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Abstract

Large Language Models (LLMs) are widely001
used to evaluate natural language generation002
tasks as automated metrics. However, the like-003
lihood, a measure of LLM’s plausibility for004
a sentence, can vary due to superficial differ-005
ences in sentences, such as word order and sen-006
tence structure. It is therefore possible that007
there might be a likelihood bias if LLMs are008
used for evaluation: they might overrate sen-009
tences with higher likelihoods while underrat-010
ing those with lower likelihoods. In this paper,011
we investigate the presence and impact of like-012
lihood bias in LLM-based evaluators. We also013
propose a method to mitigate the likelihood014
bias. Our method utilizes high-biased instances015
as few-shot examples for in-context learning.016
Our experiments in evaluating the Data2Text017
and grammatical error correction tasks reveal018
that several LLMs we test display a likelihood019
bias. Furthermore, our proposed method suc-020
cessfully mitigates this bias, also improving021
evaluation performance (in terms of correlation022
of models with human scores) significantly.023

1 Introduction024

Large Language Models (LLMs) exhibit robust025

language comprehension and text generation capa-026

bilities, enabled both by the large training data they027

have access to (Chowdhery et al., 2022; Brown028

et al., 2020) and by the use of instruction tuning029

(Wei et al., 2022; Ouyang et al., 2022). LLMs can030

also model the likelihood of a given sentence, as ev-031

idenced by their good natural language generation032

(NLG) performance. Relying on this ability, recent033

studies (Liu et al., 2023; Fu et al., 2023; Kocmi034

and Federmann, 2023; Chiang and Lee, 2023) have035

employed LLMs as evaluators for NLG tasks, sur-036

passing the performance of existing automatic eval-037

uation methods such as BLEU (Papineni et al.,038

2002) and ROUGE (Lin, 2004). To assess the qual-039

ity of a text, the LLMs either produce evaluation040

scores (Liu et al., 2023) or estimate the likelihood041

Figure 1: An example of likelihood bias. Correct, but
low-likelihood output (top) is scored low while high-
likelihood output (bottom) is scored high.

of generated sentences and interpret it directly as 042

the evaluation score (Fu et al., 2023). 043

Consequently, the likelihood calculated by 044

LLMs is closely linked to their role as evalua- 045

tors in NLG tasks. It is intuitively possible that 046

these likelihood estimations should somehow in- 047

fluence the evaluation results, even within those 048

frameworks where LLM-based evaluators do not 049

explicitly use likelihood as the primary metric for 050

evaluation. However, it is known that the likeli- 051

hood calculated by the LLM can fluctuate due to 052

superficial differences in sentences, such as word 053

order and sentence structure, even for sentences 054

with identical meaning (Kuribayashi et al., 2020). 055

We hypothesize that such an inconsistency be- 056

tween the essential meaning of the sentence and the 057

likelihood produced by the LLM causes a harmful 058

bias for evaluation. We define that evaluation bias 059

as likelihood bias, where LLM-based evaluators 060

overrate the sentences with higher likelihoods (i.e., 061

assign scores that are higher than those by humans) 062

while underrating those sentences with lower likeli- 063

hoods (i.e., assign scores that are lower than those 064

by humans). Figure 1 shows one example of likeli- 065

hood bias. Here, a biased evaluator gives a lower 066

score of 3/5 to a correct but low-likelihood out- 067

put (top) while giving a higher score of 5/5 to a 068

high-likelihood output (bottom). 069

Addressing this issue, we propose the first 070
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method that a) quantifies and b) mitigates likeli-071

hood bias. We quantify the bias by correlating the072

likelihood of a target text with the disparity be-073

tween LLM-generated evaluation scores and those074

provided by human evaluators. In extensive exper-075

iments using two tasks (Data2Text and GEC, i.e.,076

grammatical error correction), we show that both077

LLMs tested by us (GPT-3.5, llama2-13B (Touvron078

et al., 2023)) indeed suffer from likelihood bias.079

Our bias reduction method harvests highly-biased080

instances and uses them as few-shot examples for081

in-context learning. Our results show that apart082

from reducing bias, our method also improves eval-083

uation performance in many cases: significantly so084

for Data2Text, and in trend also for GEC.085

2 Method086

We calculate the LLM’s evaluation score Scorem087

based on the models’ response to a prompt. This088

is a common methodology in LLM-based evalua-089

tion (Liu et al., 2023; Chiang and Lee, 2023). Our090

prompt includes a task description and the eval-091

uation criteria, and several few-shot example in-092

stances for in-context learning. The reason we use093

in-context learning is that it is known to stabilize094

the model. This puts us in a position to quantify095

the strength of likelihood bias.096

2.1 Quantifying Likelihood Bias097

We define likelihood bias in LLM-based evalu-098

ators as the tendency to overrate high-likelihood099

sentences and underrate low-likelihood ones, com-100

pared to human ratings. First, we calculate LS, the101

Likelihood Score, representing the likelihood P102

calculated by LLM. Given a instance t with input ti,103

output to, task description d, and model parameters104

θ, LS is defined as follows:105

LS(t) = logP (to | ti, d; θ) (1)106

We next calculate US, Unfairness Score, which107

represents the difference between scores by LLM108

(Scorem) and scores by humans (Scoreh). To ac-109

count for different scoring ranges between models110

and humans, Scorem and Scoreh are normalized to111

the same range.112

US(t) = Scorem(t; θ)− Scoreh(t) (2)113

The Scorem is measured as the expected value over114

scores following the setting of Liu et al. (2023).115

Also, few-shot example instances are chosen at ran-116

dom when measuring the bias. The actual prompts117

Figure 2: Likelihood bias of hypothetical evaluators.
A: biased, B: unbiased with high performance, and C:
unbiased with low performance.

and exact equation we use to calculate the Scorem 118

are provided in Appendix A. 119

BiasScore is then our metric that measures likeli- 120

hood bias, which is calculated as the correlation in 121

terms of Spearman’s rank correlation coefficient ρ 122

between Likelihood Score and Unfairness Score 123

across a Dataset (D = {t1, t2, . . . , tn}), using 124

each instance ti: 125

LSD = [LS(t1),LS(t2), . . . ,LS(tn)] (3) 126

USD = [US(t1),US(t2), . . . ,US(tn)] (4) 127

BiasScore = ρ(LSD,USD) (5) 128

BiasScore ranges between -1 and 1, with 1 indi- 129

cating strong likelihood bias, and 0 suggesting no 130

bias. 131

2.2 Mitigating Likelihood Bias 132

Figure 2 plots LS (Equation 1) against US (Equa- 133

tion 2) in order to show the likelihood bias of mul- 134

tiple hypothetical evaluators. Each point represents 135

a pair of scores for a instance. The BiasScore corre- 136

sponds to the slope of the main cluster of instances. 137

• Figure 2 (A) shows a middle-performing and 138

biased evaluator. It unfairly gives high rat- 139

ings to texts with high likelihood (points in 140

the upper right) and low ratings to texts with 141

low likelihood (points in the lower left). We 142

assume that LLM-based evaluators are in this 143

state before bias mitigation. 144

• Figure 2 (B) shows the ideal outcome of miti- 145

gation: the BiasScore is zero (i.e., there is no 146

bias), and the performance remains high. 147

• There is also no bias in Figure 2 (C) (and thus 148

BiasScore = 0), but this evaluator is of no use 149

as the output is random (low-performance). 150

The target of our bias mitigation strategy is to 151

change situation (A) into (B), while avoiding low 152

evaluation performance as in (C). We concentrate 153
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on highly-biased instances (top-right and bottom-154

left points in A) in our training data. For this, we155

require an instance-based measure of bias, which156

is provided by RS(t) as follows:157

RS(t) = |LS(t) + US(t)| (6)158

Here, LS and US are normalized so that they both159

have an average of 0 and a range from -1 to 1 across160

a dataset D. RS(t) is high for instances t that161

are closer to the top-right or bottom-left of the162

scatter plot. For our mitigation strategy, we choose163

instances with the highest RS(t) from the training164

data, and use these instances as few-shot examples165

for in-context learning, after replacing the LLM166

scores with the human gold-standard scores.167

3 Experiments168

3.1 Datasets169

We conduct our experiments on two tasks: a)170

Data2Text, the task of converting RDF format data171

into English sentences and b) GEC. For Data2Text,172

we use WebNLG+ (Castro Ferreira et al., 2020),173

which contains 2846 instances. Scoreh is pro-174

vided by human judges, who rated each instance175

on five criteria (text structure, relevance, fluency,176

correctness and data coverage). For GEC, we use177

the TMU-GFM-Dataset (Yoshimura et al., 2020),178

which contains 4221 instances. Scoreh is provided179

by human judges, who rated each instance on two180

criteria (grammar and fluency1). We split each181

dataset into training and evaluation data at a ratio182

of 8:2.183

3.2 Models184

The LLMs used in our experiments are GPT-3.5185

provided via API by OpenAI 2 and Llama2-13B186

(L-13B) (Touvron et al., 2023). For GPT-3.5, since187

it does not support the output of token generation188

likelihood, we use Llama2-13B’s likelihood as an189

approximation.190

We first measure how well the LLMs work as191

evaluators, using Spearman’s rank correlation co-192

efficient ρ between human and model scores. The193

“Before” column of Evaluation Performance in Ta-194

ble 1 and 2 shows these results. The ballpark fig-195

ures are that GPT-3.5 is the superior system for196

1All criteria and their definitions are given in Appendix
B. The original GEC dataset contains a third criterion, mean-
ing. However, we exclude this criterion because it does not
contribute to the overall evaluation (Yoshimura et al., 2020).

2We use gpt-3.5-turbo-instruct as the model in API
call.

Data2Text, while for GEC, it roughly performs on 197

a par with Llama2-13B. 198

3.3 Measuring Likelihood Bias 199

We use the method described in Section 2.1 for 200

likelihood bias measurement. We introduce a new 201

criterion representing the overall result, total, by 202

micro-averaging over the criteria3. 203

Results for Data2Text The “Before” column of 204

BiasScores in Table 1 reveals a bias for both mod- 205

els and evaluation criteria, with BiasScore for most 206

evaluation criteria exceeding 0.17. Across all cri- 207

teria (total), GPT-3.5 has the strongest bias (0.38), 208

followed by Llama2-13B (0.17). Relevance is the 209

criterion with the strongest bias in both models, 210

GPT-3.5 (0.43) and Llama2-13B (0.28). 211

Results for GEC The “Before” column of Bi- 212

asScores in Table 2 shows bias in both models and 213

evaluation criteria also for the GEC task: all BiasS- 214

cores exceed 0.16. As with Data2Text, GPT-3.5 215

overall displays a stronger bias across all criteria 216

(0.43) than Llama2-13B (0.21). 217

Intrinsic vs non-intrinsic evaluation criteria 218

Looking “Before” column of BiasScores in Table 1, 219

there are two evaluation criteria which display rela- 220

tively small likelihood biases across both models, 221

namely fluency and text structure. These criteria 222

are concerned with text quality alone and they are 223

intrinsic to the output text. The criteria are true of 224

the output text to a higher or lesser degree, but this 225

is independent of what the input looked like. In 226

contrast, relevance and data coverage are depen- 227

dent on external factors in the input. For instance, 228

we cannot assess whether a piece of information is 229

relevant by only looking at the output. The qual- 230

ity definition for those criteria is affected by the 231

process that transforms the input into the output. 232

Without looking at the input, we would miss infor- 233

mation about the start state of the process. There- 234

fore, such criteria are not intrinsic. From our re- 235

sults, we see that there is a marked difference in 236

BiasScore between non-intrinsic and intrinsic cri- 237

teria: non-intrinsic criteria are much more prone 238

to bias. These results suggest an intuitive inter- 239

pretation: Although LLM-based evaluators rely on 240

3Please note that when micro-averaging, the total BiasS-
core reported in Table 1 and 2 is not an average of the BiasS-
core of the individual evaluation criteria, since to calculate
the total BiasScore we first average over the human and LLM
evaluation scores and then apply Equation 5.

3



BiasScore Evaluation Performance ρ
Before After Before After

Criterion L-13B GPT-3.5 L-13B GPT-3.5 L-13B GPT-3.5 L-13B GPT-3.5
text structure .17 .36 .02 * .23 * .34 .46 .36 .53 †

relevance .28 .43 .15 † .31 * .25 .35 .23 .38
fluency .20 .26 .00 * .29 .33 .41 .52 † .55 *

correctness .21 .36 -.01 * .32 .37 .44 .43 .47
data coverage .24 .40 .16 .32 * .24 .20 .25 .30 †
total (micro) .17 .38 .02 † .32 † .40 .48 .46 .58 *

Table 1: Data2Text: BiasScore and Evaluation performance before and after mitigating likelihood bias. Values
affected positively by our mitigation method appear boldfaced. * represents significant difference ( p < 0.05 )
between before and after mitigation. † represents marginal significant difference ( p < 0.06).

BiasScore Evaluation Performance ρ
Before After Before After

Criterion L-13B GPT-3.5 L-13B GPT-3.5 L-13B GPT-3.5 L-13B GPT-3.5
grammar .24 .46 .24 .37 † .45 .48 .46 .54
fluency .16 .36 .09 .29 .49 .40 .48 .47

total (micro) .21 .43 .18 .37 .48 .45 .52 .52

Table 2: GEC: BiasScore and Evaluation performance before and after mitigating likelihood bias. We use the
notation in the same manner as Table 1.

likelihood when they score any criterion, the likeli-241

hood is a better estimator for intrinsic criteria than242

they are for non-intrinsic ones. This might be be-243

cause, for intrinsic criteria, lots of output text is all244

that is required to learn it, and that is exactly what245

likelihood is all about.246

3.4 Mitigating Likelihood Bias247

We now use the method described in Section 2.2,248

with eight highly-biased examples for mitigation.249

In the “After” columns of Table 1 and 2, we bold-250

face the value if our method brings a BiasScore251

close to zero or if it improves evaluation perfor-252

mance. We test for the significance of differences253

using the two-sided randomized pair-wise permuta-254

tion test with R=100000 and α = 0.05. If a differ-255

ence between unmitigated and mitigated conditions256

is significant, we indicate this with an asterisk (*);257

marginal significance (p < 0.06) is indicated using258

a dagger (†).259

Results in Data2Text The “After” column of260

BiasScores and Evaluation performance of Ta-261

ble 1 shows that our method brings the BiasScore262

closer to zero and increases evaluation performance263

across the board. With our method, the BiasS-264

cores decrease significantly for Llama2-13B for265

text structure (-0.15), fluency (-0.20), and correct-266

ness (-0.20). For GPT-3.5, results are significantly267

decreased for text structure (-0.13), relevance (-268

0.12), and data coverage (-0.08). At the same time,269

the evaluation performance improves significantly270

for GPT-3.5 by +0.10 for total, by +0.14 for fluency,271

with marginally significant differences for GPT-3.5 272

in text structure, data coverage. For Llama2-13B, 273

the only criterion with a marginally significant im- 274

provement is fluency. We consider this an overall 275

successful mitigation. 276

Results for GEC As with Data2Text, the “After” 277

column of BiasScores and Evaluation performance 278

of Table 2 shows our method brings the BiasScore 279

closer to zero in many cases, and that evaluation 280

performance is overall improved. Although few 281

criteria achieve significant differences either in Bi- 282

asScore or evaluation performance, our method at 283

least shows changes in the right direction. 284

In summary, the results for the Data2Text and 285

GEC tasks imply that our mitigation strategy can 286

decrease the likelihood bias of LLMs and improve 287

the evaluation performance simultaneously 4. 288

4 Conclusion 289

This paper identifies likelihood bias in LLMs as the 290

phenomenon of LLMs overrating high-likelihood 291

texts and underrating low-likelihood ones. We in- 292

troduce a method for quantifying bias and propose 293

a solution to the bias problem: using high-biased 294

instances as few-shot examples for in-context learn- 295

ing. Experiments with two tasks (Data2Text and 296

GEC) show that LLMs exhibit strong likelihood 297

bias, and that our method successfully mitigates it, 298

improving evaluation performance. 299

4We conduct further experiments on visualization and case
study about the mitigation of bias in Appendix E
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Limitations300

Our work has several limitations. (i) Since we use301

in-context learning to mitigate likelihood bias, the302

number of tokens that can be used is limited by the303

method. Therefore, our method may not be suitable304

for tasks with long input or output lengths, such as305

summarization, as the amount of space that can be306

used is even more limited. (ii) In-context learning307

also brings another limitation. Since it increases308

the prompt length, the computational (or API call)309

costs also go up. One solution is fine-tuning the310

model instead of In-context learning. It is therefore311

necessary to explore whether fine-tuning works312

better than in-context learning and how much data313

we need.314

Ethics Statement315

While we do not foresee any ethical risks caused316

by our research, LLMs not only exhibit biased like-317

lihood based on surface-level information such as318

words and sentence structure but also on informa-319

tion like gender, religion, and race (Kaneko et al.,320

2023; Oba et al., 2023; Anantaprayoon et al., 2023).321

For instance, LLMs might assign a higher likeli-322

hood to “She is a nurse” compared to “He is a323

nurse”. Reducing likelihood bias could potentially324

address social bias in evaluators. However, it is325

worth noting that this study does not investigate326

such aspects, and this remains a task for future327

research.328
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A LLM evaluation method473

Calculation of likelihood As shown in Equa-474

tion 1, we calculate the likelihood of task output475

to based on task description d and task input ti.476

This approach aims to obtain a more contextually477

relevant likelihood, factoring in both the specifics478

of the task and the input, rather than simply cal-479

culating logP (to; θ). Specific examples of task480

description d are indicated below.481

• Data2Text: Please generate a description of482

the following xml data483

• GEC: Please modify the following English text484

to make it grammatically correct485

Calculation of Scorem As is common in LLM-486

based evaluation (Liu et al., 2023; Chiang and Lee,487

2023), the model is given a prompt I , which in-488

cludes a task description, the evaluation criteria,489

and an instance t, and then predicts score Scorem.490

We also use in-context learning, with the inten-491

tion of stabilizing the model. Examples are chosen492

at random when measuring the bias, and are cho-493

sen according to the method described in Section494

2.2 when mitigating the bias. Finally, we calcu-495

late Scorem as the expected score over scores. We496

follow the setting of Liu et al. (2023), who have497

observed that using the expected score, consider-498

ing the model’s distribution over scores for each499

instance, rather than always taking the most likely500

score, leads to a more robust evaluation. Given501

score candidates {1, 2, ..., n}, the probability of502

each score Q(i | t, F, I; θ), Scorem is formulated503

as follows:504

Scorem(t; θ) =

∑n
i=1 i×Q(i | t, F, I; θ)∑n
j=1Q(j | t, F, I; θ)

(7)505

Example Prompts Here, we provide two exam-506

ples of the prompts used for LLM-based evaluators.507

Our prompts are inspired by the prompts Liu et al.508

(2023) used.509

Evaluate Correctness in Data2Text510

You will be given an xml data and an En-511

glish sentence that represents xml data.512

Your task is to rate the sentence that rep-513

resents xml data on one metric. Please514

make sure you read and understand these515

instructions carefully. Please keep this516

document open while reviewing, and re-517

fer to it as needed. Evaluation Criteria:518

Correctness: (1-5) - does the text de- 519

scribe predicates with correct objects and 520

does it introduce the subject correctly? 1 521

is the lowest score, 5 is the highest. 522

Evaluate Fluency in GEC 523

You will be given an English sentence 524

that may have grammatical errors and a 525

sentence that is the corrected version of 526

the sentence. Your task is to rate the cor- 527

rected sentence on one metric. Please 528

make sure you read and understand these 529

instructions carefully. Please keep this 530

document open while reviewing, and re- 531

fer to it as needed. Evaluation Criteria: 532

Fluency: (0-4) - How natural the sen- 533

tence sounds for native speakers; 4: Ex- 534

tremely natural, 3: Somewhat natural, 2: 535

Somewhat unnatural, and 1: Extremely 536

unnatural, and 0: Other. 537

B Dataset 538

Data2Text We use WebNLG+ Dataset å(CC BY- 539

NC-SA 4.0) (Castro Ferreira et al., 2020). Specifi- 540

cally, we collect instances that have human evalua- 541

tion scores from their dataset. The total number of 542

instances we use is 2846. We use them following 543

their license. There are five criteria in the original 544

dataset: 545

• text structure: whether the output is grammat- 546

ically correct and well-structured 547

• relevance: whether the output is based on the 548

input information 549

• fluency: whether the output is natural 550

• correctness: whether the output explains the 551

input data correctly 552

• data coverage: whether the output includes all 553

the input data 554

Human annotators rate each instance on these cri- 555

teria using a 100-point scale from 0 to 100. 556

GEC We use the TMU-GFM-Dataset (CC BY 557

4.0) (Yoshimura et al., 2020), which contains 4221 558

instances. We use them following their license. 559

There are three criteria in the original dataset: 560

• grammar: whether the output is grammatically 561

correct 562
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(a) Before bias mitigation (b) After bias mitigation

Figure 3: Visualization of the bias mitigation in Llama2-
13B with Data2Text fluency

• fluency: whether the output is natural563

• meaning: whether the output has the same564

meaning as the input565

Human annotators rate each instance on these crite-566

ria using a 5-point scale from 0 to 4. As mentioned567

in the footnote, we exclude meaning because, ac-568

cording to the original paper (Yoshimura et al.,569

2020), it does not contribute to the overall evalua-570

tion.571

C Hyperparameters572

To guarantee reproducibility as much as possible,573

we set the hyperparameters on API calls to make574

GPT-3.5 deterministic. We use temperature of 0,575

top_p of 0.576

As for the number of few-shot examples for in-577

context learning, we use eight examples. This is578

the reasonable value that models can learn several579

pieces of information without violating the limit on580

the number of input tokens.581

D Computational Budget582

We run all the experiments on ABCI (https://583

abci.ai/), Compute Node(A), whose CPUs are584

two Intel Xeon Platinum 8360Y, and GPUs are585

eight NVIDIA A100 SXM4. The approximate total586

processing time is 30 hours.587

E Visualization and Case Study588

Figures 3a and 3b show the likelihood bias before589

and after mitigation in Llama2 13B for Data2Text590

and fluency, respectively. We can see that our591

method brings BiasScore closer to zero (0.20 to592

0.00), and points are gathered to the line of US =593

0, similar to (B) in Figure 2. This indicates that594

our method successfully mitigates likelihood bias595

as expected.596

Below, we present an example of an instance597

where bias was mitigated and its evaluation results.598

599

600

Input (excerpt): 601

<mtriple>MotorSport_Vision | city | 602

Fawkham</mtriple> 603

Output: 604

The Motor sport of Vision is in Fawkham. 605

Score by humans(Scoreh): 85 / 100 606

Score by LLM (Scorem) before bias mitigation: 607

2.46 / 5 608

Score by LLM (Scorem) after bias mitigation: 4.32 609

/ 5 610

In the above example, apart from the space be- 611

tween Motor and sport, there are no issues, but 612

the model rated it low before bias mitigation due 613

to its low likelihood. However, the model rated it 614

higher after bias mitigation, bringing it closer to 615

the score by humans. 616
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