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Abstract

We propose Conformal Mixed-Integer Constraint Learning (C-MICL), a novel
framework that provides probabilistic feasibility guarantees for data-driven con-
straints in optimization problems. While standard Mixed-Integer Constraint Learn-
ing methods often violate the true constraints due to model error or data limitations,
our C-MICL approach leverages conformal prediction to ensure feasible solutions
are ground-truth feasible with probability at least 1—c«, under a conditional in-
dependence assumption. The proposed framework supports both regression and
classification tasks without requiring access to the true constraint function, while
avoiding the scalability issues associated with ensemble-based heuristics. Experi-
ments on real-world applications demonstrate that C-MICL consistently achieves
target feasibility rates, maintains competitive objective performance, and signifi-
cantly reduces computational cost compared to existing methods. Our work bridges
mathematical optimization and machine learning, offering a principled approach
to incorporate uncertainty-aware constraints into decision-making with rigorous
statistical guarantees.

1 Introduction

Constraint Learning (CL) deals with inferring the functional form of constraints or objectives from
observed data to embed them into mathematical optimization problems, particularly when parts of
the system behavior are difficult to model explicitly [1]. This is especially relevant in settings where
the relationship between decision and output variables is unknown but can be learned from data,
enabling a supervised learning approach [2, 3]. It is also valuable in surrogate modeling scenarios
where the relationship is known but difficult to optimize, either due to its nonlinearity, computational
cost, or complexity [4—6]. That is, CL simply leverages modern machine learning systems to learn
the structure of complex constraints directly from data, enabling prediction of constraint boundaries
at unobserved points to efficiently navigate feasible spaces and identify optimal solutions.
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The core principle that enables CL is that the predictions of many machine learning models can be
formulated as closed-form algebraic expressions that are optimization-compatible and commonly
admit exact mixed-integer programming (MIP) representations [1, 7—17]. This integration is com-
monly referred to as Mixed-Integer Constraint Learning (MICL). However, a critical challenge arises
from the very nature of optimization algorithms: they systematically leverage the mathematical
structure of the problem to identify extreme points. As a result, small approximation errors in the
learned constraint model (e.g., arising from noisy data, model bias, or insufficient training) can be
systematically exploited during the optimization. This behavior often leads to solutions that are
infeasible with respect to the true system, meaning that the optimal decision variables found by
optimization programs under CL frequently violate the original constraints when evaluated using
the true underlying model [18]. This lack of frue feasibility results in solutions that cannot be
implemented in practice, or that are overly conservative due to the need for additional safety margins.

To improve the robustness of MICL solutions, recent research has proposed ensemble-based ap-
proaches where multiple predictive models are trained on different bootstrap samples of the data
[19]. In particular, Maragno et al. [7] introduce a framework in which P models are independently
trained on bootstrapped datasets, and the optimization is constrained so that a 1—« fraction of these
models must satisfy the imposed constraints. There is some empirical evidence that suggests that this
heuristic yields solutions that are typically feasible with respect to the true underlying system, and its
robustness improves as P increases. However, this approach lacks formal guarantees as there is no
assurance that the final solution will satisfy the true constraints with high probability, particularly in
the presence of model misspecification or low-quality data used in the MICL step. Moreover, the
method suffers from key scalability issues: as P grows, the size of the optimization problem increases
accordingly due to the replication of model constraints and auxiliary variables, rapidly making the
problem computationally intractable for large ensembles.

In this paper, we introduce Conformal Mixed-Integer Constraint Learning (C-MICL), a novel model-
agnostic framework for incorporating data-driven constraints into optimization problems with formal
probabilistic feasibility guarantees. Our method supports both regression and classification settings
and is computationally efficient without sacrificing significant solution quality. Specifically:

* Probabilistic Guarantees: We provide a new optimization formulation that guarantees
ground-truth feasibility with probability at least 1 —« when the true constraint function is
unknown or inaccessible, under a mild conditional independence assumption.

* Model-Agnostic and MIP-Compatible: C-MICL is compatible with any predictive model
that admits a MIP encoding, enabling integration into standard optimization solvers.

* Scalability and Efficiency: Our method avoids query access or model refinement during
optimization, does not scale with dataset size, and requires training at most two models,
achieving orders-of-magnitude computational speedup over ensemble-based heuristics.

* Empirical Validation: We demonstrate the effectiveness of C-MICL on real-world case
studies in both regression and classification settings. Extensive experiments show that our
method consistently achieves target feasibility levels, while delivering competitive objective
values with significantly reduced computation times compared to state-of-the-art baselines.

2 Literature Review

Mixed-Integer Constraint Learning. The mixed-integer constraint learning framework has en-
abled a wide range of developments in machine learning, including neural network verification
[20-27], adversarial example generation [28—30], and applications in reinforcement learning [31-33].
It has also been successfully applied to domain-specific tasks in power systems [34, 35], healthcare
[36, 37], supply chain management [38, 39], and chemical process design [40]. For a comprehensive
overview of recent advances in constraint learning methodologies, we refer readers to Fajemisin
et al. [1], and for a review focused on engineering applications, see Misener and Biegler [41]. How-
ever, existing CL frameworks generally lack guarantees of true system feasibility, particularly in
settings where predictive uncertainty from noisy data or model misspecification is prevalent but
typically ignored. The approach proposed in this work directly addresses this gap by providing formal
probabilistic feasibility guarantees for uncertain learned constraints embedded into optimization
problems.



Trust-Region-Filter for Optimization. Trust region filter methods have been proposed as a strategy
to optimize over learned constraints while ensuring that the solution aligns with that of the true,
underlying system [18]. These approaches operate by iteratively refining the learned constraint
through local sampling and evaluation of the truth function, progressively narrowing the optimization
domain within trust regions where the learned model is accurate [42, 43]. However, such methods
rely on strong assumptions: they typically assume noise-free data, differentiability of the learned
constraint, and direct query access to the truth function. In contrast, our framework is designed for
settings where these assumptions do not hold. We account for noisy data, allow for non-differentiable
learned models, and, most importantly, do not require access to or knowledge of the underlying
function, enabling optimization with high-probability feasibility guarantees even under limited and
imperfect information.

Conformal-Enhanced Optimization. Building on advances in conformal prediction [44-46],
recent work has explored its integration with optimization. Lin et al. [47] proposed conformalized
inverse optimization, targeting the estimation of unknown parameters embedded in the objective or
constraints of an optimization problem, and providing uncertainty quantification over these learned
parameters. Our approach addresses a different problem, namely learning and conformalizing the
functional forms of constraints themselves, without relying on a fixed parametric structure, which
allows for more expressive modeling of complex or unknown system behaviors. Separately, Zhao
et al. [48] introduced conformalized chance constrained optimization, in which constraints involving
random variables are required to hold with high probability. Their method encodes quantile thresholds
from conformal prediction directly into the optimization formulation, which scales with the number
of data points. Unlike this approach, ours is focused on uncertainty of model predictions rather than
model stochasticity, and supports learning general constraint functions.

Other related efforts include Johnstone and Cox [49], who construct conformal ellipsoids for robust
optimization, and Yeh et al. [50], who learn convex uncertainty sets for robust objectives using
differentiable conformal layers. In contrast, C-MICL conformalizes feasibility regions rather than
robustifying objective values. Similarly, Kiyani et al. [51] and Patel et al. [52] employ conformal
sets for utility-aware or risk-sensitive decision-making, optimizing value-at-risk or ensuring robust
output quality, whereas C-MICL focuses on constraint satisfaction under uncertainty from model
estimation. Our framework supports general, nonconvex feasible regions and provides distribution-
free probabilistic feasibility guarantees from fixed-size optimization formulations regardless of
dataset size, allowing practitioners to leverage large datasets for improved model accuracy without
inflating computational cost. A key distinction of C-MICL is that it centers on feasibility-aware
decision-making rather than on robustifying objectives or actions for downstream optimization
problems.

3 Preliminaries

3.1 Problem Set-Up

Consider a constrained optimization problem over a set of decision variables (z, y, z) where certain
constraints depend on unknown or difficult-to-model functions relating decision variables x to
outcomes y. We assume no access to the true underlying mapping denoted by h(z) = E[Y | X = z].
Instead, we have access to a dataset Dyin = { (x4, y,)}fvz‘i", where each observation (z;,y;) is drawn
independently from a common (unknown) underlying distribution Pxy . Note that z are additional

decision variables that may constrain 2, but do not influence y through h(z).

The goal of Constraint Learning is to approximate h(z) with a predictive model /() trained on the

observed data Dy,;,. Once the model h(x) is trained, we embed it in a mixed-integer optimization
program, defining the following Mixed-Integer Constraint Learning (MICL) problem [1]:

min  f(x, 2)

Ty,

st. gz, 2) <0
hz) =y (MICL)
(x,2) e X
yey



where f(z, z) is a known real-valued objective function and g(z, z) encodes a set of known constraints.
Moreover, ¥ C R™ x Z™2 defines the feasibility set for the decision variables (x, z) where both
x and z can take both real and integer values. Finally, )’ defines the feasible set for the outcome
variable y, where feasibility must be satisfied with respect to the true (but unknown) function h(z).

The formulation above captures a general form of a mixed-integer constraint learning problem.
Specific problem instances correspond to different definitions of the feasible prediction set ). In the
regression setting, ) is any subset of R that is representable within a MIP framework. For instance,
in our experiments, we define ) = [y, 7], which enforces lower and upper bounds on the continuous

output variable y.! In the multi-label classification case, Y = K95 is a subset of the set of possible
labels K = K% U K", which we assume partitions into disjoint sets of desired classes K% and
undesired classes K",

By construction, all feasible solutions (z’, z") from the optimization problem MICL are feasible with
respect to the learned model h(x), meaning that i (2’) € ). However, since h(x) is unknown and

only approximated via h(z), ground-truth feasibility with respect to the true function h(z”) is not
guaranteed. We formalize this conceptual difference in the following definition.

Definition 3.1. (Ground-Truth Feasibility) Given a feasible solution (', z") to the MICL optimization
problem, the solution is said to achieve ground-truth feasibility if y' = h (x') € ), where h(x) is the
true constraint function.

Recent research by Maragno, Wiberg, Bertsimas, Birbil, den Hertog, and Fajemisin [7] proposes
a heuristic approach called Wrapped model MICL (W-MICL) to address the challenge of ensur-
ing ground-truth feasibility of MICL solutions. W-MICL trains an ensemble of P models using
independent bootstrapped datasets rather than relying on a single predictive model. Each model
ﬁp (z) provides a distinct prediction, collectively capturing model uncertainty. Within the MICL
optimization formulation, the constraint ﬁ(x) € Y isreplicated for each trained model, and feasibility
izp (z) € Y is enforced for a (1—«) fraction of them, implemented via standard big-M formulations
in MIP [7]. While empirical results suggest that W-MICL improves the ground-truth feasibility of
optimal solutions, the method remains a heuristic and does not offer formal feasibility guarantees.

Remark 3.1. We assume that the underlying predictive model h(x) admits a reformulation as a
mixed-integer program (MIP), such as Neural Networks with ReLU activations (ReLU NNs) [8—
10], Gradient-Boosted Trees (GBTs) [11, 12], Random Forests (RFs) [13—16], or Linear-Model
Decision Trees (LMDTs) [17]. Then, the MICL problem is itself a MIP that can be solved using
standard branch-and-bound or global optimization algorithms [53, 54]. While details on embedding
these models into MIPs are provided in Appendix A, we emphasize that our formulation remains

model-agnostic, requiring only that the predictive model iAL(:c) is MIP-representable.

3.2 Conformal Prediction

Conformal prediction is a statistical framework for model-free uncertainty quantification that provides
probabilistic guarantees for prediction sets constructed from any given (fixed) predictive model. This
framework has gained significant popularity as an assumption-lean, model-agnostic, computationally
efficient method offering rigorous statistical coverage guarantees without requiring model retraining
or modifications to pre-trained machine learning systems [55-57].

Formally, suppose we have access to a calibration dataset of N data points (z1,y1), ..., (TN, YN)
drawn exchangeably from the underlying distribution Pxy.> Given a new data point (x4 1,Yn+1)
drawn exchangeably from Pxy, conformal prediction provides a principled method for constructing
a conformal set C,,(x ny+1) containing the true label y, 1 with probability at least 1 — «, without
making additional assumptions about the underlying distribution beyond exchangeability.

The core idea behind conformal prediction is to compute conformal scores {s(z;,y;)}X,, that
capture model uncertainty over the calibration data. For instance, in regression settings, a common

conformal score function corresponds to model absolute residuals s(z,y) = |y — h(z)|. The

UIf y is a vector-valued outcome, [y, @] imposes elementwise constraints on y € ).

*A random vector (Z1, ..., Zn) is exchangeable if (Z, (1), . . ., Zy(n)) follows the same distribution for all
permutations o of the indices {1, ..., N} [57]. For instance, i.i.d. random variables are exchangeable.



conformal prediction set is then defined as:

Ca@ny1) ={y: s(zni1,y) < Gi-a} ey
where §1_o is the (1—«)(1 4+ 1/N)-quantile of the empirical distribution of conformal scores
{s(z1,v1),-..,s(xN,yn)}. This construction yields the following key marginal guarantee.

Theorem 3.1 (Theorem 3.2 in [57]). Assume that (X1,Y1),...,(Xn+1, YNy1) are exchangeable
random variables. Then, for any user-specified coverage level o € (0, 1), we have that the conformal
set from eq. (1) satisfies

P(Yni1 € Co(Xng1)) > 1—a. 2

Recent advancements have extended the framework to construct adaptive prediction sets with
conditional coverage guarantees, whose size varies according to the model’s confidence at specific
inputs, producing narrower intervals in regions of low uncertainty [58, 59]. This adaptive property
is particularly relevant to our work, as it informs optimization algorithms about local prediction
confidence when checking for feasibility. For instance, Mondrian conformal prediction [57, 60]
enables conditional coverage guarantees for both ground-truth feasible points {z : h(x) € Y} and
infeasible points {x : h(z) ¢ V}. This conditional coverage guarantee is formalized in the following
Lemma, with the proof and details on Mondrian conformal sets deferred to Appendix B.1.

Lemma 3.1. (Ground-Truth Feasibility Conformal Coverage Guarantee): Assume that
(X1,Y1),...,(XN+1,YN11) are exchangeable random variables and that s(X,Y') is a symmetric
score function. Mondrian conformal sets satisfy the conditional coverage guarantee at level o.:

P(Yny1 € Ca(Xn41) [ Y41 €Y) 21— q,
P(Yny1 € Ca(Xn41) [ YN41 €Y) 21— .

Intuitively, this condition ensures that coverage holds simultaneously within both the feasible and in-
feasible regions, by constructing conformal sets calibrated separately for each group. This conditional
guarantee is strictly stronger than (and implies) the marginal property from Theorem 3.1, preventing
the procedure from achieving marginal coverage when high coverage on one subset compensates for
poor coverage on the other.

4 Conformal Mixed-Integer Constraint Learning

In this section, we introduce our proposed Conformal Mixed-Integer Constraint Learning (C-MICL)
framework, integrating conformal prediction into MICL problems to provide probabilistic guarantees
on the ground-truth feasibility of feasible solutions. The core idea of C-MICL is to conformalize the

learned constraint y = h(x) € ), thereby constructing a statistically valid uncertainty set that the
predictions must satisfy. The general C-MICL problem can be written as follows:

min  f(z,2)

st g(z,2) <0 -MICL
(x,2) e X (C-MICL)
Ca(z) CY

where C,,(x) is a conformal set for the decision variable 2 based on the learned model h(z), a target
coverage level v and a calibration set D). In the following, we detail how to construct C,, () for both
regression and classification settings, and how the constraint C,, (x) C Y can be formulated using MIP.
Importantly, our approach remains compatible with the existing definition of ground-truth feasibility
provided in Definition 3.1, h(z) € ), requiring no modifications to the underlying feasibility notion.

Remark 4.1. The feasible regions defined by the oracle constraint h(x) € ) and the conformal
set containment C.(z) C Y do not exhibit a clear inclusion relationship in general. In particular,
neither region necessarily contains the other, and therefore one is not more conservative nor yields
larger/smaller optimal values in general.

We assume that the model i () is trained on Dy, and considered fixed thereafter. The conformal
sets are then constructed using a disjoint calibration dataset D, of size N. This approach preserves
the theoretical coverage guarantees from Theorem 3.1 and Lemma 3.1 without requiring model
retraining [57]. To establish formal guarantees for the C-MICL approach, we introduce the following
assumption about the conformal coverage of the feasible region of the C-MICL problem.



Assumption 4.1. (Conditional Independence of Feasibility and Coverage): The events of C-MICL
feasibility and conformal coverage are conditionally independent given ground-truth feasibility.

This assumption states that the C-MICL constraints do not systematically bias the coverage properties
of conformal prediction sets, conditional on the frue (unknown) feasibility status of h(x). That is,
we assume that whether a point is C-MICL feasible, i.e., (z/,2) € Fy = {(z,2) € X : g(z,2) <
0,Cq(x) C Y} does not affect the probability that its conformal set contains the true function value,
h(z'") € Co(z'), given its ground-truth feasibility (h(z’) € V) or infeasibility (h(z') ¢ )). We
provide a detailed discussion and interpretation of this assumption in Appendix B.3.

Under this condition and ground-truth feasibility conformal coverage guarantee (Lemma 3.1), we
establish our main theoretical result in the following theorem, which we prove in Appendix B.2. This
result provides a probabilistic certificate for the ground-truth feasibility of feasible solutions to the
C-MICL problem.

Theorem 4.1. Let Fy = {(z,2) € X : g(z,2) < 0,Co(x) C YV} be the feasible region of the
C-MICL problem. Under the same conditions of Lemma 3.1 and Assumption 4.1, if Fn is nonempty,
then any feasible solution (z',2") € Fy is ground-truth feasible with probability at least 1—q:

P(h(z')e Y| (2,2 Ye Fn)>1—qa. 3)
4.1 Regression Conformal MICL

For the regression setting, we adopt a two-step procedure to construct a predictive model ﬁ(x) and
then quantify its uncertainty through an auxiliary uncertainty function % (x). Specifically, in the

first step we use Dyyp to train a predictive regression model i (z). Then, we use the set of absolute

residuals of the model in the training set D' = {(x;, |h(x;) — vi|)} X" to train the secondary
regression model @ (), which estimates the prediction uncertainty of k() as a function of the input
variable x [61]. While alternative one-step approaches exist for simultaneously estimating both
prediction and uncertainty models (often by leveraging model-specific choices of ﬁ(m)), we adopt
this two-step procedure because it is simple, broadly applicable, and model-agnostic. For a discussion
of joint training techniques, we refer the reader to Angelopoulos et al. [57]. Note that our framework
imposes no restrictions on the choice of predictive model for 4(x); however, to ensure integration

with the optimization formulation, we assume that @ () admits a MIP representation.

Although @ (x) provides a heuristic estimate of uncertainty, it can still suffer from misspecification due
to data noise, bias, or limited training. To address this and provide formal guarantees on predictive
reliability, we apply conformal prediction to calibrate the uncertainty estimates. Specifically, for
each point in the calibration dataset D.,, a conformal score is computed as s(z;,y;) = %,
following the procedure in Lei et al. [62]. Then, as outlined in Section 3.2, the conformal quantile
41— = Quantile (s(z1,91),-..,s(xn,yn); (1 — a)(1 + 1/N)) is computed based on the set of

conformal scores. Using this quantile the conformal set constraint can be expressed as:

Ca(z) CY = [h(z) £ 1o i(z)] C [y, 7] &)

This set is defined by a pair of algebraic expressions that further constrain the lower and upper bounds
on y and can be directly embedded into the optimization formulation (see Appendix C). In summary,
C-MICL in the regression setting involves (i) training an uncertainty model 4(x), (i) computing
the conformal quantile offline (so that the formulation size remains independent of N), and (iii)

expressing the valid region for y through MIP constraints in terms of h(z) and @(z).

4.2 Classification Conformal MICL

For the classification setting, C-MICL does not require integrating an additional uncertainty model
into the formulation. Instead, score functions can be directly computed from the predictor h(z) =
P(Y | X = z), which typically involves a nonlinear transformation such as softmax [55]. However,
in MICL, it is common practice to remove the final nonlinear transformation and operate directly
on the pre-activation values of the last layer, commonly referred to as logits, to preserve linearity
[8]. This approach does not affect the classification result: since softmax and sigmoid functions are
monotonic, the class with the highest logit still corresponds to the highest probability.



To enable integration into MIP, we propose a valid conformal score function that operates directly in
logit space. Specifically, we define the conformal score as:

s(@iy) == > yb (@) 5)

kerx

where we select the negative of the logit output corresponding to the correct class, assuming that y; is
one-hot encoded. This formulation preserves the validity of the conformal method while enabling
exact and efficient representation within a linear optimization model.

Given ¢;—, = Quantile (s(x1,y1),...,s(zn,yn); (1 — @)(1 + 1/N)) as defined in Section 3.2,
we define the conformal sets in the classification setting as:

Colz) CY = —h(2)* > Gi_a Vkek™ (6)

which ensures that only desired classes k& € K% are included in the conformal prediction set, by
retaining those whose conformal scores lie below the quantile threshold. This behavior can be captured

within a MIP framework by introducing an indicator constraint of the form 1{—A(z)* < §,_,} for
all k € K, and enforcing it to be active only for desired classes k& € K%, This logical constraint
can be further reformulated as a set of algebraic mixed-integer inequalities using standard big-M
techniques; we refer the reader to Appendix C for further details on this reformulation.

Remark 4.2. The functional forms chosen for the score functions s(x) and feasibility sets ) serve
primarily to illustrate the algorithmic implementation of C-MICL across broad classes of regres-
sion and classification problems within optimization formulations. However, any alternative score
functions (see [57]) and feasibility sets can be used, provided they admit MIP representations [41].

S Computational Experiments

We empirically validate our Conformal MICL (C-MICL) approach in both regression and multi-class
classification settings. In each case, we benchmark against standard single-model MICL methods as
well as the ensemble-based heuristic W-MICL proposed by Maragno et al. [7].> We denote the latter
as W-MICL(P), where P refers to the ensemble size. For both settings, we evaluate performance on
100 randomly generated optimization instances, each defined by a sampled cost vector. This approach
considers the calibration set D, as fixed and allows us to sample from the feasible region for each
C-MICL formulation. This allows us to empirically validate the theoretical guarantee in Theorem 4.1,
suggesting ground-truth feasibility of optimal solutions that are feasible by construction. Moreover,
in the Appendix E we empirically verify that the assumptions from Theorem 4.1 approximately holds
in our experimental settings for both regression and classification problems.

In the following, we report: (i) the empirical ground-truth feasibility rate, (ii) the relative distance of
optimal value A%; = # 100% for each baseline method 7 when compared to ours, and (iii)
MICIL

the average CPU time required to solve each instance. The results shown in the main text correspond
to a target coverage level of a = 10% across 100 runs with 95% confidence intervals (CIs) detailed in
Appendix E. Additional results for & = 5% are available in Appendix E.1 and E.2. Key architectural
and hyperparameter choices are summarized in the main text, while full details on hyperparameter
selection, training, and optimization formulations are provided in Appendix D.

We focus our case studies on mixed-integer linear programming (MILP) examples, which are faster
to solve in practice. This choice is made without loss of generality, as all proposed formulations and
theoretical guarantees remain valid for both mixed-integer linear and nonlinear programs. All opti-
mization problems were solved using the MILP solver Gurobi v12.0.1 with a relative optimality
gap of 1% [63]. Machine learning models were implemented using scikit-learn and PyTorch, and
subsequently integrated into Pyomo-based [64] optimization formulations via the open-source library
OMLT [65].

5.1 Regression setting

We consider the optimal design and operation of a membrane reactor for methane aromatization and
hydrogen production following Carrasco and Lima [66]. The goal is to determine five input variables

3Specifically, we implement the formulation proposed in Section 3.1 of Maragno et al. [7] using a bootstrap
sample proportion of 0.5 as done by the authors.



(reactant flows, operating temperature, and reactor dimensions) to minimize operational cost while
ensuring a product flow > 50, defining the feasible region ). The true system behavior is modeled
by a set of ordinary differential equations serving as the oracle h(X). In this setting, y € [0, 100]
defines an underlying regression problem. To generate training data, we sample 1,000 input points
from & and evaluate y via the discretized ODEs with added Gaussian noise to simulate measurement
uncertainty [67]. See Appendix D for additional details.

We train baseline MICL models using the full dataset, following established methodologies for
different predictor types: ReLU NNs [9], GBTs [11], RFs [16], and LMDTs [17]. To evaluate the
performance of the robust ensemble heuristic W-MICL, we follow the approach of Maragno et al. [7],
training ensembles of size P € {5, 10, 25, 50} using the same cross-validated hyperparameters as
their corresponding single models as described in Appendix D.1. Finally, we implement our proposed

C-MICL method, which only requires training two models: /(z) and ii(z). We use the same model
architectures and hyperparameters as the baselines, allocating 80% of the data for training, and the
remaining 20% for conformal calibration. All base models shared a common architecture for the
uncertainty model: a ReLU NN with two hidden layers, each with 32 units.

Figure | presents the main results, comparing the ground truth feasibility coverage of the various
methods across these instances for « = 10%. The figure shows that, across all underlying models, our
proposed C-MICL method consistently achieves the target ground-truth feasibility rate, as guaranteed
by Theorem 4.1. In sharp contrast, none of the baseline MICL methods reach the desired coverage
level, regardless of the machine learning model employed. Moreover, the W-MICL heuristic from
Maragno et al. [7] only empirically approaches the target coverage when using neural networks.
These results highlight the importance of theoretical guarantees: in settings where no reliable
machine learning model is available to support MICL or W-MICL approaches, our Conformal MICL
framework ensures ground-truth feasibility by construction. Furthermore, the level of probabilistic
guarantee can be flexibly controlled by the parameter «, allowing practitioners to tune the method to
any desired confidence level in (0, 1) (with & = 0.05 included in Appendix E). In the same appendix,
violin plots of the true constraint values h(x) for both « levels illustrate the magnitude of violations,
showing that C-MICL not only incurs the fewest violations but also achieves the smallest violation
magnitudes when they occur.

Figure 2 presents the relative distance in optimal objective value between each method and our
proposed C-MICL approach, while Figure 3 reports the average CPU time (in seconds) required
to solve the 100 optimization instances. In both figures, lighter-colored bars denote methods that
failed to meet the desired feasibility rate shown in Figure 1. Results correspond to ReLU NNs, which
exhibited the strongest empirical performance in terms of feasibility.

Figure 2 shows that our proposed C-MICL method achieves the desired feasibility guarantees with
only a modest average reduction of 7% in objective value compared to heuristic approaches. This
small trade-off highlights that C-MICL remains highly competitive while offering formal probabilistic
guarantees on feasibility. Figure 3 further highlights the computational advantages of our approach,
showing that it achieves optimal solutions several orders of magnitude faster than the baseline
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Figure 1: Empirical ground-truth feasibility rate of optimal solution across MICL methods on
100 optimization problem instances. Our Conformal MICL approach (rightmost bars) consistently
achieves the target ground-truth feasibility rate > 90% regardless of the underlying base model used.
Previous methods demonstrate variable performance below this theoretical guarantee. Error bars
correspond to 95% confidence intervals for ground-truth feasibility rates across 100 runs.
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Figure 2: Percentage difference in optimal value
from NN-based MICL methods compared to C-
MICL. Results show an average 7% reduction in
objective value compared to heuristics, indicat-
ing a modest trade-off for feasibility guarantees.
MICL (lighter interval) does not achieve the de-
sired ground-truth feasibility rate. We present
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Figure 3: Average computational time to find
optimal solution from NN-based MICL methods.
Our C-MICL approach (top) is two orders of
magnitude faster than previous methods. MICL
(lighter bar) does not achieve the desired empir-
ical feasibility rate. Error bars represent 95%
confidence intervals across 100 runs.

95% confidence intervals across 100 runs.

methods. In summary, our method offers a compelling combination of computational speedup and
theoretical probabilistic guarantees, while preserving comparable objective performance.

5.2 Multi-classification setting

We consider a food basket design problem aimed at minimizing the cost of a basket composed of
25 commodities, subject to nutritional constraints covering 12 nutrients and a learned palatability
requirement [68]. Palatability, reflecting the appeal or acceptability of the basket to recipients, is
inferred from historical data on previously deployed baskets and community feedback. Following the
formulation in Fajemisin et al. [1], we impose a minimum palatability threshold of 0.5 (consistent
with the value proposed in Maragno et al. [7]) to ensure that the basket is not only nutritionally
adequate and cost-effective, but also socially and culturally appropriate.

We use the dataset of 5,000 food baskets from Maragno et al. [7], where palatability scores range
continuously in [0,1]. To frame this as a classification task, we discretize the scores into four
categories (bad, regular, good, and very good), using thresholds at 0.25, 0.5, and 0.75, respectively.
Consistent with Maragno et al. [7], we constrain the optimization problem to only include baskets
labeled good or very good. As no mechanistic oracle exists for palatability, we train a regression neural
network on all 5,000 samples to approximate this function. The model’s predictions are thresholded
to produce the categorical ground truth used in our experiments. For a consistent comparison across
MICL, W-MICL, and C-MICL, we benchmark all methods on a subset of 2,500 baskets data points.

We evaluate classification performance using ReLU NNs [9], the only model type readily supported by
OMLT for classification tasks [65]. Despite this, our method remains model-agnostic, as demonstrated
in the regression case study. For MICL and W-MICL (with ensemble sizes P = {5, 10}), we train on
all 2,500 data points. For our proposed C-MICL approach, which requires only one trained model,
we use 2,300 points for training and reserved 200 for conformal calibration. Full details on network
architecture and training hyperparameters are provided in Appendix D.2.

As shown in Figure 4, only our C-MICL method achieves the desired empirical coverage at o« = 10%,
in line with Theorem 4.1. This highlights the importance of formal statistical guarantees, especially
under data constraints and high-dimensional inputs. Figure 5 shows the relative optimality gaps across
methods, with differences averaging around 1%. However, none of the baselines yield implementable
solutions, as only our method satisfies the desired empirical coverage guarantee. Figure 6 shows that
C-MICL achieves solution times comparable to solving a single MICL model and is significantly
faster than the W-MICL heuristics. In both figures, lighter bars indicate methods that do not meet
the target empirical coverage. In summary, our method is the only one to guarantee ground-truth
feasibility, preserves objective performance, and scales efficiently in classification tasks.
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6 Discussion

Our work introduces C-MICL, a model-agnostic framework for incorporating learned constraints into
optimization problems with probabilistic feasibility guarantees. C-MICL supports both regression
and classification tasks, leverages conformal prediction to construct uncertainty sets, and encodes
these into MIP-compatible formulations. It avoids the scalability bottlenecks of ensemble-based
methods by requiring training at most two models, achieving substantial computational gains while
maintaining comparable high-quality solutions. Furthermore, since our proposed method separates
training from optimization, the size of the resulting optimization formulation is independent of the
amount of data used to train the models, unlike previous end-to-end approaches (e.g., Zhao et al. [48]).
Similarly, C-MICL can be integrated with existing methodologies aimed at improving the solution
quality of standard MICL and W-MICL formulations, such as the enlarged convex hull trust-region
approach proposed in Maragno et al. [7] or the trust-region-filter framework in Biegler [18]. C-MICL
extends naturally to learning objective functions, providing probabilistic guarantees on true objective
values, or to multiple learned constraints, representing a promising direction for future research on
conformal-enhanced optimization.

One limitation of our work, common to general conformal prediction methods, is that when the
underlying machine learning model performs poorly, the resulting conformal sets can become too
wide and uninformative, potentially rendering the C-MICL problem infeasible. Moreover, while we
believe the conditional independence assumption of feasibility and coverage is reasonable in our
setting, it could potentially fail in scenarios where the feasible region is biased towards data regions
where the conformal coverage does not hold. Nevertheless, an assumption of this nature is necessary
to address the inherent dependency between the feasible solutions of the C-MICL problem and Dy,
as this calibration set defines the feasible region, which would otherwise invalidate standard conformal
guarantees. This represents a theoretical compromise when integrating conformal prediction with
constrained optimization settings that enables us to provide statistical guarantees that were previously
unattainable in MICL approaches.

This work contributes to the integration of machine learning and mathematical optimization by pro-
viding a principled framework for embedding data-driven constraints into decision-making processes
with statistical guarantees. By ensuring marginal feasibility without access to the true constraint func-
tion, C-MICL advances the state of constraint learning, extends predict-then-optimize pipelines, and
offers a tractable approach to optimizing over uncertain, learned constraints in real-world applications.

10



References

[1] Adejuyigbe O Fajemisin, Donato Maragno, and Dick den Hertog. Optimization with constraint
learning: A framework and survey. European Journal of Operational Research, 314(1):1-14,
2024.

[2] Zhenan Fan, Bissan Ghaddar, Xinglu Wang, Linzi Xing, Yong Zhang, and Zirui Zhou. Artificial
intelligence for operations research: Revolutionizing the operations research process. arXiv
preprint arXiv:2401.03244, 2024.

[3] Francisco Javier Lopez-Flores, César Ramirez-Marquez, and José Maria Ponce-Ortega. Process
Systems Engineering Tools for Optimization of Trained Machine Learning Models: Comparative
and Perspective. Industrial & Engineering Chemistry Research, 63(32):13966—13979, 2024.

[4] Atharv Bhosekar and Marianthi Ierapetritou. Advances in surrogate based modeling, feasibility
analysis, and optimization: A review. Computers & Chemical Engineering, 108:250-267, 2018.

[5] Sun Hye Kim and Fani Boukouvala. Machine learning-based surrogate modeling for data-driven
optimization: a comparison of subset selection for regression techniques. Optimization Letters,
14(4):989-1010, 2020.

[6] Huayu Tian and Marianthi G lIerapetritou. A surrogate-based framework for feasibility-driven
optimization of expensive simulations. AIChE Journal, 70(5):e18364, 2024.

[7] Donato Maragno, Holly Wiberg, Dimitris Bertsimas, S Tlker Birbil, Dick den Hertog, and
Adejuyigbe O Fajemisin. Mixed-integer optimization with constraint learning. Operations
Research, 73(2):1011-1028, 2025.

[8] Matteo Fischetti and Jason Jo. Deep neural networks and mixed integer linear optimization.
Constraints, 23(3):296-309, 2018.

[9] Bjarne Grimstad and Henrik Andersson. ReLU networks as surrogate models in mixed-integer
linear programs. Computers & Chemical Engineering, 131:106580, 2019.

[10] Ross Anderson, Joey Huchette, Will Ma, Christian Tjandraatmadja, and Juan Pablo Vielma.
Strong mixed-integer programming formulations for trained neural networks. Mathematical
Programming, 183(1):3-39, 2020.

[11] Miten Mistry, Dimitrios Letsios, Gerhard Krennrich, Robert M Lee, and Ruth Misener. Mixed-
integer convex nonlinear optimization with gradient-boosted trees embedded. INFORMS
Journal on Computing, 33(3):1103-1119, 2021.

[12] Alexander Thebelt, Calvin Tsay, Robert Lee, Nathan Sudermann-Merx, David Walz, Behrang
Shafei, and Ruth Misener. Tree ensemble kernels for Bayesian optimization with known

constraints over mixed-feature spaces. Advances in Neural Information Processing Systems, 35:
37401-37415, 2022.

[13] Dimitris Bertsimas, Jack Dunn, and Aris Paschalidis. Regression and classification using
optimal decision trees. In 2017 IEEE MIT undergraduate research technology conference
(URTC), pages 1-4. IEEE, 2017.

[14] Alessio Bonfietti, Michele Lombardi, and Michela Milano. Embedding decision trees and
random forests in constraint programming. In Integration of Al and OR Techniques in Constraint
Programming: 12th International Conference, CPAIOR 2015, Barcelona, Spain, May 18-22,
2015, Proceedings 12, pages 74-90. Springer, 2015.

[15] Max Biggs, Rim Hariss, and Georgia Perakis. Optimizing objective functions determined from
random forests. Available at SSRN 2986630, 2017.

[16] Velibor V MiSi¢. Optimization of tree ensembles. Operations Research, 68(5):1605-1624,
2020.

11



[17] Bashar L Ammari, Emma S Johnson, Georgia Stinchfield, Tachun Kim, Michael Bynum,
William E Hart, Joshua Pulsipher, and Carl D Laird. Linear model decision trees as surrogates
in optimization of engineering applications. Computers & Chemical Engineering, 178:108347,
2023.

[18] Lorenz T Biegler. The trust region filter strategy: Survey of a rigorous approach for optimization
with surrogate models. Digital Chemical Engineering, 13:100197, 2024.

[19] Keliang Wang, Leonardo Lozano, Carlos Cardonha, and David Bergman. Optimizing over an
ensemble of trained neural networks. INFORMS Journal on Computing, 35(3):652—-674, 2023.

[20] Rudy R Bunel, Ilker Turkaslan, Philip Torr, Pushmeet Kohli, and Pawan K Mudigonda. A
unified view of piecewise linear neural network verification. Advances in neural information
processing systems, 31, 2018.

[21] Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with
mixed integer programming. arXiv preprint arXiv:1711.07356, 2017.

[22] Chih-Hong Cheng, Georg Niihrenberg, and Harald Ruess. Maximum resilience of artificial
neural networks. In Automated Technology for Verification and Analysis: 15th International
Symposium, ATVA 2017, Pune, India, October 3—6, 2017, Proceedings 15, pages 251-268.
Springer, 2017.

[23] Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-forward
ReLU neural networks. arXiv preprint arXiv:1706.07351, 2017.

[24] Elena Botoeva, Panagiotis Kouvaros, Jan Kronqvist, Alessio Lomuscio, and Ruth Misener.
Efficient verification of ReLU-based neural networks via dependency analysis. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 34, pages 3291-3299, 2020.

[25] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh.
Fast and complete: Enabling complete neural network verification with rapid and massively
parallel incomplete verifiers. arXiv preprint arXiv:2011.13824, 2020.

[26] Panagiotis Kouvaros and Alessio Lomuscio. Towards Scalable Complete Verification of ReLU
Neural Networks via Dependency-based Branching. 30th International Joint Conference on
Artificial Intelligence, pages 2643-2650, 2021.

[27] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
Beta-crown: Efficient bound propagation with per-neuron split constraints for neural network
robustness verification. Advances in neural information processing systems, 34:29909-29921,
2021.

[28] Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. Ead: elastic-net
attacks to deep neural networks via adversarial examples. Proceedings of the AAAI conference
on artificial intelligence, 32(1), 2018.

[29] Francesco Croce and Matthias Hein. Minimally distorted adversarial examples with a fast
adaptive boundary attack. In International conference on machine learning, pages 2196-2205.
PMLR, 2020.

[30] Calvin Tsay, Jan Krongvist, Alexander Thebelt, and Ruth Misener. Partition-based formula-
tions for mixed-integer optimization of trained ReLU neural networks. Advances in neural
information processing systems, 34:3068-3080, 2021.

[31] Buser Say, Ga Wu, Yu Qing Zhou, and Scott Sanner. Nonlinear Hybrid Planning with deep
net Itearned transition models and mixed-integer linear programming. In International Joint
Conference on Artificial Intelligence 2017, pages 750-756. Association for the Advancement of
Artificial Intelligence (AAAI), 2017.

[32] Moonkyung Ryu, Yinlam Chow, Ross Anderson, Christian Tjandraatmadja, and Craig Boutilier.
CAQL: Continuous action Q-learning. arXiv preprint arXiv:1909.12397, 2019.

12



[33] Arthur Delarue, Ross Anderson, and Christian Tjandraatmadja. Reinforcement learning with
combinatorial actions: An application to vehicle routing. Advances in Neural Information
Processing Systems, 33:609-620, 2020.

[34] Jochen L Cremer, Ioannis Konstantelos, Simon H Tindemans, and Goran Strbac. Data-driven
power system operation: Exploring the balance between cost and risk. IEEE Transactions on
Power Systems, 34(1):791-801, 2018.

[35] Spyros Chatzivasileiadis. From decision trees and neural networks to MILP: Power system
optimization considering dynamic stability constraints. In 2020 European control conference
(ECC), page 594. IEEE, 2020.

[36] Dimitris Bertsimas, Allison O’Hair, Stephen Relyea, and John Silberholz. An analytics approach
to designing combination chemotherapy regimens for cancer. Management Science, 62(5):
1511-1531, 2016.

[37] Santiago Cortes-Gomez, Mateo Dulce, Carlos Patino, and Bryan Wilder. Statistical inference
under constrained selection bias. In Proceedings of the 41st International Conference on
Machine Learning, pages 9361-9379, 2024.

[38] Oluwadare Badejo and Marianthi Ierapetritou. Integrating tactical planning, operational planning
and scheduling using data-driven feasibility analysis. Computers & Chemical Engineering, 161:
107759, 2022.

[39] Daniel Ovalle, Javal Vyas, Carl D Laird, and Ignacio E Grossmann. Integration of plant
scheduling feasibility with supply chain network under disruptions using machine learning
surrogates. In Computer aided chemical engineering, volume 53, pages 1489-1494. Elsevier,
2024.

[40] Georgia Stinchfield, Natali Khalife, Bashar L Ammari, Joshua C Morgan, Miguel Zamarripa,
and Carl D Laird. Mixed-integer linear programming formulation with embedded machine
learning surrogates for the design of chemical process families. Industrial & Engineering
Chemistry Research, 64(16):8299-8311, 2025.

[41] Ruth Misener and Lorenz Biegler. Formulating data-driven surrogate models for process
optimization. Computers & Chemical Engineering, 179:108411, 2023.

[42] John P Eason and Lorenz T Biegler. Reduced model trust region methods for embedding
complex simulations in optimization problems. In Computer Aided Chemical Engineering,
volume 37, pages 773-778. Elsevier, 2015.

[43] John P Eason and Lorenz T Biegler. Advanced trust region optimization strategies for glass
box/black box models. AIChE Journal, 64(11):3934-3943, 2018.

[44] Chirag Gupta, Arun K Kuchibhotla, and Aaditya Ramdas. Nested conformal prediction and
quantile out-of-bag ensemble methods. Pattern Recognition, 127:108496, 2022.

[45] Rina Foygel Barber, Emmanuel J. Candes, Aaditya Ramdas, and Ryan J. Tibshirani. Conformal
Prediction Beyond Exchangeability. The Annals of Statistics, 51(2):816-845, 2023.

[46] Ran Xie, Rina Barber, and Emmanuel Candes. Boosted conformal prediction intervals. Advances
in Neural Information Processing Systems, 37:71868-71899, 2024.

[47] Bo Lin, Erick Delage, and Timothy Chan. Conformal inverse optimization. Advances in Neural
Information Processing Systems, 37:63534—63564, 2024.

[48] Yiqi Zhao, Xinyi Yu, Jyotirmoy V Deshmukh, and Lars Lindemann. Conformal predictive
programming for chance constrained optimization. arXiv preprint arXiv:2402.07407, 2024.

[49] Chancellor Johnstone and Bruce Cox. Conformal uncertainty sets for robust optimization.
Conformal and Probabilistic Prediction and Applications, pages 72-90, 2021.

[50] Christopher Yeh, Nicolas Christianson, Alan Wu, Adam Wierman, and Yisong Yue. End-to-end
conformal calibration for optimization under uncertainty. arXiv preprint arXiv:2409.20534,
2024.

13



[51] Shayan Kiyani, George Pappas, Aaron Roth, and Hamed Hassani. Decision theoretic foundations
for conformal prediction: Optimal uncertainty quantification for risk-averse agents. arXiv
preprint arXiv:2502.02561, 2025.

[52] Yash P Patel, Sahana Rayan, and Ambuj Tewari. Conformal contextual robust optimization.
In International Conference on Artificial Intelligence and Statistics, pages 2485-2493. PMLR,
2024.

[53] Juan Pablo Vielma. Mixed integer linear programming formulation techniques. Siam Review,
57(1):3-57, 2015.

[54] Mustafa R Kilin¢ and Nikolaos V Sahinidis. Exploiting integrality in the global optimization
of mixed-integer nonlinear programming problems with BARON. Optimization Methods and
Software, 33(3):540-562, 2018.

[55] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Conformal prediction: Classification
and general case. In Algorithmic Learning in a Random World, pages 71-106. Springer, 2022.

[56] Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candes, and Aaditya Ramdas. Conformal
prediction under covariate shift. Advances in neural information processing systems, 32, 2019.

[57] Anastasios N Angelopoulos, Rina Foygel Barber, and Stephen Bates. Theoretical foundations
of conformal prediction. arXiv preprint arXiv:2411.11824, 2024.

[58] Yaniv Romano, Matteo Sesia, and Emmanuel Candes. Classification with valid and adaptive
coverage. Advances in neural information processing systems, 33:3581-3591, 2020.

[59] Matteo Sesia and Yaniv Romano. Conformal prediction using conditional histograms. Advances
in Neural Information Processing Systems, 34:6304-6315, 2021.

[60] Vladimir Vovk, David Lindsay, Ilia Nouretdinov, and Alex Gammerman. Mondrian confidence
machine. Technical Report, 2003.

[61] Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alex Gammerman. Inductive
confidence machines for regression. In Machine learning: ECML 2002: 13th European
conference on machine learning Helsinki, Finland, August 19-23, 2002 proceedings 13, pages
345-356. Springer, 2002.

[62] Jing Lei, Max G’Sell, Alessandro Rinaldo, Ryan J Tibshirani, and Larry Wasserman.
Distribution-free predictive inference for regression. Journal of the American Statistical Associ-
ation, 113(523):1094-1111, 2018.

[63] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024. URL https://www.
gurobi.com.

[64] Michael L Bynum, Gabriel A Hackebeil, William E Hart, Carl D Laird, Bethany L Nicholson,
John D Siirola, Jean-Paul Watson, David L. Woodruff, et al. Pyomo-optimization modeling in
python, volume 67. Springer, 2021.

[65] Francesco Ceccon, Jordan Jalving, Joshua Haddad, Alexander Thebelt, Calvin Tsay, Carl D
Laird, and Ruth Misener. OMLT: Optimization & machine learning toolkit. Journal of Machine
Learning Research, 23(349):1-8, 2022.

[66] Juan C Carrasco and Fernando V Lima. Nonlinear operability of a membrane reactor for direct
methane aromatization. IFAC-PapersOnLine, 48(8):728-733, 2015.

[67] Juan C Carrasco and Fernando V Lima. Novel operability-based approach for process design
and intensification: Application to a membrane reactor for direct methane aromatization. AIChE
Journal, 63(3):975-983, 2017.

[68] Koen Peters, Sérgio Silva, Rui Gongalves, Mirjana Kavelj, Hein Fleuren, Dick Den Hertog,

Ozlem Ergun, and Mallory Freeman. The nutritious supply chain: optimizing humanitarian
food assistance. INFORMS Journal on Optimization, 3(2):200-226, 2021.

14


https://www.gurobi.com
https://www.gurobi.com

[69] Joey Huchette, Gonzalo Muiioz, Thiago Serra, and Calvin Tsay. When deep learning meets
polyhedral theory: A survey. arXiv preprint arXiv:2305.00241, 2023.

[70] Francisco Trespalacios and Ignacio E Grossmann. Improved Big-M reformulation for general-
ized disjunctive programs. Computers & Chemical Engineering, 76:98—103, 2015.

[71] Victor Alves, San Dinh, John R Kitchin, Vitor Gazzaneo, Juan C Carrasco, and Fernando V
Lima. Opyrability: A Python package for process operability analysis. Journal of Open Source
Software, 9(94):5966, 2024.

15



NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s claims, with the contri-
butions explicitly listed as bullet points in the introduction. These claims are well-supported
by both theoretical developments and experimental results, and their scope is appropriately
framed to reflect the work’s actual contributions.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We explicitly discuss the limitations of our work in the Discussion section and
throughout the main body of the article.
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* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
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used reliably to provide closed captions for online lectures because it fails to handle
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* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
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tant role in developing norms that preserve the integrity of the community. Reviewers
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: All theorems and formulas are numbered and cross-referenced. The main
theoretical result and its assumptions are clearly stated in the core text, while the complete
proof and justification of the assumptions are provided in the appendix.
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* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper clearly describes all steps needed to reproduce the main experimental
results, with the proposed optimization formulation fully detailed in the main text. To further
support reproducibility, we include an appendix that illustrates how to implement the
formulation constraint by constraint, although the main description is already sufficient.
All datasets used are either publicly available and properly referenced or included with the
supplementary code, which is provided to facilitate replication.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code that demonstrates how to train the models, embed them into
optimization formulations, and solve the resulting problems. Running the code requires a
Gurobi license, which is freely available for academic use. The dataset for the basket case
study is publicly available and properly referenced, while the dataset for the reactor case
study is included in the supplementary material. Clear instructions are provided to ensure
reproducibility of the main experimental results.
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* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The main text specifies the data splits, key hyperparameters, and optimization
solver configurations necessary to understand the results. Additional implementation details,
including cross-validation setup, are provided in an appendix to ensure completeness without
detracting from the clarity of the core paper.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
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Answer: [Yes]
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solving 100 optimization problems. The method for computing the intervals is explained,
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* The factors of variability that the error bars are capturing should be clearly stated (for
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e It is OK to report 1-sigma error bars, but one should state it. The authors should
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* For asymmetric distributions, the authors should be careful not to show in tables or
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A Machine Learning Models as MIPs

In the following we provide an overview on how to formulate off-the-shelf pre-trained machine
learning models as mixed-integer programs (MIP) into constraint learning formulations.

A.1 ReLU Neural Networks

We consider feed-forward neural networks composed of fully connected layers with ReLU activations,
which can be exactly represented using MIP [9, 10]. Let x denote the input variables to the network
and y its output variables. All other internal quantities (preactivations, activations, and indicator
variables) are distinct auxiliary decision variables introduced solely for encoding the network structure.
Therefore, each neuron computes a transformation of the form:

a = max (0, w's+ b) , @)

where s are the activations from the previous layer, and (w, b) are fixed, trained parameters. The
ReLU nonlinearity is encoded via the so called big-M formulation:

a>w's+b
a<w's+b—(1-0)L
a < o6U

0 €{0,1}

(®)

where a is the activation output, J is a binary indicator for whether the neuron is active, and L, U are
tight lower and upper bounds on the pre-activation w " s + b. The full network is encoded layer by
layer starting from the inputs x, recursively defining internal pre-activations and activations, until
reaching the output layer y.

For further details and alternatives on MIP reformulations of ReLU neural networks, we refer readers
to a recent review by Huchette et al. [69]. While multiple equivalent encodings exist, they yield
the same global solution [53], differing only in computational efficiency, and thus do not affect our
discussion on ground-truth feasibility.

A.2 Tree Ensembles and Linear-Model Decision Trees

We encode trained tree ensembles (including random forests and gradient-boosted trees) as well as
linear-model decision trees using a unified MIP formulation based on leaf selection [11, 16, 17]. Let
T denote the set of decision trees in the ensemble, and £, the set of leaf nodes in tree t € 7. Each
tree partitions the input space into disjoint regions (leaves), each associated with a constant prediction
value. We introduce binary variables r; , € {0, 1} indicating whether leaf ¢ € £, of tree ¢ is selected.
A valid configuration activates exactly one leaf per tree:

d re=1 VteT ©)

leLy

Each internal node in a tree performs a threshold split of the form x; < v; ;, where v; ; is a threshold
value for input feature ;. We introduce binary variables w; ; € {0, 1} to model these comparisons,
where w; ; = 1 if, and only if, the condition is satisfied. Monotonicity constraints w; ; < w; j+1
ensure consistency across thresholds, reflecting the ordered structure of decision splits.

Each leaf ¢ in tree ¢ is reachable only if all the splitting conditions on the path to that leaf are satisfied.
For each split node s in tree ¢, let i(s) be the split variable and j(s) the corresponding threshold index.
Let Left , ; and Right ; s denote the sets of leaf nodes in the left and right subtrees of s. We enforce:

Z T < Wigs),j(s)s Z ree <1 —wis sy ViteT,seSplits(t)  (10)
LeLefty s LeRight, .

The final prediction is computed as a weighted sum of the selected leaves: the weights are stage-
dependent for gradient-boosted trees [11], uniform across trees for random forests [16], or equal to a
linear function of the input features within the selected leaf for linear-model decision trees [17].
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B Proof of Main Results

B.1 Mondrian Conformal Prediction

Given calibration data {(X1,Y1),...,(Xn,Yn)}, Mondrian conformal prediction is a general
framework that extends full conformal prediction by enforcing conditional coverage guarantees
across a pre-defined set of finite groups defined in terms of both the features variables X and the
outcome variable Y [57, 60]. Formally, for a group-indicator function g(X,Y) € {1,...,K},
Mondrian conformal prediction construct conformal sets Co, (X 1) such that

P(Yoy1 € Ca(Xn41) | 9(XNy1, Y1) = k) > 1 —a,
for all groups k € [K] = {1,... K}.
The core insight of Mondrian conformal prediction lies in computing different conformal quantiles
for each group k € [K]. Then, for a test point X,, 1, we generate hypothetical points (Xn11,y)

for each possible value of the outcome variable y, and compare the conformal score s(X 11, ¥) to

the conformal scores {s(X;, Y;)}iez,, X 41 forall calibration data points in the same group as

(XN+1,y). That is, the group-specific comparison is performed for i € Zy(x ., .) = {(i € [N] :
9(X5,Y;) = g(Xn41,9)}
This approach yields the following Mondrian conformal sets

Co(Xnv1) ={y: s(Xnt1,9) <G}, (11)

where ¢7_, is the group-specific quantile

@t = Quantile ({s(X;, Y }iez, v, i (1= @)1+ 1/ Zyxasnm]) -
The conditional coverage guarantee is formalized in the following theorem:

Theorem B.1 (Theorem 4.11 in [57]). Assume that (X1,Y1),...,(XNn+1, YN41) are exchangeable
random variables and s is a symmetric score function. Then, the Mondrian conformal set Co,( X n+1)
from eq. (11) satisfies the conditional coverage guarantee

P(Yni1 € Ca(Xn11) | 9(Xn41, Yvg1) = k) 21—« (12)
Sorall groups k € {1,... K} with P(g(Xn+1,YN+1) = k) > 0, for any user-specified coverage
level a € (0,1).

Thus, Lemma 3.1 directly applies Theorem B.1 using the group identifier function g(z,y) =
1 (y € V), which separates the data according to the ground-truth feasibility condition. Note that the
condition P(g(Xn+1,Yn+1) = k) > 0 from Theorem B.1 assumes that both feasible and infeasible
points can be sampled from the underlying distribution Pxy, which is given by construction of the
constraint learning optimization problem.

B.2 Proof of Theorem 4.1

Proof. We first show that Lemma 3.1 and Assumption 4.1 imply that we have appropriate coverage
for the feasible points of the C-MICL problem Fy = {(z,2) € X : g(z,2) < 0,Cq(x) C V}.

By the law of total probability,
P(h(z) € Ca(2) | (2,2) € Fn) =P(h(z) € Ca ( )| (z,2) € Fn, h(z) € V)P(h(z) € V| (2,2) € Fn)
+ P(h(z ) Ca(x) | (z,2) € Fn, h(z) ¢ V)P(h(z) ¢ V| (2,2) € FN)
=P(h(z) ( ) [ W) € V)P(h(z) € V| (2, 2) € Fn)

+P(h(x) € Calx) [ h(x) ¢ V)P(h(z) ¢ V| (z,2) € FN)
(1= a)P(h(x) € V| (2,2) € FN) + (1 = a)P(h(z) ¢ V| (z,2) € Fn)
(1= a)[P(h(z) € V| (z,2) € Fn) + P(h(z) ¢ V| (2,2) € Fn)]
(1 - Oé),
where the second equality follows from the conditional independence assumption 4.

P(h(z) € Co() | (x,2) € Fn,h(x) € V) =P(h(x) € Colz) | h(z) € V),

P(h(z) € Ca(@) | (2,2) € Fi, h(z) ¢ V) = P(h(z) € Ca(z) | () £ V).

S
S
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Moreover, the first inequality follows from the ground-truth feasibility conformal coverage guarantee
in Lemma 3.1 at level «

min (P(h(z) € Co(x) | h(z) € V), P(h(x) € Colz) | h(z) ¢ V)) > 1 — «,
where the probabilities are taken with respect to both the calibration data D, and the test point.

The previous result says that when a solution (2’, z’) € Fy is feasible, its true function value h(z’)
falls within C,,(z") with probability at least 1—c«. Since C,, () is a subset of ) for feasible solutions
to the C-MICL problem, whenever h(x’) is in C, ('), it must also be in ). Therefore,

P(h(z') € V| (2, 2') € Fn) > P(h(z') € Ca(a’) | (z', ') € Fy) > 1-a,

which proves the ground-truth feasibility guarantee.

B.3 Discussion on the Conditional Independence of Feasibility and Coverage Assumption

Assumption 4.1 states that, conditional on ground-truth feasibility (h(z) € Y or h(z) ¢ )), the event
of C-MICL feasibility ((z,z) € Fy = {(z,2) € X : g(x,2) < 0,Cq(x) C V}) is independent of
whether the conformal set contains the true function value (h(z) € C4(x)). To motivate Assumption
4.1 and clarify when it is plausible, we first emphasize that the ground-truth feasibility (GTF)
conditional coverage guarantee from Lemma 3.1 can be achieved in a fully data-driven way (e.g.,
using Mondrian conformal prediction or other label-conditional conformal methods):

P(h(z) € Co(x) | h(z) € V) > 1 -«
P(h(z) € Ca(z) | h(z) V) > 1 -0

However, in C-MICL we aim to guarantee coverage over the feasible region of the optimization
problem F = {(z,2) € X : g(x,2) <0,Co(z) C V}, ie.,

P(h(z) € Co(z) | (z,2) € FN) > 11—«

If the predictive model ?L(x) were perfect (i.e., iAz(x) = h(zx) ), then the regions Fy and the ground-
truth feasible region F would coincide, and the coverage guarantee would transfer directly. However,

since we are interested in the more realistic case where h(z) is imperfect, F and F differ in a
data-dependent way. In this case, since the feasible region F is implicitly shaped by the calibration
set (via C, (1)), there is a natural dependency between the feasible solutions of the C-MICL problem
and the calibration data, which invalidates standard conformal guarantees relying on exchangeable
calibration and test data. Assumption 4.1 precisely seeks to decouple this dependency: it allows us to
approximate conformal coverage within F by assuming that feasibility does not systematically bias
conformal validity, once conditioned on ground-truth feasibility.

To build intuition, consider partitioning F into two disjoint subsets: Fny N F and Fy N F¢. Then,
Assumption 4.1 implies that Fy N F (respectively Fn N F€) is not systematically biased towards a
region of F (F¢) that is miscalibrated. Mathematically,

P (h(z) € Ca(2) | (2,2) EFNWT) =P (h(z) € Calx) | (2,2) € Fn, h(z) €Y)
P(h(z) € Ca(2) | h(z) € V)

P (h(z) € Ca(z) | (z,2) € FN NF°) = IP’(h(x) Ca(2) | (x,2) € Fn, h(z) ¢ V)
~ P(h(z) € Ca(z) | M(z) £ )

These enable us to translate the conformal coverage guarantees from the ground-truth feasible region
F to the feasible set Fx used in the optimization. Assumption 4.1 is therefore reasonable when the
calibration data adequately covers the parts of the input space that intersect the feasible region Fy,
both within the ground-truth feasible region F and its complement F°. In this sense, it aligns with
standard generalization assumptions that require the training and calibration data to be representative
of the regions where predictions are deployed. In our experimental settings, we observe good
empirical alignment between target and achieved coverage (Appendix E), suggesting that Assumption
4.1 holds reasonably well in practice in realistic data scenarios.
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Alternatively, Assumption 4.1 can be approximated using more granular conditional conformal
methods, by partitioning the optimization region into finer subregions and enforcing local coverage
guarantees within each, which can then be translated to the feasible set /. However, the assumption
may break down if the feasible region F is heavily concentrated in areas where the calibration set is
sparse or systematically miscalibrated.

C Conformal Set MIP Reformulations

The reformulation of the conformal set in the regression setting is straightforward, as the conformal
prediction interval is already algebraic in nature and can be directly expressed as:

Calt) €V = [(@) £ @1 - ()] < [1:7] (13)
| (14)

Here, we include only the two non-dominated constraints i.e., those constraints not already implied
by the others, to avoid redundancy. Note that these are linear constraints in terms of the estimated
h(x) and @(x), which are assumed to be MIP-representable, and a constant ;. computed offline
during the conformalization procedure.

The classification setting introduces additional modeling complexity, as the inclusion of classes in the
prediction set must be encoded using mixed-integer constraints. Specifically, the condition

{—h(x)* <qi_a} Vkek, (15)

represents an indicator that is activated (i.e., equals one) if and only if class k is included in the
prediction set. To enforce correct classification behavior, we require that at least one desired class
k € K% is predicted (i.e., its indicator is activated), and no undesired class k € K" is allowed in
the prediction set. To model this, we introduce a binary decision variable for each class k € K:

| 1 ifclass k is included in the prediction set.
We = { 0 otherwise. Vkek (16)
Using these variables, the desired classification logic can be encoded via the following mixed-integer
constraints:

Calz) CY = —h(@)*>Gi_a Vkek™ (17)
—h(@) — G <M1 —w) VYkeK
h(z)* + G1_o + € < Muy, Vkek
= Z we > 1 (18)
kerCdes
wy = 0 vk e

Here, € is a small numerical tolerance (e.g., 10~°) to ensure strict inequality, and M is a large positive
constant used in the big-M reformulation. A practical choice for M is the maximum absolute value
of the predicted logits observed in the calibration dataset, scaled by a safety factor (e.g., 4):

M = 4-max ‘ﬁ(mi) (19)

For detailed discussion on selecting valid big-M values and their impact on computational perfor-
mance, we refer the reader to Trespalacios and Grossmann [70].

Note that the conformal prediction sets C,, () used in our formulation of C-MICL have predictable,
well-structured forms that are always MIP-representable, making the containment constraint C,, (x) C
Y tractable regardless of the underlying prediction model.
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D Implementation Details

All computations were performed on a Linux machine running Ubuntu, equipped with eight Intel®,
Xeon®, Gold 6234 CPUs (3.30 GHz) and 1 TB of RAM, utilizing a total of eight hardware threads.

D.1 Regression

This case study focuses on the optimal design and operation of a membrane reactor system used
for the direct aromatization of methane. This integrated unit enables the conversion of methane
into hydrogen and benzene, achieving simultaneous chemical reaction and product separation. By
selectively removing hydrogen through a membrane, the reactor leverages Le Chatelier’s principle to
drive the equilibrium forward, resulting in higher methane conversion rates [66].

The optimization problem involves five key decision variables: the inlet volumetric flow rate of
methane (vg), the inlet flow rate of sweep gas (vye), the operating temperature (7°), the tube diameter
(dy), and the reactor length (L). These variables were sampled uniformly within physically reasonable
bounds, as shown below:

e vy ~ U(450, 1500) cm’/h
* Vhe ~ U(450, 1500) cm’/h
dy ~U(0.5, 2.0) cm

e L ~U(10, 100) cm

o« T ~U(997.18, 1348.12) K

The resulting samples were used as initial conditions for solving the system of ordinary differential
equations governing the reactor, enabling the computation of the outlet benzene flow (Fc,n,). The
numerical integration was performed using code available in the opyrability repository [71]. To
simulate measurement uncertainty, Gaussian noise was added to the computed benzene flows.

Table | shows an illustrative subset of the 1,000 data-points generated:

Table 1: Sampled decision variables and simulated benzene outlet flow.
vo (em*/h)  wge (cm3/h) T (K)  dy(em) L (cm) Fo,p, (mol/h)

1157.75 845.25 1272.93 0.57 30.67 37.45
773.89 1319.69 998.56 0.75 88.10 42.57
1484.77 476.68 1201.21 1.64 77.38 40.70
817.68 536.65 1123.28 0.72 86.07 28.26
1162.73 1262.03 1256.59 1.95 92.29 36.58

All hyperparameters used across the single-model baselines, wrapped approaches, and our proposed
methods were kept consistent to ensure a fair comparison. For the the Linear-Model Decision Tree,
we set the maximum depth to five, the minimum number of samples required to split an internal node
to ten, and the number of bins used for discretization to forty. For the Random Forest, we used fifteen
estimators, a maximum depth of five, a minimum samples split of three, and considered sixty percent
of the features when looking for the best split. The Gradient Boosting Tree model was configured
with fifteen estimators, a learning rate of 0.2, a maximum depth of five, a minimum of five samples
per split, and sixty percent of the features considered at each split. Lastly, the ReL.U Neural Network
was set up with two hidden layers of 32 units each, an L2 regularization strength of 0.01, and trained
for 2000 epochs using Adam optimizer.

All models were cross-validated using a 5-fold split of their respective datasets. For the single base
models, the complete 1,000 point dataset was used for training and evaluation. In the case of the
ensemble methods, bootstrapping the 1,000 data-point dataset was employed to generate the required
500 data-point (half sized) subsets for training following [7]. For our conformal method, a split of the
training data (800 data points) was used, ensuring that the calibration data was kept separate (200
data points). The Table 2 presents the average Mean Squared Error (MSE) across all folds for each of
the methods, considering that the variance of the output for the 1,000 data-points is 1.2871.
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Table 2: Average MSE across folds for all Methods for reactor model.

Predictive Method
Model Approach MSE
RandomForest MICL 0.1748
ReLU NN MICL 0.0597
GradientBoosting MICL 0.1192
LinearModelDT MICL 0.0634
RandomForest W-MICL(5) 0.1712
ReLU NN W-MICL(5) 0.070
GradientBoosting  W-MICL(5) 0.1298
LinearModelDT W-MICL(5) 0.0594
RandomForest W-MICL(10) 0.1711
ReLU NN W-MICL(10) 0.0699
GradientBoosting W-MICL(10) 0.1239
LinearModelDT W-MICL(10) 0.0568
RandomForest W-MICL(25) 0.1696
ReLU NN W-MICL(25) 0.0689
GradientBoosting W-MICL(25) 0.1217
LinearModelDT W-MICL(25) 0.0568
RandomForest W-MICL(50) 0.1665
ReLU NN W-MICL(50) 0.0685
GradientBoosting W-MICL(50) 0.1194
LinearModelDT ~ W-MICL(50) 0.0559
RandomForest C-MICL 0.1847
ReLU NN C-MICL 0.0841
GradientBoosting C-MICL 0.1402
LinearModelDT C-MICL 0.0696

For all uncertainty models @(x), we employed ReLU-based Neural Networks with a shared architec-
ture and regularization setup to maintain consistency across approaches. Specifically, each model
used two hidden layers with 32 units each and an Ly regularization (weight decay) coefficient of
0.001. The only hyperparameter that varied during cross-validation was the number of training
epochs, which does not influence the MIP optimization outcomes but can affect the quality of the
uncertainty estimates. The optimal number of training epochs identified through cross-validation
were as follows: 1000 epochs for the model paired with Gradient Boosting, 3000 epochs for the
one used with the ReLU Neural Network (using Adam optimizer), and 2000 epochs for both the
Random Forest and Linear-Model Decision Tree variants. Table 3 displays the average MSE for the
uncertainty model of each base predictor across all folds.

Table 3: Uncertainty average MSE for each base model.

Base Model i(x) MSE
GradientBoosting 0.0142
ReLU NN 0.0247
RandomForest 0.0408
LinearModelDT 0.0225

Tables 4, 5, and 6 present the sets, parameters and decision variables of the problem, respectively.

Table 4: Sets used in the reactor optimization model.

Symbol Description

T Set of decision variables
(e.g.,Z ={v0, v_He, T, dt, L})
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Table 5: Parameters used in the reactor optimization model.

Symbol  Description

Ci Operational or design cost coefficient associated with variable : € 7

Table 6: Decision variables in the reactor design model.

Symbol  Description

T Value of design variable i € Z, where Z = {v0, v_He, T, dt, L}
Y Predicted outlet flow of CgHg from the surrogate model
Formulation.
min CiT; (D.1a)
{zitiez,y ;I
st 10 < 2 <150 (D.1b)
Tt
075 < 0 <30 (D.1c)
Tv_He
20 < £ < 190 (D.1d)
TL
Ty < 1.1- IT (Dle)
h(z) =y (D.1f)
y =50 (D.1g)
;>0 Viel (D.1h)

Explanation of Constraints.

* (D.1a): Minimize the operating cost as a linear function of the decision variables.

* (D.1b): Enforce physical bounds on the tube length-to-diameter ratio.

* (D.1c): Maintain a suitable gas feed ratio between CH, and He.

e (D.1d): Control the residence time via the CH4 flow and reactor length.

e (D.1e): Limits methane flow rate based on temperature to ensure safe and stable operation.

* (D.1f): Enforces that the surrogate model output y, predicting C¢Hg flow, is computed from
the design and operation variables x.

* (D.1g): Requires that the predicted CsHg outlet flow (i.e., product quality) meets or exceeds
the target value of 50.

* (D.1h): Enforces nonnegativity for all design variables.

D.2 Classification

We now examine the food basket optimization problem introduced earlier and grounded in the work
of Peters et al. [68]. Our analysis is based on the model developed by Fajemisin et al. [1], which aims
to minimize the cost of assembling a basket consisting of 25 different commodities while satisfying
nutritional requirements across 12 key nutrients. An additional constraint is placed on the palatability
of the basket, which reflects how acceptable or appealing the food is to the target population. In
line with the case study by Maragno et al. [7], we require a minimum palatability score of ¢ = 0.5
to ensure that the resulting food baskets are not only affordable and nutritionally adequate but also
culturally and socially acceptable. The dataset used in this analysis is publicly available at and
published by Maragno et al. [7] here.

The palatability scores initially range continuously from O to 1. To transform this into a classification
problem, we discretize these scores into four distinct categories: bad, regular, good, and very good.
This discretization is achieved by setting thresholds at 0.25, 0.5, and 0.75. Consequently, the problem
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becomes a multi-class classification task, where each food basket is assigned one of these categorical
labels based on its palatability score. We restrict the optimization problem to include only food
baskets that fall within the good and very good categories. This approach is inspired by the work of
Maragno et al. [7], where a similar threshold of ¢ = 0.5 was used, but applied in a categorical context.
Table 7 displays a sample of the dataset available.

Table 7: Sample of food basket dataset with commodity quantities and palatability score. Full dataset
available here.

Beans  Bulgur Cheese Fish Meat CSB Dates DSM e Palatability Class
0.7226 0 0 0 0 0 0 0.5987 ... 0.199 Bad
0.7860 0 0 0 0 0.0419 0 03705 ... 0.8049  Very Good
0.4856 0 0 0 0 0 0 0.2696 ... 0.6517 Good

0 0 0.5734 0 0 0 0 0.0025 ... 0.3220  Regular

In this case, we exclusively trained ReLU-based neural networks across all methods (single-model
baseline, wrapped approach, and our proposed method) ensuring that all hyperparameters remained
identical for a fair comparison. For the predictors, the network architecture consisted of three hidden
layers with 64 units each, trained for 500 epochs with a weight decay (L2 regularization) of 0.01.
Additionally, we trained an oracle model using all available data. This oracle network was configured
with five hidden layers of 256 units each, trained for 1000 epochs, also with a weight decay of 0.01.

Table 8 displays the average accuracy across validation folds on the data available for each approach.

Table 8: Average accuracy across folds for all methods for the basket model.

Predictive method

Model Approach Accuracy [%]
ReLUNN MICL 84.32
ReLUNN W-MICL(5) 78.24
ReLUNN W-MICL(10) 76.88
ReLUNN C-MICL 83.30

Tables 9, 10, and 11 present the sets, parameters and decision variables of the problem, respectively.

Table 9: Sets used in the basket model.
Symbol  Description

M Set of commodities (e.g., M = {rice, beans, salt, sugar, ...})
L Set of nutrients (e.g., £L = {protein, iron, calories, ...})

JCdes Set of desired categories (e.g., K% = {good, very good})

jcund Set of undesired categories (e.g., K" = {bad, regular})
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Table 10: Parameters used in the basket model.

Symbol  Description
Nutreq, Nutritional requirement for nutrient [ € £ (grams/person/day)
Nutval,,,; Nutrient content of commodity m for nutrient [ (grams per gram)
Pm Procurement cost of commodity m (in $/metric ton)
M Large positive constant for big-M reformulation.
Table 11: Decision variables in the basket model.

Symbol Description

Tm Quantity of commodity m € M in the food basket (grams)

Y Palatability level of the food basket

W Binary indicator for predicting desired category k € K% ({0,1})

Formulation.
min Z PmTm

{mm}mEMv Yy

S.t.

meM

Z Nutval,,; - z,, > Nutreq,, VieLl
meM
Tgalt =
Tsugar = 20

U — Y < M(1 —wy) VEke ke ke

T >0 VmeM

Explanation of Constraints.

* (D.2a): Objective function minimizing total procurement cost of the food basket.

* (D.2b): Nutritional constraints to ensure daily nutrient requirements are met.

* (D.2¢)—(D.2d): Fixed amounts of salt and sugar imposed (e.g., due to guidelines).

(D.2a)

(D.2b)

(D.2¢)
(D.2d)

(D.2¢)
(D.2f)
(D.2g)

(D.2h)

* (D.2e): Palatability is computed as a function iL(:E) of the selected commodity quantities.

* (D.2f): Big-M constraint that activates an indicator if the logit of a desired class k € K4
is higher than the logit of all undesired classes k' € K", representing desired prediction.
M is calculated using the largest value in magnitude observed in calibration data times
a enlarging safety factor (e.g., 4) as M = 4 - max; |h (;)|. For more information on
how to calculate valid M values and their impacts in optimization we refer the readers to
Trespalacios and Grossmann [70].

* (D.2g): Enforce at least one desired class to have larger logit that both undesired classes.

* (D.2h): Ensures quantity nonnegativity.

E Complementary Results

To quantify uncertainty and support the statistical reliability of our results, we report 95% confidence
intervals (Cls) for all key metrics: empirical feasibility rates, optimization times, relative differences in
objective value, and true coverage. All uncertainty comes from 100 problem instances of optimization

problems.
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For feasibility rates and true coverage plots intervals are computed as the proportion of feasible
solutions over meaning that we model each as a Bernoulli random variable and apply the standard
error formula for proportions:

SEM = M’
n

where p is the sample mean and n is the number of problem instances. The corresponding confidence
interval is calculated using the Student’s t-distribution:

Closy, = D £ tn—1,0.975 - SEM

For optimization times and relative differences in objective values, we compute the sample mean,
standard deviation, and standard error of the mean (SEM) for each method across instances. The 95%
confidence intervals are then given by:

_ s
Clgsy = T £tn—1,0.975 - 7n

where s is the sample standard deviation and n = 100 is the number of observations. This method
assumes approximate normality of the sample means, which is reasonable due to the Central Limit
Theorem given the sample size.

All error bars shown in plots correspond to these 95% confidence intervals. The factors of variability
captured are due to the random generation of optimization instances and the resulting performance
metrics across different methods. These intervals are reported directly in the results section and
supporting figures to substantiate claims about statistical significance and performance differences.

E.1 Regression

The following results summarize performance on the reactor case study at « = 10%, evaluated
after solving 100 optimization instances for each method. More specifically, Figure 7 reports the
average computational time required to obtain an optimal solution for each method at o = 10%,
while Figure 8 presents the relative difference in optimal objective value between baseline methods
and our proposed C-MICL at the same confidence level. Lighter bars in both figures denote methods
that failed to achieve the target empirical feasibility rate, as established in Figure 1. Additionally,
Figure 9 shows the distribution of true constraint values h(x) for each methods for o = 10%. Finally,
Figure 10 reports the empirical coverage over 1,000 out-of-sample data points, stratified by deciles
of the true output variable y. For each decile, we report the proportion of instances where the true
value lies within the predicted interval, demonstrating strong coverage across the output space for all
baseline models. Notably, our ReLU NN-based conformal sets empirically satisfy the ground-truth
feasibility coverage guarantee from Lemma 3.1, achieving coverage rates of 89.31% and 95.38% on
ground-truth infeasible and feasible samples, respectively.

We report here the full results for the reactor case study at & = 5%, based on evaluations conducted
over 100 solved optimization instances per method. Specifically, Figure 11 reports the empirical
ground-truth feasibility rate achieved by each MICL approach. Figure 12 shows the average computa-
tional time needed to solve each method at o« = 5%, and Figure 13 displays the relative difference in
optimal objective value between baseline methods and our C-MICL approach. Furthermore, Figure 14
presents the distribution of true constraint values h(z) for each method at « = 5%. Finally, Figure 15
reports the empirical coverage of the models over 1,000 out-of-sample data points, grouped by deciles
of the true output y. Coverage is measured as the proportion of points for which the true value of y
falls within the predicted interval at a target level of a = 5%. Our ReLU NN-based conformal sets
demonstrate empirical compliance with the ground-truth feasibility coverage guarantee established in
Lemma 3.1, yielding coverage rates of 96.92% for ground-truth feasible instances and 96.09% for
ground-truth infeasible ones.
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Figure 7: Average computational time to obtain an optimal solution for all methods at o = 10%. Our
proposed C-MICL approach is comparable to single-model baselines while being orders of magnitude
faster than ensemble heuristics using the same underlying base model. Lighter bars indicate methods
that failed to achieve the target empirical feasibility rate.
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Figure 8: Relative difference in optimal objective value of baseline methods compared to our proposed
C-MICL at @ = 10%. Our approach exhibits a small difference of around 8% compared to the
method that achieved empirical coverage, indicating that C-MICL attains comparable solution quality
relative to valid approaches. Lighter bars marked with an “x” denote methods that failed to meet the
target empirical feasibility rate.
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Figure 9: Distribution of true constraint values h(z) for each method for & = 10% The dotted line at
0.5 marks the lower bound imposed in the oracle constraint values below this line correspond to true
infeasibilities. C-MICL not only yields the fewest violations but also achieves the smallest violation
magnitudes when they occur.
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Figure 10: Empirical out-of-sample coverage across predictive models at o« = 10%, evaluated on
1,000 test points and stratified by deciles of the true output y. Our conformal sets achieve strong target
coverage. Crucially, the ground-truth feasibility threshold (y > 50%) lies within the 9th and 10th
deciles, where all methods attain valid empirical coverage, empirically supporting the assumptions of
Theorem 4.1.
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Figure 11: Empirical ground-truth feasibility rate of optimal solutions across MICL methods on
100 optimization problem instances for o = 5%. Our Conformal MICL approach (rightmost bars)
consistently meets the target feasibility rate of > 95% regardless of the underlying base model.
In contrast, existing methods show inconsistent performance and often fall short of the theoretical
guarantee.
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Figure 12: Average computational time to solve 100 optimization instances at & = 5%. Our proposed
C-MICL method matches the speed of single-model baselines and is orders of magnitude faster than
ensemble-based heuristics using the same base model. Lighter bars denote methods that did not reach
the target empirical feasibility threshold.
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Figure 13: Relative difference in optimal objective value between baseline methods and our proposed
C-MICL at o = 5% across 100 optimization problems. Our approach shows a modest 8% difference
compared to the method that achieved empirical coverage, demonstrating that C-MICL provides
solution quality on par with other valid approaches. Lighter bars with an “x” indicate methods that did
not meet the empirical feasibility target. Five outliers were removed for the W-MICL(50) Gradient
Boosted Tree model, though the comparison remains statistically insignificant with or without them.
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Figure 14: Violin plots of the true constraint values h(z) for each method at o = 5%. The dotted line
at 0.5 denotes the lower bound enforced in the oracle constraint where values falling below this line
indicate true infeasibilities. At this stricter confidence level, C-MICL maintains the highest reliability,
producing the fewest and smallest violations across all methods.
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Figure 15: Empirical out-of-sample coverage at & = 5% for all predictive models, evaluated on 1,000
test points and stratified by deciles of the true output y. Our conformal prediction sets achieve the
desired coverage level across deciles. Notably, the ground-truth feasibility threshold (y > 50) lies in
the 9th and 10th deciles, where all methods achieve valid empirical coverage, providing empirical
support for the assumptions in Theorem 4.1.
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Figure 17: Relative difference
in optimal objective value be-
tween baseline MICL methods
and C-MICL across 100 opti-
mization problem instances at
a = 5%. The differences aver-
age about 1%, with all methods
achieving statistically similar so-
lution quality. However, none
of the baselines produce imple-
mentable solutions, as indicated
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Figure 18: Average time to com-
pute an optimal solution for each
MICL method on 100 optimiza-
tion instances at o = 5%. C-
MICL matches the runtime of
single-model MICL and outper-
forms ensemble-based methods
by a wide margin. Lighter bars
represent approaches that did
not achieve the target feasibility
level.

by the lighter bars, which repre-
sent methods that failed to meet
the required empirical coverage
guarantee. Only our method sat-
isfies this guarantee.

E.2 Classification

The following three figures present the performance of different MICL methods applied to the
food basket design problem under a classification setting, with & = 5%. These figures assess the
feasibility, objective value, and computational efficiency of the methods across 100 problem instances,
highlighting the strengths of C-MICL in comparison to baseline approaches. Specifically, Figure
16 illustrates the empirical ground-truth feasibility rate, Figure 17 shows the relative difference in
optimal objective value, and Figure 18 reports the average computational time required to obtain
an optimal solution. Finally, Figures 19 and 20 present the empirical coverage achieved by each
model across 1,000 out-of-sample points, grouped by the label y category, for o« = 10% and « = 5%,
respectively. These figures report the proportion of instances in which the true value of y falls within
the predicted conformal set. Our conformal sets empirically satisfy the ground-truth feasibility
coverage guarantee from Lemma 3.1, achieving coverage rates of 88.22% (feasible) and 96.19%
(infeasible) for a = 10%, and 93.41% (feasible) and 98.79% (infeasible) for o = 5%.
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Figure 19: Empirical out-of-sample coverage, Figure 20: Evaluation of empirical coverage with
evaluated over 1,000 test points and stratified by ReLU NNs over 1,000 test samples, grouped by
the true categorical label of y at « = 10%. Across the true y label, for a target level of at & = 5%.
all categories, the predicted conformal sets cap- The model produces conformal prediction sets
ture the true label at the desired coverage level. that contain the true class label at the expected
Notably, for the "Good" and "Very Good" cate- rate. In particular, the "Good" and "Very Good"
gories, (which correspond to the ground-truth fea- categories, those relevant to enforcing feasibility,
sibility region) the models approximately achieve demonstrate approximate empirical coverage, pro-

valid empirical coverage, lending support to the viding evidence consistent with Theorem 4.1.
assumptions in Theorem 4.1.
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