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Abstract

Large Language Models (LLMs) are widely
used to evaluate natural language generation
tasks as automated metrics. However, the like-
lihood, a measure of LLM’s plausibility for
a sentence, can vary due to superficial differ-
ences in sentences, such as word order and sen-
tence structure. It is therefore possible that
there might be a likelihood bias if LLMs are
used for evaluation: they might overrate sen-
tences with higher likelihoods while underrat-
ing those with lower likelihoods. In this paper,
we investigate the presence and impact of like-
lihood bias in LLM-based evaluators. We also
propose a method to mitigate the likelihood
bias. Our method utilizes high-biased instances
as few-shot examples for in-context learning.
Our experiments in evaluating the Data2Text
and grammatical error correction tasks reveal
that several LLMs we test display a likelihood
bias. Furthermore, our proposed method suc-
cessfully mitigates this bias, also improving
evaluation performance (in terms of correlation
of models with human scores) significantly.

1 Introduction

Large Language Models (LLMs) exhibit robust
language comprehension and text generation capa-
bilities, enabled both by the large training data they
have access to (Chowdhery et al., 2022; Brown
et al., 2020) and by the use of instruction tuning
(Wei et al., 2022; Ouyang et al., 2022). LLMs can
also model the likelihood of a given sentence, as ev-
idenced by their good natural language generation
(NLG) performance. Relying on this ability, recent
studies (Liu et al., 2023; Fu et al., 2023; Kocmi
and Federmann, 2023; Chiang and Lee, 2023) have
employed LL.Ms as evaluators for NLG tasks, sur-
passing the performance of existing automatic eval-
uation methods such as BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004). To assess the qual-
ity of a text, the LLMs either produce evaluation
scores (Liu et al., 2023) or estimate the likelihood
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Figure 1: An example of likelihood bias. Correct, but
low-likelihood output (top) is scored low while high-
likelihood output (bottom) is scored high.

of generated sentences and interpret it directly as
the evaluation score (Fu et al., 2023).

Consequently, the likelihood calculated by
LLMs is closely linked to their role as evalua-
tors in NLG tasks. It is intuitively possible that
these likelihood estimations should somehow in-
fluence the evaluation results, even within those
frameworks where LLLM-based evaluators do not
explicitly use likelihood as the primary metric for
evaluation. However, it is known that the likeli-
hood calculated by the LLM can fluctuate due to
superficial differences in sentences, such as word
order and sentence structure, even for sentences
with identical meaning (Kuribayashi et al., 2020).

We hypothesize that such an inconsistency be-
tween the essential meaning of the sentence and the
likelihood produced by the LLM causes a harmful
bias for evaluation. We define that evaluation bias
as likelihood bias, where LL.M-based evaluators
overrate the sentences with higher likelihoods (i.e.,
assign scores that are higher than those by humans)
while underrating those sentences with lower likeli-
hoods (i.e., assign scores that are lower than those
by humans). Figure 1 shows one example of likeli-
hood bias. Here, a biased evaluator gives a lower
score of 3/5 to a correct but low-likelihood out-
put (top) while giving a higher score of 5/5 to a
high-likelihood output (bottom).

Addressing this issue, we propose the first



method that a) quantifies and b) mitigates likeli-
hood bias. We quantify the bias by correlating the
likelihood of a target text with the disparity be-
tween LLM-generated evaluation scores and those
provided by human evaluators. In extensive exper-
iments using two tasks (Data2Text and GEC, i.e.,
grammatical error correction), we show that both
LLM:s tested by us (GPT-3.5, llama2-13B (Touvron
et al., 2023)) indeed suffer from likelihood bias.
Our bias reduction method harvests highly-biased
instances and uses them as few-shot examples for
in-context learning. Our results show that apart
from reducing bias, our method also improves eval-
uation performance in many cases: significantly so
for Data2Text, and in trend also for GEC.

2 Method

We calculate the LLM’s evaluation score Score,
based on the models’ response to a prompt. This
is a common methodology in LLM-based evalua-
tion (Liu et al., 2023; Chiang and Lee, 2023). Our
prompt includes a task description and the eval-
uation criteria, and several few-shot example in-
stances for in-context learning. The reason we use
in-context learning is that it is known to stabilize
the model. This puts us in a position to quantify
the strength of likelihood bias.

2.1 Quantifying Likelihood Bias

We define likelihood bias in LL.M-based evalu-
ators as the tendency to overrate high-likelihood
sentences and underrate low-likelihood ones, com-
pared to human ratings. First, we calculate LS, the
Likelihood Score, representing the likelihood P
calculated by LLM. Given a instance ¢ with input ¢;,
output t,, task description d, and model parameters
0, LS is defined as follows:

LS(t) = log P(t, | t:,d; 0) (1)

We next calculate US, Unfairness Score, which
represents the difference between scores by LLM
(Scorey,) and scores by humans (Scorey). To ac-
count for different scoring ranges between models
and humans, Score,, and Scorey, are normalized to
the same range.

US(t) = Scoren(t; 0) — Scorey(t) ()

The Scorey, is measured as the expected value over
scores following the setting of Liu et al. (2023).
Also, few-shot example instances are chosen at ran-
dom when measuring the bias. The actual prompts

us USkit ‘iped s wihy US

. T R S

s s s

Figure 2: Likelihood bias of hypothetical evaluators.
A: biased, B: unbiased with high performance, and C:
unbiased with low performance.

and exact equation we use to calculate the Score,
are provided in Appendix A.

BiasScore is then our metric that measures likeli-
hood bias, which is calculated as the correlation in
terms of Spearman’s rank correlation coefficient p
between Likelihood Score and Unfairness Score
across a Dataset (D = {t1,t2,...,t,}), using
each instance ¢;:

LSp = [LS(t1),LS(t2), ..., LS(tn)] ()
USp = [US(t1),US(t2),...,US(tn)] (4)
BiasScore = p(LSp, USp) (5)

BiasScore ranges between -1 and 1, with 1 indi-
cating strong likelihood bias, and 0 suggesting no
bias.

2.2 Mitigating Likelihood Bias

Figure 2 plots LS (Equation 1) against US (Equa-
tion 2) in order to show the likelihood bias of mul-
tiple hypothetical evaluators. Each point represents
a pair of scores for a instance. The BiasScore corre-
sponds to the slope of the main cluster of instances.

* Figure 2 (A) shows a middle-performing and
biased evaluator. It unfairly gives high rat-
ings to texts with high likelihood (points in
the upper right) and low ratings to texts with
low likelihood (points in the lower left). We
assume that LLM-based evaluators are in this
state before bias mitigation.

* Figure 2 (B) shows the ideal outcome of miti-
gation: the BiasScore is zero (i.e., there is no
bias), and the performance remains high.

* There is also no bias in Figure 2 (C) (and thus
BiasScore = 0), but this evaluator is of no use
as the output is random (low-performance).

The target of our bias mitigation strategy is to
change situation (A) into (B), while avoiding low
evaluation performance as in (C). We concentrate



on highly-biased instances (top-right and bottom-
left points in A) in our training data. For this, we
require an instance-based measure of bias, which
is provided by RS(¢) as follows:

RS(t) = |LS(t) + US(t)] (6)

Here, LS and US are normalized so that they both
have an average of 0 and a range from -1 to 1 across
a dataset D. RS(t) is high for instances ¢ that
are closer to the top-right or bottom-left of the
scatter plot. For our mitigation strategy, we choose
instances with the highest RS(t) from the training
data, and use these instances as few-shot examples
for in-context learning, after replacing the LLM
scores with the human gold-standard scores.

3 Experiments

3.1 Datasets

We conduct our experiments on two tasks: a)
Data2Text, the task of converting RDF format data
into English sentences and b) GEC. For Data2Text,
we use WebNLG+ (Castro Ferreira et al., 2020),
which contains 2846 instances. Scorey is pro-
vided by human judges, who rated each instance
on five criteria (text structure, relevance, fluency,
correctness and data coverage). For GEC, we use
the TMU-GFM-Dataset (Yoshimura et al., 2020),
which contains 4221 instances. Scorey, is provided
by human judges, who rated each instance on two
criteria (grammar and fluency'). We split each
dataset into training and evaluation data at a ratio
of 8:2.

3.2 Models

The LLMs used in our experiments are GPT-3.5
provided via API by OpenAlI ? and Llama2-13B
(L-13B) (Touvron et al., 2023). For GPT-3.5, since
it does not support the output of token generation
likelihood, we use Llama2-13B’s likelihood as an
approximation.

We first measure how well the LLMs work as
evaluators, using Spearman’s rank correlation co-
efficient p between human and model scores. The
“Before” column of Evaluation Performance in Ta-
ble 1 and 2 shows these results. The ballpark fig-
ures are that GPT-3.5 is the superior system for

'All criteria and their definitions are given in Appendix
B. The original GEC dataset contains a third criterion, mean-
ing. However, we exclude this criterion because it does not
contribute to the overall evaluation (Yoshimura et al., 2020).

2We use gpt-3.5-turbo-instruct as the model in API
call.

Data2Text, while for GEC, it roughly performs on
a par with Llama2-13B.

3.3 Measuring Likelihood Bias

We use the method described in Section 2.1 for
likelihood bias measurement. We introduce a new
criterion representing the overall result, total, by
micro-averaging over the criteria’.

Results for Data2Text The “Before” column of
BiasScores in Table 1 reveals a bias for both mod-
els and evaluation criteria, with BiasScore for most
evaluation criteria exceeding 0.17. Across all cri-
teria (total), GPT-3.5 has the strongest bias (0.38),
followed by Llama2-13B (0.17). Relevance is the
criterion with the strongest bias in both models,
GPT-3.5 (0.43) and Llama2-13B (0.28).

Results for GEC The “Before” column of Bi-
asScores in Table 2 shows bias in both models and
evaluation criteria also for the GEC task: all BiasS-
cores exceed 0.16. As with Data2Text, GPT-3.5
overall displays a stronger bias across all criteria
(0.43) than Llama2-13B (0.21).

Intrinsic vs non-intrinsic evaluation criteria
Looking “Before” column of BiasScores in Table 1,
there are two evaluation criteria which display rela-
tively small likelihood biases across both models,
namely fluency and text structure. These criteria
are concerned with text quality alone and they are
intrinsic to the output text. The criteria are true of
the output text to a higher or lesser degree, but this
is independent of what the input looked like. In
contrast, relevance and data coverage are depen-
dent on external factors in the input. For instance,
we cannot assess whether a piece of information is
relevant by only looking at the output. The qual-
ity definition for those criteria is affected by the
process that transforms the input into the output.
Without looking at the input, we would miss infor-
mation about the start state of the process. There-
fore, such criteria are not intrinsic. From our re-
sults, we see that there is a marked difference in
BiasScore between non-intrinsic and intrinsic cri-
teria: non-intrinsic criteria are much more prone
to bias. These results suggest an intuitive inter-
pretation: Although LL.M-based evaluators rely on

3Please note that when micro-averaging, the total BiasS-
core reported in Table 1 and 2 is not an average of the BiasS-
core of the individual evaluation criteria, since to calculate
the total BiasScore we first average over the human and LLM
evaluation scores and then apply Equation 5.



BiasScore

Evaluation Performance p

Before After Before After
Criterion L-13B  GPT-3.5 | L-13B  GPT-3.5 L-13B  GPT-3.5 | L-13B  GPT-3.5
text structure .17 .36 02 * 23 % .34 46 .36 S35
relevance 28 43 A5 F 31 * 25 .35 23 38
fluency .20 .26 .00 * .29 33 41 B2 S5 %
correctness 21 .36 -.01 * 32 37 44 43 47
data coverage .24 40 .16 32 * 24 .20 25 30 7
total (micro) .17 .38 02§ 327 .40 48 .46 58 *

Table 1: Data2Text: BiasScore and Evaluation performance before and after mitigating likelihood bias. Values
affected positively by our mitigation method appear boldfaced. * represents significant difference ( p < 0.05)
between before and after mitigation. § represents marginal significant difference ( p < 0.06).

BiasScore Evaluation Performance p
Before After Before After
Criterion L-13B  GPT-3.5 | L-13B  GPT-3.5 L-13B  GPT-3.5 | L-13B  GPT-3.5
grammar 24 46 24 37 F 45 48 46 .54
fluency .16 .36 .09 29 .49 40 48 47
total (micro) .21 43 18 37 48 45 52 52

Table 2: GEC: BiasScore and Evaluation performance before and after mitigating likelihood bias. We use the

notation in the same manner as Table 1.

likelihood when they score any criterion, the likeli-
hood is a better estimator for intrinsic criteria than
they are for non-intrinsic ones. This might be be-
cause, for intrinsic criteria, lots of output text is all
that is required to learn it, and that is exactly what
likelihood is all about.

3.4 Mitigating Likelihood Bias

We now use the method described in Section 2.2,
with eight highly-biased examples for mitigation.
In the “After” columns of Table 1 and 2, we bold-
face the value if our method brings a BiasScore
close to zero or if it improves evaluation perfor-
mance. We test for the significance of differences
using the two-sided randomized pair-wise permuta-
tion test with R=100000 and o« = 0.05. If a differ-
ence between unmitigated and mitigated conditions
is significant, we indicate this with an asterisk (*);
marginal significance (p < 0.06) is indicated using
a dagger (7).

Results in Data2Text The “After” column of
BiasScores and Evaluation performance of Ta-
ble 1 shows that our method brings the BiasScore
closer to zero and increases evaluation performance
across the board. With our method, the BiasS-
cores decrease significantly for Llama2-13B for
text structure (-0.15), fluency (-0.20), and correct-
ness (-0.20). For GPT-3.5, results are significantly
decreased for text structure (-0.13), relevance (-
0.12), and data coverage (-0.08). At the same time,
the evaluation performance improves significantly
for GPT-3.5 by +0.10 for total, by +0.14 for fluency,

with marginally significant differences for GPT-3.5
in text structure, data coverage. For Llama2-13B,
the only criterion with a marginally significant im-
provement is fluency. We consider this an overall
successful mitigation.

Results for GEC As with Data2Text, the “After”
column of BiasScores and Evaluation performance
of Table 2 shows our method brings the BiasScore
closer to zero in many cases, and that evaluation
performance is overall improved. Although few
criteria achieve significant differences either in Bi-
asScore or evaluation performance, our method at
least shows changes in the right direction.

In summary, the results for the Data2Text and
GEC tasks imply that our mitigation strategy can
decrease the likelihood bias of LLLMs and improve
the evaluation performance simultaneously *.

4 Conclusion

This paper identifies likelihood bias in LLMs as the
phenomenon of LLMs overrating high-likelihood
texts and underrating low-likelihood ones. We in-
troduce a method for quantifying bias and propose
a solution to the bias problem: using high-biased
instances as few-shot examples for in-context learn-
ing. Experiments with two tasks (Data2Text and
GEC) show that LLMs exhibit strong likelihood
bias, and that our method successfully mitigates it,
improving evaluation performance.

*We conduct further experiments on visualization and case
study about the mitigation of bias in Appendix E



Limitations

Our work has several limitations. (i) Since we use
in-context learning to mitigate likelihood bias, the
number of tokens that can be used is limited by the
method. Therefore, our method may not be suitable
for tasks with long input or output lengths, such as
summarization, as the amount of space that can be
used is even more limited. (ii) In-context learning
also brings another limitation. Since it increases
the prompt length, the computational (or API call)
costs also go up. One solution is fine-tuning the
model instead of In-context learning. It is therefore
necessary to explore whether fine-tuning works
better than in-context learning and how much data
we need.

Ethics Statement

While we do not foresee any ethical risks caused
by our research, LLMs not only exhibit biased like-
lihood based on surface-level information such as
words and sentence structure but also on informa-
tion like gender, religion, and race (Kaneko et al.,
2023; Oba et al., 2023; Anantaprayoon et al., 2023).
For instance, LLMs might assign a higher likeli-
hood to “She is a nurse” compared to “He is a
nurse”. Reducing likelihood bias could potentially
address social bias in evaluators. However, it is
worth noting that this study does not investigate
such aspects, and this remains a task for future
research.
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A LLM evaluation method

Calculation of likelihood As shown in Equa-
tion 1, we calculate the likelihood of task output
t, based on task description d and task input ;.
This approach aims to obtain a more contextually
relevant likelihood, factoring in both the specifics
of the task and the input, rather than simply cal-
culating log P(t,;6). Specific examples of task
description d are indicated below.

» Data2Text: Please generate a description of
the following xml data

* GEC: Please modify the following English text
to make it grammatically correct

Calculation of Score,, As is common in LLM-
based evaluation (Liu et al., 2023; Chiang and Lee,
2023), the model is given a prompt I, which in-
cludes a task description, the evaluation criteria,
and an instance ¢, and then predicts score Score,,.
We also use in-context learning, with the inten-
tion of stabilizing the model. Examples are chosen
at random when measuring the bias, and are cho-
sen according to the method described in Section
2.2 when mitigating the bias. Finally, we calcu-
late Scorey, as the expected score over scores. We
follow the setting of Liu et al. (2023), who have
observed that using the expected score, consider-
ing the model’s distribution over scores for each
instance, rather than always taking the most likely
score, leads to a more robust evaluation. Given
score candidates {1,2,...,n}, the probability of
each score Q(i | t, F, I;6), Scorey, is formulated
as follows:

i1 x Qi | ¢, F,1;0)
Z?:l@(] ‘ t7F7I79)

Scoren (t;0) = 7

Example Prompts Here, we provide two exam-
ples of the prompts used for LLM-based evaluators.
Our prompts are inspired by the prompts Liu et al.
(2023) used.

Evaluate Correctness in Data2Text

You will be given an xml data and an En-
glish sentence that represents xml data.
Your task is to rate the sentence that rep-
resents xml data on one metric. Please
make sure you read and understand these
instructions carefully. Please keep this
document open while reviewing, and re-
fer to it as needed. Evaluation Criteria:

Correctness: (1-5) - does the text de-
scribe predicates with correct objects and
does it introduce the subject correctly? 1
is the lowest score, 5 is the highest.

Evaluate Fluency in GEC

You will be given an English sentence
that may have grammatical errors and a
sentence that is the corrected version of
the sentence. Your task is to rate the cor-
rected sentence on one metric. Please
make sure you read and understand these
instructions carefully. Please keep this
document open while reviewing, and re-
fer to it as needed. Evaluation Criteria:
Fluency: (0-4) - How natural the sen-
tence sounds for native speakers; 4: Ex-
tremely natural, 3: Somewhat natural, 2:
Somewhat unnatural, and 1: Extremely
unnatural, and O: Other.

B Dataset

Data2Text We use WebNLG+ Dataset a(CC BY-
NC-SA 4.0) (Castro Ferreira et al., 2020). Specifi-
cally, we collect instances that have human evalua-
tion scores from their dataset. The total number of
instances we use is 2846. We use them following
their license. There are five criteria in the original
dataset:

* text structure: whether the output is grammat-
ically correct and well-structured

* relevance: whether the output is based on the
input information

* fluency: whether the output is natural

* correctness: whether the output explains the
input data correctly

* data coverage: whether the output includes all
the input data

Human annotators rate each instance on these cri-
teria using a 100-point scale from O to 100.

GEC We use the TMU-GFM-Dataset (CC BY
4.0) (Yoshimura et al., 2020), which contains 4221
instances. We use them following their license.
There are three criteria in the original dataset:

» grammar: whether the output is grammatically
correct
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Figure 3: Visualization of the bias mitigation in Llama2-
13B with Data2Text fluency

* fluency: whether the output is natural

* meaning: whether the output has the same
meaning as the input

Human annotators rate each instance on these crite-
ria using a 5-point scale from 0 to 4. As mentioned
in the footnote, we exclude meaning because, ac-
cording to the original paper (Yoshimura et al.,
2020), it does not contribute to the overall evalua-
tion.

C Hyperparameters

To guarantee reproducibility as much as possible,
we set the hyperparameters on API calls to make
GPT-3.5 deterministic. We use temperature of 0,
top_p of 0.

As for the number of few-shot examples for in-
context learning, we use eight examples. This is
the reasonable value that models can learn several
pieces of information without violating the limit on
the number of input tokens.

D Computational Budget

We run all the experiments on ABCI (https://
abci.ai/), Compute Node(A), whose CPUs are
two Intel Xeon Platinum 8360Y, and GPUs are
eight NVIDIA A100 SXM4. The approximate total
processing time is 30 hours.

E Visualization and Case Study

Figures 3a and 3b show the likelihood bias before
and after mitigation in Llama2 13B for Data2Text
and fluency, respectively. We can see that our
method brings BiasScore closer to zero (0.20 to
0.00), and points are gathered to the line of US =
0, similar to (B) in Figure 2. This indicates that
our method successfully mitigates likelihood bias
as expected.

Below, we present an example of an instance
where bias was mitigated and its evaluation results.

Input (excerpt):

<mtriple>MotorSport_Vision | city |
Fawkham</mtriple>

Output:
The Motor sport of Vision is in Fawkham.

Score by humans(Scorey): 85/ 100
Score by LLM (Scorey,) before bias mitigation:
246/5
Score by LLM (Scorey,) after bias mitigation: 4.32
/5

In the above example, apart from the space be-
tween Motor and sport, there are no issues, but
the model rated it low before bias mitigation due
to its low likelihood. However, the model rated it
higher after bias mitigation, bringing it closer to
the score by humans.
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