ̃ , respectively. b) Image

Quality. We follow [22; 25] that uses an image quality predictor trained on the SPAQ dataset [12] to
evaluate frame-wise quality regarding distortion like noise, blur, or over-exposure. We collect a total
of 270 prompt-motion direction pairs for experiments.

Table 1 summarizes our results. The vanilla feature shows poor motion fidelity and image quality
due to extraneous information disrupting motion control. Removing content correlation significantly
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ModelScope: Close-up view of a cat's face ZeroScope: A lion lying on the grassland

Figure 8: Qualitative results on Modelscope [43] and ZeroScope [4].

Figure 9: Qualitative results of point-drag manipulation. Red points indicate starting points. Blue
points indicate target points of the corresponding frames. We display three frames per video clip.
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Figure 10: Motion quality comparisons. Gen-2 [35] and Ours accept editing region and motion
direction as the control signal. DragNUWA [50] accepts point trajectories as the control signal.

improves both metrics, yielding results comparable to the Space-Motion Map (SMM) feature [49],
likely because SMM also removes content correlation through frame-wise differences. MOFT
guidance achieves the highest motion fidelity, with only a minor loss in image quality compared to
the original unguided generation.

5.4 Point-drag Manipulation

We conducted additional experiments to assess the efficacy of incorporating motion control in
point-based manipulation. In this comparison, we introduce DragNUWA [50], a potent data-driven
method, for reference. We follow [33; 36] to use the Mean Distance between edited points and
target points to evaluate the drag precision. Specifically, we still use [24] to estimate the tracklets
T = {τ1, ..., τ,=M} of given small region. We average these tracklets into τ and calculate the mean
distance with target tracklet τ t. We normalize the final distance into [0,1], with 0 indicating no mean
distance error. We collect a total of 40 image-motion direction pairs for experiments. As indicated in
Table 2, applying only DIFT guidance results in poor drag precision. By comparison, incorporating
our MOFT yields substantial improvements, effectively narrowing the performance gap with the
training-based DragNUWA. The finding is coherent with our analysis in Sec. 4.2.
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Table 1: Experiments on Motion Feature Design
Guide type Methods Motion Fidelity (↑) Imaging Quality (↑)

None Origin - 0.697

Reference
Guidance

SMM feature [49] 70.2 0.681
Vanilla Feature 31.1 0.512

+ CR 67.1 0.671
+ CR & MCF (Ours) 82.5 0.693

Synthesis
Guidance Ours 84.0 0.693

Table 2: Drag Precision

Name Mean Distance (↓)
DragNUWA [50] 0.075

DIFT [41] 0.437
+ MOFT (Ours) 0.175

Table 3: User Preference
Methods Faithfulness (↑) Naturalness (↑)

DragNUWA [50] 2.50 2.08
Gen-2 MB [35] 3.37 2.90

Ours 3.21 3.49

5.5 User study
We conducted a survey to investigate users’ preferences regarding videos generated with motion
control. Employing a blind rating protocol, participants were randomly exposed to videos generated by
Gen-2 Motion Brush [35], DragNUWA [50], and our proposed method. Participants were instructed
to rate from 1 to 5 (worst to best) on two metrics: 1) Motion Faithfulness to measure how well the
motion aligns with the control signal. 2) Motion Naturalness to evaluate the naturalness and realism
of the motion. We collect human feedback from 26 people on 56 video clips. As depicted in Table 3
and Fig. 10, it is evident that Gen-2 MB excels in achieving highly faithful motion control at the cost
of motion naturalness. Gen-2 MB and DragNUWA tend to generate stiff and unrealistic motions. In
contrast, our proposed methods demonstrate competitive motion faithfulness while simultaneously
preserving the natural and authentic quality of motion.

6 Limitations add Future Works

While our approach has yielded appealing results, some limitations require future studies:

1) Presently, our approach lacks support for motion control in real videos. Primarily, this limitation
stems from the lack of research on video inversion techniques over video diffusion models. We have
observed significant alterations in content when employing initial noise from DDIM inversion [39]
on real videos. Future research focused on video inversion holds promise for resolving this issue.

2) Our current approach does not allow for precise motion scale guidance in motion control. While
there are strategies to roughly control motion scales, such as adding up control weights for larger
motion scales or implementing gradient clips for smaller ones, achieving high precision in motion
scale manipulation requires further investigation.

7 Conclusion
In summary, our analysis reveals a robust motion-aware feature in video diffusion models, leading
to the development of a training-free MOtion FeaTure (MOFT). MOFT encodes rich, interpretable
motion information, is extracted without training, and is applicable across diverse architectures. We
introduce a novel training-free video motion control framework based on MOFT, demonstrating
competitive performance with natural motion. Importantly, our approach is versatile, easily adaptable
to various architectures and checkpoints without the need for independent training.
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8 Supplementory Material

In this section, we provide more analysis and results. It is highly recommended to refer to the attached
webpage for better visual illustrations.

8.1 Preliminary for Latent Optimization

Diffusion models learn to recover clean images x from random noise zT ∼ N (0, I) with a sequential
denoising process [18; 38; 40]. [34] proposed the latent diffusion model (LDM), which maps data
into a lower-dimensional space via a variational auto-encoder (VAE) [26] and models the distribution
of the latent embeddings instead. At the diffusion step t, random noise ϵt is added to x, giving a
noisy image zt = αtx+ σtϵt, with αt and σt the time-dependent parameters. The estimation of the
denoised image is equivalent to predicting the noise ϵt.

Our latent optimization strategy is motivated by [36; 49] that uses intermediate features to supervise
the latent optimization process, which can be formulated as

znewt = zt − η
∂L
∂zt

, (7)

where η is the learning rate and L is the loss function.

8.2 More Analysis and Details

Video Consistency Preservation. Since one of our applications is to control the motion in source-
generated videos, it is important to preserve the consistency between the source video and the target
video. To this end, we introduce two techniques: Shared K&V and Masked Gradient Clip. We
visualize their qualitative comparison in Fig. 12.

Shared K&V. As proved by many previous works [36; 30; 3], inserting Key (K) & Value (V) of spatial
attention from reference branch to target branch can help to preserve content information of reference
generation. As shown in Fig. 11, we adopt this method to our motion control pipeline.

Latents

M×N×F×C
Noise

M×N×F×C

New Latents

M×N×F×C
U-Net

Latents

M×N×F×C
Noise

M×N×F×C

New Latents

M×N×F×C
U-Net

K V

K V

Reference Branch

Motion Guidance Branch

Shared-KV

Figure 11: Motion Control Pipeline with Shared K&V. We apply the origin designing process
in the reference branch while applying motion guidance in the motion guidance branch. During
denoising, we insert the K&V of the reference branch to the motion guidance branch for content
preservation.

As shown in Fig. 12 (a-c), shared K&V contributes to the consistency of the whole video. The
generated video with vanilla motion guidance (Fig. 12 (b)) adds additional contents (i.e. a hat on the
man’s head) while adding shared K&V (Fig. 12 (c)) stays consistent with the original generation.

Masked Gradient Clip. Since we do not want to change much content out of the masked region during
motion guidance optimization, we simply clip the guidance gradient g out of the masked region,
which is

gclip =

{
g, (i, j, k) ∈ R&k ∈ F
0, else,

(8)
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(a) Origin generation

(b) Vanilla Motion Guide

(c) + Shared K&V

(d) + Gradient Clip for the first 8 frames

(e) + Gradient Clip for all frames

Figure 12: Qualitative comparison on video consistency preservation. We compare the generated
results w./wo. our introduced techniques. The control signal is shown in the first image of (a), with
the red arrow indicating the motion control direction and the light region indicating the control region.
We highlight the noticeable region with red boxes. It reveals that Shared K&V contributes to the
consistency of the whole video. Gradient Clip adds consistency out of masked regions but meanwhile
reduces motion scale.

where i, j, k are indices of height, width, and frame, respectively. R is the spatial mask region
index set. F is the frame set. As shown in Fig. 12 (d-e), gradient clipping adds consistency to the
background content. While applying gradient clipping to more frames increases consistency, it also
results in a smaller motion scale. Thus, applying gradient clipping involves a trade-off. In practice,
we apply gradient clipping to the first 8 frames.

Timestep Choice for Motion Extracted from Video. As shown in Fig. 13, the trends and ranges
of motion channels with the same motion direction are similar among different denoising timesteps,
while the curve nearing the end of denoising steps is smoother and refined. To this end, we use the
MOFT at the beginning of the inversion stage as the guidance for all control timesteps.

Motion Channel Filter Number. We ablate the effects to filter different numbers of motion channels
in Tab. 4. The key finding is that preserving only a few channels most sensitive to motion can enhance
both motion faithfulness and naturalness, as the effects of irrelevant information in other channels
are removed. However, when we further reduce the channel number to the top 1%, both motion
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Figure 13: Motion channel value for different denoising timestep. TS-800 indicates denoising
step 800.

Table 4: Motion Channel Ablation.
Channel number Faithfulness (↑) Naturalness (↑)

top 100% 67.5 0.671
top 50% 70.5 0.681
top 10% 82.7 0.692
top 5% 83.2 0.694
top 4% 84.0 0.693
top 3% 83.6 0.693
top 1% 76.3 0.677

faithfulness and naturalness significantly decrease due to the loss of some motion-sensitive channels.
In practice, we choose the top 4% of motion channels.

Point-Drag Manipulation Ablation. Following the main paper Sec. 4.2, we use MOFT for initial
coarse motion control and DIFT for precise point-drag manipulation. The compositional loss function
is

Lt = wc
tLc + wp

tLp,


wc

t > 0, wp
t = 0, if t >= t1

wc
t > 0, wp

t > 0, if t1 > t >= t2
wc

t = 0, wp
t > 0, if t2 > t >= t3

wc
t = 0, wp

t = 0, if t3 > t

(9)

where wc
t and wp

t are time-dependent weights under the threshold t1, t2 and t3. In practice, the total
denoising step is 25. We set t1 = 19, t2 = 18, t3 = 5. We further ablate the effectiveness of the
design in Fig. 14. Applying only DIFT results in limited motion. Using only MOFT produces motion
but lacks precise point control. By combining DIFT and MOFT, we achieve precise point-drag
control.

8.3 More Visualization

PCA video examples. In Fig. 15, we provide some of the video examples that we use to conduct
PCA. We manually move the whole picture following specified motion directions to synthesis videos.

Qualitative Results. We provide some qualitative results in Fig. 16. More animated results can be
found on the attached webpage.

8.4 More Results on Open-Sora [52]

In Fig. 17(a), we demonstrate that PCA can clearly separate videos with different motions based
on their diffusion features from Open-Sora [52], an open-source video generation model capable of
producing long videos. In Fig. 17(b), we show that our methods can be applied to higher resolutions
(768×768) and longer videos (205 frames on Open-Sora).
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MOFT+DIFT

MOFT

DIFT

Figure 14: Qualitative results of point-drag manipulation ablation. Red points indicate starting
points. Blue points indicate ending points. We only display three frames per animation clip.

Figure 15: Videos for PCA. We manually move the whole picture following specified motion
directions to synthesis videos.
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Figure 16: More qualitative results.

185*104 205 frames

768*768 16 frames

(a) PCA on Open-Sora (b) Results on longer videos and higher resolutions

Prompt: A view of mountain

Figure 17: More results on Open-Sora.
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Justification: This paper does not provide theoretical results. The assumptions in the paper
are verified by experiments.
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• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
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Answer: [Yes]
Justification: We provide the necessary details for reproducibility in Sec. 5.1 and Supp. .
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived
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In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
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material?
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possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
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reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide the necessary details for reproducibility.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our experiments are not accompanied by error bars
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
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8. Experiments Compute Resources
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puter resources (type of compute workers, memory, time of execution) needed to reproduce
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Answer: [Yes]
Justification: We provide it in Sec. 5.1.
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).
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Answer: [Yes]
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
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Answer: [NA]
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• The answer NA means that there is no societal impact of the work performed.
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faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We properly credit the code and models used in the paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
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Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: Our experiments include human feedback. We include the instructions and
details in Sec. 5.5.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: Our experiments do not have risks.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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