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Abstract

We study offline policy optimization for infinite-horizon average-reward Markov
decision processes (MDPs) with large or infinite state spaces. Specifically, we
propose a pessimistic version of actor-critic methods using a computationally
efficient linear function class for value function estimation. At the core of our
method is a critic that computes a pessimistic estimate of the average reward under
the current policy, as well as the corresponding policy gradient, by solving a fixed-
point Bellman equation, rather than solving a successive sequence of regression
problems as in finite horizon settings. Due to the nature of our policy-based method,
the critic only needs to solve a linear optimization problem with convex quadratic
constraints. We show that a very mild data coverage requirement is sufficient for
our algorithm to achieve O(ε−2) sample complexity for learning a near-optimal
policy up to model misspecification errors. To our knowledge, this is the first result
with optimal ε dependence in the offline average reward setting.

1 Introduction

Reinforcement learning (RL) is a sequential decision making framework commonly studied in the
online setting where an agent attempts to learn an optimal policy through active interactions with its
environment. However, in many relevant applications such as autonomous driving and health care,
online learning can be intractable or dangerous [Tang and Wiens, 2021]. In such cases, it is common
to resort to offline learning, where the agent’s goal is to learn a near-optimal policy from a static data
set which was collected in a manner known to be safe and efficient for the application.

Without the ability to actively explore the environment, the agent’s capability to learn is subject to
the quality of the collected data. In particular, it is well known that effective learning is difficult
or impossible if the data set does not sufficiently cover the space of states and actions. Thus, a
major challenge in offline RL is the design of algorithms with provable guarantees under the weakest
possible data coverage requirements. Initial work [Antos et al., 2007, Munos and Szepesvári, 2008]
rely on strong uniform coverage assumptions that effectively require the data generating policy to
visit the entire state-action space. However, this assumption is often unreasonable, especially for
large or infinite state spaces. Accordingly, more recent work [Rashidinejad et al., 2021, Zanette et al.,
2021, Zhan et al., 2022, Hong and Tewari, 2024, Li et al., 2024, Gabbianelli et al., 2024, Neu and
Okolo, 2025] have focused on provable guarantees depending only on partial coverage conditions
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where the data set is only required to cover the subset of state-action pairs visited by an optimal
policy.

State spaces in contemporary applications of RL can be very large or even infinite. Such applications
necessitate the use of some form of function approximation for computational and memory efficient
representation of policies and value functions. Empirical results show the promise of both simple
linear models as well as more complex forms of function approximation such as neural networks, but
there are still important theoretical gaps to be filled. This is especially true for infinite horizon MDPs,
where value functions are solutions to a fixed point Bellman equation. As such, classical backward
induction techniques that work well for episodic MDPs do not apply.

Our particular interest in this paper is offline RL for infinite horizon average reward MDPs (AMDPs)
with linear function approximation. AMDPs are appropriate for continuing tasks such as inventory
management [Giannoccaro and Pontrandolfo, 2002] or admission control [Weber et al., 2024], where
there is no forced reset as in the episodic setting, or discounting that may lead to a myopic focus on
short-term rewards. It is commonly acknowledged that theoretical analysis of algorithms for AMDPs
is more challenging than that in the episodic or discounted setting. There are two primary reasons.
First, as mentioned earlier, the techniques for episodic cases are not applicable here. Second, unlike
discounted MDPs, the Bellman operator for AMDPs is not a contraction. Consequently, methods
for discounted MDPs that rely on this contraction property do not carry over to the average reward
setting.

In recent years, there have been a number of works investigating algorithms for AMDPs in the online
setting [Fruit et al., 2018, Wei et al., 2020, 2021, Hao et al., 2021, Zhang and Xie, 2023, Agrawal
and Agrawal, 2025, Hong et al., 2025], and learning from a generative model [Jin and Sidford, 2020,
2021, Zurek and Chen, 2024], as well as from deep RL and optimization perspectives [Zhang and
Ross, 2021, Suttle et al., 2023, Agnihotri et al., 2024, Bai et al., 2024]. However, our understanding of
the offline setting remains limited, especially with function approximation. The only work we know
of is Primal-Dual Offline RL (PDOR) [Gabbianelli et al., 2024], which only achieves a sub-optimal
O(ε−4) sample complexity guarantee. Furthermore, PDOR’s theoretical results require the strong
assumption that the MDP’s rewards and transition obey an exact linear structure, which rarely holds
in practice. Motivated by this gap in the literature, the main question we ask in this work is the
following:

Can we design a provably efficient algorithm for offline reinforcement learning in
average reward MDPs with function approximation under minimal assumptions?

We make strides towards an affirmative answer to this question by designing a pessimistic actor-critic
algorithm using linear function approximation with a known feature map. Our key observation is that
under our policy-based approach, a pessimistic estimate of the Bellman operator’s fixed point can be
computed by solving a simple linear optimization problem with convex quadratic constraints. We
show our algorithm achieves optimal convergence rate guarantees with dependence on a measurement
of data coverage used in prior work [Zanette et al., 2021, Gabbianelli et al., 2024, Neu and Okolo,
2025], which is referred to as the feature coverage ratio. This quantity is a measurement of how
well the dataset aligns with the expected feature vector when following an optimal policy π∗. Our
result’s dependence on the intrinsic quantities improves over on the best known result for both average
reward and discounted MDPs [Neu and Okolo, 2025]. Importantly, we do not require the MDP
itself to obey any linear structure; our results hold under the more general conditions of approximate
realizability and Bellman closedness. Furthermore, we only require the transition dynamics to satisfy
a mild requirement that is significantly weaker than the uniform ergodicity assumption commonly
considered for AMDPs [Wei et al., 2020, 2021, Bai et al., 2024]. Under these conditions, we show
that Õ(ε−2) samples are sufficient to learn a policy which is ε-optimal up to a model misspecification
error.

1.1 Additional Related Work

Aside from the previously mentioned work [Zanette et al., 2021], another paper [Jin et al., 2021] also
studies offline RL with linear function approximation in episodic MDPs. Their algorithm is a form of
pessimistic least-squares value iteration, where pessimism is enforced through an additive bonus as
commonly adopted in the online setting. It is not clear, however, whether this form of value iteration
can be generalized to infinite horizon MDPs for the reasons discussed in the introduction.
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Another line of related work studies offline RL in discounted MDPs with partial coverage and general
function approximation [Xie et al., 2021, Cheng et al., 2022]. They also consider approximate
realizability and Bellman closedness conditions similar to ours. The information theoretic results by
[Xie et al., 2021] are near optimal, but due to their generality, theoretically optimal implementation
of these algorithms is intractable. A computationally efficient alternative is presented in [Xie et al.,
2021], but with sub-optimal convergence guarantees even when specialized to the linear setting.
Similarly, convergence rates from the work [Cheng et al., 2022] are only of order N−1/3 for N data
samples.

Finally, most closely related to this work are the papers by [Zanette et al., 2021, Gabbianelli et al.,
2024, Hong and Tewari, 2024, Neu and Okolo, 2025]. We provide a detailed comparison with these
works in Section 5.

2 Notation

For any set X , we let ∆(X ) be the set of all probability distributions on X . Given a state space S,
action space A, transition kernel P : S × A → ∆(S), and (stationary) policy π : S → ∆(A), the
notation Eπ

s [·] is the expectation with respect to a Markov chain with transition kernel Pπ(s, s′) =∑
a π(a|s)P (s′|s, a) conditioned on starting in state s ∈ S. For a function f ∈ RS , we also use

the notation Ps,af as short hand for the conditional expectation Es′∼P (·|s,a)[f(s
′)]. For a policy

π and probability measure µ ∈ ∆(S), µ ⊗ π is the probability measure on S × A defined by
(µ⊗ π)(s, a) = µ(s)π(a|s). Finally, given a symmetric, positive definite matrix A ∈ Rd×d, ∥x∥A
denotes the norm on Rd defined by

√
x⊤Ax.

3 Preliminaries

3.1 Average Reward MDPs

Let S be a large or possibly infinite state space and A be a finite space of A actions. We consider
an infinite horizon average reward MDP (S,A, P, r) with transition kernel P : S ×A → ∆(S) and
reward function r : S ×A → [0, 1]. An agent’s rule for decision making in the MDP is specified by
a (stationary) policy π : S → ∆(A) that maps current states to distributions over actions. At each
time step t, the agent observes state st, takes action at ∼ π(·|st), receives reward r(st, at), then
transitions to state st+1 ∼ P (·|st, at). The agents goal is to find a policy maximizing the average
reward, which is defined as follows:

Jπ(s) := lim
T→∞

1

T
Eπ
s

[
T−1∑
t=0

r(st, at)

]
. (1)

For each policy π, we define its associated Bellman operator Tπ : RS×A → RS×A as

Tπf(s, a) = r(s, a) + Es′∼P (·|s,a),a′∼π(·|s′)[f(s, a)], ∀s ∈ S, a ∈ A.

We will consider the following assumption throughout the paper.

Assumption 3.1. All (stationary) policies induce a Markov chain that contains a single recurrent class
and possibly some transient states (unichain). This implies that Jπ(s) is a constant independent of
the initial state. Furthermore, it implies that for each policy π there exists a function qπ : S×A → R,
unique up to linear translations, satisfying the Bellman equation

qπ(s, a) + Jπ = Tπqπ(s, a), ∀s ∈ S, a ∈ A, (2)

which we will call the q-function. In this case, vπ(s) = Ea∼π(·|s)[q
π(s, a)] is called the value

function. We also assume there exists a constant c such that

sup
π
∥qπ∥sp ≤ c,

where ∥qπ∥sp = sups,a q
π(s, a)− infs,a q

π(s, a) is the span semi-norm.
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Under Assumption 3.1, for each policy π, there exists a unique stationary measure µπ satisfying the
equation ∑

s

µπ(s)
∑
a

π(a|s)P (s′|s, a) = µπ(s′),

and we can write

Jπ = E(s,a)∼µπ⊗π[r(s, a)].

As will be seen in the sequel, it is crucial for our algorithm that Jπ is constant and Assumption 3.1 is
sufficient to guarantee this. This assumption also allows us to reliably estimate a bounded q-function
to (2), which is necessary for stability in the policy improvement step of our algorithm.

We note that Assumption 3.1 is stronger than the weakly communicating assumption often considered
in the online learning literature [Jaksch et al., 2010, Fruit et al., 2018, Wei et al., 2021, Hong et al.,
2025]. However, it is important to point out one crucial fact. This assumption does not imply
exploratory conditions such as uniformly lower bounded stationary measures [Wei et al., 2020] or a
uniformly excited features condition [Hao et al., 2021, Wei et al., 2021]. These exploratory conditions
imply that to cover the states visited by any policy, it is necessary to cover the entire state space. For
more details on this, we refer the reader to Appendix A where we provide a more thorough discussion
on the implications of Assumption 3.1 and comparison with other average reward models from the
literature.

3.2 Offline RL

In offline RL, the agent only has access to a pre-collected data set D = {(si, ai, ri, s′i)}Ni=1, where
ri = r(si, ai) and each s′i is sampled from the conditional distribution P (·|si, ai) independently of
everything else. We do not need any additional assumptions about the collection of the data in D.
As in [Zanette et al., 2021, Neu and Okolo, 2025], the data does not need to be generated from i.i.d.
sampling for from following a fixed behavior policy.

3.3 Function Approximation

Function approximation is necessary for learning in MDPs with large state and action spaces, where
tabular solution methods are intractable. For actor-critic methods, this typically means using one
function class Π to represent policies, and another class F for value function estimation. Effective
learning in the MDP then becomes highly dependent on the ability to accurately represent the true
value functions for a given policy π ∈ Π using functions in F . To quantify this ability, we introduce
the following definition.
Definition 3.2. Let F ⊂ RS×A be a set of functions used for value function approximation and
Π ⊂ {π : S → ∆(A)} a class of stationary policies.

(i) We say that (F ,Π) satisfies the approximate realizability property with constant κF,Π if

sup
π∈Π

inf
g∈F,|λ|≤1

∥g + λ− Tπg∥∞ ≤ κF,Π. (3)

(ii) The tuple (F ,Π) is said to satisfy the Bellman-restricted closedness property with constant
εF,Π if

sup
π∈Π,f∈F,|λ|≤1

inf
g∈F
∥g + λ− Tπf∥∞ ≤ εF,Π.

These definitions are average-reward-analogues of those for episodic MDPs [Zanette et al., 2021,
Nguyen-Tang and Arora, 2023]. Similar notions appeared in discounted MDPs in Xie et al. [Xie
et al., 2021], although our use of the ℓ∞ norm is slightly stronger than their requirement.

The approximate realizability property states that F nearly contains qπ for each policy π ∈ Π. If
κF,Π = 0 then the infimum in (3) is attained by (g, λ) = (qπ, Jπ).

However, realizability alone is known to be insufficient for sample efficient learning [Wang et al.,
2021]. Therefore, additional conditions are often required. Restricted closedness measures how well
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we can perform regression using functions g ∈ F when the target is the function resulting from the
application of Tπ to a function f ∈ F plus a reasonable estimate λ of Jπ . The addition of λ here is
a generalization inspired, in part, by the requirement for linear MDPs that the column span of the
feature matrix contains the all-one vector [Wei et al., 2021, Gabbianelli et al., 2024], as well as the
development of generalized advantage estimation for the average reward setting in [Zhang and Ross,
2021] which includes a monte-carlo estimate of Jπ as part of the regression target.

With these definitions, we can now introduce the function and policy classes considered for our
algorithm.
Assumption 3.3. We consider the use of a linear function class

Q(Bw) :=
{
q(s, a) = ϕ(s, a)⊤w : ∥w∥2 ≤ Bw

}
where Bw is a user-defined parameter and ϕ : S ×A → Rd is a known d-dimensional feature map
with ∥ϕ(s, a)∥2 ≤ 1. We also assume a softmax policy class

Π :=

{
π(a|s) = eϕ(s,a)

⊤θ∑
a′ eϕ(s,a

′)⊤θ
: θ ∈ Rd

}
. (4)

We assume that (Q(Bw),Π) satisfies the approximate completeness and Bellman-restricted closed-
ness properties with constants κQ(Bw),Π and εQ(Bw),Π respectively.

This assumption is a generalization of the widely studied linear MDP model, which is first introduced
for episodic MDPs [Jin et al., 2020] and adapted to the average reward setting [Wei et al., 2021,
Hong et al., 2025, Gabbianelli et al., 2024] with the realizability and restricted closedness constants
being zero. Note that if the value functions are unbounded, it is unreasonable to assume approximate
realizability. One cannot expect the ability to approximate functions in an unbounded set up to
uniform error with an bounded function class. This is why we need the bounded span requirement in
Assumption 3.1. However, we do not require prior knowledge of the constant c in Assumption 3.1 for
our results. Our theoretical guarantees remain true for any choice of Bw provided Assumptions 3.1
and 3.3 hold.

4 Algorithm Details

Our algorithm is a form of pessimistic actor-critic method for the average reward setting. At a high
level, it works through an alternating scheme run for a total number of K iterations. First, at iteration
k, given πk, the pessimistic critic first computes the smallest plausible average reward of πk within a
confidence region determined by the dataset D. Then the actor updates the policy to πk+1 through a
conservative policy improvement step.

4.1 Pessimistic Policy Evaluation

Before giving a more precise description, we start with a motivating discussion of a natural idea
inspired by methods in the episodic setting, but which turns out not to work in our setting. Assume
for a moment that we have completed k iterations of the algorithm, and we have an estimate Jk of
the average reward Jπk and an estimate v̂k of the value function for policy πk. Then by the Bellman
equation (2), it is natural to estimate the q-function qπk by solving the ridge regression problem

wk ∈ argmin
w∈Rd

[
N∑
i=1

(
ϕ(si, ai)

⊤w + Jk − ri − v̂k(s
′
i)
)2

+ ∥w∥22

]
,

which has the closed form expression

wk = Λ̂−1
N∑
i=1

ϕ(si, ai) (ri − Jk + v̂k(s
′
i)) . (5)

Here, Λ̂ is the un-normalized empirical covariance matrix

Λ̂ =

N∑
i=1

ϕ(si, ai)ϕ(si, ai)
⊤ + I,
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and I is the d-dimensional identity matrix. Let q̂k(s, a) = ϕ(s, a)⊤wk be our estimate of qπk . This
method is similar to the typical approach for episodic MDPs, where the value function of step h+ 1
is estimated and then used as a regression target to compute the weight vector for step h.

There are two main issues with this approach, however, in our AMDP setting. The first issue is
about estimating Jπk in AMDPs, which we will address shortly. The second issue, also shared with
discounted MDPs, is that the Bellman equation in our case is a fixed point equation. Consequently,
we cannot use backward induction techniques from episodic MDPs. Therefore, it is unclear how to
construct the estimated value v̂k if we haven’t already obtained an estimated Q-function q̂k without
resorting to Monte-Carlo methods. However, as pointed out in prior work [Zanette et al., 2021],
Monte-Carlo estimation is undesirable in the offline setting: using importance sampling weights to
cancel the distribution mismatch requires some knowledge of the data generating distribution, which
is not available in most offline settings.

One method to address the second problem is to use v̂k−1, i.e. a value function estimate from the
previous iteration, as the regression target (e.g. as in the work [Moulin and Neu, 2023]). However,
this incurs additional bias and results in an additional term in the sub-optimality guarantee that must
be handled in the analysis. This is usually done by showing that the difference in value functions
between consecutive policies is small due to the conservative policy update. However, it remains
unclear how to address this issue for AMDPs without strengthening Assumption 3.1 to include, for
example, a uniform mixing assumption.

We propose to bypass these additional complexities and directly solve for the fixed point
equation. Since wk parametrizes our q-function estimates, we should also have v̂k(s) =
Ea∼πk(·|s)[ϕ(s, a)

⊤wk]. Therefore, we replace v̂k(s
′
i) in (5) with ϕπk(s′i)

⊤wk, where ϕπk(s) =

Ea∼πk(·|s)[ϕ(s, a)]. Inspired by the ideas of Zanette et al. [2021], we then add a perturbation ξ ∈ Rd

to the weight vector and solve the following optimization problem:

(wk, ξk, Jk) ∈ argmin
w,ξ∈Rd,J∈R

J

s.t. w = ξ + Λ̂−1
N∑
i=1

ϕ(si, ai)
(
r(si, ai)− J + ϕπk(s′i)

⊤w
)
,

|J | ≤ 1, ∥w∥2 ≤ Bw, and ∥ξ∥Λ̂ ≤ β,

(6)

where β is a parameter determined by Bw, K, N , κQ(Bw),Π, εQ(Bw),Π, and a confidence level
δ ∈ (0, 1). Specifically,

β = C + (κQ(Bw),Π + εQ(Bw),Π)
√
N (7)

where

C = O
(
Bw

√
d log(KNBw/δ)

)
. (8)

This parameter quantifies the uncertainty in the dataset and our knowledge of the true MDP. The
addition of ξ is how pessimism is incorporated into the algorithm. The ellipsoid ∥ξ∥Λ̂ ≤ β can be
viewed as a confidence set which, with high probability, contains the error due to lack of knowledge
of the true transition. In our analysis, we will show that Jk is a nearly pessimistic estimate of Jπk up
to misspecification error determined by the constant κQ(Bw),Π. This approach is also similar to the
FOPO algorithm [Wei et al., 2021] for the online setting, but with one crucial difference: because
our algorithm is policy-based, the first constraint in (6) is based on the Bellman equation for a fixed
policy rather than the Bellman optimality equation. Consequently, the feasible set in (6) is convex,
being comprised of linear and convex quadratic constraints. Therefore, approximate solutions to
this optimization problem, up to arbitrarily small error, can be computed in polynomial time with
interior point methods [Nesterov and Nemirovskii, 1994]. This stands in stark contrast to the FOPO
algorithm, where our linear constraint in (6) is replaced by the analogous but nonlinear constraint

w = ξ + Λ̂−1
N∑
i=1

ϕ(si, ai)(r(si, ai)− J +max
a
{ϕ(s′i, a)⊤w}).

The nonlinearity comes from the additional maximization operation. This results in a non-convex
constraint set and an optimization problem to be solved at every iteration without a known efficient
computation method.
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Finally, we remark here that while a fully efficient implementation of our algorithm would involve
only approximate solutions to (6), for simplicity we will assume that (wk, ξk, Jk) is an exact solution
for the remainder of the paper. We refer the interested reader to Section B of the appendix where we
briefly discuss error propagation for a fully efficient implementation of our algorithm where (6) is
solved approximately at each step.

4.2 Policy Update

Once the weight vector wk is computed, the policy parameter is updated via

θk+1 ← θk + ηwk

where η =
√

logA
B2

wK is a step-size. Due to the form of policy class (4), this is equivalent to the
exponential weights update

πk+1(a|s) ∝ πk(a|s) exp (ηq̂k(s, a)) , where q̂k(s, a) = ϕ(s, a)⊤wk

which, in turn, is equivalent to one step of mirror ascent with KL divergence regularization. Once
the algorithm is terminated, it returns the output policy πout, which is a mixture policy defined the
uniform random sampling of policies {π1, . . . , πK}. The pseudo code of our algorithm is presented
in Algorithm 1.

Algorithm 1 Average Reward Actor-Critic

1: Input: D (dataset), Bw (function class parameter), β (uncertainty parameter), η (stepsize)
2: Form empirical covariance : Λ̂← I +

∑N
i=1 ϕ(si, ai)ϕ(si, ai)

⊤

3: Initialize: θ1 = 0
4: for k = 1, . . . ,K do
5: Let (wk, ξk, Jk) solve (6)
6: Update policy parameter: θk+1 ← θk + ηwk.
7: end for
8: Output: πout = Unif[π1, . . . , πK ].

5 Main Results

Let Λ̂N = 1
N Λ̂ be the normalized covariance matrix. For a given comparator policy π with stationary

measure µπ, let ϕµπ

= E(s,a)∼µπ⊗π[ϕ(s, a)] ∈ Rd. The sub-optimality of the mixture policy πout
output by Algorithm 1 with respect to a comparator policy π depends on the random constant

∥ϕµπ

∥Λ̂−1
N
,

referred to as the feature coverage ratio in [Gabbianelli et al., 2024, Neu and Okolo, 2025]. It
measures how well the dataset D covers the feature space visited by π. When the expected feature
vector ϕµπ

is aligned with the top eigenvector of the empirical covariance matrix Λ̂, one should
expect this constant to be small—this is the case when D consists primarily of state-action pairs
who’s feature vectors are closely aligned with those frequently visited when following policy π. Our
converge ratio can be contrasted with that used in prior work by [Jin et al., 2021]

E(s,a)∼µπ⊗π[∥ϕ(s, a)∥Λ̂−1
N
],

which is no smaller than ours by Jensen’s inequality.

Our main result is stated in Theorem 5.1 below.
Theorem 5.1. Fix any comparator policy π with stationary measure µπ. If we set β as in (7), then
with probability at least 1− 2δ, for any K ≥ logA, Algorithm 1 run for K iterations with stepsize
η =

√
logA
B2

wK outputs a policy πout satisfying

Jπ − Jπout ≤ 2C√
N
∥ϕµπ

∥Λ̂−1
N︸ ︷︷ ︸

T1:Uncertainty

+2Bw

√
logA

K︸ ︷︷ ︸
T2:Optimization

+(2∥ϕµπ

∥Λ̂−1
N

+ 1)(εQ(Bw),Π + κQ(Bw),Π)︸ ︷︷ ︸
T3:Misspecification

. (9)
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The upper bound on the sub-optimality gap (9) consists of three terms. The first term T1 represents
the uncertainty in the dataset. It decays with the reciprocal of the square root of the dataset’s size, but
increases as the quality of the dataset with respect to the comparator policy degrades, as measured
by the coverage ratio. The second term T2 is the error due to optimization, which can be made
small by increasing the number of iterations K. The final term T3 is an irreducible error due to
model misspecification. Note that the T3 term also decreases as the quality of the dataset improves.
Importantly, due to the definition of C in (8), the bound depends only on the feature dimension d
rather than on the size of the state space.

As an application of Theorem 5.1, let us consider the optimal policy π∗ as the comparator policy
π. If ∥ϕµπ∗

∥Λ̂−1 is bounded above by some constant C∗, then Theorem 5.1 implies Õ(B2
wC

2
∗dε

−2)
samples are sufficient to learn a policy which is ε-optimal up to model misspecification error. One
well-studied special case of zero misspecification error is the linear MDP [Jin et al., 2020, Wei et al.,
2021]. Under this assumption, combined with Assumption 3.1, we can choose Bw large enough
so that the function class Q(Bw) contains the true value functions with the knowledge of an upper
bound on c. Specifically, if Bw ≥ O(c

√
d), a straightforward adaptation of our analysis shows that

Theorem 5.1 holds with no misspecification error term.

5.1 Comparison with prior work

Our work is inspired by the work on episodic setting [Zanette et al., 2021], particularly the idea of
solving a constrained optimization problem at each step. This work is also the first to introduce the
definition of coverage ratio that we adopt in this paper. However, despite the algorithmic similarities,
the algorithm design and analysis in this work rely crucially on backwards induction methods that are
only applicable to the episodic setting. Our work makes a significant contribution by extending the
approach to the more challenging infinite horizon setting.

As mentioned in the introduction, the work [Gabbianelli et al., 2024] is the only paper we are aware
of that studies offline RL for average reward MDPs with linear function approximation. However,
their algorithm only attains O(ε−4) sample complexity guarantees. The main reason for this is their
algorithm’s double loop structure. Their primal-dual formulation of the offline RL problem involves
solving for the saddle point of a certain Lagrangian objective, which is done through multiple rounds
of stochastic gradient ascent-descent. They assume that state action pairs in the data set are sampled
i.i.d from a fixed distribution. Then in each outer loop of their algorithm, they use O(ε−2) samples to
solve a sub-problem nearly exactly. Since they need O(ε−2) outer-loop iterations, this results in a
total sample complexity of O(ε−4). In contrast, in our algorithm the data needed to construct the
optimization problem (6) only needs to be sampled once and is then re-used in each iteration. This
avoids the inner-loop that uses additional samples. The data re-use creates an additional correlation
between iterates which is dealt with in the analysis using covering arguments.

The primal-dual algorithm by [Hong and Tewari, 2024] guarantees O(ε−2) sample complexity for
discounted MDPs, but their results depend on a weaker definition of coverage. Using our notation,
their algorithm requires an upper bound on ∥ϕµπ∥2

Λ̂−2
N

, which is assumed to be known. Finally, [Neu

and Okolo, 2025] introduce another primal-dual style algorithm with an O(ε−2) sample complexity
guarantee for discounted MDPs. Their suboptimality bounds depend on ∥ϕµπ∥2

Λ̂−1
N

, which is the
strongest result we know of in this setting for the discounted case. The authors mention that it
would not be difficult to adapt their results to average reward MDPs using the ideas from the
work [Gabbianelli et al., 2024], but no additional details are provided. Even so, our work still
improves over theirs for two reasons. First, while they use the same definition of coverage ratio
as ours, their sub-optimality bounds scale quadratically with this constant in contrast to our linear
scaling. Second, their results, like prior work [Gabbianelli et al., 2024, Hong and Tewari, 2024], only
cover the more restrictive class of linear MDPs, while we study the more general linear function
approximation (cf. Assumption 3.3).

A further extension beyond linear models to more general function approximation would be an
interesting future direction. In this case, it is not yet clear how one can efficiently construct confidence
sets for the underlying parameters. Even so, as shown in [Xie et al., 2021, Cheng et al., 2022], it
is still possible to implement the pessimism principle with general function approximation. The
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main difficulty we see in adapting the methods from these papers to the average reward setting is the
presence of the additional variable J .

6 Analysis

Let q̂k(s, a) := ϕ(s, a)⊤wk and v̂k(s) := Ea∼πk(·|s)[q̂k(s, a)] denote the empirical estimates of qπk

and vπk , respectively, at the end of k-th iteration. Key to our analysis is the following lemma, which
allows us to decompose the sub-optimality in Theorem 5.1 into its three main parts as shown in (9).

Lemma 6.1. Fix policies π, π̃ ∈ ∆(A). Let Ĵ π̃ be an estimate of the true average reward following
policy π̃, and q̂π̃ ∈ RS×A be an estimate of the true Q-functionqπ̃ . Then

Jπ − Ĵ π̃ = Es∼µπ

[∑
a

(π(a|s)− π̃(a|s))q̂π̃(s, a)

]
+ E(s,a)∼µπ⊗π

[
T π̃ q̂π̃(s, a)− Ĵ π̃ − q̂π̃(s, a)

]
.

Lemma 6.1 is analogous to the so-called extended performance difference lemma, which is commonly
used in the analysis of optimistic policy optimization algorithms for the online episodic setting; see,
for example, the work [Cai et al., 2020, Shani et al., 2020]. Below we break down the analysis into
three main steps.

Step 1: Pessimism. Suppose for the moment that κQ(Bw),Π = 0. Then by the definition (3) there
would exist some w∗

k such that ϕ(s, a)⊤w∗
k solves the Bellman equation for policy πk, meaning

that ϕ(s, a)⊤w∗
k = qπk(s, a). If we can show that (w∗

k, ξ
∗
k, J

πk) is feasible for critic’s optimization
problem (6), we will have Jk ≤ Jπk by the definition of Jk, which has the desired pessimism
property. In general though, if κQ(Bw),Π > 0, it may be impossible to find such a w∗

k. Therefore, we
instead define

(w∗
k, J

∗
k ) ∈ argmin

∥w∥2≤Bw,|J|≤1

∥ϕ(·, ·)⊤w + J − Tπk(ϕ(·, ·)⊤w)∥∞ (10)

as the best possible weight vector and estimate of Jπk that incurs at most κQ(Bw),Π error by definition.
With the help of Lemma 6.1, we then show that Jk ≤ J∗

k ≤ Jπk + κQ(Bw),Π holds with high
probability. This result is summarized in the following lemma.

Lemma 6.2. With probability at least 1 − δ, for each k ∈ [K] there exists ξ∗k ∈ Rd such that
(w∗

k, ξ
∗
k, J

∗
k ) is feasible for the optimization problem (6). As a consequence of the definition of Jk,

Jk ≤ J∗
k ≤ Jπk + κQ(Bw),Π, ∀k ∈ [K].

Step 2: Bounding the estimation error. The next step is to control the error in the estimates q̂k
and Jk. More specifically, in view of the second term on the right hand side of Lemma 6.1, we are
interested in bounding ∣∣E(s,a)∼µπ⊗π [q̂k(s, a) + Jk − Tπk q̂k(s, a)]

∣∣ , (11)

where π is some comparator policy. In a manner similar to step 1, we define

w̄k ∈ argmin
∥w∥2≤Bw

∥ϕ(·, ·)⊤w + Jk − Tπk q̂k∥∞,

which is the best possible regression parameter with target Jk − Tπk q̂k. In this case, we have
∥ϕ(·, ·)⊤w̄k + Jk − Tπk q̂k∥∞ ≤ εQ(Bw),Π by Assumption 3.3. If εQ(Bw),Π = 0, then q̂k(s, a) −
ϕ(s, a)⊤w̄k is exactly equal to quantity inside the expectation in (11). In the general case, (11) can
be bounded by

|E(s,a)∼µπ⊗π[q̂k(s, a)− ϕ(s, a)⊤w̄k]|+ εQ(Bw),Π.

A high probability upper bound on the first term above results in the following Lemma 6.3.

Lemma 6.3. With probability at least 1− δ, for all k ∈ [K] and any policy π,

|E(s,a)∼µπ⊗π[q̂k(s, a) + Jk − Tπk q̂k(s, a)]| ≤ 2β∥ϕµπ

∥Λ̂−1 + εQ(Bw),Π.

9



Step 3: Completing the proof. Theorem 5.1 holds on the events of Lemmas 6.2 and 6.3, which are
true simultaneously with probability at least 1− 2δ. The policy output by Algorithm 1 is a mixture
policy with average reward Jπout = 1

K

∑K
k=1 J

πk . Combining Lemma 6.2 with Lemma 6.1 we can
show

1

K

K∑
k=1

Jπ − Jπk ≤ 1

K

K∑
k=1

Jπ − Jk + κQ(Bw),Π

≤ 1

K

K∑
k=1

Es∼µπ

[∑
a

(π(a|s)− πk(a|s))q̂k(s, a)

]

+
1

K

K∑
k=1

E(s,a)∼µπ⊗π [T
πk q̂k(s, a)− Jk − q̂k(s, a)] + κQ(Bw),Π.

The first term above is bounded above by the optimization error, which is proved through the analysis
of mirror descent. The proof is completed by using Lemma 6.3, the definition of β, and rescaling
Λ̂−1 = 1

N Λ̂−1
N .

7 Conclusion

In this paper, we have introduced a pessimistic actor critic algorithm for offline learning in infinite
horizon average reward MDPs with linear function approximation. Our results show that our algorithm
is sample efficient, with provable guarantees under only partial data coverage. One limitation of our
algorithm is that we require the MDP to be unichain and value functions to have uniformly bounded
span. Aside from an extension to general function approximation, potential future work could also
include weakening Assumption 3.1 to include all weakly communicating MDPs.
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Answer: [NA]
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• The answer NA means that paper does not include experiments requiring code.
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• While we encourage the release of code and data, we understand that this might not be possible,
so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless
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• The instructions should contain the exact command and environment needed to run to reproduce
the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to access
the raw data, preprocessed data, intermediate data, and generated data, etc.
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applicable).
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• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
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a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is
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symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they were
calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [NA]

Justification: The paper does not include experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud

provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experimental

runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it into
the paper).

9. Code of ethics
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Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and verified that our paper conforms with
it.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a deviation

from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration due

to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal impacts
of the work performed?

Answer: [NA]

Justification: This paper is theoretical in nature and not directly related to any practical application
with the potential for societal impact.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact or
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ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied to particular
applications, let alone deployments. However, if there is a direct path to any negative applications,
the authors should point it out. For example, it is legitimate to point out that an improvement in
the quality of generative models could be used to generate deepfakes for disinformation. On the
other hand, it is not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being used
as intended and functioning correctly, harms that could arise when the technology is being used
as intended but gives incorrect results, and harms following from (intentional or unintentional)
misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation strategies
(e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitor-
ing misuse, mechanisms to monitor how a system learns from feedback over time, improving the
efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or
scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users adhere to
usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not require
this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper,
properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service of

that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package should

be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for
some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the derived
asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset’s
creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation provided
alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their sub-
missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create an
anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper include
the full text of instructions given to participants and screenshots, if applicable, as well as details about
compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Including this information in the supplemental material is fine, but if the main contribution of the
paper involves human subjects, then as much detail as possible should be included in the main
paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other
labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an
equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with human
subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may be
required for any human subjects research. If you obtained IRB approval, you should clearly state
this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for
their institution.

• For initial submissions, do not include any information that would break anonymity (if applica-
ble), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or
originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any important,
original, or non-standard components.

Guidelines:

• The answer NA means that the core method development in this research does not involve LLMs
as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
should or should not be described.
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A Further Discussion of Assumption 3.1

Here we give a more detailed discussion of Assumption 3.1 and how it compares to other average reward MDP
models used in the literature.

The weakest assumption frequently made is the requirement that the MDP be weakly communicating [Jaksch
et al., 2010, Fruit et al., 2018, Wei et al., 2020, 2021, Zhang and Xie, 2023, Hong et al., 2025, Zurek and Chen,
2024]. Aside from [Zurek and Chen, 2024] who study learning with access to a generative model, all of the
works cited above study online learning in weakly communicating MDPs. We are not yet aware of any papers
studying offline learning in weakly communicating MDPs.

An MDP is weakly communicating if the state space can be divided into two classes. One class consists of states
that are transient for every policy. The other, called the communicating class, consists of a set of states with the
following property: for each pair of states (s, s′) there exists a policy π such that s′ is reachable from s when
following π [Puterman, 2005]. As shown in [Jaksch et al., 2010], the weakly communicating assumption is
necessary for efficient online learning. The property of being weakly communicating is sufficient to guarantee
the existence of a solution (q∗, J∗) to the Bellman optimality equation

q∗(s, a) + J∗ = r(s, a) + Es′∼P (·|s,a)[max
a

q∗(s′, a)]

where J∗ is constant. However, this is not enough to guarantee that for a fixed policy π, Jπ(s) as defined in (1)
is constant. In this case, solutions qπ to the Bellman equation

qπ(s, a) + Jπ(s) = Tπqπ(s, a)

may exist, but may only be unique modulo a subspace of dimension greater than one. This is because, in weakly
communicating MDPs, there can be policies that induce Markov chains with multiple recurrence classes. As such,
the chain’s stationary measure is not unique: there is a different one for each recurrence class. Moreover, while q∗

is bounded, there is no guaranteed uniform upper bound on the size of qπ as opposed to discounted and episodic
MDPs where 1

1−γ
or H provide a natural upper bound. This seems to make learning with policy optimization

style algorithms difficult. It is not clear how to accurately estimate qπ(s, a) in the weakly communicating case,
and lack of a clear upper bound can destabilize the algorithm.

At the other end of the spectrum, the strongest assumption made in the literature is uniform ergodicity. The
"ergodicity" part of this assumption requires that each policy π induce an irreducible, aperiodic Markov chain.
This ensures that the stationary measure is unique for each policy and positive everywhere. The "uniform" part
of this assumption means that that the worst case mixing time

tmix = sup
π

inf{t ≥ 1 : max
s

∥(Pπ)t(s, ·)− µπ∥TV < 1
4
} (12)

is finite and all stationary measures are uniformly bounded away from zero:

inf
π,s

µπ(s) ≥ σ > 0. (13)

When learning with linear function approximation, this second condition is often replaced with

E(s,a)∼µπ⊗π

[
ϕ(s, a)ϕ(s, a)⊤

]
⪰ λI, (14)

meaning the true covariance matrix for each policy is uniformly positive definite. This is referred to as a
"uniformly excited features" assumption in [Wei et al., 2021, Hao et al., 2021].

In the online setting, uniform ergodicity has been assumed in e.g. [Abbasi-Yadkori et al., 2019, Wei et al., 2020,
2021, Bai et al., 2024]. Under this assumption, the Bellman equation is solved by

qπ(s, a) =
∞∑
t=0

Eπ
s,a [r(st, at)− Jπ] (15)

and |qπ(s, a)| ≤ O(tmix). This is convenient for online learning, especially with policy optimization, because
the q functions are bounded and (13) and (14) imply that each policy is self-exploratory.

In the offline setting, assumptions such as (13) and (14) would greatly weaken single policy coverage results
such as our Theorem 5.1. As discussed in the main body, effectively covering any policy requires covering the
entire state space in the case of (14) or the entire feature space in the case of (14).

Because of this, it is important for us to emphasize that our assumptions do not imply conditions such as
(13) or (14). Our Assumption 3.1, which is the same assumption made by [Gabbianelli et al., 2024], can be
thought of as being somewhere in the middle of the two extremes mentioned above. It is a stronger than weakly
communicating, but weaker than uniform ergodicity. Indeed, the uniform mixing condition (12) by itself implies
Assumption 3.1 but is not necessary. Another sufficient condition is the existence of a single state s̄ visited in
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Figure 1: Two state river swim model. The dashed edges represent transition probabilities when taking action L
and the solid edges show the transition probabilities when taking action R.

expected time at most h started from any other state as assumed in [Agrawal and Agrawal, 2025]. With this
assumption, the span of the q-function is bounded by h.

We end this section with a simple example of an MDP which satisfies Assumption 3.1 but is not uniformly
ergodic. Figure 1 diagrams a simple two state river-swim [Strehl and Littman, 2008] MDP where S = {1, 2}
and A = {L,R}. Conditioned on being in state 1, the agent stays in state 1 almost surely if action L is chosen.
If action R is chosen, the agent will stay in state 1 with probability 0.4 and transition to state 2 with probability
0.6. On the other hand, if in state 2, the agent deterministically transitions to state 1 if action L is chosen and
will stay in state 2 with probability 0.6 if action R is chosen. Otherwise, it transitions to state 1. A simple linear
algebra computation shows that the stationary measure is given by

[µπ(1), µπ(2)] =

[
1− 0.6π(R|2)

1 + 0.6(π(R|1)− π(R|2)) ,
0.6π(R|1)

1 + 0.6(π(R|1)− π(R|2))

]
.

for any π. If the agent never takes action R in state 1, i.e. π(R|1) = 0, then µπ(2) = 0 so condition (13) fails.
It is also easy to see that the expected covariance matrix, as in (14), is rank 1 and so cannot be positive definite if
d ≥ 2. However, it is not hard to show that for any initial distribution ν and policy π,

|(νPπ)t+1(j)− µπ(j)| ≤ 0.6|(νPπ)t(j)− µπ(j)|

for j ∈ {1, 2}. This gives a upper bound on tmix of 5 log 4
2

, which by (15) implies an upper bound on the span of
qπ .

B A Fully Computationally Efficient Implementation

As discussed in Section 4, Algorithm 1 as written in the main body is not fully computationally efficient. This is
because Line 5 assumes that the parameters (wk, ξk, Jk) are an exact solution to the optimization problem (6).
It is not guaranteed that an exact solution to this problem can be computed efficiently. However, approximate
solutions to (6) can be computed in polynomial time using interior point methods [Nesterov and Nemirovskii,
1994]. In this section, we briefly show how a fully computationally efficient implementation of Algorithm 1
where (6) is solved only approximately in step 5 results only in a small additive error proportional to the accuracy
of the solution.

Specifically, for some tolerance parameter η > 0, let us assume that (wk, ξk, Jk) are a η-approximate solution
to (6). This means that Jk is within η of the optimal solution and the magnitude of the constraint violation is at
most η when measured in the ℓ2 norm. Then the inequality in Lemma 6.2 may be updated to read

Jk ≤ J∗
k + η ≤ Jπk + κQ(Bw),Π + η.

The error in the constraint violation will appear in Lemma 6.3. If we approximately solve (6) so that (wk, ξk, Jk)
satisfy ∥∥∥∥∥wk − ξk − Λ̂−1

N∑
i=1

ϕ(si, ai)
(
r(si, ai)− J + ϕπk (s′i)

⊤wk

)∥∥∥∥∥
2

≤ η,

|Jk| ≤ 1 + η, ∥wk∥2 ≤ Bw + η, and ∥ξk∥Λ̂ ≤ β + η,

then a quick inspection of the proof of Lemma 6.3 (more specifically Lemma C.3 below) shows that the result
can be updated to read

|E(s,a)∼µπ⊗π[q̂k(s, a) + Jk − Tπk q̂k(s, a)]| ≤ 2(β + η)∥ϕµπ

∥Λ̂−1 + εQ(Bw),Π + η.

Altogether, this only results an additional error of

2η∥ϕµπ

∥Λ̂−1 + 2η

added to the right hand side of (9) in Theorem 5.1.
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C Proofs of Key Lemmas and Theorem 5.1

In this section, we will prove the key Lemmas from section 6 and also give a rigorous proof of Theorem 5.1. We
start with Lemma 6.1.

Proof of Lemma 6.1. Define v̂π̃(s) =
∑

a π̃(a|s)q̂
π̃(s, a). Adding and subtracting r(s, a) − Ĵπ + Ps,av̂

π̃

and then using Jπ = E(s,a)∼µπ⊗π[r(s, a)] we have

Es∼µπ

[∑
a

π(a|s)q̂π̃(s, a)

]

= Es∼µπ

[∑
a

π(a|s)
(
q̂π̃(s, a) + Ĵ π̃ − r(s, a)− Ps,av̂

π̃
)]

+ Es∼µπ

[∑
a

π(a|s)
(
r(s, a)− Ĵ π̃ + Ps,av̂

π̃
)]

= E(s,a)∼µπ⊗π

[
q̂π̃(s, a) + Ĵ π̃ − T π̃ q̂(s, a)

]
+ Jπ − Ĵ π̃ + E(s,a)∼µπ⊗π

[
Ps,av̂

π̃
]

Now, since µπ is the stationary measure for policy π,

E(s,a)∼µπ⊗π

[
Ps,av̂

π̃
]
= Es∼µπ [v̂π̃(s)] = Es∼µπ

[∑
a

π̃(a|s)q̂π̃(s, a)

]
.

Inserting this into the last line above and re-arranging completes the proof.

C.1 Proofs of Lemmas 6.2 and 6.3

Before proving Lemmas 6.2 and 6.3, we need to introduce some additional notation and one auxillary result.
Define the restricted policy class

Π(Bθ) =

{
eϕ(s,a)

⊤θ∑
a′ eϕ(s,a

′)⊤θ
: ∥θ∥2 ≤ Bθ

}
and the value function class

V(Bθ, Bw) := {v(s;π) = ⟨π(·|s), q(s, ·)⟩ : π ∈ Π(Bθ), q ∈ Q(Bw)} . (16)

The number Bθ represents the maximum size of any policy parameter θk used during the course of K iterations
of Algorithm 1. Notice that, based on the policy update in Algorithm 1 we have

∥θk∥2 ≤ η

K∑
k=1

∥wk∥2 ≤ ηKBw

so we take Bθ = ηKBw.

The proofs of Lemmas 6.2 and 6.3 rely on the following uniform concentration inequality. Its proof is based
on standard arguments from the literature first used in [Jin et al., 2020]. The proof of this lemma is delayed to
Appendix D.
Lemma C.1. Let {vk}Kk=1 be any, possibly random, collection from the function class V(Bθ, Bw). With
probability at least 1− δ we have, for all k ∈ [K],∥∥∥∥∥

N∑
i=1

ϕ(si, ai)
(
Psi,aivk − vk(s

′
i)
)∥∥∥∥∥

2

Λ̂−1

≤ Γ2(Bw, N, δ,K, d).

where

Γ2(Bw, N, δ,K, d) = 4B2
w

(
d

2
log

(
K(N + 1)

δ

)
+ d log(1 + 4NBw) + d log(1 + 16NBwBθ)

)
+ 8.

We define C, the constant that appears in (8), as

C = Γ(Bw, N, δ,K, d) +Bw.

The constant Γ is derived from the well-known concentration of self-normalized processes (Lemma E.4) and the
log-covering number of the class V(Bθ, Bw).

The next lemma shows that J∗
k defined in (10) is within κQ(Bw),Π of Jπk .
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Lemma C.2. Under Assumption 3.3 we have

|J∗
k − Jπk | ≤ κQ(Bw),Π

for every k ∈ [K].

Proof. Let q∗k(s, a) = ϕ(s, a)⊤w∗
k. By Lemma 6.1 and Assumption 3.3

|Jπk − J∗
k | =

∣∣E(s,a)∼µπk⊗πk
[q∗k(s, a) + J∗

k − Tπkq∗k(s, a)]
∣∣

≤ ∥q∗k + J∗
k − Tπkq∗k∥∞

≤ κQ(Bw),Π.

We are now ready to prove Lemma 6.2. Throughout the proof, let

q∗k(s, a) = ϕ(s, a)⊤w∗
k v∗k(s) = Ea∼πk(·|s) [q

∗
k(s, a)]

be the approximate q and value functions corresponding to the optimal parameter w∗
k.

Proof of Lemma 6.2. By the definition (10), w∗
k and J∗

k are always feasible variables. Thus, we need to show
that there is some ξ∗

k ∈ Rd with ∥ξ∗
k∥Λ̂ ≤ β such that

w∗
k = ξ∗

k + Λ̂−1
N∑
i=1

ϕ(si, ai)
(
r(si, ai)− J∗

k + ϕπk (s′i)
⊤w∗

k

)
.

To this end, note that

w∗
k = Λ̂−1Λ̂w∗

k

= Λ̂−1
N∑
i=1

ϕ(si, ai)ϕ(si, ai)
⊤w∗

k + Λ̂−1w∗
k

= Λ̂−1
N∑
i=1

ϕ(si, ai) (T
πkq∗k(s, a)− J∗

k ) + Λ̂−1
N∑
i=1

ϕ(si, ai)∆k(si, ai) + Λ̂−1w∗
k. (17)

where we define

∆k(s, a) = q∗k(s, a) + J∗
k − Tπkq∗k(s, a).

Adding and subtracting v∗k(s
′
i) from the first term in (17) we have

Λ̂−1
N∑
i=1

ϕ(si, ai) (T
πkq∗k(si, ai)− J∗

k )

= Λ̂−1
N∑
i=1

ϕ(si, ai)
(
r(si, ai)− J∗

k + v∗k(s
′
i)
)
+ Λ̂−1

N∑
i=1

ϕ(si, ai)
(
Psi,aiv

∗
k − v∗k(s

′
i)
)
.

Now v∗k(s
′
i) = Ea∼πk(·|s′i)

[q∗k(s
′
i, a)] = ϕπk (s′i)

⊤w∗
k. So, plugging this back into (17) we have

w∗
k = ξ∗

k + Λ̂−1
N∑
i=1

ϕ(si, ai)
(
r(si, ai)− J∗

k + ϕπk (s′i)
⊤w∗

k

)
where

ξ∗
k = Λ̂−1

N∑
i=1

ϕ(si, ai)(Psi,aiv
∗
k − v∗k(s

′
i)) + Λ̂−1

N∑
i=1

ϕ(si, ai)∆k(si, ai) + Λ̂−1w∗
k. (18)

To complete the proof, we only need to show that ∥ξ∗
k∥Λ̂ ≤ β holds with high probability. Since v∗k ∈ V(Bw, Bθ)

for all k ∈ [K], by Lemma C.1 we have∥∥∥∥∥Λ̂−1
N∑
i=1

ϕ(si, ai)(Psi,aiv
∗
k − v∗k(s

′
i))

∥∥∥∥∥
Λ̂

=

∥∥∥∥∥
N∑
i=1

ϕ(si, ai)(Psi,aiv
∗
k − v∗k(s

′
i))

∥∥∥∥∥
Λ̂−1

≤ Γ(Bw, N, δ,K, d)
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holds for all k with probability at least 1− δ. Next, using the projection bound, Lemma E.3, and |∆k(si, ai)| ≤
κQ(Bw),Π implied by Assumption 3.3, we have∥∥∥∥∥Λ̂−1

N∑
i=1

ϕ(si, ai)∆k(si, ai)

∥∥∥∥∥
Λ̂

=

∥∥∥∥∥
N∑
i=1

ϕ(si, ai)∆k(si, ai)

∥∥∥∥∥
Λ̂−1

≤ κQ(Bw),Π

√
N.

Finally, since Λ̂−1 ⪯ I ,

∥Λ̂−1w∗
k∥Λ̂ = ∥w∗

k∥Λ̂−1 ≤ ∥w∗
k∥2 ≤ Bw.

Therefore, by (18) and the triangle inequality,

∥ξ∗
k∥Λ̂ ≤ Γ(Bw, N, δ,K, d) + κQ(Bw),Π

√
N +Bw ≤ β.

holds with probability at least 1− δ. The proof is complete.

We now move on to the proof of Lemma 6.3. Recall

v̂k(s) = Ea∼πk(·|s)[q̂k(s, a)]

as the definition of the empirical value function estimated by the critic. Since v̂k(s) = ϕπk (s)⊤wk, it follows
from the definition of (Jk,wk, ξk) as the solution to the optimization problem (6) that

wk = ξk + Λ̂−1
N∑
i=1

ϕ(si, ai)(r(si, ai)− Jk + v̂k(s
′
i)). (19)

We will need the following statement.

Lemma C.3. With probability at least 1− δ, for each k ∈ [K] we have

|E(s,a)∼µ[q̂k(s, a)− ϕ(s, a)⊤w̄k]| ≤ 2β∥ϕµ∥Λ̂−1

for any probability measure µ ∈ ∆(S ×A).

Proof. For this proof, we define

∆̄k(s, a) = ϕ(s, a)⊤w̄k + Jk − Tπk q̂k(s, a).

We observe that

w̄k = Λ̂−1Λ̂w̄k

= Λ̂−1
N∑
i=1

ϕ(si, ai)ϕ(si, ai)
⊤w̄k + Λ̂−1w̄k

= Λ̂−1
N∑
i=1

ϕ(si, ai)(T
πk q̂k(si, ai)− Jk) + Λ̂−1

N∑
i=1

ϕ(si, ai)∆̄k(si, ai) + Λ̂−1w̄k.

Using (19), this allows us to write the difference in the parameters wk and w̄k as

wk − w̄k = ξk + Λ̂−1
N∑
i=1

ϕ(si, ai)
(
r(si, ai)− Jk + v̂k(s

′
i)
)
− Λ̂−1

N∑
i=1

ϕ(si, ai)(T
πk q̂k(si, ai)− Jk)

− Λ̂−1
N∑
i=1

ϕ(si, ai)∆̄k(si, ai)− Λ̂−1w̄k

= ξk + Λ̂−1
N∑
i=1

ϕ(si, ai)
(
v̂k(s

′
i)− Psiai v̂k

)
− Λ̂−1

N∑
i=1

ϕ(si, ai)∆̄k(si, ai)− Λ̂−1w̄k.

So we have

ϕ(s, a)⊤(wk − w̄k) = ϕ(s, a)⊤ξk + ϕ(s, a)⊤Λ̂−1
N∑
i=1

ϕ(si, ai)(v̂k(s
′
i)− Psi,ai v̂k)

− ϕ(s, a)⊤Λ̂−1
N∑
i=1

ϕ(si, ai)∆̄k(si, ai)− ϕ(s, a)⊤Λ̂−1w̄k.
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Denote ϕµ = E(s,a)∼µ[ϕ(s, a)]. Taking an expectation followed by an absolute value we get

|E(s,a)∼µ[q̂k(s, a)− ϕ(s, a)⊤w̄k]| = |(ϕµ)⊤(wk − w̄k)|

≤ |(ϕµ)⊤ξk|+

∣∣∣∣∣(ϕµ)⊤Λ̂−1
N∑
i=1

ϕ(si, ai)(v̂k(s
′
i)− Psi,ai v̂k)

∣∣∣∣∣
+

∣∣∣∣∣(ϕµ)⊤Λ̂−1
N∑
i=1

ϕ(si, ai)∆̄k(si, ai)

∣∣∣∣∣+ |(ϕµ)⊤Λ̂−1w̄k|.

(20)

Let us consider each of the above terms on the right hand side. First, we have by Holder’s inequality

|(ϕµ)⊤ξk| ≤ ∥ϕµ∥Λ̂−1∥ξk∥Λ̂ ≤ β∥ϕµ∥Λ̂−1

where the second inequality is due to the constraint ∥ξ∥Λ̂ ≤ β in the optimization problem (6). For the second
term, using v̂k ∈ V(Bw, Bθ) for all k, we appeal to Lemma C.1 to get∣∣∣∣∣(ϕµ)⊤Λ̂−1

N∑
i=1

ϕ(si, ai)(v̂k(s
′
i)− Psi,ai v̂k)

∣∣∣∣∣ ≤ ∥ϕµ∥Λ̂−1

∥∥∥∥∥
N∑
i=1

ϕ(si, ai)(v̂k(s
′
i)− Psi,ai v̂k)

∥∥∥∥∥
Λ̂−1

≤ Γ(Bw, N, δ,K, d)∥ϕµ∥Λ̂−1

with probability at least 1− δ for all k. For the third term, we use |∆̄k(s, a)| ≤ εQ(Bw),Π by Assumption 3.3
and Lemma E.3 to get∣∣∣∣∣(ϕµ)⊤Λ̂−1

N∑
i=1

ϕ(si, ai)∆̄k(si, ai)

∣∣∣∣∣ ≤ ∥ϕµ∥Λ̂−1

∥∥∥∥∥
N∑
i=1

ϕ(si, ai)∆̄k(si, ai)

∥∥∥∥∥
Λ̂−1

≤ εQ(Bw),Π

√
N∥ϕµ∥Λ̂−1 .

Finally, for the last term on the right hand side of (20) we simply observe that

|(ϕµ)⊤Λ̂−1w̄k| ≤ ∥ϕµ∥Λ̂−1∥w̄k∥Λ̂−1 ≤ ∥ϕµ∥Λ̂−1∥w̄k∥2 ≤ Bw∥ϕµ∥Λ̂−1

Combining everything shows that with probability at least 1− δ,

|E(s,a)∼µ[q̂k(s, a)− ϕ(s, a)⊤w̄k]| ≤
(
β + Γ(Bw, B, δ,K, d) + εQ(Bw),Π

√
N +Bw

)
∥ϕµ∥Λ̂−1

≤ 2β∥ϕµ∥Λ̂−1

as desired.

Proof of Lemma 6.3. Adding and subtracting ϕ(s, a)⊤w̄k, we can decompose the Bellman error into two terms
as

q̂k(s, a) + Ĵk − Tπk q̂k(s, a) = q̂k(s, a)− ϕ(s, a)⊤w̄k + ϕ(s, a)⊤w̄k + Ĵk − Tπk q̂k(s, a).

Therefore, by Lemma C.3 and the definition of w̄k,

|E(s,a)∼µπ⊗π[q̂k(s, a) + Ĵk − Tπk q̂k(s, a)]| ≤ |E(s,a)∼µπ⊗π[q̂k(s, a)− ϕ(s, a)⊤w̄k]|

+ ∥ϕ(·, ·)⊤w̄k + Ĵk − Tπk q̂k∥∞
≤ 2β∥ϕµπ

∥Λ̂−1 + εQ(Bw),Π.

C.2 Proof of Theorem 5.1

We are now ready to prove Theorem 5.1. We will need the following Lemma analyzing the actor’s optimization
procedure.

Lemma C.4. Fix a comparator policy π ∈ ∆(A). We have

Es∼µπ

[
1

K

K∑
k=1

∑
a

(π(a|s)− πk(a|s))q̂k(s, a)

]
≤ 2Bw

√
logA

K
.

Proof. Notice that the policy parameter update in Line 7 of Algorithm 1 can be written as the exponential weight
update

πk+1(a|s) ∝ πk(a|s) exp (ηq̂k(s, a)) .
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We have |q̂k(s, a)| = |ϕ(a, s)⊤wk| ≤ Bw by Algorithm 1’s constraint on wk and the normalization of ϕ(s, a)
in Assumption 3.3. We then appeal to standard analysis of exponential weights (Lemma E.1). If we choose
η ≤ 1

Bw
then the conditions of the Lemma E.1 are satisfied and we have

K∑
k=1

(π(a|s)− πk(a|s))q̂k(s, a) ≤
logA

η
+ η

K∑
k=1

∑
a∈A

πk(a|s)|q̂k(s, a)|2

≤ logA

η
+ ηKB2

w.

We choose η =
√

logA
KB2

w
, which is ≤ 1

Bw
whenever K ≥ logA, to get

K∑
k=1

(π(a|s)− πk(a|s))q̂k(s, a) ≤ 2Bw

√
K logA.

The proof is completed by dividing both sides by K, and taking an expectation with respect to s ∼ µπ .

Proof of Theorem 5.1. We work on the events of Lemmas 6.2 and Lemma 6.3 which, by a union bound, hold
simultaneously with probability at least 1− 2δ.

By Lemma 6.1 we have

1

K

K∑
j=1

Jπ − Ĵk =
1

K

K∑
k=1

Es∼µπ [(π(a|s)− πk(a|s))q̂k(s, a)]

+
1

K

K∑
k=1

E(s,a)∼µπ⊗π

[
Tπk q̂k(s, a)− Ĵk − q̂k(s, a)

]
.

By Lemma C.4, the first term on the right hand side bounded by 2Bw

√
logA
K

. For the second term, by Lemma
6.3

1

K

K∑
k=1

E(s,a)∼µπ⊗π

[
Tπk q̂k(s, a)− Ĵk − q̂k(s, a)

]
≤ 1

K

K∑
k=1

(
2β∥ϕµπ

∥Λ̂−1 + εBw,Bθ

)
= 2β∥ϕµπ

∥Λ̂−1 + εBw,Bθ .

We next observe that Lemma 6.2 implies

1

K

K∑
j=1

Jπ − Jπk ≤ 1

K

K∑
k=1

Jπ − Ĵk + κBw,Bθ

≤ 2Bw

√
logA

K
+ 2β∥ϕµπ

∥Λ̂−1 + εBw,Bθ + κBw,Bθ .

To complete the proof, we use the definition of β and replace Λ̂−1 with 1
N
Λ̂−1

N .

D Proof of Lemma C.1

This section is dedicated to the proof of Lemma C.1. We start with the following general result whose purpose
will be to show that policies in Π are Lipchitz continuous in the parameter θ. This is similar to what is done in
[Sherman et al., 2024].

Lemma D.1. Let Θ ⊂ Rd be a convex set and {fθ : θ ∈ Θ} be a class of parameterized functions from Rd → R.
Suppose that the map θ 7→ fθ(x) is continuously differentiable and that supx∈Rd,∥x∥2≤1,θ∈Θ∥∇θfθ(x)∥2 ≤ L
for some constant L. Then for any θ1, θ2 ∈ Θ and s ∈ S,

∥πθ1(·|s)− πθ2(·|s)∥1 ≤ 2L∥θ1 − θ2∥2

where

πθ(a|s) =
efθ(ϕ(s,a))∑
a′ efθ(ϕ(s,a))

and ϕ(s, a) is as in Assumption 3.3.
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Proof. Note that

sup
(s,a),θ∈Θ

∥∇θfθ(ϕ(s, a))∥2 ≤ L

since ∥ϕ(s, a)∥ ≤ 1 under Assumption 3.3. Fix θ1, θ2 and a state s ∈ S. Let m = |A| and let

Jθ(s) =

∇θπθ(a1|s)
. . .

∇θπθ(am|s)

 ∈ Rm×d

be the Jacobian of θ 7→ πθ(·|s). A straight forward computation shows that

∇θπθ(a|s) = πθ(a|s)

(
∇θfθ(ϕ(s, a))−

∑
a′

∇θfθ(ϕ(s, a
′))πθ(a

′|s)

)
. (21)

Fix t ∈ [0, 1] and define θt = (1 − t)θ1 + tθ2. Let Jθ1,θ2 be the matrix
∫ 1

0
Jθtdt. Then by the fundamental

theorem of calculus

∥πθ1(·|s)− πθ2(·|s)∥1 = ∥Jθ1,θ2(θ1 − θ2)∥1.

Now let a be fixed. Using (21), we can bound the absolute value of the a-th entry of the vector Jθ1,θ2(θ1 − θ2)
as

|Jθ1,θ2(θ1 − θ2)a| ≤
∣∣∣∣∫ 1

0

πθt(a|s)∇θfθt(ϕ(s, a))
⊤(θ1 − θ2)

∣∣∣∣
+

∣∣∣∣∣
∫ 1

0

πθt(a|s)
∑
a′

∇θfθt(ϕ(s, a
′))⊤(θ1 − θ2)πθt(a

′|s)

∣∣∣∣∣
≤
∫ 1

0

πθt(a|s)|∇θfθt(ϕ(s, a))
⊤(θ1 − θ2)|dt

+

∫ 1

0

πθt(a|s)
∑
a′

|∇θfθt(ϕ(s, a
′))⊤(θ1 − θ2)|πθt(a

′|s)dt

≤ L∥θ1 − θ2∥2
∫ 1

0

πθt(a|s)dt+ L∥θ1 − θ2∥2
∫ 1

0

πθt(a|s)
∑
a′

πθt(a
′|s)dt

= 2L∥θ1 − θ2∥2
∫ 1

0

πθt(a|s)dt

where the second to last line we used Cauchy-Schwartz and ∥∇θfθ(ϕ(s, a))∥ ≤ L. Therefore

∥πθ1(·|s)− πθ2(·|s)∥ =
∑
a

|Jθ1,θ2(θ1 − θ2)a| ≤ 2L∥θ1 − θ2∥2
∫ 1

0

∑
a

πθt(a|s)dt = 2L∥θ1 − θ2∥2.

Lemma D.1 can be applied to the restricted policy class Π(Bθ) by taking Θ to be the d-dimensional Euclidean
ball of radius Bθ and the family {fθ : θ ∈ Θ} to be the set of functions fθ(ϕ) = ϕ⊤θ where ∥ϕ∥2 ≤ 1.
Clearly, we have ∥∇θfθ(ϕ)∥2 ≤ 1. Thus, Lemma D.1 shows that

∥πθ1(·|s)− πθ2(·|s)∥1 ≤ 2∥θ1 − θ2∥2 (22)

for all πθ1 , πθ2 ∈ Π(Bθ).

With this we can now bound the ε-covering number of the function class V .

Lemma D.2. Let V be the function class (16). Then

logNε(V) ≤ d log (1 + 4Bw/ε) + d log (1 + 16BwBθ/ε) .

where Nε(V) is the ε-covering number of V with respect to the norm ∥·∥∞

Proof. First, consider two functions q(·, ·;w) and q(·, ·;w′) in Q(Bw). Using the normalization in Assumption
3.3

|q(s, a;w)− q(s, a;w′)| = |⟨ϕ(s, a),w −w′⟩| ≤ ∥w −w′∥2
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for any (s, a). So for any fixed policy π ∈ Π(Bθ) we have

|v(s;π,w)− v(s;π,w′)| ≤ max
s

∣∣∣∣∣∑
a

π(a|s)(q(s, a,w)− q(s, a,w′))

∣∣∣∣∣
≤ max

s,a
|q(s, a,w)− q(s, a,w′)|

≤ ∥w −w′∥2.

On the other hand, for a fixed w, and separate policies πθ, πθ′ ∈ Π,

|v(s, π,w)− v(s, π′,w)| ≤ max
s

∣∣∣∣∣∑
a

(πθ(a|s)− πθ′(a|s))q(s, a;w)

∣∣∣∣∣
≤ Bw max

s
∥πθ(·|s)− πθ′(·|s)∥1

≤ 4Bw∥θ − θ′∥2

where the second line used |q(s, a);w)| ≤ Bw and the last line used (22). Thus it holds for any v(·, π,w),
v(·, π′,w′) ∈ Π,

|v(s, π,w)− v(s, π′,w′)| ≤ |v(s, π,w)− v(s, π,w′)|+ |v(s, π,w′)− v(s, π′,w′)| (23)

∥w −w′∥2 + 4Bw∥θ − θ′∥2.

Now, using a standard result concerning the covering number of the d-dimensional Euclidian ball (Lemma E.2),
we can construct an ε

2
covering of the euclidean ball d-dimensional euclidean ball of radius Bw with cardinality

at most (1 + 4Bw/ε)
d and an ε

8Bw
covering of the Euclidean ball of radius Bθ with cardinality not exceeding

(1 + 16BwBθ/ε)
d. Let Vε be the members of V parameterized by members (w′,θ′) of the Cartesian product

of these two coverings. Then

logNε(V) = log |Vε| ≤ d log (1 + 4Bw/ε) + d log (1 + 16BwBθ/ε) ,

and by (23), for any v(·;πθ,w) ∈ V we can find v(·;πθ′ ,w′) ∈ Vε with

|v(s;πθ,w)− v(s, πθ′ ,w′)| ≤ ∥w −w′∥2 + 4Bw∥θ − θ′∥2

≤ ε

2
+ 4Bw · ε

8Bw
= ε.

Proof of Lemma C.1. Fix {vk}Kk=1 ⊂ V(Bw, Bθ) Appealing to the uniform concentration of self-normalized
processes (Lemma E.5) and using that ∥v∥∞ ≤ Bw for any v ∈ V we have, for fixed k,∥∥∥∥∥

N∑
i=1

ϕ(si, ai)
(
Psi,aivk − vk(s

′
i)
)∥∥∥∥∥

2

Λ̂−1

≤ 4B2
w

(
d

2
log

(
K(N + 1)

δ

)
+ logNε(V)

)
+ 8N2ε2

holds with probability 1− δ
K

. Now, substituting the bound for logNε(V) from Lemma D.2, the upper bound
becomes

4B2
w

(
d

2
log

(
K(N + 1)

δ

)
+ d log(1 + 4Bw/ε) + d log(1 + 16BwBθ/ε)

)
+ 8N2ε2.

Taking ε = 1/N followed by a union bound for over k = 1, . . . ,K we complete the proof.

E Auxiliary Lemmas

Lemma E.1. Let {Xk}k≥1 be a sequence of vectors in RA. Set π1(a) =
1
A

for all a ∈ A and for each k ≥ 2,

πk+1(a) =
πk(a) exp(ηXk(a))∑

a′∈A πk(a′) exp(ηXk(a′))

for some positive stepsize η satisfying ηXk(a) ≥ −1 for all k and a ∈ A. Then for any fixed π∗ ∈ ∆(A),

K∑
k=1

⟨π∗ − πk, Xk⟩ ≤
logA

η
+ η

K∑
k=1

∑
a∈A

πk(a)Xk(a)
2.
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Proof. Define Zk =
∑

a′∈A πk(a
′) exp(ηXk(a

′)). Then using the inequality ex ≤ 1 + x+ x2 which holds
for all x ≤ 1 followed by log(1 + x) ≤ x we have

logZk = log

(∑
a′∈A

πk(a
′) exp(ηXk(a

′))

)
≤ log

(
1 +

∑
a∈A

πk(a)ηXk(a) +
∑
a∈A

πk(a)η
2Xk(a)

2

)
≤ η

∑
a∈A

πk(a)Xk(a) + η2
∑
a∈A

πk(a)Xk(a)
2.

Thus,

DKL(π
∗||πk+1)−DKL(π

∗||πk) =
∑
a∈A

π∗(a) log

(
π∗(a)

πk+1(a)

)
−
∑
a∈A

π∗(a) log

(
π∗(a)

πk(a)

)
=
∑
a∈A

π∗(a) log

(
π∗(a)Zk exp(−ηXk(a))

πk(a)

)
−
∑
a∈A

π∗(a) log

(
π∗(a)

πk(a)

)

= logZk − η
∑
a∈A

π∗(a)Xk(a)

≤ η
∑
a∈A

πk(a)Xk(a) + η2
∑
a∈A

πk(a)Xk(a)
2 − η

∑
a∈A

π∗(a)Xk(a).

Rearranging and summing from k = 1 to K,

η

K∑
k=1

∑
a∈A

(π∗(a)− πk(a))Xk(a) ≤
K∑

k=1

DKL(π
∗||πk)−DKL(π

∗||πk+1) + η2
K∑

k=1

∑
a∈A

πk(a)Xk(a)
2

≤ DKL(π
∗||π1) + η2

K∑
k=1

∑
a∈A

πk(a)Xk(a)
2.

Since π1(a) =
1
A

for all a,

DKL(π
∗||π1) =

∑
a∈A

π∗(a) log (Aπ∗(a)) ≤ logA.

Plugging this bound in above and dividing both sides by η we complete the proof.

Lemma E.2 (Covering Number of Euclidean Ball). For any ε > 0, the ε-covering number of the Euclidean ball
in Rd with radius R > 0 is upper bounded by (1 + 2R/ε)d

Proof. See [Jin et al., 2020] Lemma D.5.

Lemma E.3 (Projection Bound). Let {ϕi}i≥1 be a sequence in Rd with ∥ϕi∥2 ≤ 1 and {ai}i≥1 be a sequence
of real numbers with |ai| ≤ A. Define

Λn =

n∑
i=1

ϕiϕ
⊤
i + I.

We have ∥∥∥∥∥
n∑

i=1

aiϕi

∥∥∥∥∥
Λ−1
n

≤ A
√
n.

Proof. See [Zanette et al., 2020] Lemma 8.

Lemma E.4 (Concentration of Self-Normalized Processes). Let (Xt)t be a real-valued martingale difference
sequence adapted to filtration (Ft)t. Suppose that Xt is σ-subgaussian conditioned on Ft−1 i.e.,

logE[eλXt |Ft−1] ≤
λ2σ2

2
.

Let (ϕt)t be an Rd-valued predictable process. Assume Λ0 ∈ Rd×d is positive definite and let Λt = Λ0 +∑t
s=1 ϕsϕ

⊤
s . Then for any δ > 0, with probability at least 1− δ we have∥∥∥∥∥

t∑
s=1

ϕsXs

∥∥∥∥∥
2

Λ−1
t

≤ 2σ2 log

(√
det(Λt)det(Λ0)

δ

)
.
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Proof. See [Jin et al., 2020] Lemma D.3.

Lemma E.5 (Lemma D.4 in [Jin et al., 2020]). Let {xt}∞t=1 be a stochastic process on state space S with
corresponding filtration {Ft}∞t=1. Let {ϕt}∞t=1 be an Rd-valued stochastic process where ϕt ∈ Ft−1 and
∥ϕt∥ ≤ 1. Let Λk =

∑k
t=1 ϕtϕ

⊤
t . Then for any δ > 0, with probability at least 1− δ, for all k ≥ 0, and any

V ∈ V so that ∥V ∥∞ ≤ H , we have:∥∥∥∥∥
k∑

t=1

ϕt (V (xt)− E[V (xt)|Ft−1])

∥∥∥∥∥
2

Λ−1
k

≤ 4H2

(
d

2
log

(
k + λ

λ

)
+ log

Nε(V)
δ

)
+

8k2ε2

λ
,

where Nε(V) is the ε-covering number of V with respected to the distance dist(V, V ′) = supx |V (x)− V ′(x)|.
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