
Graph Feature Preprocessor: Real-time Subgraph-based Feature
Extraction for Financial Crime Detection

Jovan Blanuša
IBM Research Europe

Switzerland
jov@zurich.ibm.com

MaximoCravero Baraja
Caltech
USA

mcravero@caltech.edu

Andreea Anghel
IBM Research Europe

Switzerland
aan@zurich.ibm.com

Luc von Niederhäusern
IBM Research Europe

Switzerland
lvn@zurich.ibm.com

Erik Altman
IBM Watson Research

USA
ealtman@us.ibm.com

Haris Pozidis
IBM Research Europe

Switzerland
hap@zurich.ibm.com

Kubilay Atasu
TU Delft

Netherlands
kubilay.atasu@tudelft.nl

Abstract
In this paper, we present Graph Feature Preprocessor, a software
library for detecting typical money laundering patterns in financial
transaction graphs in real time. These patterns are used to produce
a rich set of transaction features for downstream machine learning
training and inference tasks such as detection of fraudulent finan-
cial transactions. We show that our enriched transaction features
dramatically improve the prediction accuracy of gradient-boosting-
based machine learning models. Our library exploits multicore
parallelism, maintains a dynamic in-memory graph, and efficiently
mines subgraph patterns in the incoming transaction stream, which
enables it to be operated in a streamingmanner. Our solution, which
combines our Graph Feature Preprocessor and gradient-boosting-
based machine learning models, can detect illicit transactions with
higher minority-class F1 scores than standard graph neural net-
works in anti-money laundering and phishing datasets. In addition,
the end-to-end throughput rate of our solution executed on a multi-
core CPU outperforms the graph neural network baselines executed
on a powerful V100 GPU. Overall, the combination of high accuracy,
a high throughput rate, and low latency of our solution demon-
strates the practical value of our library in real-world applications.
ACM Reference Format:
Jovan Blanuša, Maximo Cravero Baraja, Andreea Anghel, Luc von Nieder-
häusern, Erik Altman, Haris Pozidis, and Kubilay Atasu. 2024. Graph Feature
Preprocessor: Real-time Subgraph-based Feature Extraction for Financial
Crime Detection. In 5th ACM International Conference on AI in Finance
(ICAIF ’24), November 14–17, 2024, Brooklyn, NY, USA. ACM, New York, NY,
USA, 9 pages. https://doi.org/10.1145/3677052.3698674

1 Introduction
Financial transactions serve as records documenting the movement
of financial funds between accounts. Typically, these transactions
are captured in a tabular format, where each row represents a dis-
tinct financial transaction, and columns represent basic transaction
features such as timestamp, source account, target account, amount

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

ICAIF ’24, November 14–17, 2024, Brooklyn, NY, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1081-0/24/11
https://doi.org/10.1145/3677052.3698674

(c) Smurfing

$$$$

$

$

$

$

$$$$

$

$

$

$

(a) Circular money laundering

MAY 3,
2023

MAY 26,
2023

JUN 2,
2023

$

$

$

(b) Pump and dump

JUN 1, 2023
JUN 8, 2023

$$

DUMP

$

$

$
$

PUMP

$

$$

$$

Figure 1: Crime patterns in financial transaction graphs.

transferred, currency, and payment type [1]. While this tabular rep-
resentation offers a structured view of the data, a more insightful
approach emerges when financial transactions are represented as
graphs by treating transactions as edges and accounts as vertices
of a graph, as illustrated in Figure 1. Such a graph representation
enables analysts to uncover insights that may not be immediately
apparent in tabular formats. As a result, financial transaction graphs
facilitate the efficient analysis and interpretation of complex finan-
cial data, aiding in the detection of financial crime [19, 49].

Subgraph patterns in financial transaction graphs can often serve
as indicators of financial crime. A simple cycle [48], depicted in Fig-
ure 1a, is one such pattern and represents a sequence of transactions
that transfer funds from one bank account back to the same account.
Such a cycle can be an indicator of financial crimes such as money
laundering, tax avoidance [28, 69], credit card frauds [49, 56], or
circular trading used for stock price manipulation [34, 36, 52]. In ad-
dition, a gather-scatter pattern, illustrated in Figure 1b, can suggest
a pump and dump stock manipulation scheme [49]. In this scheme,
the stock price of a company is artificially increased through the
use of social media to attract other traders for investment. After

This work was performed when Maximo Cravero Baraja and Kubilay Atasu were with
IBM Research Europe, Zurich, Switzerland.

222

https://orcid.org/0000-0003-4915-6551
https://orcid.org/0009-0001-4580-936X
https://orcid.org/0000-0002-6842-9036
https://orcid.org/0009-0000-0916-5985
https://orcid.org/0009-0001-0978-0360
https://orcid.org/0000-0001-5084-6651
https://orcid.org/0000-0002-4315-6780
https://doi.org/10.1145/3677052.3698674
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.1145/3677052.3698674
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3677052.3698674&domain=pdf&date_stamp=2024-11-14

ICAIF ’24, November 14–17, 2024, Brooklyn, NY, USA Blanuša et al.

Gradient-boosting-based ML model

Batch of financial transactions with graph-based features

Graph Feature Preprocessor

Payment typeCurrencyAmountDest. accountSrc. accountTimestampID

ChequeUSD1250BA7 JUN 23, 12:45100

WireEUR34CB7 JUN 23, 17:12101

Credit cardCHF648CD8 JUN 23, 8:22102

Graph-based featuresPayment typeCurrencyAmountDest. accountSrc. accountTimestampID

ChequeUSD1250BA7 JUN 23, 12:45100

WireEUR34CB7 JUN 23, 17:12101

Credit cardCHF648CD8 JUN 23, 8:22102

Batch of financial transactions

Suspicious transactions

Figure 2: The overview of our graph ML pipeline for the
detection of suspicious financial transactions.
the stock price rises sufficiently, malicious traders sell the stocks.
Due to the artificially inflated stock price, its value drops, and other
traders suffer financial losses. Furthermore, a scatter-gather pat-
tern, depicted in Figure 1c, can represent a money laundering tactic
called smurfing [19, 39, 42, 43, 62, 67], in which a malicious actor
employs several intermediary accounts (blue nodes in Figure 1c) to
integrate small sums of illicit funds into the legal banking system.
Similarly, in cryptocurrency transaction networks, criminals use
sophisticated mixing and shuffling schemes to obfuscate the trace
of their activities [44]. Such schemes can usually be represented by
subgraph structures [15, 64, 73, 76]. The discovery of such suspi-
cious subgraph patterns may enable locating and stopping criminal
activities and their perpetrators.

Rapid detection and processing of suspicious financial trans-
actions are important to avoid financial losses. As financial data
is often represented in a tabular format [1], the fastest and most
accurate machine learning models [27] for this input format are
gradient-boosting-based models [14, 38]. However, these models
cannot take into account the underlying graph structure and can-
not discover graph patterns that could be associated with financial
crime. Furthermore, a limited set of basic features associated with
financial transactions (see Figure 2) does not provide sufficient infor-
mation to gradient-boosting-based models for detecting suspicious
transactions with sufficient accuracy. As a result, the detection of
suspicious transactions using these methods poses a challenge.

To overcome the aforementioned limitations, we propose a solu-
tion shown in Figure 2. Specifically, we develop the Graph Feature
Preprocessor (GFP) library to produce a rich set of graph-based
features for financial transactions. Our library searches for typi-
cal financial crime patterns, such as money laundering cycles and
scatter-gather patterns (see Figure 1), and encodes these graph pat-
terns into additional columns (i.e., features) of the transaction table.
The transaction table enriched with the graph-based features is
then forwarded to a pre-trained gradient-boosting-based machine
learning model that performs the classification of financial transac-
tions and detects suspicious transactions. As a result, the machine
learning model is provided with additional transaction features
extracted from the financial transaction graph, which facilitates the
detection of transactions associated with financial crime.

fit

transform

Dynamic graph management

update graph

create new graph

Graph pattern mining

partial_fit

fan-in/out scatter-gather cycle
vertex
statistics

in-memory graph

Graph Feature Preprocessor

In
pu

tt
ra

ns
ac

tio
ns

w

ith
 b
as
ic

fe
at

ur
es

Tr
an

sa
ct

io
ns

w
ith

 b
as
ic

an
d
gr
ap

h-
ba

se
d

fe
at

ur
es

Figure 3: Our Graph Feature Preprocessor is offered as a
scikit-learn preprocessor with fit and transform methods.

Our contributions can be summarised as follows:
• We present a graph-based feature extraction library called
Graph Feature Preprocessor for enriching the feature set of
edges in financial transaction graphs by enumerating suspi-
cious subgraph patterns in graphs as well as by computing
various statistical properties of graph vertices. We then use
this library to develop a graph machine learning (graph ML)
pipeline for monitoring financial transaction networks. Sec-
tion 2 introduces this library.

• We conduct experiments that demonstrate an improvement of
up to 36% in the minority-class F1 score compared to graph
neural network (GNN) baselines [11, 20, 31] for money laun-
dering detection tasks. In addition, we demonstrate that our
graph ML pipeline executed using 32 cores of an Intel Xeon
processor achieves higher throughput rates compared to those
GNN baselines executed on an NVIDIA Tesla V100 GPU. Our
experimental evaluation is presented in Section 4.

The GFP library is publicly available on PyPI as part of Snap
ML [59–61]. In addition, it is offered with IBM1 mainframe software
products Cloud Pak for Data on Z [33] and AI Toolkit for IBM Z and
LinuxONE [32]. Furthermore, an AI on IBM Z Anti-Money Launder-
ing Solution Template [63], which demonstrates how to develop and
deploy a graph ML pipeline with GFP using an IBM Z environment,
is open-sourced and publicly available2.

2 Graph Feature Preprocessor
An overview of the Graph Feature Preprocessor (GFP) is given in
Figure 3. It operates in a streaming fashion, receiving as input a
batch of transactions with only basic features, such as in Figure 2,
and producing additional graph-based features as output. GFP stores
past financial transactions in an in-memory graph, which is dynam-
ically updated as new transactions are received. The graph-based
features are computed by enumerating subgraph patterns in the
graph and by generating statistical properties of the accounts stored
in that graph. GFP can compute the graph-based features across
several CPU cores in parallel, which, together with the dynamic
graph representation, enables real-time feature extraction.

We have implementedGFP as a scikit-learn preprocessorwith the
fit/transform interface [66] and made it publicly available on PyPI
as part of the Snap ML package [59–61]. The main functionality of
GFP is implemented by the transform function, which is illustrated
1IBM, the IBM logo, and IBM Cloud Pak are trademarks or registered trademarks
of International Business Machines Corporation, in the United States and/or other
countries.
2https://github.com/ambitus/aionz-st-anti-money-laundering

223

https://github.com/ambitus/aionz-st-anti-money-laundering

Graph Feature Preprocessor: Real-time Subgraph-based Feature Extraction for Financial Crime Detection ICAIF ’24, November 14–17, 2024, Brooklyn, NY, USA

in Figure 3. This function inserts a batch of input transactions into
the in-memory graph and computes graph-based features for these
transactions. Creating the initial in-memory graph is performed
by providing some past transactions as an input to the fit function.
The existing in-memory graph can be updated without computing
any graph features by using the partial_fit function. Other stan-
dard preprocessor functions supported by GFP are described in the
publicly available documentation [60]. In the rest of this section,
we describe the dynamic graph management and graph pattern
mining components of GFP (see Figure 3), and we describe how the
graph-based features produced by the library are encoded.

2.1 Dynamic Graph Management
The dynamic graph management component in GFP uses an in-
memory graph to represent the financial transaction network. In
this scenario, each account is treated as a graph vertex, and each
transaction represents an edge from its source account to its destina-
tion account. As financial transactions typically include a timestamp
indicating when a transaction was created (see Figure 2), financial
transaction graphs are considered temporal graphs [30]. Further-
more, financial transaction graphs are alsomultigraphs [3], as there
can be several parallel edges, i.e., edges that connect the same pair
of source and destination vertices. Hence, our in-memory graph
must be capable of representing temporal multigraphs.

To enable the seamless processing of transactions in a streaming
fashion, our in-memory graph must support the insertion of new
transactions and the removal of outdated transactions. We define
new transactions as those with timestamps greater than the times-
tamp of any transaction currently in the in-memory graph. Out-
dated transactions are identified as those with timestamps smaller
than a value 𝑡now − 𝛿 , where 𝑡now represents the largest times-
tamp among the transactions in the in-memory graph and 𝛿 de-
notes a user-defined time window. Consequently, the in-memory
graph retains only transactions that fall within the time window
[𝑡now − 𝛿 : 𝑡now], effectively constraining its memory usage.

Our in-memory graph comprises two main data structures: a
transaction log and an index. The transaction log, implemented as
a double-ended queue, maintains a list of edges sorted in ascend-
ing order of their timestamps. This data structure facilitates the
detection and removal of outdated edges by supporting an 𝑂 (1)
operation for removing the edge with the smallest timestamp. The
index data structure employs an adjacency list representation to
enable fast access to the neighbours of a vertex [18]. Implemented
as a vector of hash maps [58], each entry in the vector represents a
vertex 𝑣 , and the hash map associated with that vertex 𝑣 signifies
the adjacency list of 𝑣 . Vertices are internally mapped to integers
in the range of 0, 1, . . . , 𝑛 − 1, where 𝑛 is the number of vertices in
the graph. These integers are used to access the adjacency list of a
vertex 𝑣 in this vector. Furthermore, each edge can be accessed in
𝑂 (1) time using the index, facilitating traversal through the graph,
as required by the graph pattern mining component.

To support the maintenance of parallel edges in the index, each
entry in an adjacency list of the vertex 𝑣 , representing a neighbour
𝑢 of the vertex 𝑣 , also contains a list of edges connecting 𝑣 with
𝑢, referred to as the parallel edge list. The edges in this list, also
implemented as a double-ended queue, are represented with their

Algorithm 1: ScatterGatherStream
(
G(V, E), batch, 𝛿𝑝

)
Input: G - the input graph with verticesV and edges E

batch - a batch of edges; 𝛿𝑝 - the time window
1 parallel foreach (u → v, 𝑡𝑢𝑣) : batch do
2 TW =

[
𝑡𝑢𝑣 − 𝛿𝑝 : 𝑡𝑢𝑣

]
; ⊲ Time window of size 𝛿𝑝

// The first phase

3 𝑁 +
𝑢 = { ∀𝑥 | (𝑢 → 𝑥, 𝑡𝑠) ∈ E ∧ 𝑡𝑠 ∈ TW };

4 𝑁 +
𝑣 = { ∀𝑥 | (𝑣 → 𝑥, 𝑡𝑠) ∈ E ∧ 𝑡𝑠 ∈ TW };

5 parallel foreach w : 𝑁 +
𝑣 do

6 𝑁 −
𝑤 = { ∀𝑥 | (𝑥 → 𝑤, 𝑡𝑠) ∈ E ∧ 𝑡𝑠 ∈ TW };

7 𝐼 = 𝑁 +
𝑢 ∩ 𝑁 −

𝑤 ;
8 if |𝐼 | ≥ 2 then report scatter-gather pattern {𝑢, 𝐼,𝑤};

// The second phase

9 𝑁 −
𝑢 = { ∀𝑥 | (𝑥 → 𝑢, 𝑡𝑠) ∈ E ∧ 𝑡𝑠 ∈ TW };

10 𝑁 −
𝑣 = { ∀𝑥 | (𝑥 → 𝑣, 𝑡𝑠) ∈ E ∧ 𝑡𝑠 ∈ TW };

11 parallel foreach w : 𝑁 −
𝑢 do

12 𝑁 +
𝑤 = { ∀𝑥 | (𝑤 → 𝑥, 𝑡𝑠) ∈ E ∧ 𝑡𝑠 ∈ TW };

13 𝐼 = 𝑁 −
𝑣 ∩ 𝑁 +

𝑤 ;
14 if |𝐼 | ≥ 2 then report scatter-gather pattern {𝑤, 𝐼, 𝑣};

ID and timestamp, sorted in ascending order of their timestamps.
For this reason, the operations of inserting new edges and removing
the outdated edges can be performed in 𝑂 (1) time.

2.2 Graph Pattern Mining
The task of the graph pattern mining component is to produce
graph-based features for edges forwarded to the library through
the transform function. Two types of graph-based features are sup-
ported: i) graph-pattern-based features and ii) vertex-statistics-
based features.

Graph-pattern-based features are computed by extracting
graph patterns from the in-memory graph that contain one of the
forwarded edges. Our library extracts the following graph patterns:
fan-in, fan-out, scatter-gather, gather-scatter, simple cycle, and
temporal cycle. Fan-in and fan-out patterns refer to patterns defined
by a vertex 𝑣 and all of its incoming and outgoing edges, respectively.
A gather-scatter pattern combines a fan-in pattern of the vertex
𝑣 with a fan-out pattern of the same vertex 𝑣 , as illustrated in
Figure 1b [67]. A fan-out pattern of a vertex 𝑣 and a fan-in pattern
of a vertex 𝑢 form a scatter-gather pattern, depicted in Figure 1c,
if the fan-out and the fan-in patterns connect vertices 𝑣 and 𝑢,
respectively, to the same set of intermediate vertices [67] (blue
vertices in Figure 1c). A simple cycle is a path from vertex 𝑣 to the
same vertex 𝑣 without repeated vertices except for the first and
last vertex. Finally, a temporal cycle is a simple cycle with edges
ordered in time.

To compute graph-pattern-based features in a streaming manner,
our library enumerates new patterns that are formed after inserting
the input batch of edges into the graph. The fan-in and fan-out
pattern features of a vertex 𝑣 that belongs to the input batch are
determined by counting the number of outgoing and incoming
vertices of 𝑣 , respectively. These features can be determined in
𝑂 (1) time by simply querying the size of the hash maps that are
implementing the adjacency lists of the vertex 𝑣 in our index data

224

ICAIF ’24, November 14–17, 2024, Brooklyn, NY, USA Blanuša et al.

𝑢

𝑁!"
𝑁#"
𝑤

𝑣

𝑁!"
𝑁#"

𝑁$%

𝑢

𝑤

𝑣

𝑢

𝑤

𝑣

𝐼 = 𝑁!" ∩ 𝑁$%

(a) Determine 𝑁!" and 𝑁#" (b) Determine 𝑁$% (c) The resulting pattern

Figure 4: Enumeration of scatter-gather patterns that contain
the edge 𝑢 → 𝑣 with 𝑣 being an intermediate vertex.

structure (see Section 2.1). A gather-scatter pattern is detected
implicitly if the fan-in and fan-out of a vertex 𝑣 are at least two.
Due to space constraints, we omit the description of our algorithm
for finding scatter-gather patterns in a streaming manner.

To enumerate simple cycles and temporal cycles in a stream-
ing manner, we use fine-grained parallel algorithms introduced in
Blanuša et al. [6, 7]. These algorithms enable the search for cycles
that start from a single edge or a small batch of edges in parallel
using several threads. The benefit of these algorithms is that they
can process transactions in small batches with high throughput. For
instance, if the computation of cycles is parallelised by adopting the
coarse-grained parallel approach, recursive cycle search for each
edge of a batch is performed by a different thread. However, as
shown in Blanuša et al [6, 7] using the coarse-grained approach
might result in a suboptimal solution due to the potential workload
imbalance across threads. In contrast, fine-grained cycle enumera-
tion algorithms are able to execute the recursive cycle search from
a single edge using several threads, thereby increasing the paral-
lelism. As a result, even if the input batch contains one transaction,
our library would be able to parallelise the search for cycles.

To compute scatter-gather pattern in a streaming manner, we use
our algorithm illustrated in Figure 4 and presented in Algorithm 1.
In this algorithm, (u → v, 𝑡𝑢𝑣) denotes a temporal edge with source
vertex 𝑢, target vertex 𝑣 and timestamp 𝑡𝑢𝑣 . This algorithm pro-
cesses each edge (u → v, 𝑡𝑢𝑣) in the input batch by searching for all
scatter-gather patterns that include that edge. The first and second
phase of this algorithm search for scatter-gather patterns that con-
tain 𝑣 and𝑢 as an intermediate vertex, respectively. In the first phase,
we first determine the outgoing neighbours of 𝑢 and 𝑣 , denoted
as 𝑁 +

𝑢 and 𝑁 +
𝑣 , respectively, as shown in Figure 4a. Then, for each

outgoing neighbour𝑤 of 𝑣 , we search for incoming neighbours 𝑁 −
𝑤

of the vertex𝑤 , which are represented as filled circles in Figure 4b.
Afterwards, we perform a set intersection between 𝑁 +

𝑢 and 𝑁 −
𝑤 to

find the intermediate vertices 𝐼 of a scatter gather pattern. Finally,
the algorithm reports the resulting scatter-gather pattern defined
with vertices 𝑢,𝑤 , and 𝐼 , as shown in Figure 4c. The second phase
of this algorithm, presented in lines 9–14 of Algorithm 1, is analo-
gous to the first phase, and we omit its description for brevity. Note
that this algorithm can be parallelised in a fine-grained manner by
parallelising its loops, as shown in Algorithm 1.

Apart from parallelisation, another method to reduce the time re-
quired to find graph patterns is to impose time-window constraints.
In this case, a time window parameter 𝛿𝑝 can be specified for each
graph pattern, in which case the library searches only for patterns
whose edges have timestamps greater than or equal to 𝑡now − 𝛿𝑝 ,

Graph-pattern-
based

transaction
features

Source account
features

Target account
features

Basic
transaction

features

Temporal cycles Simple cycles
2 3 ≥30…

Scatter-gather
2 3 ≥10… 2 3 ≥30…

1
4 2

5

2
9

8

2

1
7

12

Multi-hop subgraph pattern transaction features

Out edges In edges

Fan Deg.
Timestamp

statistics
Amount
statistics

Target account features: fans, degrees and account statistics

Fan Deg.
Timestamp

statistics
Amount
statistics

Figure 5: Feature encoding: scatter-gather patterns are binned
according to the number of intermediate vertices they have,
and cycles are binned according to their length.

where 𝑡now represents the largest timestamp among the edges in
the in-memory graph. Additionally, the search for simple cycles
can be constrained by limiting their maximal length.

Vertex-statistics-based features are computed for the vertices
that appear in the input batch of edges. For each such vertex 𝑣 ,
some predefined statistical property can be computed using a se-
lected basic feature associated with the outgoing edges of 𝑣 and its
incoming edges. The statistical properties currently supported by
our library are: sum, mean, minimum, maximum, median, variance,
skew, and kurtosis [41]. For instance, if "Amount" is the selected
basic feature used for the calculation of statistical properties, the
statistical features include the average and total amount of money
an account received or sent. Combining different statistical fea-
ture types with different user-specified basic features in this way
extends the feature space significantly.

Vertex-statistics-based features can be determined in a stream-
ing manner through incremental computation. For this purpose,
our library maintains second, third, and fourth central moments
for each vertex of the graph and for each basic feature used for
calculating account statistics (e.g., "Amount"). After inserting or
removing an edge 𝑢 → 𝑣 , all central moments for 𝑢 and 𝑣 are
updated incrementally [25, 70]. These central moments are then
used to compute the following statistical features: sum, mean, vari-
ance, skew, and kurtosis [41]. Note that the computation of each
aforementioned statistical feature can be performed in 𝑂 (1) time.
Other statistical features, i.e., minimum, maximum, and median,
are simply computed by iterating through the incident edges of a
vertex, which is executed in𝑂 (Δ) time per statistical feature, where
Δ is the maximum degree of a vertex in the graph.

2.3 Feature Encoding
The encoding of the features produced by the transform function
of GFP is shown in Figure 5. Each row of the output feature table
stores the feature vector of a single transaction. Across different

225

Graph Feature Preprocessor: Real-time Subgraph-based Feature Extraction for Financial Crime Detection ICAIF ’24, November 14–17, 2024, Brooklyn, NY, USA

Table 1: Datasets used in the experiments.

Dataset # nodes # edges illicit rate time span
AML HI Small 0.5 M 5 M 0.102% 10 days
AML HI Medium 2.1 M 32 M 0.110% 16 days
AML HI Large 2.1 M 180 M 0.124% 97 days
AML LI Small 0.7 M 7 M 0.051% 10 days
AML LI Medium 2.1 M 32 M 0.051% 16 days
AML LI Large 2.1 M 180 M 0.057% 97 days
ETH Phishing 2.9 M 13 M 0.278% 1261 days

columns of a feature vector, there are basic transaction features,
graph-pattern-based transaction features, and the account features
of the source and the destination account of the transaction. The
account features consist of vertex-statistics-based features and fea-
tures based on fan-in and fan-out patterns, both of which are single-
hop patterns. Features based on fan-in and fan-out patterns are
computed for each account 𝑣 and represent the number of accounts
connected to 𝑣 in those patterns. Graph-pattern-based transaction
features are computed using multi-hop subgraph patterns: scatter-
gather, hop-constrained simple cycles, and temporal cycles. For each
transaction, our library reports the number of multi-hop subgraph
patterns of different sizes that this transaction is part of. Example
features based on multi-hop subgraph patterns are given in Fig-
ure 5, where the first transaction participates in 4 scatter-gather
patterns with 3 intermediate vertices and in 2 temporal cycles with
30 or more edges. Even though these multi-hop subgraph patterns
can also be used to compute account features, computing them as
transaction features provides more compact feature vectors.

3 Experimental setup
Datasets. Table 1 presents the datasets used in the evaluation.
The AML datasets are publicly available synthetic AML datasets
produced by the AMLworld generator[1]. These datasets contain
transactions labelled as licit or illicit, and, thus, they can be directly
used with our graph ML pipeline that performs transaction classifi-
cation. The datasets are available in two variants: one with a higher
illicit rate (AML HI) and one with a lower illicit rate (AML LI). In
addition, we use the ETH Phishing dataset, which is a real-world
Ethereum dataset [13, 77] with 1, 165 accounts labelled as phishing.
To enable transaction classification using the ETH Phishing dataset,
we label a transaction of this dataset as phishing if its destination
account is labelled as phishing. As a result, 0.278% of Ethereum
transactions are labelled as phishing.

Baselines. We use LightGBM (version 3.1.1) [38] and XGBoost
(version 1.7.5) [14] boosting machines, which are widely-used ML
models for tabular data, as machine learning models for our graph
ML pipeline. We compare our graph ML pipeline with LightGBM
and XGBoost models trained exclusively using basic features, with-
out incorporating features generated by our Graph Feature Prepro-
cessor. To perform hyper-parameter tuning of these models, we em-
ploy a successive halving model tuning approach [35]. As additional
baselines, we use the following graph neural networks (GNNs):
Graph Isomorphism Network (GIN) [31, 78], GIN with edge up-
dates (GIN+EU) [4, 11], and Principal Neighbourhood Aggregation
(PNA) [20, 72]. GIN+EU baseline is similar to LaundroGraph [11],
which is a GNN specifically designed for anti-money laundering.

GNNs:
GIN+EU

PNA GFP + LightGBM, batch size: 128 2048GIN
GFP + XGBoost, batch size: 128 2048

17
 k

7
k

16
 k

7
k12

 k

5
k

11
 k

5
k

16
 k

7
k

15
 k

7
k8

k

4
k

5
k 6

k

4
k 5
k

21
 k

10
 k 12

 k

19
 k

10
 k 12

 k

8
k

4
k 5
k 6
k

4
k 4
k

23
 k

10
 k 14

 k 18
 k

10
 k 13

 k

0

10 k

20 k

30 k

AML HI
Small

AML HI
Medium

AML HI
Large

AML LI
Small

AML LI
Medium

AML LI
LargeTh

ro
ug

hp
ut

 [t
ra

ns
./s

]

Figure 6: Our graph ML pipeline has higher throughput com-
pared to GNN baselines executed on a V100 GPU.
The accuracy results for these GNNs on the AML datasets are ob-
tained from Altman et al. [1]. Furthermore, all of the baselines,
as well as our graph ML pipeline, are trained without the source
and destination account IDs of the transactions. This prevents the
models from identifying money laundering transactions based on
the memorisation of account IDs.

Graph Feature Preprocessor setup.We configure GFP to ex-
tract the graph-based features in the following way. The features
are extracted from the AML datasets using a time window of six
hours for scatter-gather patterns and a time window of one day
for the rest of the graph-based features. We specify a cycle-length
constraint of 10 for simple cycle enumeration. We use the "Amount"
and "Timestamp" fields of the basic transaction features to generate
the vertex-statistics-based features. Feature extraction from the
ETH Phishing dataset is performed using a 20-day time window for
all graph-based features. In addition, we disable the generation of
temporal cycles and specify a hop constraint of 5 for simple cycle
enumeration. We use the "Amount", "Timestamp", and "Block Nr."
fields of the basic transaction features to generate the account sta-
tistics. We selected these parameters after some careful exploration
aimed at finding the best trade-offs between the throughput of GFP
and the accuracy of the ML models used for scoring.

Data split. To tune the parameters of the models and to test
the model generalisation performance, we split the input data into
train, validation, and test sets. The train and validation sets are
used by the successive halving scheme to tune the model, while
the test set is used for the final evaluation of the model. For AML
datasets, the splitting is performed such that 60% of transactions
with the smallest timestamps is selected as a training set, the next
20% transactions with the smallest timestamps excluding the ones
from the training set are selected as a validation set, and the rest
are selected as the test set. For the ETH dataset, we define the
timestamp of an account as the minimum timestamp among the
transactions that involve this account and split the accounts of the
dataset such that 65% of the accounts with the smallest timestamp
exist only in the training set, the next 15% of the accounts exist only
in the validation dataset, and the rest are in the test set. Splitting
the datasets in the aforementioned way prevents data leakage in
our experiments.

4 Results
In this section, we evaluate the accuracy of our graph ML pipeline
and other baselines trained on the datasets from Table 1. We refer
to our graph ML pipeline that uses LightGBM and XGBoost as
GFP+LightGBM and GFP+XGBoost, respectively. As a measure of

226

ICAIF ’24, November 14–17, 2024, Brooklyn, NY, USA Blanuša et al.

Table 2: Minority class F1 scores (%) of the money laundering detection task using the AML datasets and the phishing detection
task using the ETH Phishing dataset. NA stands for not available.

Model batch AML HI AML LI batch ETH Phishingsize Small Medium Large Small Medium Large size
GIN [31] ∞ 28.70 ± 1.13 42.30 ± 0.44 NA 7.90 ± 2.78 3.86 ± 3.62 NA ∞ 26.92 ± 7.52
GIN+EU [4, 11] ∞ 47.73 ± 7.86 49.26 ± 4.02 NA 20.62 ± 2.41 6.19 ± 8.32 NA ∞ 33.92 ± 7.34
PNA [20] ∞ 56.77 ± 2.41 59.71 ± 1.91 NA 16.45 ± 1.46 27.73 ± 1.65 NA ∞ 51.49 ± 4.29
LightGBM [38] — 21.30 ± 0.30 18.60 ± 0.10 24.50 ± 0.20 2.05 ± 0.81 3.3 ± 0.48 4.04 ± 0.16 — 13.74 ± 0.54
GFP+LightGBM 128 62.86 ± 0.25 59.48 ± 0.15 58.03 ± 0.19 20.83 ± 1.50 24.74 ± 0.46 23.67 ± 0.11 128 40.17 ± 0.22
GFP+LightGBM 2048 60.52 ± 0.59 56.12 ± 0.37 54.76 ± 0.08 17.99 ± 0.60 21.06 ± 0.08 22.65 ± 0.59 ∞ 51.00 ± 1.01
XGBoost [14] — 19.75 ± 0.89 20.10 ± 0.22 10.61 ± 6.73 0.21 ± 0.22 0.40 ± 0.14 0.00 ± 0.00 — 15.52 ± 0.15
GFP+XGBoost 128 63.23 ± 0.17 65.69 ± 0.26 42.68 ± 12.93 27.28 ± 0.69 31.03 ± 0.22 24.23 ± 0.12 128 37.01 ± 2.45
GFP+XGBoost 2048 64.77 ± 0.47 59.19 ± 0.29 56.88 ± 0.21 28.25 ± 0.80 21.36 ± 0.90 22.64 ± 0.15 ∞ 49.40 ± 0.54

0

10

20

30

40

0 16 32 48 64

0

10

20

30

40

0 16 32 48 64
Number of threads

0

10

20

30

40

0 16 32 48 64

0

10

20

30

40

0 16 32 48 64
Number of threads

Scatter-Gather enum. Temporal cycle enum.
Simple cycle enum. End-to-end

Sp
ee

du
p

Sp
ee

du
p

AML HI Small
batch size = 2048

AML HI Small
batch size = ∞

AML HI Medium
batch size = ∞

AML HI Medium
batch size = 2048

Figure 7: Scalability of executing different parts of our GFP
library, as well as its end-to-end execution. The speedup is
relative to the single-threaded execution.

accuracy, we use the minority-class F1 score. The F1 scores reported
are averaged across five different runs. The standard deviation of
the F1 score is also reported for each experiment.

Our graph ML pipeline requires transactions to arrive in batches.
For the AML datasets, the graph ML pipeline uses batch sizes of
128 and 2048. In addition, for the ETH Phishing dataset, graph
feature extraction is performed using batch sizes of 128 and ∞.
When using a batch size of∞, all the transactions of the test set are
made available to GFP in a single batch. Using a batch size of ∞
essentially corresponds to an offline solution and, in principle, can
lead to better accuracy because, in this case, the future transactions
are also visible during feature extraction. However, if real-time
processing capability is required by an application, the batch size
will have to be constrained. Note that GNN baselines require the
entire dataset to be available in memory, making it effectively an
offline solution with batch size∞.

AML results. The minority class F1 scores of the ML models
that perform laundering detection using AML datasets are shown
in Table 2. Clearly, our graph-based features lead to significant
improvements in the F1 scores achieved by gradient-boosting mod-
els. Without our graph-based features, the maximum F1 score that
LightGBM and XGBoost achieve is 24.5% for the AML HI datasets

and 4.04% for the AML LI datasets. The reason for this low ac-
curacy is that the labels in AML datasets are highly imbalanced,
and the number of illicit transactions in these datasets is at most
0.13% of the total number of transactions (see Table 1). Our graph
ML pipeline, in which LightGBM and XGBoost models use our
graph-based features in addition to basic features, achieves up to a
46% higher F1 scores than the models that use only basic features.
Furthermore, our graph ML pipeline that uses XGBoost models con-
sistently achieves higher F1 scores than GNN baselines. Compared
to PNA, the GNN baseline with the highest accuracy, our graph ML
pipeline with XGBoost achieves up to an 8% higher F1 score for
AML HI datasets and up to an 11.8% higher F1 score for LI datasets.

The effect of different types of graph-based features produced by
GFP on the accuracy of our graph ML pipeline for the AML task is
shown in Table 3. We observe that including graph features based
on fan-in and fan-out patterns already improves the minority class
F1 score by more than 30% compared to the case that uses only basic
transaction features. Including multi-hop graph pattern features,
i.e., features based on cycles and scatter-gather patterns, further
improves the F1 score by up to 4%. Finally, by incorporating vertex-
statistics-based features produced by GFP, our graph ML pipeline
is able to achieve higher accuracy compared to the PNA baseline
(see Table 2). Thus, each type of graph-based feature contributes to
the overall accuracy of our graph ML pipeline.

Figure 6 shows the throughput of our graph ML pipeline and
GNN baselines. The performance of our graph ML pipeline is eval-
uated using 64 software threads of the Cascade Lake Intel Xeon
Processor available from IBM Cloud [17], and the performance
of GNN baselines is evaluated on an NVIDIA Tesla V100 GPU.
We observe that our graph ML pipeline is able to achieve higher
throughput than GNN baselines when it receives transactions in
batches of 2048. This throughput is the result of the scalable par-
allel graph pattern mining algorithms that GFP uses, as shown in
Figure 7. This figure also shows that our streaming scatter-gather
algorithm, introduced in Section 2.2, scales almost linearly with the
number of software threads when batch size is infinity. As a result
of this scalability, the average latency of processing batches of 128
and 2048 transactions from the AML dataset is 30 ms and 148 ms,
respectively. Being able to process a batch of transactions with low
latency makes GFP suitable for real-time processing.

Explainability. A benefit of our graph ML pipeline is that it
produces explainable results. Using the SHAP library [47], we can

227

Graph Feature Preprocessor: Real-time Subgraph-based Feature Extraction for Financial Crime Detection ICAIF ’24, November 14–17, 2024, Brooklyn, NY, USA

Table 3: Minority class F1 scores (%) of our graph ML pipeline demonstrating the effect of different graph-based features
produced by GFP on the accuracy of money laundering detection. Multi-hop pattern features include features based on simple
cycles, temporal cycles, and scatter-gather patterns.

Dataset AML HI Small AML HI Medium ETH Phishing
Model LightGBM XGBoost LightGBM XGBoost LightGBM XGBoost
batch size 128 2048 128 2048 128 2048 128 2048 ∞ ∞
basic features 21.30 ± 0.30 21.30 ± 0.30 19.75 ± 0.89 19.75 ± 0.89 18.60 ± 0.10 18.60 ± 0.10 20.10 ± 0.22 20.10 ± 0.22 13.74 ± 0.54 15.52 ± 0.15
+ fan-in/fan-out features 50.85 ± 0.83 49.73 ± 1.20 56.88 ± 0.66 59.71 ± 0.07 46.71 ± 0.17 50.59 ± 0.36 53.00 ± 0.08 55.25 ± 0.19 35.92 ± 1.96 40.46 ± 0.94
+ multi-hop pattern features 54.66 ± 0.39 55.54 ± 0.55 58.60 ± 0.15 61.01 ± 0.24 47.47 ± 0.21 51.40 ± 0.15 55.42 ± 0.23 55.92 ± 0.26 39.46 ± 0.27 42.76 ± 0.48
+ vertex-statistic-based features 62.86 ± 0.25 60.52 ± 0.59 63.23 ± 0.17 64.77 ± 0.47 59.48 ± 0.15 56.12 ± 0.37 65.70 ± 0.26 59.19 ± 0.29 51.00 ± 1.01 49.40 ± 0.54

Figure 8: Importance of features used by our GFP+LightGBM
setup to flag an AML HI Small transaction as illicit.

obtain the importance of features a gradient-boosting-based model
used to flag a transaction as illicit. For example, the two most impor-
tant features used for flagging a transaction as illicit in Figure 8 are
the number of two-hop temporal cycles (Temporal Cycle length 2)
and a vertex statistics feature, which represents the sum of money
the target account received (Target Sum ammountRecUSD Out).
Explaining the decision is critical for increasing trust in a fraud
detection system because it allows analysts to verify the decisions
of the system as needed.

ETH Phishing results. Table 2 also shows the minority class F1
scores achieved by the ML models we trained on the ETH Phishing
dataset to perform phishing detection. When using a batch size
of 128, our graph-based features enable F1-score improvements
exceeding 20% for both LightGBM and XGBoost. Setting the batch
size to∞ further improves the F1 score of LightGBM to 51%. In that
case, LightGBM with our graph-based features outperforms the
GIN+EU baseline by 10% and achieves competitive accuracy with
PNA. However, increasing the batch size from 128 to ∞ effectively
makes our graph ML pipeline an offline solution. In general, the op-
timal configuration of GFP depends on the requirements of the end
application and might require trading off performance for accuracy.

5 Related Work
Graphmachine learning has applications in many different fields,
including financial transaction network analysis [12, 44, 50, 74],
fraud detection [2, 10, 21, 22, 45, 80], drug discovery [26], molecular
property prediction [79], genomics [65], recommender systems [23],
social network analysis [5, 24], and relation prediction in knowledge
graphs [55]. Fraud detection systems TitAnt [10] and Eddin et
al. [22] are graph machine learning systems that extract features

from transaction graphs by generating node embeddings [53] or by
performing random walks [51] in graphs. These features are then
used by machine learning models to predict whether an incoming
transaction is fraudulent or not.

Graph neural networks (GNNs) [8, 11, 29, 40, 45, 71, 74, 78] are
powerful tools that can be used for the purpose of financial crime
detection. Cardoso et al. [11] andWeber et al. [75] apply GNN to the
anti-money laundering problem, Kanezashi et al. [37] apply GNN
to the phishing detection problem on the Ethereum blockchain,
and Rao et al. [57] uses a GNN to detect fraudulent transactions.
Graph Substructure Network, proposed by Bouritsas et al. [8], takes
advantage of pre-calculated subgraph pattern counts to improve the
expressivity of GNNs. GNNs could also be used to count subgraph
patterns, such as in Chen et al. [16], which could enable detecting
patterns associated with financial crime. In contrast to our work,
GNNs cannot straightforwardly operate in a streaming manner and
require the entire dataset to be available at the time of testing.

6 Conclusions
We presented Graph Feature Preprocessor (GFP), a software library
for fast feature extraction from dynamically changing transaction
graphs. To achieve fast feature extraction, our library leverages
an in-memory dynamic multigraph representation as well as fine-
grained parallel subgraph enumeration algorithms. GFP enables
our graph ML pipeline to operate in a streaming manner with low
per-batch latency and higher throughput compared to the GNN
baselines presented in the experiments. This capability makes GFP
suitable for scenarios that require real-time processing.

We have also shown that the graph-based features generated by
GFP can significantly improve the accuracy of gradient-boosting-
based machine learning models. The graph-based features improve
the minority class F1 score of gradient-boosting-based machine
learning models by up to 46% for the synthetic AML datasets and
by up to 35% for a real-world phishing detection dataset extracted
from Ethereum. Furthermore, we show that our solution achieves
up to a 36% higher F1 score than GNN baselines for the AML task.
In particular, our graph ML pipeline achieves up to a 24% higher
minority-class F1 score compared to the GIN+EU baseline with
the similar architecture to LaundroGraph [11], which is a GNN
designed specifically for anti-money laundering.

The application scope of our GFP library is not limited to money
laundering detection. Given that a cycle in a graph can be an indica-
tor of tax avoidance [28], circular trading [34, 36, 52], and credit card
frauds [49, 56], a GFP could also help to detect these types of frauds.
However, the reliance on pre-defined subgraph patterns, such as
cycles, is one drawback of this library, which we plan to address as

228

ICAIF ’24, November 14–17, 2024, Brooklyn, NY, USA Blanuša et al.

part of the future work by adding the support for subgraph match-
ing using user-defined subgraph patterns in GFP [68]. Furthermore,
we plan to add support for feature extraction based on additional
subgraph patterns, such as cliques [9] and bicliques [54]. Being able
to enumerate these patterns could enable the detection of close-knit
communities [46] as well as stacked money laundering patterns [1]
encountered in various different financial crime scenarios.

Acknowledgments
The support of Swiss National Science Foundation (project num-
ber 172610) for this work is gratefully acknowledged. The authors
would like to thank Donna Eng Dillenberger, Thomas Parnell,
Martin Petermann, Evan Rivera, and Elpida Tzortzatos from IBM
for their support, feedback, and suggestions during the course of
this work.

References
[1] Erik Altman, Jovan Blanuša, Luc von Niederhäusern, Béni Egressy, Andreea

Anghel, and Kubilay Atasu. 2023. Realistic Synthetic Financial Transactions for
Anti-Money Laundering Models. In NeurIPS’23, Datasets and Benchmarks Track.

[2] Amazon. 2023. Amazon Fraud Detector. https://aws.amazon.com/fraud-detector/
Accessed: 2023-01-10.

[3] V K Balakrishnan. 1997. Graph Theory. McGraw-Hill Professional, New York,
NY.

[4] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez,
Vinicius Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam
Santoro, Ryan Faulkner, et al. 2018. Relational inductive biases, deep learning,
and graph networks. arXiv preprint arXiv:1806.01261 (2018).

[5] Austin R. Benson, David F. Gleich, and Jure Leskovec. 2016. Higher-order or-
ganization of complex networks. Science 353, 6295 (2016), 163–166. https:
//doi.org/10.1126/science.aad9029

[6] Jovan Blanuša, Paolo Ienne, and Kubilay Atasu. 2022. Scalable Fine-Grained
Parallel Cycle Enumeration Algorithms. In Proceedings of the 34th ACM Sympo-
sium on Parallelism in Algorithms and Architectures. ACM, Philadelphia PA USA,
247–258. https://doi.org/10.1145/3490148.3538585

[7] Jovan Blanuša, Kubilay Atasu, and Paolo Ienne. 2023. Fast Parallel Algorithms
for Enumeration of Simple, Temporal, and Hop-constrained Cycles. ACM Trans.
Parallel Comput. 10, 3 (Sept. 2023), 1–35. https://doi.org/10.1145/3611642

[8] Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein.
2023. Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting. IEEE Trans. Pattern Anal. Mach. Intell. 45, 1 (Jan. 2023), 657–668.
https://doi.org/10.1109/TPAMI.2022.3154319

[9] Coen Bron and Joep Kerbosch. 1973. Algorithm 457: finding all cliques of an
undirected graph. Commun. ACM 16, 9 (Sept. 1973), 575–577. https://doi.org/10.
1145/362342.362367

[10] Shaosheng Cao, XinXing Yang, Cen Chen, Jun Zhou, Xiaolong Li, and Yuan
Qi. 2019. TitAnt: online real-time transaction fraud detection in Ant Financial.
PVLDB 12, 12 (Aug. 2019), 2082–2093. https://doi.org/10.14778/3352063.3352126

[11] Mário Cardoso, Pedro Saleiro, and Pedro Bizarro. 2022. LaundroGraph: Self-
Supervised Graph Representation Learning for Anti-Money Laundering. In Pro-
ceedings of the Third ACM International Conference on AI in Finance. 130–138.

[12] Tao-Hung Chang and Davor Svetinovic. 2020. Improving Bitcoin Ownership
Identification Using Transaction Patterns Analysis. IEEE Transactions on Systems,
Man, and Cybernetics: Systems 50, 1 (2020), 9–20. https://doi.org/10.1109/TSMC.
2018.2867497

[13] Liang Chen, Jiaying Peng, Yang Liu, Jintang Li, Fenfang Xie, and Zibin Zheng.
2019. XBLOCK Blockchain Datasets: InPlusLab Ethereum Phishing Detection
Datasets. http://xblock.pro/ethereum/.

[14] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting
System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD ’16).
ACM, New York, NY, USA, 785–794. https://doi.org/10.1145/2939672.2939785

[15] Xucan Chen, Mohammad Al Hasan, Xintao Wu, Pavel Skums, Mohammad Javad
Feizollahi, Marie Ouellet, Eric L. Sevigny, David Maimon, and Yubao Wu. 2019.
Characteristics of Bitcoin Transactions on Cryptomarkets. In Security, Privacy,
and Anonymity in Computation, Communication, and Storage, Guojun Wang, Jun
Feng, Md Zakirul Alam Bhuiyan, and Rongxing Lu (Eds.). Vol. 11611. Springer
International Publishing, Cham, 261–276. https://doi.org/10.1007/978-3-030-
24907-6_20 Series Title: Lecture Notes in Computer Science.

[16] Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. 2020. Can Graph
Neural Networks Count Substructures?. In NeurIPS 2020, December 6-12, 2020,

virtual, Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin (Eds.).

[17] IBM Cloud. 2024. IBM Cloud Docs - Virtual Private Cloud (VPC). https:
//cloud.ibm.com/docs/vpc Accessed: 2024-02-08.

[18] Thomas H. Cormen (Ed.). 2009. Introduction to algorithms (3rd ed ed.). MIT Press,
Cambridge, Mass. OCLC: ocn311310321.

[19] Livio Corselli. 2023. Italy: money transfer, money laundering and intermediary
liability. JFC 30, 2 (Feb. 2023), 377–388. https://doi.org/10.1108/JFC-10-2019-0137

[20] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković.
2020. Principal Neighbourhood Aggregation for Graph Nets. In Advances in
Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M.F.
Balcan, and H. Lin (Eds.), Vol. 33. Curran Associates, Inc., 13260–13271.

[21] Andras Cser, Merritt Maxix, Caroline Provost, and Peggy Dostie. 2022. The
Forrester Wave™: Anti-Money-Laundering Solutions, Q3 2022. Technical Report.
Forrester. 1–10 pages. https://www.forrester.com/report/the-forrester-wave-tm-
anti-money-laundering-solutions-q3-2022/RES176346 Accessed: 2023-01-10.

[22] Ahmad Naser Eddin, Jacopo Bono, David Aparício, David Polido, João Tiago
Ascensão, Pedro Bizarro, and Pedro Ribeiro. 2022. Anti-Money Laundering Alert
Optimization Using Machine Learning with Graphs. arXiv:2112.07508 [cs].

[23] Chantat Eksombatchai, Pranav Jindal, Jerry Zitao Liu, Yuchen Liu, Rahul Sharma,
Charles Sugnet, Mark Ulrich, and Jure Leskovec. 2018. Pixie: A System for
Recommending 3+ Billion Items to 200+Million Users in Real-Time. In Proceedings
of the 2018 World Wide Web Conference (Lyon, France) (WWW ’18). 1775–1784.
https://doi.org/10.1145/3178876.3186183

[24] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Yihong Eric Zhao, Jiliang Tang, and Dawei
Yin. 2019. Graph Neural Networks for Social Recommendation. In The World
Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13-17, 2019. ACM,
417–426. https://doi.org/10.1145/3308558.3313488

[25] Tony Finch. 2009. Incremental calculation of weighted mean and variance. (01
2009), 1–8.

[26] Thomas Gaudelet, Ben Day, Arian R Jamasb, Jyothish Soman, Cristian Regep,
Gertrude Liu, Jeremy B R Hayter, Richard Vickers, Charles Roberts, Jian Tang,
David Roblin, Tom L Blundell, Michael M Bronstein, and Jake P Taylor-King.
2021. Utilizing graph machine learning within drug discovery and development.
Briefings in Bioinformatics 22, 6 (05 2021). https://doi.org/10.1093/bib/bbab159

[27] Leo Grinsztajn, Edouard Oyallon, and Gael Varoquaux. 2022. Why do tree-based
models still outperform deep learning on typical tabular data?. In 36th Conference
on Neural Information Processing Systems (NeurIPS 2022) Track on Datasets and
Benchmarks., S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(Eds.), Vol. 35. Curran Associates, Inc., 507–520.

[28] László Hajdu and Miklós Krész. 2020. Temporal Network Analytics for Fraud De-
tection in the Banking Sector. In ADBIS, TPDL and EDA 2020 Common Workshops
and Doctoral Consortium. Vol. 1260. Springer International Publishing, Cham,
145–157. https://doi.org/10.1007/978-3-030-55814-7_12 Series Title: Communi-
cations in Computer and Information Science.

[29] William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In NIPS.

[30] Petter Holme and Jari Saramäki. 2012. Temporal networks. Physics Reports 519,
3 (Oct. 2012), 97–125. https://doi.org/10.1016/j.physrep.2012.03.001

[31] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. 2019. Strategies for pre-training graph neural networks. arXiv
preprint arXiv:1905.12265 (2019).

[32] IBM. 2023. AI Toolkit for IBM Z and LinuxONE. https://www.ibm.com/products/
ai-toolkit-for-z-and-linuxone Accessed: 2024-01-25.

[33] IBM. 2023. Cloud Pak for Data. https://www.ibm.com/products/cloud-pak-for-
data Accessed: 2023-02-21.

[34] Md. Nazrul Islam, S. M. Rafizul Haque, Kaji Masudul Alam, andMd. Tarikuzzaman.
2009. An approach to improve collusion set detection using MCL algorithm. In
2009 12th International Conference on Computers and Information Technology.
IEEE, Dhaka, Bangladesh, 237–242. https://doi.org/10.1109/ICCIT.2009.5407133

[35] Kevin Jamieson and Robert Nowak. 2014. Best-arm identification algorithms
for multi-armed bandits in the fixed confidence setting. In 2014 48th Annual
Conference on Information Sciences and Systems (CISS). IEEE, Princeton, NJ, USA,
1–6. https://doi.org/10.1109/CISS.2014.6814096

[36] Zhi-Qiang Jiang, Wen-Jie Xie, Xiong Xiong, Wei Zhang, Yong-Jie Zhang,
and Wei-Xing Zhou. 2013. Trading networks, abnormal motifs and stock
manipulation. Quantitative Finance Letters 1, 1 (Dec. 2013), 1–8. doi:
10.1080/21649502.2013.802877.

[37] Hiroki Kanezashi, Toyotaro Suzumura, Xin Liu, and Takahiro Hirofuchi.
2022. Ethereum Fraud Detection with Heterogeneous Graph Neural Networks.
arXiv:2203.12363 [cs].

[38] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,
Qiwei Ye, and Tie-Yan Liu. 2017. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. In Advances in Neural Information Processing Systems, Vol. 30.
Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/
file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

[39] Nancy Kinnison and John Madinger (Eds.). 2011. Money Laundering: A Guide for
Criminal Investigators, Third Edition. Routledge, Boston, MA.

229

https://aws.amazon.com/fraud-detector/
https://doi.org/10.1126/science.aad9029
https://doi.org/10.1126/science.aad9029
https://doi.org/10.1145/3490148.3538585
https://doi.org/10.1145/3611642
https://doi.org/10.1109/TPAMI.2022.3154319
https://doi.org/10.1145/362342.362367
https://doi.org/10.1145/362342.362367
https://doi.org/10.14778/3352063.3352126
https://doi.org/10.1109/TSMC.2018.2867497
https://doi.org/10.1109/TSMC.2018.2867497
http://xblock.pro/ethereum/
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1007/978-3-030-24907-6_20
https://doi.org/10.1007/978-3-030-24907-6_20
https://cloud.ibm.com/docs/vpc
https://cloud.ibm.com/docs/vpc
https://doi.org/10.1108/JFC-10-2019-0137
https://www.forrester.com/report/the-forrester-wave-tm-anti-money-laundering-solutions-q3-2022/RES176346
https://www.forrester.com/report/the-forrester-wave-tm-anti-money-laundering-solutions-q3-2022/RES176346
https://doi.org/10.1145/3178876.3186183
https://doi.org/10.1145/3308558.3313488
https://doi.org/10.1093/bib/bbab159
https://doi.org/10.1007/978-3-030-55814-7_12
https://doi.org/10.1016/j.physrep.2012.03.001
https://www.ibm.com/products/ai-toolkit-for-z-and-linuxone
https://www.ibm.com/products/ai-toolkit-for-z-and-linuxone
https://www.ibm.com/products/cloud-pak-for-data
https://www.ibm.com/products/cloud-pak-for-data
https://doi.org/10.1109/ICCIT.2009.5407133
https://doi.org/10.1109/CISS.2014.6814096
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf

Graph Feature Preprocessor: Real-time Subgraph-based Feature Extraction for Financial Crime Detection ICAIF ’24, November 14–17, 2024, Brooklyn, NY, USA

[40] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In International Conference on Learning Repre-
sentations.

[41] Stephen Kokoska and Daniel Zwillinger. 2000. CRC Standard Probability and
Statistics Tables and Formulae, Student Edition (0 ed.). CRC Press. https://doi.
org/10.1201/b16923

[42] Meng-Chieh Lee, Yue Zhao, Aluna Wang, Pierre Jinghong Liang, Leman Akoglu,
Vincent S. Tseng, and Christos Faloutsos. 2020. AutoAudit: Mining Accounting
and Time-Evolving Graphs. In 2020 IEEE International Conference on Big Data (Big
Data). IEEE, Atlanta, GA, USA, 950–956. https://doi.org/10.1109/BigData50022.
2020.9378346

[43] Xiangfeng Li, Shenghua Liu, Zifeng Li, Xiaotian Han, Chuan Shi, Bryan Hooi, He
Huang, and Xueqi Cheng. 2020. FlowScope: Spotting Money Laundering Based
on Graphs. AAAI 34, 04 (April 2020), 4731–4738. https://doi.org/10.1609/aaai.
v34i04.5906

[44] Xiao Fan Liu, Xin-Jian Jiang, Si-Hao Liu, and Chi Kong Tse. 2021. Knowledge
Discovery in Cryptocurrency Transactions: A Survey. IEEE Access 9 (2021),
37229–37254. https://doi.org/10.1109/ACCESS.2021.3062652

[45] Yang Liu, Xiang Ao, Zidi Qin, Jianfeng Chi, Jinghua Feng, Hao Yang, and Qing He.
2021. Pick and Choose: A GNN-Based Imbalanced Learning Approach for Fraud
Detection. In Proceedings of the Web Conference 2021 (Ljubljana, Slovenia) (WWW
’21). Association for Computing Machinery, New York, NY, USA, 3168–3177.
https://doi.org/10.1145/3442381.3449989

[46] Zhenqi Lu, Johan Wahlström, and Arye Nehorai. 2018. Community Detection
in Complex Networks via Clique Conductance. Sci Rep 8, 1 (Dec. 2018), 5982.
https://doi.org/10.1038/s41598-018-23932-z

[47] Scott M Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting Model
Predictions. In Advances in Neural Information Processing Systems 30. Curran
Associates, Inc., 4765–4774.

[48] Prabhaker Mateti and Narsingh Deo. 1976. On Algorithms for Enumerating
All Circuits of a Graph. SIAM J. Comput. 5, 1 (March 1976), 90–99. https:
//doi.org/10.1137/0205007

[49] Jack Nicholls, Aditya Kuppa, and Nhien-An Le-Khac. 2021. Financial Cybercrime:
A Comprehensive Survey of Deep Learning Approaches to Tackle the Evolving
Financial Crime Landscape. IEEE Access 9 (2021), 163965–163986. https://doi.
org/10.1109/ACCESS.2021.3134076

[50] Jack Nicholls, Aditya Kuppa, and Nhien-An Le-Khac. 2021. Financial Cybercrime:
A Comprehensive Survey of Deep Learning Approaches to Tackle the Evolving
Financial Crime Landscape. IEEE Access 9 (2021), 163965–163986. https://doi.
org/10.1109/ACCESS.2021.3134076

[51] Catarina Oliveira, João Torres, Maria Inês Silva, David Aparício, João Tiago
Ascensão, and Pedro Bizarro. 2021. GuiltyWalker: Distance to illicit nodes in the
Bitcoin network. arXiv:2102.05373 [cs].

[52] Girish Keshav Palshikar and Manoj M. Apte. 2008. Collusion set detection using
graph clustering. Data Min Knowl Disc 16, 2 (April 2008), 135–164. https:
//doi.org/10.1007/s10618-007-0076-8

[53] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. DeepWalk: online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, New York New York
USA, 701–710. https://doi.org/10.1145/2623330.2623732

[54] Erich Prisner. 2000. Bicliques in Graphs I: Bounds on Their Number. Combina-
torica 20, 1 (Jan. 2000), 109–117. https://doi.org/10.1007/s004930070035

[55] Xiao Qin, Nasrullah Sheikh, Berthold Reinwald, and Lingfei Wu. 2021. Relation-
aware Graph Attention Model with Adaptive Self-adversarial Training. In
AAAI’21. AAAI Press, 9368–9376.

[56] Xiafei Qiu, Wubin Cen, Zhengping Qian, You Peng, Ying Zhang, Xuemin Lin,
and Jingren Zhou. 2018. Real-time constrained cycle detection in large dynamic
graphs. PVLDB 11, 12 (Aug. 2018), 1876–1888. doi: 10.14778/3229863.3229874.

[57] Susie Xi Rao, Shuai Zhang, Zhichao Han, Zitao Zhang, Wei Min, Zhiyao Chen,
Yinan Shan, Yang Zhao, and Ce Zhang. 2021. xFraud: explainable fraud transaction
detection. PVLDB 15, 3 (Nov. 2021), 427–436. https://doi.org/10.14778/3494124.
3494128

[58] C++ reference. 2023. std::unordered_map. https://en.cppreference.com/w/cpp/
container/unordered_map Accessed: 2023-02-21.

[59] IBM Research. 2022. Graph Feature Preprocessor Public Examples.
https://github.com/IBM/snapml-examples/blob/main/examples/graph_
feature_preprocessor/graph_feature_preprocessor.ipynb Accessed: 2023-03-3.

[60] IBM Research. 2022. Graph Feature PreprocessorDocumentation. https://snapml.
readthedocs.io/en/latest/graph_preprocessor.html Accessed: 2023-01-10.

[61] IBM Research. 2022. Snap ML PyPI package. https://pypi.org/project/snapml/
Accessed: 2023-01-10.

[62] Peter Reuter and Edwin M. Truman. 2004. Chasing Dirty Money: The Fight
Against Money Laundering. Institute for International Economics, Washington,
DC, Chapter Money Laundering: Methods and Markets.

[63] Evan Rivera, Jovan Blanuša, Jawaharlal Rajan, Alexis Landis, and Haris Pozidis.
2024. AI on IBM Z Anti-Money Laundering Solution Template. https://github.
com/ambitus/aionz-st-anti-money-laundering Accessed: 2024-10-02.

[64] Viktoria Ronge, Christoph Egger, Russell W. F. Lai, Dominique Schröder, and
Hoover H. F. Yin. 2021. Foundations of Ring Sampling. Proceedings on Privacy
Enhancing Technologies 2021, 3 (July 2021), 265–288. https://doi.org/10.2478/
popets-2021-0047

[65] Roman Schulte-Sasse, Stefan Budach, Denes Hnisz, and Annalisa Marsico. 2021.
Integration of multiomics data with graph convolutional networks to identify
new cancer genes and their associated molecular mechanisms. Nature Machine
Intelligence 3, 6 (2021), 513–526. https://doi.org/10.1038/s42256-021-00325-y

[66] scikit-learn developers. 2022. Scikit-learn: Preprocessing Data. https://scikit-
learn.org/stable/modules/preprocessing.html Accessed: 2023-01-16.

[67] Michele Starnini and Charalampos E. Tsourakakis et al. 2021. Smurf-Based Anti-
money Laundering in Time-Evolving Transaction Networks. InMachine Learning
and Knowledge Discovery in Databases. Applied Data Science Track. Vol. 12978.
Springer International Publishing, Cham, 171–186. https://doi.org/10.1007/978-
3-030-86514-6_11

[68] Shixuan Sun and Qiong Luo. 2020. In-Memory Subgraph Matching: An In-
depth Study. In Proceedings of the 2020 ACM SIGMOD International Conference on
Management of Data. ACM, Portland OR USA, 1083–1098. https://doi.org/10.
1145/3318464.3380581

[69] Toyotaro Suzumura and Hiroki Kanezashi. 2021. Anti-Money Laundering
Datasets: InPlusLab Anti-Money Laundering DataDatasets. http://github.com/
IBM/AMLSim/.

[70] Katharina Tschumitschew and Frank Klawonn. 2012. Incremental Statisti-
cal Measures. In Learning in Non-Stationary Environments, Moamar Sayed-
Mouchaweh and Edwin Lughofer (Eds.). Springer New York, New York, NY,
21–55. https://doi.org/10.1007/978-1-4419-8020-5_2

[71] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. International Confer-
ence on Learning Representations (2018).

[72] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2019. Deep Graph Infomax. ICLR (Poster) 2, 3 (2019), 4.

[73] Samourai Wallet. 2021. Whirlpool Coinjoin. https://samouraiwallet.com/
whirlpool

[74] Jianian Wang, Sheng Zhang, Yanghua Xiao, and Rui Song. 2021. A Review on
Graph Neural Network Methods in Financial Applications. CoRR abs/2111.15367
(2021). arXiv:2111.15367

[75] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio
Bellei, Tom Robinson, and Charles E Leiserson. 2019. Anti-money laundering in
bitcoin: Experimenting with graph convolutional networks for financial forensics.
arXiv preprint arXiv:1908.02591 (2019).

[76] Jiajing Wu, Jieli Liu, Weili Chen, Huawei Huang, Zibin Zheng, and Yan Zhang.
2021. Detecting Mixing Services via Mining Bitcoin Transaction Network With
Hybrid Motifs. IEEE Trans. Syst. Man Cybern, Syst. (2021), 1–13. https://doi.org/
10.1109/TSMC.2021.3049278

[77] Xblock. 2024. Ethereum Phishing Transaction Network. https://www.kaggle.
com/datasets/xblock/ethereum-phishing-transaction-network Accessed: 2023-
01-27.

[78] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[79] Zaixi Zhang, Qi Liu, Hao Wang, Chengqiang Lu, and Cheekong Lee. 2021. Motif-
based Graph Self-Supervised Learning for Molecular Property Prediction. CoRR
abs/2110.00987 (2021). arXiv:2110.00987

[80] Yongchun Zhu, Dongbo Xi, Bowen Song, Fuzhen Zhuang, Shuai Chen, Xi Gu,
and Qing He. 2020. Modeling Users’ Behavior Sequences with Hierarchical
Explainable Network for Cross-domain Fraud Detection. In Proceedings of The
Web Conference 2020. ACM, Taipei Taiwan, 928–938. https://doi.org/10.1145/
3366423.3380172

230

https://doi.org/10.1201/b16923
https://doi.org/10.1201/b16923
https://doi.org/10.1109/BigData50022.2020.9378346
https://doi.org/10.1109/BigData50022.2020.9378346
https://doi.org/10.1609/aaai.v34i04.5906
https://doi.org/10.1609/aaai.v34i04.5906
https://doi.org/10.1109/ACCESS.2021.3062652
https://doi.org/10.1145/3442381.3449989
https://doi.org/10.1038/s41598-018-23932-z
https://doi.org/10.1137/0205007
https://doi.org/10.1137/0205007
https://doi.org/10.1109/ACCESS.2021.3134076
https://doi.org/10.1109/ACCESS.2021.3134076
https://doi.org/10.1109/ACCESS.2021.3134076
https://doi.org/10.1109/ACCESS.2021.3134076
https://doi.org/10.1007/s10618-007-0076-8
https://doi.org/10.1007/s10618-007-0076-8
https://doi.org/10.1145/2623330.2623732
https://doi.org/10.1007/s004930070035
https://doi.org/10.14778/3494124.3494128
https://doi.org/10.14778/3494124.3494128
https://en.cppreference.com/w/cpp/container/unordered_map
https://en.cppreference.com/w/cpp/container/unordered_map
https://github.com/IBM/snapml-examples/blob/main/examples/graph_feature_preprocessor/graph_feature_preprocessor.ipynb
https://github.com/IBM/snapml-examples/blob/main/examples/graph_feature_preprocessor/graph_feature_preprocessor.ipynb
https://snapml.readthedocs.io/en/latest/graph_preprocessor.html
https://snapml.readthedocs.io/en/latest/graph_preprocessor.html
https://pypi.org/project/snapml/
https://github.com/ambitus/aionz-st-anti-money-laundering
https://github.com/ambitus/aionz-st-anti-money-laundering
https://doi.org/10.2478/popets-2021-0047
https://doi.org/10.2478/popets-2021-0047
https://doi.org/10.1038/s42256-021-00325-y
https://scikit-learn.org/stable/modules/preprocessing.html
https://scikit-learn.org/stable/modules/preprocessing.html
https://doi.org/10.1007/978-3-030-86514-6_11
https://doi.org/10.1007/978-3-030-86514-6_11
https://doi.org/10.1145/3318464.3380581
https://doi.org/10.1145/3318464.3380581
http://github.com/IBM/AMLSim/
http://github.com/IBM/AMLSim/
https://doi.org/10.1007/978-1-4419-8020-5_2
https://samouraiwallet.com/whirlpool
https://samouraiwallet.com/whirlpool
https://arxiv.org/abs/2111.15367
https://doi.org/10.1109/TSMC.2021.3049278
https://doi.org/10.1109/TSMC.2021.3049278
https://www.kaggle.com/datasets/xblock/ethereum-phishing-transaction-network
https://www.kaggle.com/datasets/xblock/ethereum-phishing-transaction-network
https://arxiv.org/abs/2110.00987
https://doi.org/10.1145/3366423.3380172
https://doi.org/10.1145/3366423.3380172

	Abstract
	1 Introduction
	2 Graph Feature Preprocessor
	2.1 Dynamic Graph Management
	2.2 Graph Pattern Mining
	2.3 Feature Encoding

	3 Experimental setup
	4 Results
	5 Related Work
	6 Conclusions
	Acknowledgments
	References

