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Abstract
Spiking Neural Networks (SNNs) are emerging
as a brain-inspired alternative to traditional Arti-
ficial Neural Networks (ANNs), prized for their
potential energy efficiency on neuromorphic hard-
ware. Despite this, SNNs often suffer from accu-
racy degradation compared to ANNs and face
deployment challenges due to fixed inference
timesteps, which require retraining for adjust-
ments, limiting operational flexibility. To ad-
dress these issues, our work considers the spatio-
temporal property inherent in SNNs, and pro-
poses a novel distillation framework for deep
SNNs that optimizes performance across full-
range timesteps without specific retraining, en-
hancing both efficacy and deployment adaptabil-
ity. We provide both theoretical analysis and em-
pirical validations to illustrate that training guaran-
tees the convergence of all implicit models across
full-range timesteps. Experimental results on
CIFAR-10, CIFAR-100, CIFAR10-DVS, and Im-
ageNet demonstrate state-of-the-art performance
among distillation-based SNNs training methods.
Our code is available at https://github.com/Intelli-
Chip-Lab/snn temporal decoupling distillation.

1. Introduction
Spiking Neural Networks (SNNs) are modeled after biologi-
cal neural systems and feature spiking neurons that replicate
the dynamics of biological neurons (Maass, 1997; Roy et al.,
2019). In contrast to Artificial Neural Networks (ANNs),
which utilize continuous data forms, SNNs employ a spike-
coding approach, using discrete binary spike trains for data
transmission (Panzeri & Schultz, 2001). This binary sig-
naling significantly reduces the multiply-accumulate op-
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Figure 1. Illustration of the primary challenges and motiva-
tions. (a) Standard logits-based knowledge distillation (logits-KD)
training suffers from large accuracy degradation and requires dif-
ferent models to adapt to various inference timestep settings. (b)
The proposed distillation framework reduces the gap and ensures a
single model for full-range timesteps.

erations generally required for synaptic connections (Roy
et al., 2019), boosting both energy efficiency and speed of
inference on neuromorphic hardware (Akopyan et al., 2015;
Davies et al., 2018; Pei et al., 2019). In essence, SNNs
can be regarded as a type of quantized model that uses
binary transmission, offering the potential for low power
consumption and reduced latency when implemented on
neuromorphic devices (Akopyan et al., 2015; Davies et al.,
2018; Pei et al., 2019).

Although SNNs exhibit considerable potential, their prac-
tical application is hindered by the non-differentiability of
spike activity (Zuo et al., 2024; Deng et al., 2023), coupled
with the limited expressiveness of binary spike feature maps
(Qiu et al., 2024a). Together, these challenges result in ac-
curacy degradation when compared to full-precision ANNs
(Xu et al., 2023b; Zuo et al., 2024; Deng et al., 2023; Guo
et al., 2023a; Hu et al., 2024b). Besides, when deploying
SNNs on neuromorphic hardware, a non-negligible chal-
lenge is that the inference timesteps of the models are fixed,
aligning with those utilized during training to optimize per-
formance. Altering inference timesteps based on specific
needs requires retraining the models for new timesteps (Fig.
1a), which restricts deployment flexibility and affects opera-
tional adaptability in practical settings.

As the common strategy for model lightweighting, Knowl-
edge Distillation (KD) (Hinton, 2015; Gou et al., 2021)
has been increasingly applied to training SNNs (Xu et al.,
2023b; Hong et al., 2023; Guo et al., 2023a; Qiu et al.,
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2024a). The KD-based SNNs training leverages rich in-
formation from an ANN teacher to train a student SNN,
achieving promising results on benchmark vision datasets
such as CIFAR10/100 and ImageNet with CNN-based mod-
els (Xu et al., 2023b; Hong et al., 2023; Deng et al., 2023;
Guo et al., 2023a; Xu et al., 2024). However, current SNNs
distillation methods primarily adopt strategies from ANNs,
sticking to an end-to-end framework that utilizes the SNN’s
ensemble outputs or averaged feature maps as distillation
targets (Xu et al., 2023a; Zuo et al., 2024; Xu et al., 2023b;
Hong et al., 2023; Qiu et al., 2024a). Given the unique
spatio-temporal characteristics of SNNs, there is a pressing
need to develop distillation approaches that more effectively
leverage the distinct properties. Recent studies have demon-
strated improved model convergence by isolating the truth
label objectives to operate independently at each timestep
(Deng et al., 2022; Xiao et al., 2022; Meng et al., 2023; Zhu
et al., 2023). Drawing inspiration from these techniques that
utilize temporally decoupled objectives, we recognize that
fully leveraging the spatio-temporal characteristics inher-
ent in SNNs through decoupling overall voting objectives
is crucial to unlocking the full potential of SNNs distilla-
tion. Furthermore, inspired by self-distillation approaches
(Zhang et al., 2019), recent works have shown the effec-
tiveness of using additional branches based on the SNN
backbone to generate extra logits for distillation (Zuo et al.,
2024; Deng et al., 2023). From the perspective of ensemble
learning (Allen-Zhu & Li, 2020; Wang & Yoon, 2021; Ding
et al.), we further exploit the temporal properties of SNNs
by considering the final voting outputs as an integration of
temporal outputs across time. We recognize that the final
ensemble logits can serve as soft labels for self-distillation,
acting as a regularization mechanism to guide model conver-
gence without additional computational branches or training
costs

Based on the above considerations, we devised a distillation
framework emphasizing temporal-wise decoupling while in-
corporating three types of labels: truth target, teacher label,
and ensemble label. The proposed distillation framework
segments the overarching training objectives into timestep-
specific targets, thereby promoting uniform model perfor-
mance across all timesteps and alleviating the constraints of
fixed timesteps during deployment. For instance, a model
trained at T = 6 can simultaneously produce models for
T = 2 and T = 4 with accuracies that rival those explic-
itly trained for each timestep (see Fig. 1b). To sum up,
we provide an efficient distillation framework to tackle the
deployment challenges of SNNs, which not only reduces
the performance gap between ANNs and SNNs but also
ensures that the internal full-range timestep models within
the SNN are well-trained, allowing for flexible adjustment
of inference timesteps upon deployment according to spe-
cific requirements. Our contributions can be summarized as

follows:

• We propose a distillation framework that emphasizes
temporal-wise decoupling of objectives, which utilizes
the spatio-temporal properties of SNNs and ensures
implicit full-range performance without the need for
retraining for specific timesteps.

• We analyze the convergence of the proposed method
to show the superior efficiency and potential for better
generalization. Both theoretical proofs and empiri-
cal validations illustrate the training guarantees the
convergence of all implicit models across full-range
timesteps.

• We conduct experiments on CIFAR-10, CIFAR-100,
CIFAR10-DVS, and ImageNet, achieving state-of-the-
art results among distillation-based SNNs training
methods.

2. Related Work
Learning Methods for SNNs. SNNs are typically trained
using two main approaches: (1) conversion methods that
create a link between SNNs and ANNs through defined
closed-form mappings, and (2) direct training from scratch
employing Backpropagation Through Time (BPTT). Con-
version methods develop precise mathematical formulations
for spike representations (Lee et al., 2016; Thiele et al.,
2019; Wu et al., 2021a; Zhou et al., 2021; Wu et al., 2021b;
Meng et al., 2022), which enable a smooth transition from
pre-trained ANNs to SNNs and support comparable perfor-
mance on extensive datasets (Cao et al., 2015; Diehl et al.,
2015; Han et al., 2020; Sengupta et al., 2019; Rueckauer
et al., 2017; Deng & Gu, 2021; Li et al., 2021a; Ding et al.,
2021). However, the accuracy of these mappings is not al-
ways guaranteed under conditions of ultra-low latency, often
requiring longer durations to collect sufficient spikes and
potentially reducing performance (Bu et al., 2023; Li et al.,
2022; Hao et al., 2023b;a; Jiang et al., 2023). Direct training
methods, on the other hand, enable SNNs to achieve robust
performance with very few timesteps by using BPTT in
conjunction with surrogate gradients to compute derivatives
for discrete spiking events (Neftci et al., 2019; Shrestha &
Orchard, 2018; Wu et al., 2018; Gu et al., 2019; Yin et al.,
2020; Zheng et al., 2021; Zenke & Vogels, 2021; Li et al.,
2021b; Suetake et al., 2023; Wang et al., 2023b; Zhang &
Li, 2020; Yang et al., 2021). This strategy allows for the de-
velopment of SNN-specific components, such as optimized
neurons, synapses, and network architectures, which im-
prove performance (Guo et al., 2023a; Fang et al., 2021b;a;
Duan et al., 2022; Yao et al., 2021; Yu et al., 2022; Guo
et al., 2022a; Yao et al., 2022; Shen et al., 2023; Qiu et al.,
2024b; 2025; Yao et al., 2025). Despite the advantages of re-
duced latency, direct training incurs significant memory and
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computational burdens due to the necessity to manage the
backward computational graph (Li et al., 2021b; Kim et al.,
2020; Xiao et al., 2021; 2022; Meng et al., 2022; Deng
et al., 2023). To reduce the training expenses associated
with direct methods, several recent studies have proposed
various light training strategies that have gained significant
attention (Mostafa, 2017; Rathi & Roy, 2021; Wang et al.,
2022; Zenke & Ganguli, 2018; Bellec et al., 2020; Bohnst-
ingl et al., 2022; Yin et al., 2023; Xiao et al., 2022; Meng
et al., 2022; Zhu et al., 2023; Yu et al., 2024).

Knowledge Distillation for SNNs. Knowledge distilla-
tion (KD) is a well-established transfer learning technique
effectively utilized for model compression (Hinton, 2015;
Liu et al., 2019; Sun et al., 2019; Wang & Yoon, 2021;
Wei et al., 2018). Recent works have adapted KD to train
SNNs (Kushawaha et al., 2021; Lee et al., 2021; Takuya
et al., 2021; Zhang et al., 2023; Xu et al., 2023b; Hong et al.,
2023; Guo et al., 2023b; Xu et al., 2024; Yu et al., 2025), em-
ploying logits-based distillation from well-trained ANNs or
compressing larger SNNs into more compact models. (Xu
et al., 2023b) integrated both logits-based and feature-based
knowledge distillation into SNNs. (Hong et al., 2023; Guo
et al., 2023b; Xu et al., 2024) further puts forward layer-
wise feature-based ANN-to-SNN distillation framework.
However, SNNs’ binary spike representation challenges the
direct feature alignment with ANNs, making such detailed
alignments potentially overly restrictive (Yang et al., 2025).
This work thus focuses solely on logits-based distillation
to explore its full potential. Furthermore, self-distillation
strategies (Zhang et al., 2019; Allen-Zhu & Li, 2020; Wang
& Yoon, 2021) that do not rely on teacher labels have been
adapted for SNNs (Deng et al., 2023; Dong et al., 2024;
Zuo et al., 2024; Ding et al.). (Deng et al., 2023) adds aux-
iliary branches to SNNs to generate projection logits for
self-distillation through KL divergence. (Zuo et al., 2024)
extends inference times to use longer timestep outputs as
teaching signals for shorter timesteps. Nonetheless, these
strategies increase the computational burden, elevating the
training costs associated with SNNs. (Ding et al.) first treats
SNNs at different timesteps as submodels from an ensem-
ble perspective, proposing KL divergence between adjacent
steps (t and t − 1) to improve performance. While (Ding
et al.) focuses on inter-submodel relations, this work fur-
ther explores the link between the overall ensemble output
and each submodel, aiming to fully exploit the potential of
temporal decoupling within the distillation framework.

3. Method
3.1. From Standard to Temporal-wise Distillation

Standard Logits-based Distillation: First, we consider the
standard logits-based knowledge distillation setup for spik-
ing neural networks. Given the output of the SNNs at each

timestep, zS(t), and the output logits of the teacher ANNs,
zA, the logits-based distillation loss is composed of hard
and soft label components defined on the ensemble voting
outputs zSens = 1

T

∑
t z

S(t). The hard label corresponds
to the cross-entropy loss with softmax S(·) applied to the
classification task with the true ground one-hot label y:

LSCE = LCE
(
S(zSens),y

)
= −

∑
i

yi logSi(z
S
ens) (1)

Here, the softmax function S(z) = [S1(z), . . . , Sn(z)]
where Si(z) = ezi∑

j ezj
. For the soft labels in distillation,

we generally use the Kullback–Leibler divergence with a
temperature scaling factor τ defined as:

KL
(
S(zSens/τ

)
,S(zA/τ))

= τ2
∑
i

Si(z
A/τ) log

Si(z
A/τ)

Si(zSens/τ)

(2)

Since the entropy regularization term in the KL divergence
formula is only related to zA and does not contribute to the
SNNs training, it can be omitted. This simplifies to:

LSKL = LKL
(
S(zSens/τ),S(z

A/τ)
)

= −τ2
∑
i

Si(z
A/τ) logSi(z

S
ens/τ)

(3)

Combining the classification and distillation losses, the to-
tal loss for SNNs standard logits-based distillation can be
expressed as:

LSKD = LSCE + αLSKL (4)

where α is a coefficient used to balance the two losses.

Temporal-wise Distillation While standard logits-based dis-
tillation typically treats SNNs as purely spatial, end-to-end
models, it overlooks the unique spatio-temporal characteris-
tics inherent to SNNs. Insteads of ANNs with only spatial
logits, SNNs produce multiple sets of logits over time. This
could offer a unique opportunity for SNNs distillation to
leverage spatio-temporal features further. Inspired by en-
semble learning (Allen-Zhu & Li, 2020; Wang & Yoon,
2021), viewing the mean output of SNNs as an ensemble
aggregated through voting over time, it becomes apparent
that the overall outcome across these temporal dimensions
tends to improve as the accuracy at each individual timestep
increases. This insight allows us to intuitively redefine
logits-based distillation targets to encompass outputs across
various timesteps, thus transforming standard logits-based
distillation into temporal-wise distillation. In this context,
we define temporal-wise cross-entropy (TWCE) for hard
targets as:

LTWCE =
1

T

∑
t

LCE
(
S(zS(t)),y

)
(5)
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Figure 2. Framework overview. (a) Standard Logit-based Distillation defines targets on the final ensemble outputs, where model
convergence is not guaranteed with reductions in inference timesteps. (b) Temporal-wise Logit-based Distillation decouples the targets
into each temporal output, resulting in the guaranteed convergence of all implicit full-range timestep models.

Similarly, temporal-wise KL divergence for soft labels from
an ANN teacher is formulated as:

LTWKL =
1

T

∑
t

LKL
(
S
(
zS(t)/τ

)
,S
(
zA/τ

))
(6)

The overall objectives for temporal-wise distillations are
thus combined to form:

LTWKD = LTWCE + αLTWKL (7)

3.2. Enhancing the Overall Framework through
Self-Distillation with Final Ensemble Logits

In fact, the potential of the temporal-wise distillation frame-
work can be further explored. Consistent with findings from
student-ensemble experiments (Allen-Zhu & Li, 2020; Guo
et al., 2020; Wang & Yoon, 2021), we observed that the effi-
cacy of voting logits generally surpasses that of individual
logits at separate timesteps. Consequently, we propose to
further incorporate the final voting logits as an additional
set of soft labels for self-distillation—beyond the true labels
and teacher-generated labels—to guide the model towards
improved convergence:

LTWSD =
1

T

∑
t

LKL
(
S
(
zS(t)/τ

)
,S
(
zSens/τ

))
(8)

Accordingly, the overall training objective is formulated as:

Lfinal = LTWCE + αLTWKL + βLTWSD (9)

where α and β are coefficients to balance the losses. It’s
worth highlighting that this self-distillation loss is highly
adapted to the temporal-wise distillation framework, har-
moniously augmenting its efficacy using only information
from the existing backbone pathway, without adding any
extra feedforward computational branches. Its mechanism is
structurally akin to using soft labels from the ANN, ensuring
consistency across the definitions of loss.

3.3. Convergence of Temporal-wise Distillation

To elucidate the connection between temporal-wise distil-
lation LTWKD and standard distillation LSKD, we start by
examining the convergence of BPTT-based SNNs’ objec-
tives. (Deng et al., 2022) points out the convergence chal-
lenges of classification objectives and suggests optimizing
outputs of each timestep to avoid falling into local minima
with low prediction errors but high second-order moments.
The essential convergence proofs can be provided for the
temporal-wise cross-entropy training objective, as in the
following lemma:
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Algorithm 1 Temporal-wise Distillation Framework for
Training Deep Spiking Neural Networks
Require: Pre-trained ANN model fann, SNN model fsnn,

timesteps T , hyper-parameter α, β, τ , input sample x,
target label y.

Ensure: Train SNN model with logits-based distillation
1: Obtain SNN temporal outputs {zS(t)}t≤T = fsnn(x);
2: Obtain ANN output logits zA = fann(x);
3: Compute ensemble voting output zSens =

1
T

∑
t z

S(t);
4: Compute LTWCE = 1

T

∑
t LCE

(
S(zS(t)),y

)
in Eq. (5)

by the truth target y;
5: Get LTWKL = 1

T

∑
t LKL

(
S
(
zS(t)/τ

)
,S
(
zA/τ

))
in

Eq. (6) by the teacher label zA;
6: Get LTWSD = 1

T

∑
t LKL

(
S
(
zS(t)/τ

)
,S
(
zSens/τ

))
in Eq. (8) by the ensemble label zSens;

7: Obtain the final objective Lfinal = LTWCE + αLTWKL +
βLTWSD in Eq. (9);

8: Update parameters of SNN model based on Lfinal.

Lemma 1. LTWCE forms the upper bound of LSCE, as:

LSCE = −
∑
i

yi logSi

(
zSens(t)

)
≤ − 1

T

∑
t

∑
i

yi logSi(z
S(t)) = LTWCE

(10)

The proof is provided in Appendix A.1. The equality holds if
zS(t) = zSens for every t in [1, T ]. Based on Lemma 1, using
1
T

∑
t LCE(z

S(t), ) instead of LCE(z
S
ens,y) for training can

be viewed as optimizing the upper bound of the overall
training objective. Building on Lemma 1, we can extend our
understanding to the relationship between temporal-wise
distillation and standard logits-based distillation:

Proposition 2. LTWKD forms the upper bound of LSKD, as:

LSKD ≤ LTWKD (11)

The proof is provided in Appendix A.2. The proposition
elucidates that just as the ground-truth CE objective is de-
coupled over time, the soft-label objective’s decoupling can
also ensure convergence of the upper bounds. Therefore,
convergence with LTWKD implies the convergence of LSKD;
once LTWKD approaches zero, the original loss function
LSKD also nears zero. Furthermore, while optimizing for the
decoupling objective primarily ensures convergence only
to the upper bound of LSKD, the incorporation of LTWSD
functions effectively as a regularization term. This could
further tighten the inequality in Eq. (11), narrowing the gap
between the optimization target LTWKD and LSKD, which
ensures that optimizing the upper bound also effectively
aids the convergence of the objective LSKD.

3.4. Convergence Across Full-Range Timesteps

It is worth noting that temporal-wise distillation not only
enhances the overall model performance but also ensures
good convergence for implicitly integrated models with
fewer timesteps in the ensemble. While BPTT-based SNNs
training requires a predefined number of timesteps T as a
hyperparameter, with training targets defined on the fixed
timesteps’ voting outputs, this usually results in models that
are tailored to specific timesteps and exhibit poor generaliz-
ability across different timesteps during inference (see Fig.
2a). In contrast, the temporal-wise distillation framework
can ensure the convergence of implicit models, allowing a
single trained model to handle various timestep scenarios.
We refer to this capability as improving models of full-range
timesteps, which greatly enhances the flexibility for model
deployment.

Proposition 3. L(T )
TWKD defined on timesteps T forms the

scaled upper bound of inner L(Tk)
SKD defined on Tk ≤ T , as:

L(Tk)
SKD ≤ T

Tk
L(T )

TWKD (12)

The proof is provided in Appendix A.3. It can be seen that
L(T )

TWKD is not only an upper bound for L(T )
SKD over timesteps

T as Eq. (11), but also effectively reduces the upper bound
of any implicit L(Tk)

SKD over timesteps Tk ≤ T as Eq. (12);
this aligns with our empirical findings where using temporal-
wise distillation with timestep T during the training phase
results in good generalizability of timesteps during the in-
ference stage (see Fig. 2b).

4. Experiments
In this section, we assess the effectiveness of the proposed
method through experiments on CIFAR-10 (Krizhevsky
et al., 2009), CIFAR-100 (Krizhevsky et al., 2009), Ima-
geNet (Deng et al., 2009), and CIFAR10-DVS (Li et al.,
2017). We conduct SNNs training on the Pytorch (Paszke
et al., 2019) and SpikingJelly (Fang et al., 2023) platforms,
employing BPTT with sigmoid-based surrogate functions
(Fang et al., 2023). All experimental details are provided in
Appendix B.

4.1. Performance Comparison on Benchmarks

We compare our proposed framework to both directly-
trained methods and distillation-based methods on a variety
of classification benchmarks, as shown on static datasets
CIFAR-10/CIFAR-100 in Table 1, large-scale ImageNet in
Table 2, and neuromorphic dynamic dataset CIFAR10-DVS
in Table 3. The directly-trained methods listed in the ta-
bles are based on various adaptations of the surrogate-based
BPTT training scheme, which are modifications specifically
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Table 1. Performance comparison of top-1 accuracy (%) on CIFAR-10 and CIFAR-100 datasets, averaged over three experimental runs.

Method Model Timestep Top-1 Acc. (%)
CIFAR-10 CIFAR-100

Direct-training

STBP-tdBN (Zheng et al., 2021) ResNet-19
6 93.16 -
4 92.92 -
2 92.34 -

Dspike (Li et al., 2021b) ResNet-18
6 94.25 74.24
4 93.66 73.35
2 93.13 71.68

TET (Deng et al., 2022) ResNet-19
6 94.50 74.72
4 94.44 74.47
2 94.16 72.87

RecDis (Guo et al., 2022b) ResNet-19
6 95.55 -
4 95.53 74.10
2 93.64 -

DSR (Meng et al., 2022) ResNet-18 20 95.10 78.50
SSF (Wang et al., 2023a) ResNet-18 20 94.90 75.48
SLTT (Meng et al., 2023) ResNet-18 6 94.4 74.38

OS (Zhu et al., 2023) ResNet-19 4 95.20 77.86

RateBP (Yu et al., 2024)
ResNet-18

6 95.90 79.02
4 95.61 78.26
2 94.75 75.97

ResNet-19
6 96.36 80.83
4 96.26 80.71
2 96.23 79.87

w/ distillation

KDSNN (Xu et al., 2023b) ResNet-18 4 93.41 -

Joint A-SNN (Guo et al., 2023b)
ResNet-18 4 95.45 77.39

2 94.01 75.79

ResNet-34 4 96.07 79.76
2 95.13 77.11

SM (Deng et al., 2023) ResNet-18 4 94.07 79.49
ResNet-19 4 96.82 81.70

SAKD (Qiu et al., 2024a) ResNet-19 4 96.06 80.10
BKDSNN (Xu et al., 2024) ResNet-19 4 94.64 74.95

TSSD (Zuo et al., 2024) ResNet-18 2 93.37 73.40
TKS (Dong et al., 2024) ResNet-19 4 96.35 79.89

EnOF (Guo et al.) ResNet-19 2 96.19 82.43

SuperSNN (Zhang et al.) ResNet-19 6 95.61 77.45
2 95.08 76.49

Our
ResNet-18

6 95.96 79.80
4 95.57 79.10
2 95.11 77.32

ResNet-19
6 97.00 82.56
4 96.97 82.47
2 96.65 81.47

tailored to the peculiarities of SNNs. The ”w/ distillation”
group in the tables includes schemes that incorporate dis-
tillation or self-distillation on top of directly-training. The
results of our approach are consistently based on the hyper-
parameter settings of α = 0.2, β = 0.5 in Eq. (9). It should
be noted, as shown in our theoretical analysis, that while
our scheme can train full-range timestep implicit models
simultaneously in large timestep training, achieving better
performance at smaller timesteps than retraining individ-
ually, we have not used the method of extracting smaller

timesteps from training at larger timesteps for a fair com-
parison. The models presented are obtained through consis-
tent maximum timesteps setting, and further discussions on
full-range implicit models will follow in the experimental
section.

Comparing all results, it can be seen that the proposed dis-
tillation achieves comparable performance among all bench-
marks for both directly-trained methods and distillation-
based methods, proving that our approach can ensure effec-

6



Efficient Logit-based Knowledge Distillation of Deep Spiking Neural Networks for Full-Range Timestep Deployment

Table 2. Performance comparison of top-1 accuracy (%) on Ima-
geNet with single crop.

Method Model Timestep Acc. (%)

STBP-tdBN (Zheng et al., 2021) ResNet-34 6 63.72
ResNet-50 6 64.88

Dspike (Li et al., 2021b) ResNet-34 6 68.19
RecDis (Guo et al., 2022b) ResNet-34 6 67.33

TET (Deng et al., 2022) ResNet-34 4 68.00
OS (Zhu et al., 2023) ResNet-34 4 67.54

RateBP (Yu et al., 2024) ResNet-34 4 70.01
KDSNN (Xu et al., 2023b) ResNet-34 4 67.18
LaSNN (Hong et al., 2023) ResNet-34 4 66.94

SM (Deng et al., 2023) ResNet-34 6 69.35
4 68.25

SAKD (Qiu et al., 2024a) ResNet-34 4 70.04
TKS (Dong et al., 2024) ResNet-34 4 69.60

EnOF (Guo et al.) ResNet-34 4 67.40
Our ResNet-34 4 71.04

Table 3. Performance comparison of top-1 accuracy (%) on
CIFAR10-DVS, averaged over three experimental runs.

Method Model Timestep Acc. (%)
STBP-tdBN (Zheng et al., 2021) ResNet-19 10 67.80

Dspike (Li et al., 2021b) ResNet-18 10 75.40
RecDis (Guo et al., 2022b) ResNet-19 10 72.42

TET (Deng et al., 2022) VGGSNN 10 83.17
SM (Deng et al., 2023) ResNet-18 10 83.19

SSF (Wang et al., 2023a) VGG-11 20 78.00
SLTT (Meng et al., 2023) VGG-11 10 77.17

SAKD (Qiu et al., 2024a) VGG-11 4 81.50
ResNet-19 4 80.30

Our ResNet-18 4 83.50
10 86.40

tive convergence of the model’s final ensemble and reduce
the accuracy gap between SNNs and ANNs. This corre-
sponds to our earlier conclusions. It is worth noting that
based on the re-derivation of standard logits-based meth-
ods, the training overhead of our proposed framework is
consistent with that of standard logits-based distillation.
Our framework does not introduce any additional computa-
tional paths, merely altering the definition location of the
loss. Like logits-based knowledge distillation, our approach,
compared to directly-trained BPTT schemes, only adds the
overhead of ANN inference to obtain teacher labels, making
it the most efficient case among ANN-guided approaches.

4.2. Ablation Study

Hyperparameter Settings of α and β. The Table 4 re-
ports the Top-1 accuracy under various settings of α and
β, using the ResNet-18 model on the CIFAR100 dataset.
Initially, we demonstrate that the ANN’s distillation part,
LTWCE, achieves a reasonable performance gain (79.26%
vs. 79.56%), as shown in the upper part of the table. Sub-
sequently, the lower part of the table illustrates that, with α
fixed at 0.2, incorporating the self-distillation term LTWSD
leads to further improvements (79.56% vs. 79.80%). While
LTWSD is indispensable, the improvements are relatively sta-
ble around β = 0.5, which we select as the fixed setting for

Table 4. Performance comparison on hyperparameters α, β set-
tings using ResNet-18 with T = 6 on the CIFAR100 dataset.

β = 0.0 α = 0.1 0.2 0.3 0.5 0.8
Top-1 (%) 79.31 79.56 79.44 79.48 79.31

α = 0.2 β = 0.1 0.2 0.3 0.5 0.8
Top-1 (%) 79.52 79.57 79.75 79.80 79.71

Table 5. Performance comparison on objectives combinations us-
ing ResNet-18 on the CIFAR100 dataset.

T LTWCE w/ LTWSD w/ LTWKL w/ LTWKL&LTWSD

4 78.58 78.94 79.05 79.10
6 79.26 79.63 79.56 79.80

our hyperparameters.

Ablation Study of Training Objectives. Experiments in-
volving the ablation of training objectives were conducted,
with three parts of labels being added sequentially to de-
termine their effects. The results, summarized in Table 5,
indicate that LTWKL effectively enhances performance be-
yond LTWCE, which aligns with expectations and confirms
the positive impact of soft labels distilled from the ANN
teacher model. Furthermore, the addition of LTWSD fur-
ther enhances the distillation framework, demonstrating that
this self-distillation setup acts as a beneficial regularization
component for the framework. Overall, all objectives have
contributed positively to the distillation framework and are
compatible with one another.

Comparison Study on Temporal Decoupling. Experi-
ments evaluating the impact of temporal decoupling were
conducted using ResNet-18 on the CIFAR100 dataset, with
results shown in Table 6. From the results, it can be
concluded that temporal decoupling of cross-entropy loss
(LSCE) and Kullback-Leibler divergence (LSKL) individually
enhances performance over standard logits-based distilla-
tion. Furthermore, the beneficial effects of both can be
additive, with the best model performance achieved when
both are decoupled, which validates the effectiveness of our
distillation framework based on temporal decoupling.

Table 6. Performance comparison of temporal decoupling on hard
targets and soft labels using ResNet-18 on the CIFAR100 dataset.

T LSCE LTWCE LSKL LTWKL Accuracy (%)

4
✓ ✓ 78.32
✓ ✓ 78.60

✓ ✓ 78.74
✓ ✓ 79.05

6
✓ ✓ 79.07
✓ ✓ 79.15

✓ ✓ 79.32
✓ ✓ 79.56
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Figure 3. Loss Trends. Results of timestep ensembles during train-
ing using ResNet-18 on the CIFAR100 dataset.

Figure 4. Visual Results of t-SNE Projections. The features are
learned by (a) standard logits-based distillation and (b) the pro-
posed temporal-wise distillation. Each subfigure progressively
shows cumulative voting including more timesteps, with the final
ensemble shown on the right.

4.3. Analysis and Discussion

Loss Visualization. In Fig. 3, we illustrate the convergence
behavior of implicit full-range models during the training
process, capturing the evolution of loss across epochs. No-
tably, the implementation of temporal decoupling signifi-
cantly enhances the convergence of loss at each timestep.
As depicted, the loss trajectories for various timestep ensem-
bles not only improve but also exhibit a tighter and more
uniform convergence compared to the standard approach.
Particularly in the early phases of training with temporal
decoupling, there is a notable overlap in the loss values
across all timesteps. This overlapping signifies a robust syn-
chronization in model performance, closely aligning with
theoretical expectations where the loss approaches its theo-
retical upper bounds.

Table 7. Performance comparison of models trained with different
timesteps (i.e. T = 2/4/6) and Top-1 accuracies (%) across
various inference timesteps (i.e. T = 1 → 6).

Model Training w/ Inference Timesteps
T = 1 2 3 4 5 6

ResNet-18
(logits-KD)

T = 2 73.58 77.02 77.31 77.63 77.80 77.80
T = 4 72.44 76.50 77.57 78.32 78.47 78.50
T = 6 71.08 76.25 77.52 78.25 78.63 79.07

ResNet-18
(ours)

T = 2 74.19 77.32 77.65 77.95 78.13 78.14
T = 4 75.08 77.76 78.40 79.10 79.21 79.36
T = 6 75.09 77.80 78.70 79.32 79.60 79.80

ResNet-19
(ours)

T = 2 79.37 81.47 81.67 82.01 82.08 82.36
T = 4 79.40 81.58 82.14 82.47 82.39 82.49
T = 6 79.87 81.72 82.29 82.50 82.55 82.56

Cluster Visualization. As shown in Fig. 4, we present
t-SNE visualizations that illustrate the clustering outcomes
of two distillation strategies. The visual evidence strongly
suggests that temporal-wise distillation, as depicted in Fig.
4b, results in significantly better clustering compared to the
standard method shown in Fig. 4a. This enhanced cluster-
ing indicates a superior training effect on SNNs through
temporal-wise distillation, consistent with outcomes from
other experiments. Analyzing from the perspective of tem-
poral ensembles, it is observed that prior to implementing
temporal decoupling training (Fig. 4a), the final outcomes
under different ensembles exhibit distinct separations. In
the case of the proposed temporal-wise distillation in Fig.
4b, the clustering effects of the submodels exhibit a high
degree of similarity. For example, the upper, lower, central-
left and central-right clusters in each subplot of Fig. 4b
(marked in red boxes) all display a similar pattern across
the five sub-figures. This largely echoes our analysis in
Section 3.4, where the loss of each submodel is essentially
embedded within a larger submodel framework, resulting in
a uniform convergence effect in their clustering outcomes.
This uniformity signifies that the internal implicit models
are converging towards the features seen in the final ensem-
ble, corresponding to the critical role of the self-distillation
component. Furthermore, this observation also explains
why embedded implicit models with reduced timesteps Tk

perform better than those retrained at the maximum timestep
Tk.

Analysis of Full-Range Performance. The results shown
in Table 7 offer comparisons of models trained at different
timesteps (i.e. T = 2/4/6) and corresponding accuracies
across various inference timesteps (i.e. T = 1 → 6). Hori-
zontally, it demonstrates how inference accuracy changes
when adjusting timesteps after model training. Under stan-
dard logits-KD, different models excel within specific in-
ference timestep ranges: T = 2 model performs best at
timesteps 1–2, T = 4 at times 3–4, and T = 6 at time 5–6.
In contrast, ours consistently achieves optimal performance
using the model trained at the maximum timestep (T = 6),
clearly demonstrating the effectiveness of our method in
training robust SNNs that maintain accuracy across varying
inference timesteps. Vertically, the results of our proposed
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method show a consistent improvement in performance as
the number of training timesteps increases. The improve-
ment across full-range inference timesteps suggests that
training with a higher timestep not only enhances model ac-
curacy but also provides a more robust generalization across
varying inference lengths. In practical terms, this allows for
the deployment of a single model trained at T = 6 to effec-
tively replace models trained with fewer timesteps (T = 2
or 4). In other words, one can utilize a fixed-parameter
model to achieve comprehensive coverage across the full
range of inference timesteps, significantly alleviating the
stringent constraints on inference steps typically required
at deployment. The flexibility in deployment is particularly
advantageous, offering a streamlined approach to model
utilization without sacrificing performance.

Practical Significance of Temporal Robustness. We con-
clude that ensuring the robustness of SNNs models at dif-
ferent inference timesteps can provide the following two
technical advantages:

• Horizontal view from Table 7. Taking the model
trained with T = 6 as an example, it shows stable
performance across the inference window from T = 1
to 6. Once deployed, the model does not require ad-
ditional considerations for adaptation and switching
across different inference states. This allows us to
practically balance inference costs and performance di-
rectly, providing a viable model approach for scenarios
that require real-time control of inference costs based
on computational resources.

• Vertical view from Table 7. For the model trained
with T = 4, we can invest in greater training costs
to distill the T = 6 model, and use the submodel at
T = 4 (essentially the same model) to achieve better
performance. This offers an effective and feasible way
to enhance performance by leveraging surplus training
resources, providing a viable technical solution for
scenarios where large training resources are available
and performance enhancement is a critical issue.

We provide a more detailed discussion in Appendix C
on how our proposed method can reduce the actual infer-
ence overhead of SNNs in real-world scenarios through the
SEENN (Li et al., 2023) framework.

5. Conclusion
Leveraging the unique spatio-temporal dynamics inherent
to SNNs, this work incorporates the methodology of tem-
poral decoupling into the SNNs logits-based distillation
framework. We address the deployment considerations of
SNNs that typically require retraining models for different
inference timesteps and provide both theoretical analysis

and empirical experiments to demonstrate that our frame-
work offers an effective solution to this issue. Experiments
on standard benchmarks confirm our superior performance
among distillation-based methods. By adopting temporal
decoupling, our framework ensures robust model conver-
gence and generalization across full-range timesteps. We
hope this can pave the way for future developments in SNNs
deployment and applications.
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A. Proof of Theorems
A.1. Proof of Lamma 1

Lemma 1. LTWCE forms the upper bound of LSCE, as:

LSCE = −
∑
i

yi logSi

(
zSens(t)

)
≤ − 1

T

∑
t

∑
i

yi logSi(z
S(t)) = LTWCE (13)

Proof: Given the convex nature of the function log
(∑n

j=1 e
zj
)

, we know that − log(Si(z)) = log
(∑n

j=1 e
zj
)
− zi is

a convex function. Here, the Hessian matrix H of this function is given by H = diag(p) − ppT where p = S(z) =

[S1(z), S2(z), . . . ]. For any vector v, we have vTHv =
∑

k pkv
2
k − (

∑
k pkvk)

2 ≥ 0, resulting from the non-negativity of
variance, thus H is positive semi-definite. Therefore, by the Jensen’s Inequality, we have:

LTWCE = E

[
−
∑
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yi logSi(z
S(t))

]
≥ −
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yi logSi

(
E
[
zS(t)

])
= LSCE.

A.2. Proof of Proposition 2

Proposition 2. LTWKD forms the upper bound of LSKD, as:

LSKD ≤ LTWKD (14)

Proof: Given that − log(Si(z)) is a convex function, any non-negative linear combination of such functions remains convex,
i.e., for all coefficients ai ≥ 0, the function −

∑
i ai log(Si(z)) is convex. Therefore, by applying Jensen’s Inequality, we

obtain:
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Together with Lemma 1, we then derive

LSKD ≤ LTWCE + αLTWKL = LTWKD.

A.3. Proof of Proposition 3

Proposition 3. L(T )
TWKD defined on timesteps T forms the scaled upper bound of inner L(Tk)

SKD defined on Tk ≤ T , as:

L(Tk)
SKD ≤ T

Tk
L(T )

TWKD (15)

Proof: Applying Jensen’s Inequality to the segments of
∑

t≤T zS(t), specifically separating the terms into[∑
t≤Tk

zS(t), zS(Tk + 1), zS(Tk + 2), . . . , zS(T )
]
, we then derive:
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With LKL > 0, we obtain Tk

T L(Tk)
SKL ≤ L(T )

TWKL. Then, similar inequalities can be applied to CE-based target objectives. Thus,
we can establish the following relationship for inner implicit models: Tk

T L(Tk)
SKD ≤ L(T )

TWKD.

B. Experimental Details
B.1. Datasets

CIFAR-10 and CIFAR-100. The CIFAR datasets (Krizhevsky et al., 2009) consist of 32x32 color images distributed across
different classes under the MIT license. CIFAR-10 comprises 60,000 images in 10 classes, split into 50,000 for training and
10,000 for testing. CIFAR-100 includes images across 100 classes. Both datasets are normalized to zero mean and unit
variance, with image augmentation techniques AutoAugment (Cubuk et al., 2019) and Cutout (DeVries & Taylor, 2017)
applied. The pixel values are directly fed into the input layer at each timestep as direct encoding (Rathi & Roy, 2021).

ImageNet. The ImageNet-1K dataset (Deng et al., 2009) features 1,281,167 training images and 50,000 validation images
across 1,000 classes, normalized for zero mean and unit variance. Training images undergo random resized cropping to
224x224 pixels and horizontal flipping, while validation images are resized to 256x256 and then center-cropped to 224x224.
The pixel values are directly fed into the input layer at each timestep as direct encoding (Rathi & Roy, 2021).

CIFAR10-DVS. The CIFAR10-DVS dataset (Li et al., 2017) is a neuromorphic adaptation of CIFAR-10, which contains
10,000 event-based images captured by the DVS camera, licensed under CC BY 4.0. The dataset is split into 9000 training
images and 1000 testing images. Data preprocessing involves integrating events into frames (Fang et al., 2021b; 2023) and
reducing the spatial resolution to 48x48 through interpolation. Additional data augmentation includes random horizontal
flips and random rolls within a 5-pixel range, mirroring previous methods (Xiao et al., 2022; Meng et al., 2023).

B.2. Training Setup

Network Architectures. For the CIFAR-10 and CIFAR-100 datasets, we use ResNet-18 and ResNet-19 as student SNN
models (He et al., 2016a; Zheng et al., 2021; Xiao et al., 2022; Fang et al., 2023; Wang et al., 2023b), applying ResNet-34
with a Top-1 accuracy of 97.24% on CIFAR-10 and 81.90% on CIFAR-100 as the teacher ANN model. In the case of the
neuromorphic CIFAR10-DVS dataset, we utilize ResNet-19 as the teacher model, which is trained on the spikes mean across
the temporal dimension, with a Top-1 accuracy of 83.6% for T = 4 and 84.4% for T = 10, for ResNet-18 SNN students
with the corresponding timesteps. On the ImageNet dataset, our SNN model is an adapted ResNet-34 with pre-activation
residual blocks (He et al., 2016b), with previous studies guiding its configuration (Xiao et al., 2022; Meng et al., 2023; Zhu
et al., 2023; Yu et al., 2024). The teacher ANN model for ImageNet is a pre-trained ResNet-34 from the Timm library
(Wightman et al.), which has a Top-1 accuracy of 76.32%. All SNN models incorporate the Leaky Integrate-and-Fire (LIF)
neurons with a consistent membrane potential decay coefficient of 0.5, implemented in activation-based mode (Fang et al.,
2023).

Table 8. Hyperparameters Settings.

CIFAR-10 CIFAR-100 ImageNet CIFAR10-DVS

Epoch 300 300 100 300
Learning rate 0.1 0.1 0.2 0.2

Batch size 128 128 512 32
Weight decay 5e-4 5e-4 2e-5 5e-4

Training Details. We employ a sigmoid-based surrogate gradient method (Fang et al., 2023) to emulate the Heaviside step
function with the equation h(x, α) = 1

1+e−αx and a setting of α = 4. The ensemble augmentation for self-distillation is
implemented as (Qiu et al., 2024a). The experiments are conducted on the PyTorch (Paszke et al., 2019) and SpikingJelly
(Fang et al., 2023) platforms. For CIFAR-10, CIFAR-100, and CIFAR10-DVS, we utilize a single NVIDIA GeForce RTX
3090 GPU, whereas ImageNet experiments are carried out using distributed data parallel processing across 8 NVIDIA
GeForce RTX 3090 GPUs. The Stochastic Gradient Descent (SGD) optimizer (Rumelhart et al., 1986) with a momentum
of 0.9 is used across all datasets, combined with a cosine annealing learning rate strategy (Loshchilov & Hutter, 2016).
Detailed hyperparameters for each setup are summarized in Table 8.
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C. More Results and Discussion
C.1. About training costs and practical effectiveness

Table 9. Results on training costs of the standard logit-based framework and
the proposed framework on CIFAR-100.

T = 4 T = 6

logits-KD ours logits-KD ours

Time (s/batch) 0.17367 0.17443 0.26766 0.26811
Memory (MB) 6333.15 6333.20 9105.12 9105.71

As a supplement to the main content, we provide measurements of training costs on CIFAR-100 in Table 9. Consistent with
our discussion, the additional training overhead introduced by our method is negligible compared to the overall backbone.
We conclude that our approach offers a “free lunch” in both direct training frameworks (using only LTWCE + LTWSD)
and direct training combined with distillation frameworks (using LTWCE + LTWSD + LTWKL). We think that the practical
advantages of our method are evident.

C.2. Statistics on firing rates

Table 10. Statistical results of Firing Rates on model ResNet-18 using the CIFAR100 dataset.

T Method t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 mean

4 logits-KD 0.1799 0.2137 0.2045 0.2091 / / 0.2018
ours 0.1819 0.2194 0.2026 0.2138 / / 0.2044

6 logits-KD 0.1761 0.2034 0.2023 0.1966 0.2060 0.1941 0.1964
ours 0.1775 0.2101 0.1937 0.2063 0.1952 0.1980 0.1980

We measured the average firing rate of all neurons at different time steps, as shown in Table 10. It can be observed that the
proposed method exhibits firing frequencies that are essentially consistent with those of the standard logits-based method.

C.3. Results on more spiking-based architectures

Table 11. Results on the architecture of spikingformer on the CIFAR-100 dataset.

Arch. [T = 4] baseline ours

trans-2-384 78.34 80.77
trans-4-384 79.09 81.12

In addition to the benchmarks presented in the main content, we also verify the effectiveness of our method on Spikingformer
(Zhou et al., 2023) and MS-ResNet (Hu et al., 2024a), to demonstrate its generalizability to different network architectures
(Table 11 and Table 12). We note that distilling spiking transformer architectures (Qiu et al., 2025; Yao et al., 2025) requires
special consideration of the choice of the teacher model ANN, as the design philosophy of spiking transformer architectures
differs from traditional ANN architectures. Unlike the ResNet structure, it is not possible to find an ANN counterpart with
the same structure, making this a unique consideration for transformer distillation schemes. At this point, the differences in
structural design necessitate a more ingenious and novel heuristic design for the loss objective aligned with features between
the ANN teacher and the SNN teacher under the feature-based distillation framework, which introduces greater design
complexity in practical implementations. Therefore, we think that logits-based, end-to-end distillation offers more practical
advantages in the direction of spiking transformers. As this work aptly discusses how to fully unleash the potential of
logits-based distillation in exploiting the unique spatiotemporal characteristics of SNNs, it could provide a solid foundation
for further exploration of logits-based distillation in spiking transformer architectures.

We also conducted experiments with VGGSNN (Deng et al., 2022) on the CIFAR10-DVS dataset, as VGGSNN is a
commonly used model for this dataset. The results also allow us to better investigate the interactions among different
objectives on the dynamic dataset. As shown in Table 13, LTWSD demonstrates strong performance in this setting. As
mentioned in Appendix A, since CIFAR10-DVS is a dynamic dataset, the ANN counterpart is trained on the mean input
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Table 12. Results on the architecture of MS-ResNet on the CIFAR-100 dataset.

Arch. [T = 6] baseline logits-KD ours

MS-ResNet-18 76.41 79.63 80.49

Table 13. Results on objectives ablation using VGGSNN on the CIFAR10-DVS dataset.

T LTWCE LTWCE + LTWSD LTWCE + LTWSD + LTWKL

10 83.2 85.8 86.3

across the temporal dimension, which leads to lower accuracy compared to LTWCE + LTWSD. Nevertheless, the results
indicate that the KL loss LTWKL with soft labels still provides a positive effect on model training.

We also note some works that enhance input processing by introducing strategies at the input side (Qiu et al., 2024b;
Kang et al.), which implement adaptive encoding of spike sequences during training via modules at the input layer. This
could help improve the adaptability of SNNs to static inputs and better leverage SNNs’ ability to process spatio-temporal
information. Interestingly, under such enhanced encoding methods, intermediate features evolve over time, and spike
representations embed temporal information. In this context, standard distillation frameworks may force features across time
steps to align with the same ANN targets, undermining temporal diversity. Our proposed distillation framework, designed
for temporal-wise decoupling, is better suited for these scenarios. We think its potential in this direction merits further
investigation.

C.4. Results toward real-world scenarios through SEENN

Table 14. Results of pruning inference time using the trained models under the SEENN-I framework
on the CIFAR-100 dataset. We compare the standard logits-based method with our method, where
SNN models are trained with T = 4 and T = 6, and then transferred to the SEENN framework for
inference-time pruning. Here, CE denotes the confidence score mentioned in (Li et al., 2023), which is
used to control the early-exit timing and balance the trade-off between accuracy and inference timesteps.
We use ”T avg.” to indicate the average number of timesteps during inference.

Method Timesteps CS = 0.7 0.8 0.9 0.99 0.999

logits-KD
T = 6

Acc. (%) 73.23 74.65 77.12 78.75 79.03
T avg. 1.139 1.280 1.606 2.424 3.076

T = 4
Acc. (%) 74.14 75.53 77.53 78.28 78.32
T avg. 1.138 1.268 1.568 2.168 2.697

ours
T = 6

Acc. (%) 76.61 77.58 79.05 79.75 79.79
T avg. 1.165 1.316 1.690 2.493 3.188

T = 4
Acc. (%) 76.51 77.46 78.73 79.09 79.10
T avg. 1.164 1.306 1.620 2.211 2.752

The SEENN project (Li et al., 2023) ingeniously designed temporal pruning, achieving a trade-off improvement between
inference time and performance through early exit, and provided a dynamic adjustment scheme for inference. We replicated
the SEENN-I scheme, setting it under logits-KD and our method on CIFAR-100, and compressed the inference time with
the results in Table 14. First, consistent with our previous observations, logits-KD training at T = 4 performed better than at
T = 6 in scenarios where the inference time was significantly reduced. We think this is because the submodel at T = 4 is
more advantageous during moments T = 1 → 4, hence at a specific time point, e.g., t = 2, the model trained at T = 4
predicts more accurately; in this case, due to the reduction in inference time, lots of models might early exit at t = 2, leading
to a more reliable performance for the T = 4 model compared to the T = 6 model. This supports the importance of time
robustness as a model property, which significantly impacts optimization when pruning inference time. The compression
results of ours at T = 4 and T = 6 demonstrated the advantages brought by time robustness in actual SNN scenarios. The
gains from time robustness allow us to achieve similar performance with even less reduced inference time, which can be
used to further reduce the actual inference overhead of SNNs within the SEENN framework.
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