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Abstract

When training overparameterized deep networks for classification tasks, it has
been widely observed that the learned features exhibit a so-called “neural collapse”
phenomenon. More specifically, for the output features of the penultimate layer,
for each class the within-class features converge to their means, and the means
of different classes exhibit a certain tight frame structure, which is also aligned
with the last layer’s classifier. As feature normalization in the last layer becomes a
common practice in modern representation learning, in this work we theoretically
justify the neural collapse phenomenon under normalized features. Based on an un-
constrained feature model, we simplify the empirical loss function in a multi-class
classification task into a nonconvex optimization problem over the Riemannian
manifold by constraining all features and classifiers over the sphere. In this context,
we analyze the nonconvex landscape of the Riemannian optimization problem over
the product of spheres, showing a benign global landscape in the sense that the only
global minimizers are the neural collapse solutions while all other critical points
are strict saddle points with negative curvature. Experimental results on practical
deep networks corroborate our theory and demonstrate that better representations
can be learned faster via feature normalization. Code for our experiments can be
found at https://github.com/cjyaras/normalized-neural-collapse.

1 Introduction

Despite the tremendous success of deep learning in engineering and scientific applications over
the past decades, the underlying mechanism of deep neural networks (DNNs) still largely remains
mysterious. Towards the goal of understanding the learned deep representations, a recent line of
seminal works [1–5] presents an intriguing phenomenon that persists across a range of canonical
classification problems during the terminal phase of training. Specifically, it has been widely observed
that last-layer features (i.e., the output of the penultimate layer) and last-layer linear classifiers of a
trained DNN exhibit simple but elegant mathematical structures, in the sense that

• (NC1) Variability Collapse: the individual features of each class concentrate to their class-means.
• (NC2) Convergence to Simplex ETF: the class-means have the same length and are maximally

distant. In other words, they form a Simplex Equiangular Tight Frame (ETF).
∗Equal contribution.
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Figure 1: Comparison of features found with and without normalization. K = 100 classes with
n = 5 samples per class. Features and classifiers are found through optimizing the cross-entropy loss
with a UFM, where features are embedded in 2-dimensional space, i.e., d = 2. (a) No normalization
of features or classifiers. (b) Features and classifiers are constrained to the unit sphere (features are
scaled down for visualization purposes).

Table 1: Average UFM feature loss and accuracy over 10 trials with and without normalization to
sphere, with the same set-up as in Figure 1.

Average CE Loss Average Accuracy
No Normalization 1.63± 0.03 49.9%± 2.39%

Normalization 3.84± 0.00 100.0%± 0.00%

• (NC3) Convergence to Self-Duality: the last-layer linear classifiers perfectly match their class-
means.

Such a phenomenon is referred to as Neural Collapse (NC) [1], which has been shown empirically
to persist across a broad range of canonical classification problems, on different loss functions
(e.g., cross-entropy (CE) [1, 3, 4], mean-squared error (MSE) [5, 6], and supervised contrasive (SC)
losses [7], etc.), different neural network architectures (e.g., VGG [8], ResNet [9], and DenseNet [10],
etc.), and on a variety of standard datasets (e.g., MNIST [11], CIFAR [12], ImageNet [13], etc.).
Recently, in independent lines of research, many works are devoted to learning maximally compact
and separated features; see, e.g., [14–22]. This has also been widely demonstrated in a number of
recent works [23–29], including state-of-the-art natural language models (such as BERT, RoBERTa,
and GPT) [24].

Motivations & contributions. In this work, we further demystify why NC happens in network
training with feature normalization (i.e., normalizing the last-layer features on the unit hypersphere),
mainly motivated by the following reasons:

• Feature normalization is a common practice in training deep networks. Recently, many existing
results demonstrated that training with feature normalization often improves the quality of learned
representation with better class separation [7, 16, 18–20, 30–32]. Such a representation is closely
related to the discriminative representation in literature; see, e.g., [16, 18, 19, 33]. As illustrated in
Fig. 1 and Table 1, experimental results visualized in low-dimensional space show that features
learned with normalization are more uniformly distributed over the sphere and hence are more
linearly separable than those learned without normalization. In particular, it has been shown that
the learned representations with larger class separation usually lead to improved test performances;
see, e.g., [7, 34]. Moreover, it has been demonstrated that discriminative representations can also
improve robustness to mislabeled data [30, 31], and has become a common practice in recent
advances on (self-supervised) pre-trained models [32, 35].
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• A common practice of theoretically studying NC with norm constraints. Due to these practical
reasons, many existing theoretical studies on NC consider formulations with both the norms of
features and classifiers constrained [3, 7, 36–38]. Based upon assumptions of unconstrained feature
models [3, 4, 39], these works show that the only global solutions satisfy NC properties for a
variety of loss functions (e.g., MSE, CE, SC losses, etc). Nonetheless, they only focused on the
global optimality conditions without looking into their nonconvex landscapes, and therefore fail to
explain why global NC solutions can be efficiently reached by classical training algorithms such
as stochastic gradient descent (SGD).

In this work, we study the global optimization landscape of the training loss with norm constraints on
the features and classifiers. We consider the commonly used CE loss and formulate the problem as
a Riemannian optimization problem over products of unit spheres (i.e., the oblique manifold). Our
study is also based upon the assumption of the so-called unconstrained feature model (UFM) [4,5,39]
or layer-peeled model [40], where the last-layer features of the deep network are treated as free
optimization variables to simplify the nonlinear interactions across layers. The underlying reasoning
is that modern deep networks are often highly overparameterized with the capacity of learning any
representations [41–43], so that the last-layer features can approximate, or interpolate, any point in
the feature space.

Assuming the UFM, we show that the Riemannian optimization problem has a benign global land-
scape, in the sense that the loss with respect to (w.r.t.) the features and classifiers is a strict saddle
function [44, 45] over the Riemannian manifold. More specifically, we prove that every local min-
imizer is a global solution satisfying the NC properties, and all the other critical points exhibit
directions with negative curvature. Our analysis for the manifold setting is based upon a nontriv-
ial extension of recent studies for the NC with penalized formulations [2, 4–6], which could be
of independent interest. Our work brings new tools from Riemannian optimization for analyzing
optimization landscapes of training deep networks with an increasingly common practice of feature
normalization. At the same time, we empirically demonstrate the advantages of the constrained
formulation on the manifold over its penalized counterpart for training deep networks – faster training
and higher quality representations. Lastly, under the UFM we believe the benign landscape over
the manifold could hold for many other popular training losses beyond CE, such as the (supervised)
contrastive loss [34]. We leave this for future exploration.

Prior arts and related works on NC. The empirical NC phenomenon has inspired a recent line
of theoretical studies on understanding why it occurs [4–7, 36, 39, 40]. Like ours, most of these
works studied the problem under the UFM. In particular, despite the nonconvexity, recent works
showed that the only global solutions are NC solutions for a variety of nonconvex training losses
(e.g., CE [4, 36, 40], MSE [5, 6], SC losses [7]) and different problem formulations (e.g., penalized,
constrained, and unconstrained) [2, 4–6, 36]. Recently, this study has been extended to deeper models
with the MSE training loss [6]. More surprisingly, it has been further shown that the nonconvex losses
under the UFM have benign global optimization landscapes, in the sense that every local minimizer
satisfies NC properties and the remaining critical points are strict saddles with negative curvature.
Such results have been established for both CE and MSE losses [4, 5], where they considered the
unconstrained formulations with regularization on both features and classifiers. We should also
mention that the benign global optimization landscapes of many other problems in neural networks
have been widely found in the literature; see, e.g., [46–50].

Moreover, there is a line of recent works investigating the benefits of NC on generalization of deep
networks. The work [51] showed that NC also happens on test data drawn from the same distribution
asymptotically, but with less collapse for finite samples [52]. Other works [52, 53] demonstrated
that the variability collapse of features is actually happening progressively from shallow to deep
layers, and [54] showed that test performance can be improved when enforcing variability collapse
on features of intermediate layers. The works [55, 56] showed that fixing the classifier as a simplex
ETF improves test performance on imbalanced training data and long-tailed classification problems.
For more details on related works, we refer the readers to the Appendix A.

Notation. Let Rn be the n-dimensional Euclidean space and ∥ · ∥2 be the Euclidean norm. We
write matrices in bold capital letters such as A, vectors in bold lower-case such as a, and scalars in
plain letters such as a. Given a matrix A ∈ Rd×K , we denote its k-th column by ak, its i-th row by
ai, its (i, j)-th element by aij , and its spectral norm by ∥A∥. We use diag(A) to denote a vector
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that consists of diagonal elements of A, and we use ddiag(A) to denote a diagonal matrix composed
by only the diagonal entries of A. Given a positive integer n, we denote the set {1, . . . , n} by [n].
We denote the unit hypersphere in Rd by Sd−1 := {x ∈ Rd : ∥x∥2 = 1}.

2 Nonconvex Formulation with Spherical Constraints

In this section, we review the basic concepts of deep neural networks and introduce notation that will
be used throughout the paper. Based upon this, we formally introduce the problem formulation over
the Riemannian manifold under the assumption of the UFM.

2.1 Basics of Deep Neural Networks

In this work, we focus on the multi-class (e.g., K class) classification problem. Given input data
x ∈ RD, the goal of deep learning is to learn a deep hierarchical representation (or feature) h(x) =
ϕθ(x) ∈ Rd of the input along with a linear classifier1 W ∈ Rd×K such that the output ψΘ(x) =
W⊤h(x) of the network fits the input x to an one-hot training label y ∈ RK . More precisely, in
vanilla form an L-layer fully connected deep neural network can be written as

ψΘ(x) = WL︸︷︷︸
linear classifier W=W⊤

L

σ (WL−1 · · ·σ (W1x+ b1) + bL−1)︸ ︷︷ ︸
feature h = ϕθ(x)

+ bL, (1)

where each layer is composed of an affine transformation, represented by some weight matrix Wk,
and bias bk, followed by a nonlinear activation σ(·), and Θ = {Wk, bk}Lk=1 and θ = {Wk, bk}L−1

k=1
denote the weights for all the network parameters and those up to the last layer, respectively. Given
training samples {(xk,i,yk)} ⊂ RD × RK drawn from the same data distribution D, we learn the
network parameters Θ via minimizing the empirical risk over these samples,

min
Θ

K∑
k=1

nk∑
i=1

LCE (ψΘ(xk,i),yk) , s.t. Θ ∈ C, (2)

where yk ∈ RK is a one-hot vector with only the kth entry being 1 and the remaining ones being
0 for all k ∈ [K], xk,i ∈ RD is the i-th sample in the k-th class, {nk}Kk=1 denotes the number of
training samples in each class, and the set C denotes the constraint set of the network parameters Θ
that we will specify later.

Here, we study the most widely used CE loss of the form

LCE(z,yk) := − log

(
exp(zk)∑K
ℓ=1 exp(zℓ)

)
.

2.2 Riemannian Optimization over the Product of Spheres

For the K-class classification problem, let us consider a simple case where the number of training
samples in each class is balanced (i.e., n = n1 = n2 = · · · = nK) and N = Kn. We assume
that the bias of the final layer bL is zero with the last activation function σ(·) before the output
being linear. Analyzing deep networks ψΘ(x) is a tremendously difficult task mainly due to the
nonlinear interactions across a large number of layers. To simplify the analysis, we assume the
so-called unconstrained feature model (UFM) following the previous works [4, 7, 38, 39]. More
specifically, we simplify the nonlinear interactions across layers by treating the last-layer features
hk,i = ϕθ(xk,i) ∈ Rd as free optimization variables, where the underlying reasoning is that modern
deep networks are often highly overparameterized to approximate any continuous function [41–43].
Concisely, we write all the features in a matrix form as

H = [H1 H2 · · · HK ] ∈ Rd×N , Hk = [hk,1 hk,2 · · · hk,n] ∈ Rd×n, ∀ k ∈ [K],

and correspondingly write the classifier W as

W = [w1 w2 · · · wK ] ∈ Rd×K , wk ∈ Rd, ∀ k ∈ [K].

1We write W = W⊤
L in the transposed form for the simplicity of analysis.
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Based upon the discussion in Section 1, we assume that both the features H and the classifiers W
are normalized,2 i.e., ∥hk,i∥2 = 1 and ∥wk∥2 = τ for all k ∈ [K] and all i ∈ [n], where τ > 0 is a
temperature parameter. As a result, we obtain a constrained formulation of the NC problem over a
Riemannian manifold

min
W ,H

1

N

K∑
k=1

n∑
i=1

LCE

(
W⊤hk,i,yk

)
s.t. ∥wk∥2 = τ, ∥hk,i∥2 = 1, ∀ i ∈ [n], ∀ k ∈ [K]. (3)

Since the temperature parameter τ can be absorbed into the loss function, we replace wk by τwk and
change the original constraint into ∥wk∥2 = 1 for all k ∈ [K]. Moreover, the product of spherical
constraints forms an oblique manifold [57] embedded in Euclidean space,

OB(d,K) :=
{
Z ∈ Rd×K | zk ∈ Sd−1, ∀ k ∈ [K]

}
.

Consequently, we can rewrite Problem (3) as a Riemannian optimization problem over the oblique
manifold w.r.t. W and H , i.e.,

min
W ,H

f(W ,H) :=
1

N

K∑
k=1

n∑
i=1

LCE

(
τW⊤hk,i,yk

)
, (4)

s.t. H ∈ OB(d,N), W ∈ OB(d,K).

In Section 3, we will show that all global solutions of this problem satisfy NC properties, and its
objective function is a strict saddle function [58,59] of (W ,H) over the oblique manifold so that the
NC solution can be efficiently achieved.

O

gradf (h)

∇f (h)

ThM

M = S
2

h

Figure 2: An illustration of the Rie-
mannian gradient of f(h) on a sim-
ple manifold OB(3, 1) = S2.

Riemannian derivatives over the oblique manifold. In
Section 3, we will use tools from Riemannian optimization to
characterize the global optimality condition and the geometric
properties of the optimization landscape of Problem (4). To
proceed, let us first briefly introduce some basic derivations of
the Riemannian gradient and Hessian, defined on the tangent
space of the oblique manifold. For more technical details, we
refer the readers to Appendix B.1. According to [57, Chapter
3 & 5] and [60,61], we can calculate the Riemannian gradients
and Hessian of Problem (4) as follows. Since those quantities
are defined on the tangent space, according to [60, Section
3.1] and the illustration in Figure 2, we first have the tangent
space to OB(d,K) at W as

TWOB(d,K) =
{
Z ∈ Rd×K | diag

(
W⊤Z

)
= 0

}
.

This indicates that the tangent space contains all Z such that zk is orthogonal to wk for all k; when
K = 1, it reduces to the tangent space to the unit sphere Sd−1.

Analogously, we can derive the tangent space for H with a similar form. Let us define

M := τW⊤H, g(M) := f(W ,H).

First, the Riemannian gradient of f(W ,H) of Problem (4) is basically the projection of
the ordinary Euclidean gradient ∇f(W ,H) onto its tangent space, i.e., gradW f(W ,H) =
PTW OB(d,K)(∇W f(W ,H)) and gradH f(W ,H) = PTHOB(d,N)(∇Hf(W ,H)). More specif-
ically, we have

gradW f(W ,H) = τH∇g(M)⊤ − τW ddiag
(
W⊤H∇g(W )⊤

)
, (5)

gradH f(W ,H) = τW∇g(M)− τH ddiag
(
H⊤W∇g(M)

)
. (6)

Second, for any ∆ = (∆W ,∆H) ∈ Rd×K × Rd×N , we compute the Hessian bilinear form of
f(W ,H) along the direction ∆ by

∇2f(W ,H)[∆,∆] = ∇2g(M)
[
τ
(
W⊤∆H +∆⊤

WH
)
, τ
(
W⊤∆H +∆⊤

WH
)]

+ 2τ
〈
∇g(M),∆⊤

W∆H

〉
. (7)

2In practice, it is a common practice to normalize the output feature ho by its norm, i.e., h = ho/ ∥ho∥2, so
that ∥h∥2 = 1.
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We compute the Riemannian Hessian bilinear form of f(W ,H) along any direction ∆ ∈
TWOB(d,K)× THOB(d,N) by

Hess f(W ,H)[∆,∆] = ∇2f(W ,H)[∆,∆]− ⟨∆W ddiag
(
M∇g(M)⊤

)
,∆W ⟩

− ⟨∆H ddiag
(
M⊤∇g(M)

)
,∆H⟩, (8)

where the extra terms besides ∇2f(W ,H)[∆,∆] compensate for the curvature on the oblique
manifold. For derivations of (7) and (8), see Appendix B.2. In the following section, we will use the
Riemannian gradient and Hessian to characterize the optimization landscape of Problem (4).

3 Main Theoretical Analysis

In this section, we first characterize the structure of the global solution set of Problem (4). Based upon
this, we analyze the global landscape of Problem (4) via characterizing its Riemannian derivatives.

3.1 Global Optimality Condition

For the feature matrix H , let us denote the class mean for each class as

H :=
[
h1 · · · hK

]
∈ Rd×K , where hk :=

1

n

n∑
i=1

hk,i, 1 ≤ k ≤ K. (9)

Based upon this, we show any global solution of Problem (4) exhibits NC properties in the sense that
it satisfies (NC1) variability collapse, (NC2) convergence to simplex ETF, and (NC3) convergence to
self-duality.
Theorem 1 (Global Optimality Condition). Suppose that the feature dimension is no smaller than
the number of classes, i.e., d ≥ K, and the training labels are balanced in each class, i.e., n = n1 =
· · · = nK . Then for the CE loss f(W ,H) in Problem (4), it holds that

f(W ,H) ≥ log

(
1 + (K − 1) exp

(
− Kτ

K − 1

))
for all W = [w1, . . . ,wK ] ∈ OB(d,K) and H = [h1,1, . . . ,hK,n] ∈ OB(d,N). In particular,
equality holds if and only if

• (NC1) Variability collapse: hk,i = hk, ∀ i ∈ [n];

• (NC2) Convergence to Simplex ETF: {hk}Kk=1 form a sphere-inscribed simplex ETF in the sense
that

H
⊤
H =

1

K − 1

(
KIK − 1K1⊤

K

)
, H ∈ OB(d,K).

• (NC3) Convergence to Self-duality: wk = hk, ∀ k ∈ [K].

Compared to the unconstrained regularized problems in [4,5], it is worth noting that the regularization
parameters there influence the structure of global solutions, while the temperature parameter τ only
affects the optimization landscape but not the global solutions. On the other hand, the result of our
problem (4) is closely related to [7, Theorem 1] (i.e., spherical constraints vs. ball constraints). In
fact, our problem and that in [7] share the same global solution set. As such, the proof follows similar
ideas of a line of recent works [4–7, 36, 40], and we refer the readers to Appendix C for the proof. It
should be noted that we do not claim originality of this result compared to previous works. Instead,
our major contribution lies in the following global landscape analysis.

3.2 Global Landscape Analysis

Due to the nonconvex nature of Problem (4), the characterization of global optimality alone in
Theorem 1 is not sufficient for guaranteeing efficient optimization to those desired global solutions.
Thus, we further study the global landscape of Problem (4) by characterizing all the Riemannian
critical points (W ,H) ∈ OB(d,K)×OB(d,N) satisfying

gradH f(W ,H) = 0, gradW f(W ,H) = 0.

We now state our major result below.
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Figure 3: Global optimization of (4) under UFM with d = 100 and n = 5. Theoretical line refers
to lower bound (global minimum) from Theorem 1. Empirical values found using gradient descent
with random initialization. Left: Lower bound against number of classes K while fixing τ = 1.
Right: Lower bound against temperature τ while fixing K = 10. The same empirical values are
achieved over many trials due to the benign global landscape.

Theorem 2 (Global Landscape Analysis). Assume that the number of training samples in each class
is balanced, i.e., n = n1 = · · · = nK . If the feature dimension is larger than the number of classes,
i.e., d > K, and the temperature parameter satisfies τ < 2(d− 2)(1 + (K mod 2)/K)−1, then the
function f(W ,H) is a strict saddle function that has no spurious local minimum, in the sense that

• Any Riemannian critical point (W ,H) of Problem (4) that is not a local minimizer is a Rie-
mannian strict saddle point with negative curvatures, in the sense that the Riemannian Hes-
sian Hessf(W ,H) at the critical point (W ,H) is non-degenerate, and there exists a direction
∆ = (∆W ,∆H) ∈ TWOB(d,K)× THOB(d,N) such that

Hess f(W ,H)[∆,∆] < 0.

In other words, λmin (Hessf(W ,H)) < 0 at the corresponding Riemannian critical point.

• Any local minimizer of Problem (4) is a global minimizer of the form shown in Theorem 1.

For the details of the proof, we refer readers to Appendix D. The second bullet point naturally follows
from Theorem 1 and the first bullet point. The major challenge of our analysis is showing the first
bullet, i.e., to find a negative curvature direction ∆ for Hess f(W ,H). Our key observation is that
the set of non-global critical points can be partitioned into two separate cases. In the first case, the
last two terms of (8) vanish, and we show that the second term of (7) is negative and dominates the
first term for an appropriate direction. We require τ to not be too large, since the first term is O(τ2),
whereas the second term is O(τ). In the second case, using the assumption that d > K we can find a
rank-one direction that makes the first term of (7) vanishing. In this case, we similarly show that the
second term of (7) is negative but instead dominates the last two terms of (8). In the following, we
discuss the implications, relationship, and limitations of our results in Theorem 2.

• Efficient global optimization to NC solutions. Our theorem implies that the NC solutions can
be efficiently reached by Riemannian first-order methods (e.g., Riemannian stochastic gradient
descent) with random initialization [58, 62, 63]; see Figure 3 for a demonstration. For training
practical deep networks, this can be efficiently implemented by normalizing last-layer features
when running SGD.

• Relation to existing works on NC. Most existing results have only studied the global minimizers
under the UFM [6, 7, 36, 40], which has limited implications for optimization. On the other hand,
our landscape analysis is based upon a nontrivial extension of that with the unconstrained problem
formulation [4, 5]. Compared to those works, Problem (4) is much more challenging for analysis,
due to the fact that the set of critical points of our problem is essentially much larger than that
of [4, 5]. Moreover, we empirically demonstrate the advantages of the manifold formulation over
its regularized counterpart, in terms of representation quality and training speed.
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• Assumptions on the feature dimension d and temperature parameter τ . Our current result requires
that d > K, which is the same as that in [4, 5]. Furthermore, through numerical simulations we
conjecture that the global landscape also holds even when d ≪ K, while the global solutions
are uniform over the sphere [36] rather than being simplex ETFs (see Figure 1). The analysis on
d ≪ K is left for future work. On the other hand, the required upper bound on τ is for the ease
of analysis and it holds generally in practice,3 but we conjecture that the benign landscape holds
without it.

• Relation to other Riemannian nonconvex problems. Our result joins a recent line of work on
the study of global nonconvex landscapes over Riemannian manifolds, such as orthogonal tensor
decomposition [44], dictionary learning [64–68], subspace clustering [69], and sparse blind de-
convolution [70–73]. For all these problems constrained over a Riemannian manifold, it can be
shown that they exhibit “equivalently good” global minimizers due to symmetries and intrinsic
low-dimensional structures, and the loss functions are usually strict saddles [44, 45, 74]. As we can
see, the global minimizers (i.e., simplex ETFs) of our problem here also exhibit a similar rotational
symmetry, in the sense that W⊤H = (QW )⊤ (QH) for any orthogonal matrix Q. Additionally,
our result shows that tools from Riemmanian optimization can be powerful for the study of deep
learning.

4 Experiments
In this section, we support our theoretical results in previous sections and provide further motivation
with experimental results on practical deep network training. In the first experiment, we validate the
assumption of UFM introduced in Section 2 for analyzing NC, by demonstrating that NC occurs for
increasingly overparameterized deep networks. In the second experiment, we further motivate feature
normalization with empirical results, showing that feature normalization can lead to faster training
and better collapse than the unconstrained counterpart with regularization. This occurs not only with
the UFM but also with practical overparameterized networks. We detail the network architectures,
datasets, training details, and metrics used in these experiments, as well as additional experiments in
Appendix E.

4.1 Validation of the UFM for training networks with feature normalization

In Section 2, our study of the Riemannian optimization problem (4) is based upon the UFM, where
we assume H is a free optimization variable. Here, we justify this assumption by showing that
NC happens for training overparameterized networks even when the training labels are completely
random. By using random labels, we disassociate the input from their class labels, by which we can
characterize the approximation power of the features of overparameterized models. To show this,
we train ResNet-18 with varying widths (i.e., the number of feature maps resulting from the first
convolutional layer) on CIFAR10 with random labels, with normalized features and classifiers.

As shown in Figure 4, we observe that increasing the width of the network allows for perfect
classification on the training data even when the labels are random. Furthermore, increasing the
network width also leads to better NC, measured by the decrease in each NC metric. This validates
that (i) our assumption of UFM is reasonable given that NC seems to be independent of the input
data, and (ii) NC happens under the constrained formulation (4) on practical networks.

4.2 Improved training speed and better representation quality with feature normalization

We now investigate the benefits of using feature normalization, more specifically for improved
training speed and better representation quality. First, we consider the UFM formulation, where
we optimize Problem (4) and compare to the regularized UFM in [4]. The results are shown in
Figure 5. We can see that normalizing features over the sphere consistently results in reaching perfect
classification and greater feature collapse (i.e., smaller NC1) quicker than penalizing the features.
To demonstrate that these behaviors are reflected in training practical deep networks, we train both
ResNet-18 and ResNet-50 architectures on a reduced CIFAR100 [12] dataset with N = 3000 total
samples, comparing the training accuracy and metrics of NC with and without feature normalization.
The results are shown in Figure 6.

3For instance, a standard ResNet-18 [9] model trained on CIFAR-10 [12] has d = 512 and K = 10. In the
same setting, we assume τ < 1020, which is far larger than any useful setting of the temperature parameter (see
Appendix E.3).
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Figure 4: Validation of UFM on ResNet with varying network width. NC metrics and training
accuracy of ResNet-18 networks of various widths on CIFAR10 with n = 200 over 200 epochs.
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Figure 5: Faster training/feature collapse of UFM with feature normalization. Average (deviation
denoted by shaded area) training accuracy and NC1 of UFM over 10 trials of (Riemmanian) gradient
descent with backtracking line search. We set K = 100 classes, n = 30 samples per class.

From Figure 6 (left), we can see that for the ResNet-18 network, we reach perfect classification of
the training data about 10-20 epochs sooner by using feature normalization compared to that of the
unconstrained formulation. From Figure 6 (right), training the ResNet-50 network without feature nor-
malization for 100 epochs shows slow convergence with poor training accuracy, whereas using feature
normalization arrives at above 90% training accuracy in the same number of epochs. By keeping the
size of the dataset the same and increasing the number of parameters, it is reasonable that optimizing
the ResNet-50 network is more challenging due to the higher degree of overparameterization, yet this
effect is mitigated by using feature normalization.

At the same time, for both architectures, using feature normalization leads to greater feature collapse
(i.e., smaller NC1) compared to that of the unconstrained counterpart. As shown in recent work [1, 5,
51] , better NC often leads to better generalization performance. Experimental results demonstrating
that feature normalization generalizes better than regularization are provided in Appendix E.2. Last
but not least, we conjecture that the benign landscape holds beyond the CE loss (e.g., SC [7], see
Appendix E.4); and we believe the benefits of feature normalization are not limited to the evidence
that we showed here, as it could also lead to better robustness [30,31] that is worth further exploration.

5 Conclusion & Discussion
In this work, we study the prevalence of the NC phenomenon with normalized features. Based
upon the assumption of UFM, we formulate the problem as a Riemannian optimization problem
over the product of spheres. We showed that the loss function is a strict saddle function over
the manifold with respect to the last-layer features and classifiers, with no other spurious local
minimizers. We demonstrate this on practical deep network training, and show practical benefits of
feature normalization in terms of training speed and learned representation quality. As future work,
we would like to expand the study to other popular loss functions such as contrastive loss and study
the settings d≪ K, which could be of great importance for studying self-supervised learning.
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