
In-Context Learning from Training on Unstructured Data: The Role of
Co-Occurrence, Positional Information, and Training Data Structure

Kevin Christian Wibisono 1 Yixin Wang 1

Abstract
Large language models (LLMs) like transform-
ers have impressive in-context learning (ICL)
capabilities; they can generate predictions for
new queries based on input-output sequences in
prompts without parameter updates. While many
theories have attempted to explain ICL, they often
focus on structured training data similar to ICL
tasks, such as regression. In practice, however,
these models are trained in an unsupervised man-
ner on unstructured text data, which bears little
resemblance to ICL tasks. To this end, we investi-
gate how ICL occurs from unsupervised training
on unstructured data. The key observation is that
ICL can arise simply by modeling co-occurrence
information using classical language models like
continuous bag of words (CBOW), which we the-
oretically prove and empirically validate. Fur-
thermore, we establish the necessity of positional
information and nuisance token structure to gen-
eralize ICL to unseen data. Finally, we present
instances where ICL fails and provide theoretical
explanations; they suggest that the ICL ability of
LLMs to identify certain tasks can be sensitive to
the structure of the training data.

1. Introduction
Large language models (LLMs) such as transformers demon-
strate impressive in-context learning (ICL) abilities (Brown
et al., 2020): without updating parameters, they can iden-
tify tasks and generate predictions from prompts containing
input-output examples. For example, given the prompt dog
anjing, cat kucing, lion singa, elephant, a well-trained LLM
should detect the English-to-Indonesian pattern and predict
gajah, the Indonesian translation for elephant, as the most

1Department of Statistics, University of Michigan, Ann Ar-
bor, MI, USA. Correspondence to: Kevin Christian Wibisono
<kwib@umich.edu>.

Proceedings of the 1 st Workshop on In-Context Learning at the
41 st International Conference on Machine Learning, Vienna, Aus-
tria. 2024. Copyright 2024 by the author(s).

Figure 1. This paper aims to understand how in-context learning
(ICL) occurs from pretraining on unstructured natural language
data. In Section 2, we show that ICL can arise merely through mod-
eling co-occurrence information using continuous bag of words
(CBOW). Violet represents relationship-specific nuisance tokens.
In Section 3, we establish the necessity of positional information
and blocked nuisance structure for certain ICL tasks. Violet rep-
resents nuisance tokens. In Section 4, we present two scenarios
where ICL can fail and provide theoretical explanations, highlight-
ing the importance of training data structure in enabling the ICL
ability of language models. Boxed letters represent the expected
outputs. In the failed scenarios, the model predicts e and d1.

likely next token. The ICL ability of LLMs is surprising for
at least two reasons. First, LLMs are trained from unstruc-
tured natural language data in an unsupervised manner via
next-token prediction. Second, the training data of LLMs
likely does not include sentences that resemble typical ICL
prompts, i.e., of the form c1d1 · · · cKdK , where (ck, dk)
represents a known input-output pair.

Many efforts have sought to understand ICL from various
theoretical and empirical perspectives; see related work
in Section A. Some studies (e.g., Akyürek et al. (2022);
Von Oswald et al. (2023); Dai et al. (2023); Zhang et al.
(2024); Ahn et al. (2024)) expanded Garg et al.’s [2022] re-
gression formulation and attributed transformers’ ICL abil-
ity to gradient descent. Other studies (e.g., Wang et al.
(2023), Zhang et al. (2023), Chiang and Yogatama (2024))

1

In-Context Learning from Training on Unstructured Data

adopted a Bayesian perspective, building upon Xie et al.’s
[2021] argument that ICL performs implicit Bayesian infer-
ence. While these connections are theoretically intriguing,
they do not fully capture the actual ICL phenomenon: ICL
arises from training on unstructured natural language data
that are distinct from ICL prompts.

This work. We study how ICL arises from pretraining on
unstructured natural language data. Throughout the pa-
per, we focus on two types of ICL tasks. The first type
involves known input-output pairings that frequently oc-
cur together in a sentence, such as (country)-(capital) and
(English word)-(Indonesian translation). The second type
involves recognizable patterns that may not commonly co-
occur in a sentence, such as (word)-(first letter).

For the first task (left of Fig. 1), we examine cases where the
training sentences contain one or two distinct input-output
relationship types. We also study more realistic scenarios
where some input-output pairs do not always co-occur and
two types of relationships can co-occur in a single sentence.
We prove that, in most cases, ICL is achievable by only mod-
eling co-occurrence information using continuous bag of
words (CBOW) (Mikolov et al., 2013), a pre-transformer lan-
guage model. Further, we conduct prompting and synthetic
data experiments to support our theoretical findings.

For the second task (right of Fig. 1), we study cases where
the training sentences contain one or two distinct patterns,
and a more realistic scenario where nuisance tokens are
present. We prove that positional information and blocked
nuisance structure (e.g., pqrs in Figure 1) are crucial for
ICL. This observation aligns with Chen et al.’s [2024b] em-
pirical finding that parallel structures in pretraining data
support ICL. Moreover, we find that learned positional em-
beddings generally perform better, except in noisy scenarios
where the nuisance tokens are not clustered in blocks.

Finally, we present two scenarios where ICL can fail re-
gardless of model architectures (bottom of Fig. 1). In the
first scenario (left example), both the training data and test
prompts follow repeating patterns across blocks, but the
pattern being repeated in the test data differs from that in
the training data. In the second scenario (right example),
training sentences contain known input-output pairs but only
at fixed locations. These findings, along with their empirical
and theoretical explanations, show that LLMs may require
specific pretraining data structures to exhibit ICL ability.

Summary of contributions. In this paper, we (1) theoreti-
cally and empirically show that ICL can arise from merely
modeling co-occurrence patterns using CBOW, (2) prove
that, in other instances, ICL requires modeling positional
information and blocked nuisance structure, and (3) present
scenarios where ICL fails, highlighting the crucial role of
training data structure for ICL to arise.

2. In-context learning can arise by merely
modeling co-occurrence via CBOW

In this section, we focus on in-context learning
(ICL) tasks involving pairings that commonly co-occur
within training sentences. To motivate our discus-
sion, we revisit the (English word)-(Indonesian
translation) example in Section 1. Below we perform
a simple experiment with ChatGPT 3.5 (OpenAI, 2022).
The model is given prompts of the following form:

Provide the most plausible next token
to complete this sentence (only the
answer). Even if the sentence does not
make sense, please complete it as best
as you can: dog anjing, cat kucing,
lion singa, [word]

We take turns replacing [word] with elephant, tiger,
soon, and main. For the first two options, ChatGPT
3.5 correctly outputs gajah and harimau, their respec-
tive Indonesian translations. However, it does not provide
the correct outputs for the latter two: it follows soon
with lebih baik beri makanan haiwan! (better
feed the animals!) and main with bola (ball).1 A sim-
ilar pattern is observed with LLaMA 2 (Touvron et al.,
2023), which produces the correct translations the first two
words but incorrectly continues the last two words with
to-be-published and an1, respectively.

If ICL stems from the ability of LLMs to recognize con-
sistent mappings in test prompts, these models should be
equally likely to produce the correct answer for any given
[word], irrespective of its relevance to the in-context ex-
amples. However, this experiment demonstrates that this
is not the case; in Section 2.4, we also present two similar
experiments on countries, US states, and their capital cities.
This naturally raises the question: Can ICL arise from mod-
eling co-occurrence information using a simple model like
continuous bag of words (CBOW) (Mikolov et al., 2013)?

ICL via CBOW. We prove that, for certain tasks, ICL is
achievable by modeling co-occurrence information between
pairs of tokens (regardless of their positions) using CBOW.
We do not prove that ICL in transformer-based models arises
through learning co-occurrence patterns. We utilize a variant
of CBOW where each center word is modeled conditional
on all other words in a sentence, rather than just neighboring
words. Specifically, we associate each word w with their
center and context embeddings uw and vw of the same
dimension. Given a sentence x1x2 · · ·xI , the i-th word (xi)
is distributed conditional on the other words in the sentence
(x−i): p(xi = k | x−i) ∝ exp

(
(u⊤

k

∑
j ̸=i vxj

)/(I − 1)
)

.

1In Indonesian, main means play, main bola means play
soccer, and mainan means toy.

2

In-Context Learning from Training on Unstructured Data

The uw’s and vw’s are learned by minimizing the sum of
the cross-entropy losses across all sentences and positions.

Roadmap of Section 2. In Section 2.1, we consider a sim-
ple ICL task of the form ci1di1 · · · ciℓdiℓciℓ+1

, where (ci, di)
represents a known pairing (e.g., a country and its capital
city) and i1, i2, · · · , iℓ+1 are all distinct. The focus is to
investigate whether a trained CBOW model can correctly
output diℓ . We also explore two other scenarios: ICL tasks
of the form ci1di1 · · · ciℓdiℓciℓ+1

and ci1ei1 · · · ciℓeiℓciℓ+1

in Section 2.2 (two connected relationships), as well as
ci1di1 · · · ciℓ−1

diℓ−1
ciℓ and ei1fi1 · · · eiℓfiℓeiℓ+1

(two dis-
connected relationships) in Section 2.3. Sections 2.4 and
2.5 conclude with prompting and synthetic data experiments
that provide support to the theory.

2.1. ICL on single-relationship tasks

We investigate ICL in single-relationship tasks that take the
form of ci1di1 · · · ciℓdiℓciℓ+1

, where (ci, di)’s denote known
pairings such as countries and their capital cities. The vocab-
ulary consists of c1:K , d1:K , r1:L, where r′is represent other
words (e.g., stop words). We first introduce Theorem 2.1,
which states that ICL can arise if each sentence consists of
exactly one (ci, di) pair, as long as the number of in-context
examples (ℓ) is not too large. To simplify calculations, we
replace the cross-entropy loss with the squared loss. This
involves removing the softmax activation and comparing
the outputs against the one-hot encoding of the target words.
The proof of Theorem 2.1 is in Appendix B.
Theorem 2.1 (ICL on single-relationship tasks). Let
K,L ≥ S ≥ 3. Suppose each training sentence is generated
by selecting one (ci, di) pair and S − 2 distinct ri’s uni-
formly at random. We train a CBOW model with the squared
loss and a sufficiently large embedding dimension on these
sentences. Given a prompt ci1di1 · · · ciℓdiℓciℓ+1

with dis-
tinct ik’s, the model correctly predicts diℓ+1

if and only if

2ℓ+ 1 < KL(S−1)3

(K+L)(S−2)2(S−1)+K(S−2)(S−1)2−2(S−2)4 .

As an example, when each training sentence contains exactly
one country-capital pair (i.e., (ci, di)), Theorem 2.1 says
a trained CBOW model will correctly predict diℓ+1

(i.e.,
the capital city of ciℓ+1

) given an ICL prompt of the form
ci1di1 · · · ciℓdiℓciℓ+1

, provided that the prompt length (2ℓ+
1) is not too large. This behavior is intuitively due to the
presence of ciℓ+1

in the ICL prompt, leading the model to
correctly predict diℓ+1

due to the frequent occurrences of the
pair (ciℓ+1

, diℓ+1
) in the training data. However, when the

prompt length is too large, the model will instead predict one
of the ri’s (see Theorem 2.1’s proof in Appendix B for more
details). If we let L → ∞ and fix K and S, the condition
in Theorem 2.1 becomes 2ℓ + 1 < K(S − 1)2/(S − 2)2.
This inequality trivially holds if the prompt length is set to
be S − 1 to match the training sentences.

It is possible to adapt the proof of Theorem 2.1 to han-

Table 1. ICL on various single-relationship tasks, averaged over
10 repetitions, demonstrates stable, good performance across em-
bedding dimensions (dE), as Theorem 2.1 suggests. The corrupted
setting also shows excellent ICL ability under certain scenarios.

Clean Corrupted

(p0, p1, p2) dE = 10 dE = 100 dE = 10 dE = 100

(0, 1, 0) 0 0 0 0
(0, 0, 1) 0 0 0 0

(1/2, 1/2, 0) 1 0.99 0 0
(1/2, 0, 1/2) 1 1 1 1
(0, 1/2, 1/2) 1 1 0 0.01

(1/3, 1/3, 1/3) 1 1 1 1

dle the case when each sentence comprises exactly two
(not one) different (ci, di) pairs. In this case, letting
L → ∞ and fixing K and S, the model correctly pre-
dicts diℓ+1

given the same ICL prompt if and only if

2ℓ+ 1 < K(K−2)(S−1)2

(K−2)(S−2)(S−4)−K . This upper bound is strictly
larger than K(S − 1)2/(S − 2)2: when each sentence con-
tains exactly two (ci, di) pairs, ICL under the squared loss
occurs for longer prompts.

Experiments. To verify Theorem 2.1 and its generaliza-
tions, we conduct experiments using the cross-entropy loss
with S = 8, K = 10, L = 20, and ℓ = 3. We explore
multiple (p0, p1, p2) values, where pk denotes the probabil-
ity of having exactly k pairs of (ci, di) in the sentence. For
each (p0, p1, p2) triple, we introduce a more realistic setting
where ci and di do not always appear together by consid-
ering its corrupted version. In this setup, each (ci, di) pair
has a 25% chance of being replaced with (ci, rj) and a 25%
chance of being replaced with (di, rj), for some j ∈ [L].

Table 1 displays the average accuracy for each scenario,
calculated over 10 repetitions. Notably, when (p0, p1, p2)
is (0, 1, 0) or (0, 0, 1), ICL under the cross-entropy loss
achieves zero accuracy, in contrast to perfect accuracy with
the squared loss as shown in Theorem 2.1. We believe this
difference in accuracy is an artifact of the loss functions
used, although its relevance is limited by the fact that, in
reality, it is unlikely for every sentence to contain at least
one (ci, di) pair. On the other hand, perfect ICL perfor-
mance is observed in other settings (e.g., when the training
sentences contain either zero, one, or two (ci, di) pairs) in
both the clean and corrupted scenarios. For an in-depth
comparison of ICL performance using both the squared and
cross-entropy loss across various numbers of demonstration
examples, refer to Appendix C.

2.2. ICL on dual-connected-relationship tasks

In Section 2.1, we discussed the case where the train-
ing sentences contain one relationship, namely (ci, di)’s.
We now explore ICL on dual-connected-relationship tasks,

3

In-Context Learning from Training on Unstructured Data

Table 2. ICL on dual-connected-relationship tasks, averaged over 10 repetitions, achieves perfect accuracy when (p0, p1, p2) ∈
{(1/2, 0/1, 2), (0, 1/2, 1/2), (1/3, 1/3, 1/3)} regardless of architectures and embedding dimensions (dE), as Theorem 2.2 suggests.
When (p0, p1, p2) = (1/2, 1/2, 0), ICL performs better under imbalanced or extreme scenarios and with larger dE .

Balanced Imbalanced Extreme

(p0, p1, p2) dE = 10 dE = 100 dE = 10 dE = 100 dE = 10 dE = 100

(0, 1, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0, 1) (0, 0) (0, 0) (0, 0) (0, 0) (0.07, 0.10) (0, 0)

(1/2, 1/2, 0) (0.53, 0.47) (0.51, 0.50) (0.69, 0.68) (1, 1) (0.94, 0.93) (1, 1)
(1/2, 0, 1/2) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)
(0, 1/2, 1/2) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)
(1/3, 1/3, 1/3) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

where the two types of relationships are connected and
denoted by (ci, di) and (ci, ei): ci might represent a coun-
try, di its capital city, and ei its currency. Our vocabulary
comprises c1:K , d1:K , e1:K , r1:L, where ri’s represent other
words. The corresponding ICL tasks thus take the form
ci1di1 · · · ciℓdiℓciℓ+1

and ci1ei1 · · · ciℓeiℓciℓ+1
, where the

model is expected to output diℓ+1
and eiℓ+1

. This involves
task selection as the model should use the in-context exam-
ples to infer the task. We first present Theorem 2.2, which
states that a trained CBOW model can perform task selec-
tion if each sentence contains exactly two distinct (ci, di)
pairs or two distinct (ci, ei) pairs with uniform probability.
Its proof is in Appendix D. While we can also theoretically
show that ICL works in this case (up to a certain number of
training examples), the calculations are extremely tedious.
Thus, we only present empirical evidence in Table 2.
Theorem 2.2 (Task selection in CBOW). Let K,L ≥ 2
and S ≥ 5. Suppose each training sentence is gener-
ated by selecting two distinct (ci, di) pairs or (ci, ei) pairs
and S − 4 distinct ri’s uniformly at random. We train a
CBOW model with the squared loss and a large enough
embedding dimension. Given a prompt ci1di1 · · · ciℓdiℓciℓ+1

(ci1ei1 · · · ciℓeiℓciℓ+1
) with distinct ik’s, the model is more

likely to predict diℓ+1
(eiℓ+1

) than eiℓ+1
(diℓ+1

).

Theorem 2.2 says that, when each training sentence in-
cludes two (ci, di) pairs or two (ci, ei) pairs, a trained
CBOW model is capable of task selection. To understand
this result, consider the ICL prompt of the first type, i.e.,
ci1di1 · · · ciℓdiℓciℓ+1

. Here, the output is more likely to be
diℓ+1

than eiℓ+1
since diℓ+1

co-occurs with the other dij ’s
in the training data (and eiℓ+1

does not). In Theorem 2.2,
we unrealistically require each sentence to contain either
two distinct (ci, di) pairs or (ci, ei) pairs. However, this
condition is not necessary as we empirically show next.

Experiments. We use the cross-entropy loss with S = 8,
K = 10, L = 60, and ℓ = 3. Each training sentence is
equally likely to be a cd sentence (i.e., containing (ci, di)
pairs) or a ce sentence (i.e., containing (ci, ei) pairs), but
not both. We explore multiple (p0, p1, p2)’s, where pk is

the probability of having exactly k pairs of (ci, di) for a cd
sentence, or k pairs of (ci, ei) for a ce sentence.

Additionally, we introduce three different scenarios: bal-
anced, where all L random words are equally likely to
occur in both cd and ce sentences; imbalanced, where
L/3 words are more likely to occur in cd (ce) sentences;
and extreme, where L/3 of the words can only occur
in cd (ce) sentences. Table 2 shows the accuracies of
both tasks for each scenario, averaged over 10 repeti-
tions. We observe a perfect accuracy when (p0, p1, p2) ∈
{(1/2, 0/1, 2), (0, 1/2, 1/2), (1/3, 1/3, 1/3)} across all
embedding dimensions and scenario types. The near-zero
accuracy when (p0, p1, p2) or (0, 1, 0) or (0, 0, 1) is again
an artifact of the cross-entropy loss discussed in Section 2.1.

Interestingly, ICL works in the imbalanced and extreme sce-
narios when (p0, p1, p2) = (1/2, 1/2, 0), where sentences
do not contain more than one (ci, di) or (ci, ei) pair. To
see this, consider the balanced scenario where each ri is
equally probable to appear in both types of sentences. Given
a prompt of the form ci1di1 · · · ciℓdiℓciℓ+1

, it is easy to see
that the model should output diℓ+1

or eiℓ+1
with equal prob-

ability. On the other hand, in the imbalanced and extreme
scenarios, the signals from the ri’s can allow for task selec-
tion, thus contributing to the success of ICL.

2.3. ICL on dual-disconnected-relationship tasks

We next replicate the experiments in Section 2.2, but with
two disconnected relationships (ci, di) and (ei, fi). For
example, (ci, di) might represent a country and its capital
city and (ei, fi) might represent a company and its CEO.
Our vocabulary consists of c1:K , d1:K , e1:K , f1:K , r1:L,
where ri’s represent other words. Table 3 summarizes
the accuracies of the ICL tasks ci1di1 · · · ciℓdiℓciℓ+1

and
ei1fi1 · · · eiℓfiℓeiℓ+1

for each scenario, averaged over 10
repetitions. Similar to the connected setting in Section
2.2, we observe a perfect accuracy when (p0, p1, p2) ∈
{(1/2, 0/1, 2), (0, 1/2, 1/2), (1/3, 1/3, 1/3)} across all
embedding dimensions and scenario types. However, when
(p0, p1, p2) = (1/2, 1/2, 0), ICL already works well in the

4

In-Context Learning from Training on Unstructured Data

Table 3. ICL on dual-disconnected-relationship tasks, averaged over 10 repetitions, achieves perfect accuracy when (p0, p1, p2) ∈
{(1/2, 0/1, 2), (0, 1/2, 1/2), (1/3, 1/3, 1/3)} regardless of architectures and embedding dimensions (dE). When (p0, p1, p2) =
(1/2, 1/2, 0), ICL already performs well under the balanced scenario.

Balanced Imbalanced Extreme

(p0, p1, p2) dE = 10 dE = 100 dE = 10 dE = 100 dE = 10 dE = 100

(0, 1, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0) (0, 0)
(0, 0, 1) (0, 0) (0, 0) (0.16, 0.14) (0, 0) (0.21, 0.29) (0, 0)

(1/2, 1/2, 0) (1, 1) (0.82, 0.83) (0.28, 0.27) (0.95, 0.95) (0.83, 0.85) (0.91, 0.91)
(1/2, 0, 1/2) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)
(0, 1/2, 1/2) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)
(1/3, 1/3, 1/3) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1) (1, 1)

balanced scenario. This is because the two relationships are
disjoint, thus making task selection easier. In addition, we
consider a contaminated version of the training data where
cd (ef) sentences can contain some ei’s and fi’s (ci’s and
di’s). We also obtain a perfect accuracy when (p0, p1, p2) ∈
{(1/2, 0/1, 2), (0, 1/2, 1/2), (1/3, 1/3, 1/3)} across all
embedding dimensions and scenario types.

2.4. Experiments on countries, states, and capital cities

We perform two experiments involving countries and their
capital cities, as well as US states and their capital cities.
Our prompts follow the format c1d1, c2d2, · · · , c6d6, c7,
where ci is a country or US state and di is its capital city.
Using LLaMA 2 (Touvron et al., 2023), we compare the
prediction for each prompt with its corresponding d7.

In the first experiment, we focus on 160 countries with a
population exceeding one million in 2022. Among these
countries, 31 have capital cities that are not their most pop-
ulous cities, denoted by type A. The remaining 129 coun-
tries fall under type B. Each ICL prompt includes three
type A countries among c1, · · · , c6 to emphasize that the
desired relationship is (country)-(capital) rather
than (country)-(largest city). Subsequently,
we randomly generate 1,000 prompts, with 500 having a c7
representing a type A country and 500 having a c7 represent-
ing a type B country. The ICL accuracies corresponding to
type A and type B prompts are 0.58 and 0.96, respectively.

In the second experiment, we consider all 50 states (33 are
of type A and 17 are of type B). The ICL accuracies corre-
sponding to type A and type B prompts are 0.69 and 0.84,
respectively. From both experiments, we notice that LLaMA
2 performs better on type B prompts (i.e., the capital city
as the largest city). This suggests that ICL may arise from
co-occurrence information, as larger cities tend to appear
more frequently compared to smaller ones.

2.5. Experiments on a synthetic corpus

We conduct experiments on a synthetic corpus consisting
of (country)-(capital) and (country)-(IOC

code) relationships. Each sentence in the corpus is cat-
egorized into exactly one of six possible categories: (1)
exactly one country-capital pair; (2) exactly two country-
capital pairs; (3) exactly one country-IOC pair; (4) exactly
two country-IOC pairs; (5) exactly one country without any
pair; and (6) no country. In sentences with country-capital
pairs, each capital city can appear in any position relative
to the country. Conversely, in sentences with country-IOC
pairs, each IOC code must directly follow the country. See
Appendix E for a detailed description of the corpus.

Two models are trained on this corpus: a CBOW and a five-
layer two-head autoregressive transformer. Both models
have an embedding dimension of 100. We then compare
the ICL accuracies for both relationships given one to five
in-context examples. For the CBOW model, the country-
capital accuracies are (0.81, 0.82, 0.78, 0.73, 0.65) and the
country-IOC accuracies are (0.15, 0.38, 0.59, 0.71, 0.79).
Here, the i-th number corresponds to the accu-
racy given i in-context examples. For the trans-
former, the accuracies are (0.00, 0.15, 0.34, 0.22, 0.07) and
(1.00, 0.77, 0.78, 0.97, 0.99), respectively.

When using the transformer, we find that the accuracies for
the country-IOC task are significantly higher compared to
those for the country-capital task. This is likely because
each IOC code consistently follows the corresponding coun-
try in the corpus, similar to ICL prompts. On the other hand,
ICL fails to work on the country-capital task, where there is
no consistent pattern in how each pair occurs in the corpus.
Meanwhile, ICL works decently well on both tasks under
the CBOW model.

3. The essential role of positional information
in enabling in-context learning

In this section, we examine another common example of
in-context learning (ICL), where the task involves predicting
the first (or second) token given a sequence of tokens. To
understand the significance of positional information (unlike
the tasks in Section 2), we consider a simpler task: modeling

5

In-Context Learning from Training on Unstructured Data

Table 4. Prediction accuracy with single/multi-layer models. For
successful ICL, it is crucial that the first token of sentences in the
training set covers the entire vocabulary (Both). Here, positional
embeddings are essential, especially when using a one-layer model.

Both Either

Pos. emb. 1-layer 5-layer 1-layer 5-layer

Learned 1 1 0 0
Sinusoidal 1 1 0 0

No pos. emb. 0.30 0.89 0 0

sequences of tokens in the form xi1xi2xi3xi1 . Theorem
3.1 underscores the necessity of incorporating positional
information to correctly predict xi1 from xi1xi2xi3 in a
single-layer model, and provides a construction of a basic
attention-based model capable of achieving zero loss and
perfect accuracy on this task. Its proof is in Appendix F.

Theorem 3.1 (Necessity of modeling positions). Let the
vocabulary be V = {1, 2, · · · , |V |} and the training se-
quences take the form xi1xi2xi3xi1 , where xi1 ̸= xi2 ̸=
xi3 ̸= xi1 are chosen uniformly at random from V . Consider
a one-layer model that predicts the last xi1 via a learned
function f({xi1 , xi2}, xi3) using the cross-entropy loss. In
this case, it is not possible to achieve pefect accuracy or zero
loss. On the other hand, we can achieve zero loss (and thus
perfect accuracy) by incorporating positional information,
i.e., via a learned function f̃({(xi1 , 1), (xi2 , 2)}, (xi3 , 3)).

Here, f({xi1 , xi2}, xi3) represents a scenario where the
model lacks positional information (e.g., f is a one-
layer autoregressive transformer without positional em-
beddings). Note that the output of this function is iden-
tical for inputs xi1xi2xi3 and xi2xi1xi3 , which leads
to the impossibility of attaining zero loss. In contrast,
f̃({(xi1 , 1), (xi2 , 2)}, (xi3 , 3)) refers to a scenario where
the model has access to positional information. We provide
a construction of f̃ that achieves zero loss in Appendix F.

Experiments. We validate Theorem 3.1 by training trans-
formers with causal masking to autoregressively learn se-
quences of the form xi1xi2xi3xi1 , and assessing their ac-
curacy in predicting the last token on a separate test data
of the same pattern. We use |V | = 20 and an embedding
dimension of 10. We consider these settings: (i) number of
layers: 1, 5; (ii) positional embeddings: learned, sinusoidal,
no positional embeddings; and (iii) train-test split: each
token in the vocabulary is the first token in both the training
and test sets (Both), each token in the vocabulary is the first
token in either set, but not both (Either).

Table 4 summarizes the results. Two main findings emerge:
(1) for the model to successfully generalize to unseen sen-
tences, each token in V should be present as the first token
in both the training and test sets; (2) positional embeddings

are crucial when using only one attention layer.

Multiple layers. With multi-layer models, positional infor-
mation can be encoded without explicit positional embed-
dings. This is summarized in Proposition 3.2, whose proof
is in Appendix G.
Proposition 3.2 (Multi-layer models can encode posi-
tions). Consider the sentence xi1xi2xi3xi1 . Using a
two-layer autoregressive model, the model’s final output
for predicting the last xi1 is given by t(xi1xi2xi3) :=
g3 ({f1({xi1}), f2({xi1}, xi2)}, f3({xi1 , xi2}, xi3)) for
some f1, f2, f3, and g3.

Proposition 3.2 shows that we generally have
t(xi1xi2xi3) ̸= t(xi2xi1xi3), unlike in the one-layer
case. Consequently, high accuracy is achievable without
positional embeddings, as shown in Table 4. This result
parallels findings in Haviv et al. (2022) that autoregressive
transformers can implicitly encode positions.

Roadmap of Section 3. In the rest of this section, we
consider settings where each sentence contains repeating
patterns. Section 3.1 focuses on a simple scenario where
training sentences follow the form abacdc, where a ̸= b and
c ̸= d, or a noisy variation of it. The ICL prompts maintain
the same pattern but use different combinations of ab and
cd from those in the training data. Our goal is to understand
what types of training data facilitate ICL in clean or noisy
scenarios. Section 3.2 explores a more realistic case where
two possible patterns are present: repeating the first letter
(abca) and repeating the second letter (abcb).

3.1. ICL on single-pattern tasks

In this section, we examine the case where the training
sentences follow a specific pattern of the form abacdc. To
replicate real-world training scenarios, we also analyze how
incorporating nuisance tokens into the training sentences
affects the ICL capability of autoregressive models. To
formalize the discussion, let the vocabulary be V∪N , where
N represents the nuisance tokens. Define S = {(a, b) |
a, b ∈ V, a ̸= b} and partition S into S1 and S2, where
{c[1] | c ∈ S1} = {c[1] | c ∈ S2} = V and c[i] denotes the
i-th element of c, to ensure training sentences are distinct
from the ICL prompts. Consider three different scenarios:

1. Clean: Training data follow the form abacdc where
ab, cd ∈ S1. ICL prompts follow the form abacd where
ab, cd ∈ S2.

2. One-noisy: Training data follow the form abacdc where
ab, cd ∈ S1, with one nuisance token n ∈ N randomly
inserted anywhere except the last position (to ensure ICL
prompts do not resemble the training data). ICL prompts
follow the form abacd where ab, cd ∈ S2.

3. Block-noisy: Training data follow the form abacdc where
ab, cd ∈ S1, with three consecutive nuisance tokens

6

In-Context Learning from Training on Unstructured Data

n1, n2, n3 ∈ N randomly inserted while preserving
the aba and cdc blocks. ICL prompts follow the form
abacdcef where ab, cd, ef ∈ S2.

We set the vocabulary size |V | = 20, the number of nuisance
tokens N = 20, and use only one attention layer as we
empirically showed that additional layers do not improve
performance. Table 5 reveals interesting phenomena. Firstly,
under the clean data scenario, ICL performs exceptionally
well, with an observed performance increase with learned
positional embeddings and a larger embedding dimension.
However, ICL is notably challenging under the one-noisy
scenario. In the block-noisy scenario, learned positional
embeddings are crucial for satisfactory ICL performance.
Theorem 3.3 formalizes these findings.

Theorem 3.3 (Blocked nuisance token structure facilitates
ICL). Consider a sufficiently large autoregressive position-
aware model that can achieve the minimum possible theoret-
ical loss. Training this model in the one-noisy (block-noisy)
scenario results in zero (perfect) ICL accuracy.

The proof is in Appendix H. Theorem 3.3 says that ICL
works perfectly under the block-noisy scenario, yet fails to
work under the one-noisy scenario. However, as shown in
Table 5, the use of sinusoidal positional embeddings sig-
nificantly enhances prediction accuracy in the one-noisy
scenario. This may be due to the fact that sinusoidal embed-
dings can encode relative positional information (Vaswani
et al., 2017). For example, training sentences of the form
nabacdc, where n ∈ N , may help in predicting the most
likely token following the ICL prompt abacd.

3.2. ICL on dual-pattern tasks

We next examine the case where both the training data
and ICL prompts contain two different patterns occurring
with equal probability: abcadefd and abcbdefe, where a ̸=
b ̸= c ̸= a and d ̸= e ̸= f ̸= d. We consider the clean
and block-noisy scenarios, defined similarly as in Section
3.1, and set |V | = N = 20. Table 6 outlines the ICL
performance for both scenario types across different model
configurations. Unlike the single-pattern scenario, there is a
performance improvement with five layers compared to one
layer, particularly with learned positional embeddings.

This phenomenon is related to the notion of induction heads,
where at least two layers may be necessary to distinguish
the two patterns (Olsson et al., 2022). This is reflected
in Figure 2 in Appendix K, which compares the accuracy
trajectories of one-layer and five-layer models. While the
five-layer setup effectively differentiates the two patterns,
the one-layer configuration fails to do so. Meanwhile, in
both clean and block-noisy scenarios, learned positional
embeddings lead to notably higher accuracies as compared
to sinusoidal ones, similar to the single-pattern case.

4. Scenarios where ICL can fail
In this section, we consider two scenarios where in-context
learning (ICL) can fail, irrespective of architectures. In
Section 4.1, both the training data and test prompts follow
repeating patterns across blocks, but the pattern in the test
data differs from that in the training data. In Section 4.2,
the training sentences contain known input-output pairs but
only at fixed locations.

4.1. Failed scenario 1: Sentences with repeating patterns

In this scenario, our training data comprises sentences in
the form of abacdcefe, where a ̸= b, c ̸= d, and e ̸= f .
Note that each sentence is composed of three blocks, each
consisting of three tokens with the same pattern. For the ICL
task, we consider predicting f from the prompt abbcddef ,
where a ̸= b, c ̸= d, and e ̸= f . As each training sentence
contains a repeated pattern, we expect a well-trained model
to output f to maintain the pattern seen in the in-context
examples: abb and cdd. However, as depicted in Table 7, all
models fail to recognize it and predict the correct token.

We next formalize a generalization of this scenario. Let
the vocabulary be V = {1, 2, · · · , |V |}, and define S =
{(a, b) | a, b ∈ V, a ̸= b}. To ensure training sentences are
distinct from the ICL prompts, we first partition S into S1

and S2, where {c[1] | c ∈ S1} = {c[1] | c ∈ S2} = V .
Here, c[i] denotes the i-th element of c. Suppose we
autoregressively train a sufficiently large position-aware
model so that it is possible to achieve the minimum possi-
ble theoretical loss. The training sentences take the form
x11x12x11x21x22x21 · · ·xN1xN2xN1, where xi1 ̸= xi2

and (xi1, xi2) is independently selected from S1 for every
i ∈ [N]. Theorem 4.1 states that ICL fails to hold regardless
of the number of in-context examples.
Theorem 4.1 (Failure of ICL: Different repeated patterns).
Consider the generalized scenario in Section 4.1. For
any 1 ≤ ℓ ≤ N , given an in-context prompt of the
form x11x12x12x21x22x22 · · ·xℓ1xℓ2 where xi1 ̸= xi2 and
(xi1, xi2) ∈ S2 for every i ∈ [ℓ], the model predicts xℓ1

instead of xℓ2 (Proof in Appendix I).

Theorem 4.1 and Table 7 demonstrate that ICL achieves zero
accuracy irrespective of the number of in-context examples
(ℓ − 1). This insight sheds light on the ICL capacity of
autoregressive models. Simply put, if the pattern in the
in-context examples differs significantly from any pattern
in the training data, ICL may not occur. These results align
with the findings of Raventós et al. (2023) and Yadlowsky
et al. (2023) on the importance of data diversity for ICL.

4.2. Failed scenario 2: Sentences with known pairs but
only at fixed locations

We revisit the paired relationship scenario discussed in Sec-
tion 2. The training data now comprises sentences of the

7

In-Context Learning from Training on Unstructured Data

Table 5. ICL on single-pattern tasks, averaged over 10 repetitions, achieves near-perfect accuracy in the clean data scenario regardless
of architectures and embedding dimension (dE). The one-noisy scenario is the most challenging, with sinusoidal embeddings giving a
higher accuracy. In the block-noisy scenario, learned positional embeddings result in significantly better ICL performance.

dE = 10 dE = 100

Pos. emb. Clean One-noisy Block-noisy Clean One-noisy Block-noisy

Learned 0.97 0.00 0.95 1.00 0.00 1.00
Sinusoidal 0.66 0.10 0.01 0.96 0.00 0.55

RoPE (Su et al., 2024) 0.31 0.00 0.03 0.48 0.00 0.00

Table 6. ICL on dual-pattern tasks, averaged over 10 repetitions, achieves notably better accuracy using learned than sinusoidal embeddings.
Near-perfect accuracy is attained in the clean scenario by a 5-layer transformer with an embedding dimension (dE) of 100 and learned
positional embeddings. The block-noisy scenario is challenging; the same model attains the best performance.

dE = 10 dE = 100

Pos. emb. Clean Block-noisy Clean Block-noisy

1-layer Learned (0.33, 0.33) (0.15, 0.16) (0.51, 0.49) (0.49, 0.50)
Sinusoidal (0.12, 0.66) (0.03, 0.03) (0.51, 0.48) (0.06, 0.10)

5-layer Learned (0.39, 0.39) (0.23, 0.22) (0.97, 0.98) (0.87, 0.70)
Sinusoidal (0.32, 0.34) (0.04, 0.04) (0.83, 0.82) (0.04, 0.07)

form of aipqrsbi, where (ai, bi) represents a known pair-
ing and p, q, r, s represent other words. For the ICL task,
we consider predicting bi3 from the prompt ai1bi1ai2bi2ai3 ,
where i1 ̸= i2 ̸= i3 ̸= i1. As each training sentence always
contains an (ai, bi) pair at a fixed location, we expect a
well-trained model to output bi3 to maintain the pattern in
the in-context examples: ai1bi1 and ai2bi2 . However, none
of the models can identify the repeated patterns and predict
the correct token, as shown in Table 7.

We next formalize a generalization of this scenario.
Let the vocabulary be {(ai, bi)}i∈[I] ∪ V , where V =
{1, 2, · · · , |V |} represent other words. As in Section 4.1,
we autoregressively train a sufficiently large position-aware
model that can achieve the minimum possible theoretical
loss. The training sentences take the form aiv1v2 · · · v2kbi,
where i and v1:2k are independently chosen from [I] and
V , respectively, uniformly at random. Theorem 4.2, whose
proof is in Appendix J, states that ICL fails to occur regard-
less of the number of in-context examples.

Theorem 4.2 (Failure of ICL: Different pattern structures).
Consider the generalized scenario in Section 4.2. For any
1 ≤ ℓ ≤ k + 1, given an in-context prompt of the form
ai1bi1ai2bi2 · · · aiℓ with distinct ij’s, the model never pre-
dicts biℓ: it predicts a uniform probability vector over V
when 1 ≤ ℓ ≤ k, and bi1 when ℓ = k + 1.

Theorem 4.2 highlights that the success of ICL relies heav-
ily on how the patterns appear in the training data. In this
scenario, the (ai, bi) pairs consistently appear at the begin-
ning and end of each training sentence, and we anticipate

Table 7. ICL in failed scenarios, averaged over 10 repetitions,
achieves zero accuracy for any architecture and embedding di-
mension (dE).

Failed scenario 1 Failed scenario 2

Pos. emb. dE = 10 dE = 100 dE = 10 dE = 100

1-layer Learned 0.00 0.00 0.01 0.00
Sinusoidal 0.01 0.00 0.00 0.00

5-layer Learned 0.00 0.00 0.00 0.00
Sinusoidal 0.00 0.00 0.00 0.00

the model to recognize this relationship for ICL to occur.
However, as shown in Theorem 4.2 and Table 7, this is not
the case. An empirical study is provided in Appendix L.

5. Discussion
This paper investigates how in-context learning (ICL) can
arise from pretraining on unstructured natural language data.
We present three main findings, supported by both theory
and empirical studies. First, ICL can be achieved by simply
modeling co-occurrence using classical language models
like continuous bag of words (CBOW), when ICL prompts
involve pairs that frequently appear together. Second, when
ICL prompts involve recognizable patterns that do not al-
ways co-occur, positional information and nuisance token
structure play crucial roles in enabling ICL. Finally, we
highlight the importance of training data structure in ICL
by examining two instances where ICL can fail. Further
analyses on other ICL tasks and their reliance on model
architecture can be fruitful avenues for future work.

8

In-Context Learning from Training on Unstructured Data

References
M. Abbas, Y. Zhou, P. Ram, N. Baracaldo, H. Samulowitz,

T. Salonidis, and T. Chen. Enhancing in-context learning
via linear probe calibration. In Artificial Intelligence and
Statistics, 2024.

J. Abernethy, A. Agarwal, T. V. Marinov, and M. K. War-
muth. A mechanism for sample-efficient in-context learn-
ing for sparse retrieval tasks. In Algorithmic Learning
Theory, 2024.

K. Ahn, X. Cheng, H. Daneshmand, and S. Sra. Transform-
ers learn to implement preconditioned gradient descent
for in-context learning. In Neural Information Processing
Systems, 2024.

K. Ahuja and D. Lopez-Paz. A closer look at in-context
learning under distribution shifts. In Workshop on Effi-
cient Systems for Foundation Models at ICML, 2023.

E. Akyürek, D. Schuurmans, J. Andreas, T. Ma, and D. Zhou.
What learning algorithm is in-context learning? Investi-
gations with linear models. In International Conference
on Learning Representations, 2022.

E. Akyürek, B. Wang, Y. Kim, and J. Andreas. In-context
language learning: Architectures and algorithms. arXiv
preprint arXiv:2401.12973, 2024.

Y. Bai, F. Chen, H. Wang, C. Xiong, and S. Mei. Trans-
formers as statisticians: Provable in-context learning with
in-context algorithm selection. In Neural Information
Processing Systems, 2023.

S. Bhattamishra, A. Patel, P. Blunsom, and V. Kanade. Un-
derstanding in-context learning in transformers and LLMs
by learning to learn discrete functions. In International
Conference on Learning Representations, 2023.

A. Bietti, V. Cabannes, D. Bouchacourt, H. Jegou, and
L. Bottou. Birth of a transformer: A memory viewpoint.
In Neural Information Processing Systems, 2023.

T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Ka-
plan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sas-
try, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu,
C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin,
S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish,
A. Radford, I. Sutskever, and D. Amodei. Language
models are few-shot learners. In Neural Information
Processing Systems, 2020.

S. C. Chan, A. Santoro, A. K. Lampinen, J. X. Wang, A. K.
Singh, P. H. Richemond, J. McClelland, and F. Hill. Data
distributional properties drive emergent in-context learn-
ing in transformers. In Neural Information Processing
Systems, 2022.

S. Chen, H. Sheen, T. Wang, and Z. Yang. Training dy-
namics of multi-head softmax attention for in-context
learning: Emergence, convergence, and optimality. arXiv
preprint arXiv:2402.19442, 2024a.

Y. Chen, C. Zhao, Z. Yu, K. McKeown, and H. He. Parallel
structures in pre-training data yield in-context learning.
arXiv preprint arXiv:2402.12530, 2024b.

T.-R. Chiang and D. Yogatama. Understanding in-context
learning with a pelican soup framework. arXiv preprint
arXiv:2402.10424, 2024.

L. Collins, A. Parulekar, A. Mokhtari, S. Sanghavi, and
S. Shakkottai. In-context learning with transformers:
Softmax attention adapts to function Lipschitzness. arXiv
preprint arXiv:2402.11639, 2024.

Y. Cui, J. Ren, P. He, J. Tang, and Y. Xing. Superiority of
multi-head attention in in-context linear regression. arXiv
preprint arXiv:2401.17426, 2024.

D. Dai, Y. Sun, L. Dong, Y. Hao, Z. Sui, and F. Wei. Why
can GPT learn in-context? Language models secretly per-
form gradient descent as meta optimizers. In Association
for Computational Linguistics, 2023.

S. Dalal and V. Misra. The matrix: A Bayesian learning
model for LLMs. arXiv preprint arXiv:2402.03175, 2024.

N. Ding, T. Levinboim, J. Wu, S. Goodman, and R. Sori-
cut. CausalLM is not optimal for in-context learning. In
International Conference on Learning Representations,
2024.

D. Fu, T.-Q. Chen, R. Jia, and V. Sharan. Transformers
learn higher-order optimization methods for in-context
learning: A study with linear models. In Workshop on
Mathematics of Modern Machine Learning at NeurIPS,
2023.

S. Garg, D. Tsipras, P. S. Liang, and G. Valiant. What
can transformers learn in-context? A case study of sim-
ple function classes. In Neural Information Processing
Systems, 2022.

T. Guo, W. Hu, S. Mei, H. Wang, C. Xiong, S. Savarese,
and Y. Bai. How do transformers learn in-context be-
yond simple functions? A case study on learning with
representations. In International Conference on Learning
Representations, 2023.

M. Hahn and N. Goyal. A theory of emergent in-context
learning as implicit structure induction. arXiv preprint
arXiv:2303.07971, 2023.

C. Han, Z. Wang, H. Zhao, and H. Ji. Explaining emergent
in-context learning as kernel regression. arXiv preprint
arXiv:2305.12766, 2023a.

9

In-Context Learning from Training on Unstructured Data

X. Han, D. Simig, T. Mihaylov, Y. Tsvetkov, A. Celikyil-
maz, and T. Wang. Understanding in-context learning via
supportive pretraining data. In Association for Computa-
tional Linguistics, 2023b.

A. Haviv, O. Ram, O. Press, P. Izsak, and O. Levy. Trans-
former language models without positional encodings
still learn positional information. In Empirical Methods
in Natural Language Processing, 2022.

Y. Huang, Y. Cheng, and Y. Liang. In-context convergence
of transformers. In Workshop on Mathematics of Modern
Machine Learning at NeurIPS, 2023.

H. J. Jeon, J. D. Lee, Q. Lei, and B. Van Roy. An
information-theoretic analysis of in-context learning.
arXiv preprint arXiv:2401.15530, 2024.

D. Kingma and J. Ba. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

J. Kossen, Y. Gal, and T. Rainforth. In-context learning
learns label relationships but is not conventional learning.
In International Conference on Learning Representations,
2024.

S. Li, Z. Song, Y. Xia, T. Yu, and T. Zhou. The closeness
of in-context learning and weight shifting for softmax
regression. arXiv preprint arXiv:2304.13276, 2023a.

X. Li and X. Qiu. Finding support examples for in-context
learning. In Empirical Methods in Natural Language
Processing, 2023.

Y. Li, M. E. Ildiz, D. Papailiopoulos, and S. Oymak. Trans-
formers as algorithms: Generalization and stability in
in-context learning. In International Conference on Ma-
chine Learning, 2023b.

Z. Lin and K. Lee. Dual operating modes of in-context
learning. arXiv preprint arXiv:2402.18819, 2024.

A. V. Mahankali, T. Hashimoto, and T. Ma. One step of
gradient descent is provably the optimal in-context learner
with one layer of linear self-attention. In International
Conference on Learning Representations, 2023.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient
estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781, 2013.

S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Ha-
jishirzi, and L. Zettlemoyer. Rethinking the role of
demonstrations: What makes in-context learning work?
In Empirical Methods in Natural Language Processing,
2022.

C. Olsson, N. Elhage, N. Nanda, N. Joseph, N. DasSarma,
T. Henighan, B. Mann, A. Askell, Y. Bai, A. Chen, T. Con-
erly, D. Drain, D. Ganguli, Z. Hatfield-Dodds, D. Her-
nandez, S. Johnston, A. Jones, J. Kernion, L. Lovitt,
K. Ndousse, D. Amodei, T. Brown, J. Clark, J. Kaplan,
S. McCandlish, and C. Olah. In-context learning and
induction heads. Transformer Circuits Thread, 2022.

OpenAI. ChatGPT 3.5. https://openai.com/chatgpt, 2022.

M. Panwar, K. Ahuja, and N. Goyal. In-context learning
through the Bayesian prism. In International Conference
on Learning Representations, 2023.

K. Peng, L. Ding, Y. Yuan, X. Liu, M. Zhang, Y. Ouyang,
and D. Tao. Revisiting demonstration selection strategies
in in-context learning. arXiv preprint arXiv:2401.12087,
2024.

C. Qin, A. Zhang, A. Dagar, and W. Ye. In-context learning
with iterative demonstration selection. arXiv preprint
arXiv:2310.09881, 2023.

A. Raventós, M. Paul, F. Chen, and S. Ganguli. Pretraining
task diversity and the emergence of non-Bayesian in-
context learning for regression. In Neural Information
Processing Systems, 2023.

J. Ren, Q. Guo, H. Yan, D. Liu, X. Qiu, and D. Lin. Identi-
fying semantic induction heads to understand in-context
learning. arXiv preprint arXiv:2402.13055, 2024.

R. Ren and Y. Liu. In-context learning with transformer is
really equivalent to a contrastive learning pattern. arXiv
preprint arXiv:2310.13220, 2023.

M. E. Sander, R. Giryes, T. Suzuki, M. Blondel, and
G. Peyré. How do transformers perform in-context au-
toregressive learning? arXiv preprint arXiv:2402.05787,
2024.

L. Shen, A. Mishra, and D. Khashabi. Do pretrained trans-
formers really learn in-context by gradient descent? arXiv
preprint arXiv:2310.08540, 2023.

A. Singh, S. Chan, T. Moskovitz, E. Grant, A. Saxe, and
F. Hill. The transient nature of emergent in-context learn-
ing in transformers. In Neural Information Processing
Systems, 2023.

J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. Ro-
former: Enhanced transformer with rotary position em-
bedding. Neurocomputing, 2024.

S. Swaminathan, A. Dedieu, R. Vasudeva Raju, M. Shana-
han, M. Lazaro-Gredilla, and D. George. Schema-
learning and rebinding as mechanisms of in-context learn-
ing and emergence. In Neural Information Processing
Systems, 2023.

10

In-Context Learning from Training on Unstructured Data

H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A.
Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Ham-
bro, F. Azhar, et al. LLaMA: Open and efficient founda-
tion language models. arXiv preprint arXiv:2302.13971,
2023.

M.-H. Van, X. Wu, et al. In-context learning demonstra-
tion selection via influence analysis. arXiv preprint
arXiv:2402.11750, 2024.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is
all you need. In Neural Information Processing Systems,
2017.

M. Vladymyrov, J. von Oswald, M. Sandler, and R. Ge. Lin-
ear transformers are versatile in-context learners. arXiv
preprint arXiv:2402.14180, 2024.

J. Von Oswald, E. Niklasson, E. Randazzo, J. Sacramento,
A. Mordvintsev, A. Zhmoginov, and M. Vladymyrov.
Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, 2023.

X. Wang, W. Zhu, M. Saxon, M. Steyvers, and W. Y. Wang.
Large language models are latent variable models: Ex-
plaining and finding good demonstrations for in-context
learning. In Neural Information Processing Systems,
2023.

K. C. Wibisono and Y. Wang. On the role of unstructured
training data in transformers’ in-context learning capabil-
ities. In Workshop on Mathematics of Modern Machine
Learning at NeurIPS, 2023.

N. Wies, Y. Levine, and A. Shashua. The learnability of
in-context learning. In Neural Information Processing
Systems, 2023.

J. Wu, D. Zou, Z. Chen, V. Braverman, Q. Gu, and P. Bartlett.
How many pretraining tasks are needed for in-context
learning of linear regression? In International Conference
on Learning Representations, 2023.

S. M. Xie, A. Raghunathan, P. Liang, and T. Ma. An explana-
tion of in-context learning as implicit Bayesian inference.
In International Conference on Learning Representations,
2021.

Y. Xing, X. Lin, N. Suh, Q. Song, and G. Cheng. Benefits of
transformer: In-context learning in linear regression tasks
with unstructured data. arXiv preprint arXiv:2402.00743,
2024.

S. Yadlowsky, L. Doshi, and N. Tripuraneni. Pretraining
data mixtures enable narrow model selection capabilities
in transformer models. arXiv preprint arXiv:2311.00871,
2023.

J. Yan, J. Xu, C. Song, C. Wu, Y. Li, and Y. Zhang. Under-
standing in-context learning from repetitions. In Interna-
tional Conference on Learning Representations, 2023.

Z. Yu and S. Ananiadou. How do large language models
learn in-context? Query and key matrices of in-context
heads are two towers for metric learning. arXiv preprint
arXiv:2402.02872, 2024.

R. Zhang, S. Frei, and P. L. Bartlett. Trained transform-
ers learn linear models in-context. Journal of Machine
Learning Research, 2024.

Y. Zhang, F. Zhang, Z. Yang, and Z. Wang. What and
how does in-context learning learn? Bayesian model
averaging, parameterization, and generalization. arXiv
preprint arXiv:2305.19420, 2023.

Y. Zhao, Y. Sakai, and N. Inoue. NoisyICL: A little noise
in model parameters calibrates in-context learning. arXiv
preprint arXiv:2402.05515, 2024.

11

In-Context Learning from Training on Unstructured Data

A. Related work
Large language models (LLMs), such as transformers, are widely recognized for their outstanding performance in in-context
learning (ICL) (Brown et al., 2020). ICL refers to the capability of LLMs to discern specific tasks and generate predictions
based on input-output pairs (known as prompts) without needing any parameter updates. A multitude of studies have been
dedicated to exploring this intriguing phenomenon from various theoretical and empirical perspectives. In this section, we
provide a brief summary of some of these studies.

Some studies adopted a Bayesian approach to studying ICL. Xie et al. (2021) posited that ICL can be viewed as implicit
Bayesian inference. They demonstrated that LLMs can infer a latent document-level concept for next-token prediction
during pretraining and a shared latent concept across input-output pairs in an ICL prompt, under the assumption that
documents are generated from hidden Markov models (HMMs). Wang et al. (2023) and Zhang et al. (2023) expanded on
this idea by exploring more realistic latent variable models beyond HMMs. Wang et al. (2023) argued that large language
models function as latent variable models, with latent variables containing task-related information being implicitly inferred.
Zhang et al. (2023) showed that without updating the neural network parameters, ICL can be interpreted as Bayesian model
averaging parameterized by the attention mechanism. Panwar et al. (2023) provided empirical evidence that transformers
behave like Bayesian predictors when performing ICL with linear and non-linear function classes. Dalal and Misra (2024)
proposed a Bayesian learning framework to understand ICL through the lens of text generation models represented by
multinomial transition probability matrices. Chiang and Yogatama (2024) proposed the pelican soup framework to explain
ICL without relying on latent variable models. This framework incorporates concepts such as a common sense knowledge
base, natural language classification, and meaning association, enabling the establishment of a loss bound for ICL that
depends on the number of in-context examples.

Garg et al. (2022) formulated ICL as learning a specific function class F from prompts of the form
(x1, f(x1), . . . , xn, f(xn), xn+1) and their corresponding responses f(xn+1). Here, f ∈ F , where F is a function
class. In this context, ICL refers to the capability of a transformer to output a number close to g(yn+1) given a prompt of
the form (y1, g(y1), . . . , yn, g(xn), yn+1), where g ∈ F . Many studies adopted this regression formulation of ICL, with
some linking ICL to gradient descent. Akyürek et al. (2022); Von Oswald et al. (2023), and Dai et al. (2023) proved that
transformers are capable of implementing gradient descent, which results in their ICL ability. Bai et al. (2023) established
generalization bounds for ICL and proved that transformers can perform algorithm selection like statisticians. Zhang et al.
(2024) showed that the gradient flow dynamics of transformers converge to a global minimum that enables ICL. Huang
et al. (2023) investigated the learning dynamics of single-layer softmax transformers trained via gradient descent to perform
ICL on linear functions. Ahn et al. (2024) explored the optimization landscape of transformers and proved that the optimal
parameters coincide with an iteration of preconditioned gradient descent.

In a related exploration, Li et al. (2023a) showed that softmax regression models learned through gradient descent are similar
to transformers. Ren and Liu (2023) related ICL with softmax transformers to contrastive learning, where the inference
process of ICL can be viewed as a form of gradient descent. Mahankali et al. (2023) proved that minimizing the pretraining
loss is equivalent to a step of gradient descent in single-layer linear transformers. Vladymyrov et al. (2024) established that
linear transformers execute a variant of preconditioned gradient descent by maintaining implicit linear models. On the other
hand, some studies argued that the ICL ability of transformers cannot be attributed to gradient descent. Fu et al. (2023)
showed that ICL for linear regression tasks arises from higher-order optimization techniques like iterative Newton’s method
rather than gradient descent. Wibisono and Wang (2023) demonstrated that transformers can perform ICL on unstructured
data that lack explicit input-output pairings, with softmax attention playing an important role especially when using a single
attention layer. Shen et al. (2023) provided empirical evidence that the equivalence between gradient descent and ICL might
not be applicable in real-world scenarios. In contrast to these studies, our work provides a connection between ICL and
classical language models like continuous bag of words (CBOW). Specifically, we show that ICL can arise by modeling
co-occurrence patterns via CBOW.

Numerous studies focused on the pretraining aspects (e.g., data distribution and task diversity) of ICL. Min et al. (2022)
showed that the input-label mapping in the in-context examples does not significantly affect ICL performance. Chan et al.
(2022) demonstrated that the ICL capabilities of transformers depend on the training data distributions and model features.
Kossen et al. (2024) established that ICL considers in-context label information and is capable of learning entirely new
tasks in-context. Li and Qiu (2023) introduced an iterative algorithm designed to enhance ICL performance by selecting a
small set of informative examples that effectively characterize the ICL task. Qin et al. (2023) proposed a method based
on zero-shot chain-of-thought reasoning for selecting ICL examples, emphasizing the importance of choosing diverse

12

In-Context Learning from Training on Unstructured Data

examples that are strongly correlated with the test sample. Han et al. (2023b) studied ICL by identifying a small subset
of the pretraining data that support ICL via gradient-based methods. They discovered that this supportive pretraining data
typically consist of more uncommon tokens and challenging examples, characterized by a small information gain from
long-range context. Peng et al. (2024) proposed a selection method for ICL demonstrations that are both data-dependent
and model-dependent. Van et al. (2024) introduced a demonstration selection method that enhances ICL performance by
analyzing the influences of training samples using influence functions.

In a similar vein, Wu et al. (2023) demonstrated that pretraining single-layer linear attention models for ICL on linear
regression with a Gaussian prior can be effectively accomplished with a minimal number of independent tasks, regardless of
task dimension. Raventós et al. (2023) emphasized a task diversity threshold that differentiates the conditions under which
transformers can successfully address unseen tasks. Yadlowsky et al. (2023) attributed the impressive ICL capabilities of
transformers to the diversity and range of data mixtures in their pretraining, rather than their inductive biases for generalizing
to new tasks. Ding et al. (2024) compared the ICL performance of transformers trained with prefixLM (where in-context
samples can attend to all tokens) versus causalLM (where in-context samples cannot attend to subsequent tokens), finding
that the latter resulted in poorer ICL performance. Chen et al. (2024b) discovered that the ICL capabilities of language
models rely on the presence of pairs of phrases with similar structures within the same sentence. Zhao et al. (2024) proposed
a calibration scheme that modifies model parameters by adding random noises, resulting in fairer and more confident
predictions. Abbas et al. (2024) demonstrated that the ICL predictions from transformer-based models often exhibit low
confidence, as indicated by high Shannon entropy. To address this issue, they introduced a straightforward method that
linearly calibrates output probabilities, independent of the model’s weights or architecture. Similar to these works, our work
highlights the importance of training data structure for ICL to arise.

Other studies analyzed ICL from a learning theory perspective. Hahn and Goyal (2023) proposed an information-theoretic
bound that explains how ICL emerges from next-token prediction. Wies et al. (2023) derived a PAC-type framework for ICL
and finite-sample complexity results. Jeon et al. (2024) introduced a novel information-theoretic view of meta-learning
(including ICL), allowing for the decomposition of errors into three components. They proved that in ICL, the errors
decrease as the number of examples or sequence length increase. Other studies focus on the mechanistic interpretability
component of ICL. Olsson et al. (2022) argued that transformers can develop induction heads that are able to complete token
sequences such as [A][B] · · · [A] → [B], leading to impressive ICL performance. Bietti et al. (2023) examined a setup
where tokens are generated from either global or context-specific bigram distributions to distinguish between global and
in-context learning. They found that global learning occurs rapidly, while in-context learning is achieved gradually through
the development of an induction head. Ren et al. (2024) identified semantic induction heads that increase the output logits of
tail tokens when attending to head tokens, providing evidence that these heads could play a vital role in the emergence of
ICL. Yu and Ananiadou (2024) showed that the ICL ability of transformers arises from the utilization of in-context heads,
where each query and key matrix collaborate to learn the similarity between the input text and each demonstration example.

A number of works delved into specific data generating processes to provide insight into the emergence of ICL. Bhattamishra
et al. (2023) examined the ICL ability of transformers by focusing on discrete functions. Specifically, they showed that
transformers perform well on simpler tasks, struggle with more complex tasks, and can learn more efficiently when provided
with examples that uniquely identify a task. Guo et al. (2023) investigated ICL in scenarios where each label is influenced
by the input through a potentially complex yet constant representation function, coupled with a unique linear function for
each instance. Akyürek et al. (2024) studied ICL of regular languages produced by random finite automata. They compared
numerous neural sequence models and demonstrated that transformers significantly outperform RNN-based models because
of their ability to develop n-gram heads, which are a generalization of induction heads. Sander et al. (2024) analyzed
simple first-order autoregressive processes to gain insight into how transformers perform ICL to predict the next tokens. Our
work focuses on data generating processes containing input-output relationship pairs or repeating token patterns to better
understand the importance of co-occurrence, positional information, and training data structure for ICL.

Some studies explored how different components of transformers affect their ICL abilities. Ahuja and Lopez-Paz (2023)
compared the ICL performance of transformers and MLP-based architectures under distribution shifts. Their findings
demonstrate that while both methods perform well in in-distribution ICL, transformers exhibit superior ICL performance
when faced with mild distribution shifts. Collins et al. (2024) showed that softmax attention outperforms linear attention
in ICL due to its ability to calibrate its attention window to the Lipschitzness of the pretraining tasks. Xing et al. (2024)
focused on linear regression tasks to identify transformer components that enable ICL. They found that positional encoding
is crucial, along with the use of multiple heads, multiple layers, and larger input dimensions. Cui et al. (2024) proved that
multi-head attention outperforms single-head attention in various practical scenarios, including those with noisy labels and

13

In-Context Learning from Training on Unstructured Data

correlated features. Chen et al. (2024a) investigated the ICL dynamics of a multi-head softmax attention model applied
to multi-task linear regression. They proved the convergence of the gradient flow and observed the emergence of a task
allocation phenomenon, where each attention head specializes in a specific task.

Finally, several studies proposed various hypotheses on the emergence of ICL and provided theoretical justifications.
Swaminathan et al. (2023) introduced clone-structured causal graphs (CSCGs) to explain how ICL can generalize to unseen
sentences via a mechanism called rebinding. Li et al. (2023b) viewed ICL as an algorithm learning problem where a
transformer implicitly constructs a hypothesis function at inference time. Han et al. (2023a) argued that the ability of
transformers to execute ICL is attributable to their capacity to simulate kernel regression. Singh et al. (2023) explored the
interaction between ICL and in-weights learning (IWL) using synthetic data designed to support both processes. They
observed that ICL initially emerges, followed by a transient phase where it disappears and gives rise to IWL. Yan et al.
(2023) studied ICL from the perspective that token co-occurrences play a crucial role in guiding the learning of surface
patterns that facilitates ICL. Abernethy et al. (2024) showed that transformers can execute ICL by dividing a prompt into
examples and labels, then employing sparse linear regression to deduce input-output relationships and generate predictions.
Lin and Lee (2024) developed a probabilistic model that can simultaneously explain both task learning and task retrieval
aspects of ICL. Here, task learning refers to the ability of language models to identify a task from in-context examples,
while task retrieval pertains to their ability to locate the relevant task within the pretraining data.

14

In-Context Learning from Training on Unstructured Data

B. Proof of Theorem 2.1
Proof. Let |V | = 2K + L denote the vocabulary size. Consider a sentence X represented by its one-hot encoding (i.e.,
X ∈ {0, 1}|V |×S). For every position i ∈ [S], the loss for predicting the word in the i-th position given all the other words is
given by ||AX(1S − ei)−Xei||22, where A = U⊤V

S−1 ∈ R|V |×|V | and ei ∈ RS is a zero vector with 1 on its i-th entry. Here,
U (V) is a matrix consisting of the center (context) embeddings of all tokens, and A is a matrix summarizing the similarity
between each pair of words (one as a center word and the other as a context word). Our objective is to find A that minimizes
the sum of losses for each position in each sentence. Lemma B.1 gives a closed-form expression of the minimizer.

Lemma B.1. The minimizer of the overall loss is given by A = B ((S − 2)B + C)
−1. Here, B is a matrix whose (i, j)-th

entry is p(i, j), the probability that for a given (center, context) pair, the center is i ∈ |V | and the context is j ∈ |V |.
Moreover, C is a diagonal matrix whose i-th diagonal entry is p(i) =

∑
j∈|V | p(i, j).

Proof. Let L(X) =
∑S

i=1 ||AX(1S − ei)−Xei||22 denote the sum of the losses corresponding to all tokens in sentence X .
By direct calculation,

∂L(X)

∂A
= 2AX

(
S∑

i=1

(1S − ei)(1S − ei)
⊤

)
X⊤ − 2X

(
S∑

i=1

ei(1S − ei)
⊤

)
X⊤

.

Note that
∑S

i=1(1S − ei)(1S − ei)
⊤ = (S − 2)1S×S + IS×S and

∑S
i=1 ei(1S − ei)

⊤ = 1S×S − IS×S . Now, let our
sentences be X1, X2, · · · , XN . The minimizer of the overall loss thus satisfies

A
1

N

N∑
k=1

Xk ((S − 2)1S×S + IS×S)X
⊤
k =

1

N

N∑
k=1

Xk (1S×S − IS×S)X
⊤
k . (1)

We denote the number of (center, context) pairs across all sentences in which the center is i and the context is j by #(i, j).
Moreover, we define #(i) =

∑
j∈|V | #(i, j). It is easy to see that Equation (1) can be rewritten as

A
(
(S − 2)B̃ + C̃

)
= B̃,

where B̃ is a matrix such that its (i, j)-th entry is #(i,j)
N and C̃ is a diagonal matrix such that its i-th diagonal element

is #(i)
N . As N → ∞, an application of the law of large numbers yields #(i,j)

N → S(S − 1)p(i, j) almost surely and
#(i)
N → S(S − 1)p(i) almost surely, where p(i, j) is the probability that for a given (center, context) pair, the center is i and

the context is j, and p(i) =
∑

j∈|V | p(i, j).

Thus, as N → ∞, we have

A = B ((S − 2)B + C)
−1

,

where B and C are defined in the statement of Lemma B.1.

We now define

• p1 = p(ci, cj) = p(di, dj) = p(ci, dj) = p(di, cj) for any i ̸= j;

• p2 = p(ri, rj) for any i ̸= j;

• p3 = p(ci, di) = p(di, ci) for any i;

• p4 = p(ci, rj) = p(di, rj) = p(rj , ci) = p(rj , di) for any i, j,

15

In-Context Learning from Training on Unstructured Data

where the equalities in the probabilities are a consequence of the data distribution.

For ease of presentation, we denote a square matrix with α on the diagonal and β off the diagonal as Xα,β , and a matrix
with all entries γ as Yγ . We then have

B =

X0,p1
Xp3,p1

Yp4

Xp3,p1
X0,p1

Yp4

Yp4 Yp4 X0,p2

 .

Now, define a = (S − 2)p1, b = (S − 2)p2, c = (S − 2)p3, d = (S − 2)p4, e = 2(K − 1)p1 + p3 + Lp4, and
f = (L− 1)p2 + 2Kp4. It is easy to see that

(S − 2)B + C =

Xe,a Xc,a Yd

Xc,a Xe,a Yd

Yd Yd Xf,b

 .

Moreover, its inverse can be written as

((S − 2)B + C)−1 =

Xq5,q1 Xq3,q1 Yq4

Xq3,q1 Xq5,q1 Yq4

Yq4 Yq4 Xq6,q2

 ,

where

∆ = 2a(K − 1)(b(L− 1) + f) + b(L− 1)(c+ e) + cf − 2d2KL+ ef ,

q1 = −
(

−abL+ab−af+d2L
(2a−c−e)∆

)
,

q2 = 2ab(K−1)+b(c+e)−2d2K
(b−f)∆ ,

q3 = −

−2a2b(K − 1)(L− 1)− 2a2f(K − 1) + 2abc(K − 2)(L− 1) + 2acf(K − 2)

+ 2(a− c)d2KL+ bc(c+ e)(L− 1) + cf(c+ e) + d2L(c− e)

(c− e)(2a− c− e)∆

,

q4 = −
(
d
∆

)
,

q5 = −

−2a2b(K − 1)(L− 1)− 2a2f(K − 1) + 2abe(K − 2)(L− 1) + 2aef(K − 2)

+ 2(a− e)d2KL+ be(c+ e)(L− 1) + ef(c+ e) + d2L(e− c)

(e− c)(2a− c− e)∆

,

and q6 = −
(

2a(K−1)(b(L−2)+f)+b(L−2)(c+e)+cf−2d2KL+2d2K+ef
(b−f)∆

)
.

By computing A = B((S − 2)B + C)−1, given the following center words, the similarities between them and all possible
context words are as follows:

• Center word = ci for any i

– ci : 2(K − 1)p1q1 + p3q3 + Lp4q4;
– cj : 2(K − 2)p1q1 + p1q5 + p3q1 + p1q3 + Lp4q4 (j ̸= i);
– di : 2(K − 1)p1q1 + p3q5 + Lp4q4;
– dj : 2(K − 2)p1q1 + p1q3 + p3q1 + p1q5 + Lp4q4 (j ̸= i);
– rj : 2(K − 1)p1q4 + p3q4 + p4q6 + (L− 1)p4q2 (for any j).

• Center word = di for any i

16

In-Context Learning from Training on Unstructured Data

– di : 2(K − 1)p1q1 + p3q3 + Lp4q4;
– dj : 2(K − 2)p1q1 + p1q5 + p3q1 + p1q3 + Lp4q4 (j ̸= i);
– ci : 2(K − 1)p1q1 + p3q5 + Lp4q4;
– cj : 2(K − 2)p1q1 + p1q3 + p3q1 + p1q5 + Lp4q4 (j ̸= i);
– rj : 2(K − 1)p1q4 + p3q4 + p4q6 + (L− 1)p4q2 (for any j).

• Center word = ri

– cj : 2(K − 1)p4q1 + p4q5 + p4q3 + (L− 1)p2q4 (for any j);
– dj : 2(K − 1)p4q1 + p4q5 + p4q3 + (L− 1)p2q4 (for any j);
– ri : 2Kp4q4 + (L− 1)p2q2;
– rj : 2Kp4q4 + (L− 2)p2q2 + p2q6 (j ̸= i).

Recall that the ICL problem of interest is the following: given context words ci1di1 · · · ciℓdiℓciℓ+1
, we aim to predict diℓ+1

.
Without loss of generality, we can rewrite the problem to predict dℓ+1 given context words c1d1 · · · cℓdℓcℓ+1. We now
compute the total similarity for each possible center word, where ϵ⊤δ indicates the similarity between the word ϵ in the
center and the word δ in the context.

• c1 (or any of c2, · · · , cℓ) : c⊤1 c1 + ℓc⊤1 c2 + c⊤1 d1 + (ℓ− 1)c⊤1 d2;

• d1 (or any of d2, · · · , dℓ) : c⊤1 d1 + ℓc⊤1 d2 + c⊤1 c1 + (ℓ− 1)c⊤1 c2;

• r1 (or any other rk’s) : (ℓ+ 1)r⊤1 c1 + ℓr⊤1 d1 = (2ℓ+ 1)r⊤1 c1;

• cℓ+1 : ℓc⊤1 c2 + ℓc⊤1 d2 + c⊤1 c1;

• dℓ+1 : ℓc⊤1 d2 + ℓc⊤1 c2 + c⊤1 d1;

• cℓ+2 (or any ck’s not in the context prompt) : (ℓ+ 1)c⊤1 c2 + ℓc⊤1 d2;

• dℓ+2 (or any dk’s not in the context prompt) : (ℓ+ 1)c⊤1 d2 + ℓc⊤1 c2.

Note that correctly predicting dℓ+1 is equivalent to the following conditions being simultaneously satisfied:

• c⊤1 d1 > c⊤1 c1, equivalent to p3q5 > p3q3;

• c⊤1 d2 > c⊤1 c1 and c⊤1 c2 > c⊤1 c1, equivalent to p1q3 + p3q1 + p1q5 > 2p1q1 + p3q3;

• c⊤1 d1 > c⊤1 c2 and c⊤1 d1 > c⊤1 d2, equivalent to 2p1q1 + p3q5 ≥ p1q5 + p1q3 + p3q1;

• 2ℓc⊤1 c2 + c⊤1 d1 > (2ℓ+ 1)r⊤1 c1, equivalent to 2ℓ(2(K − 2)p1q1 + p1q5 + p3q1 + p1q3 + Lp4q4) + 2(K − 1)p1q1 +
p3q5 + Lp4q4 > (2ℓ+ 1)(2(K − 1)p4q1 + p4q5 + p4q3 + (L− 1)p2q4);

In our data generating process, it is easy to see that p1 = 0, p2 = (S−2)(S−3)
L(L−1) , p3 = 1

K , and p4 = S−2
KL , where each pi is

multiplied by a constant S(S − 1) > 0 (without loss of generalization) to make calculations easier. From here, we have
a = 0, b = (S−2)2(S−3)

L(L−1) , c = S−2
K , d = (S−2)2

KL , e = S−1
K , and f = (S−1)(S−2)

L . Substituting to the above, we have

• q1 = (S−2)4

∆KL(2S−3) ;

• q3 = −K(S−2)2(S−1)2−(S−2)4

∆KL(2S−3) ;

• q4 = −(2S−3)(S−2)2

∆KL(2S−3) ;

• q5 = K(S−2)(S−1)3+(S−2)4

∆KL(2S−3) ,

17

In-Context Learning from Training on Unstructured Data

where ∆ = (S−1)2(S−2)
KL > 0.

We now check when these conditions are simultaneously satisfied. The first condition is equivalent to p3 > 0 and
K > 2(S−2)3

(S−1)2(2S−3) , which always hold. The second condition reduces to p3 > 0 and 2(S − 2)4 +K(S − 2)2(S − 1)2 > 0,
which is also true. The third condition can be written as p3 > 0 and K(S − 2)(S − 1)3 > 0, which always hold. The last
condition becomes

(2ℓ+ 1)((K + L)(S − 2)2(S − 1) +K(S − 2)(S − 1)2 − 2(S − 2)4) < KL(S − 1)3,

which is equivalent to

2ℓ+ 1 <
KL(S − 1)3

(K + L)(S − 2)2(S − 1) +K(S − 2)(S − 1)2 − 2(S − 2)4
.

Note that this condition ensures that the model predicts dℓ+1 instead of one of the ri’s.

18

In-Context Learning from Training on Unstructured Data

C. Comparison of ICL performance using squared and cross-entropy loss across different
numbers of examples

Table 8. ICL performance in the clean scenario, evaluated with both squared and cross-entropy loss functions across different numbers of
examples (0 to 8) with dE = 100, averaged over 10 repetitions.

Squared Cross-entropy

(p0, p1, p2) 0 2 4 6 8 0 2 4 6 8

(0, 1, 0) 1 1 0 0 0 0.87 0 0 0 0
(0, 0, 1) 1 1 1 0 0 1 0 0 0 0

(1/2, 1/2, 0) 1 1 1 1 1 1 1 0.34 0 0
(1/2, 0, 1/2) 1 1 1 1 1 1 1 1 1 1
(0, 1/2, 1/2) 1 1 1 1 1 1 1 1 0 0

(1/3, 1/3, 1/3) 1 1 1 1 1 1 1 1 1 0

Table 9. ICL performance in the corrupted scenario, evaluated with both squared and cross-entropy loss functions across different numbers
of examples (0 to 8) with dE = 100, averaged over 10 repetitions.

Squared Cross-entropy

(p0, p1, p2) 0 2 4 6 8 0 2 4 6 8

(0, 1, 0) 1 0 0 0 0 0 0 0 0 0
(0, 0, 1) 1 0.97 0 0 0 1 0 0 0 0

(1/2, 1/2, 0) 1 1 1 0.53 0 1 0 0 0 0
(1/2, 0, 1/2) 1 1 1 1 1 1 1 1 1 1
(0, 1/2, 1/2) 1 1 0.76 0 0 1 1 0 0 0

(1/3, 1/3, 1/3) 1 1 1 1 1 1 1 1 0.18 0

From Tables 8 and 9, we observe that ICL with CBOW on single-relationship tasks performs better with squared loss
compared to cross-entropy loss and with fewer demonstration examples. Also, ICL tends to deteriorate after a certain number
of in-context demonstrations. As detailed in Appendix B, a smaller number of examples (e.g., zero) allows the model to
produce the correct output instead of one of the ri’s. This is in contrast with transformer-based LLMs, which achieve better
ICL performance as the number of demonstrations increases. On the other hand, ICL on dual-connected-relationship tasks
requires at least one demonstration example. On the other hand, ICL on dual-relationship tasks as described in Section 2.2
requires at least one demonstration example to distinguish between the two tasks.

19

In-Context Learning from Training on Unstructured Data

D. Proof of Theorem 2.2
Proof. We show that given a prompt of the form ci1di1 · · · ciℓdiℓciℓ+1

with distinct ik’s, a trained CBOW model is more
likely to predict diℓ+1

than eiℓ+1
. If this is established, the other part of the theorem follows analogously. We now define

• p1 = p(ci, dj) = p(di, cj) = p(di, dj) = p(ci, ej) = p(ei, cj) = p(ei, ej) for any i ̸= j;

• p2 = p(ri, rj) for any i ̸= j;

• p3 = p(ci, di) = p(di, ci) = p(ci, ei) = p(ei, ci);

• p4 = p(di, rj) = p(ri, dj) = p(ei, rj) = p(ri, ej) for any i, j;

where the equalities in the probabilities are a consequence of the data distribution. By direct calculation, we have
p1 = 1

K(K−1) , p2 = (S−4)(S−5)
L(L−1) , p3 = 1

K , and p4 = S−4
KL , where each pi is multiplied by S(S − 1) > 0 (without loss

of generalization) to make calculations easier. Moreover, it is easy to see that p(ci, rj) = p(ri, cj) = 2p4 for any i, j
and p(ci, cj) = 2p1 for any i ̸= j. Lastly, we define a = (S − 2)p1, b = (S − 2)p2, c = (S − 2)p3, d = (S − 2)p4,
e = 2(K − 1)p1 + p3 + Lp4, and f = 4Kp4 + (L− 1)p2.

The next step the proof is to use Lemma B.1 in Appendix B to obtain the similarity matrix A. As previously, we denote a
square matrix with α on the diagonal and β off the diagonal as Xα,β , and a matrix with all entries γ as Yγ . We then have

B =

X0,2p1 Xp3,p1 Xp3,p1 Y2p4

Xp3,p1 X0,p1 Y0 Yp4

Xp3,p1
Y0 X0,p1

Yp4

Y2p4
Yp4

Yp4
X0,p2

and

(S − 2)B + C =

X2e,2a Xc,a Xc,a Y2d

Xc,a Xe,a Y0 Yd

Xc,a Y0 Xe,a Yd

Y2d Yd Yd Xf,b

 . (2)

Moreover, its inverse can be written as

((S − 2)B + C)−1 =

Xq2,q1 Xq3,q1 Xq3,q1 Yq4

Xq3,q1 Xq5,q6 Xq7,q8 Yq4

Xq3,q1 Xq7,q8 Xq5,q6 Yq4

Yq4 Yq4 Yq4 Xq9,q10

 , (3)

for some q1, q2, · · · , q10. Recall that our task is show that given context words ci1 , di1 , · · · , ciℓ , diℓciℓ+1
with distinct ik’s,

the center word is more likely to be diℓ+1
than eiℓ+1

. In other words, we need to establish that

d⊤iℓ+1
ci1 + d⊤iℓ+1

di1 + · · ·+ d⊤iℓ+1
ciℓ + d⊤iℓ+1

diℓ + d⊤iℓ+1
ciℓ+1

> e⊤iℓ+1
ci1 + e⊤iℓ+1

di1 + · · ·+ e⊤iℓ+1
ciℓ + e⊤iℓ+1

diℓ + e⊤iℓ+1
ciℓ+1,

where ϵ⊤δ indicates the similarity between the word ϵ in the center and the word δ in the context. This similarity can be
obtained from the matrix A = B((S − 2)B + C)−1. By symmetry, the inequality reduces to d⊤i dj > e⊤i dj for any i ̸= j.

By computing the matrix A, we have

d⊤i dj = p3q1 + p1q3 + (K − 2)p1q1 + (K − 2)p1q6 + Lp4q4 + p1q5

and

e⊤i dj = p3q1 + p1q3 + (K − 2)p1q1 + (K − 2)p1q8 + p1q7 + Lp4q4.

20

In-Context Learning from Training on Unstructured Data

Thus, our problem again reduces to showing (K − 2)q6 + q5 > (K − 2)q8 + q7 as p1 = 1
K(K−1) > 0. Upon multiplying

(3) and (2) and equating the result with the identity matrix, we have the following equations:

a(K − 1)q1 + cq3 + dLq4 + eq5 + a(K − 1)q6 = 1 (4)
(c+ a(K − 2))q1 + aq3 + dLq4 + aq5 + (e+ a(K − 2))q6 = 0 (5)

a(K − 1)q1 + cq3 + dLq4 + eq7 + a(K − 1)q8 = 0 (6)
(c+ a(K − 2))q1 + aq3 + dLq4 + aq7 + (e+ a(K − 2))q8 = 0. (7)

Comparing (5) and (7) yields

a(((K − 2)q6 + q5)− ((K − 2)q8 + q7)) = e(q8 − q6).

As a = (S − 2)p1 > 0 and e = 2p1(K − 1) + p3 + p4L > 0, we now only need to show that q8 > q6. Comparing (4) and
(6) as well as (5) and (7), we have

a(q5 − q7) = (e+ a(K − 2))(q8 − q6)

e(q5 − q7) = a(K − 1)(q8 − q6) + 1,

which reduces to (q8 − q6)(e
2 + ae(K − 2)− a2(K − 1)) = a. The conclusion follows since a > 0 and

e2 + ae(K − 2)− a2(K − 1) = (e− a)(e+ a(K − 1)) =

(
S − 1

K
− S − 2

K(K − 1)

)
(e+ a(K − 1)) > 0.

E. Corpus generation process for experiments in Section 2.5
1. Randomly select 10 countries and obtain their capital cities and IOC codes.

2. Generate 30 sentences containing exactly one country-capital pair (3 for each country).
Example: Paramaribo is the vibrant heart of Suriname.

3. Generate 30 sentences containing exactly one country-IOC pair (3 for each country).
Example: Gabon (GAB) protects its diverse rainforests and wildlife.

4. Generate 30 sentences containing exactly one country without any pair.
Example: The banking sector is central to Liechtenstein’s prosperity.

5. Generate 60 sentences without any country, capital city, or IOC code.
Example: Every country has its unique cultural identity and heritage.

6. Generate 810 sentences containing exactly two different country-capital pairs by concatenating sentences generated in
Step 2.
Example: The city of Dushanbe reflects Tajikistan’s vibrant spirit. Roseau is the cultural tapestry of Dominica.

7. Generate 810 sentences containing exactly two different country-IOC pairs by concatenating sentences generated in
Step 3.
Example: Mayotte (MAY) features lush landscapes and peaks. Turkmenistan (TKM) features the fiery Darvaza Crater.

21

In-Context Learning from Training on Unstructured Data

F. Proof of Theorem 3.1
Proof. Consider the instance of predicting a from abc, i.e., f({a, b}, c). By the assumption on the data distribution, it is
equally likely that the task is predicting b from bac. In this case, the corresponding function is also f({a, b}, c). Thus, the
sum of the cross-entropy losses corresponding to these two tasks is lower bounded by 2 log 2 > 0. Also, it is easy to see that
we cannot achieve perfect accuracy since the predictions for abc and bac must be the same.

We now show that it is possible to attain zero loss and perfect accuracy when the model includes positional embeddings,
so that f̃({(a, 1), (b, 2)}, (c, 3)) ̸= f̃({(b, 1), (a, 2)}, (c, 3)). As a special case, we consider a simplified version of the
transformer architecture, where

f̃({(a, 1), (b, 2)}, (c, 3)) =
∑

k∈{a,b,c}(xk + p1) exp((xk + p1)
⊤(xc + p3))∑

k∈{a,b,c} exp((xk + p1)⊤(xc + p3))
.

and

p(d | abc) ∝ exp
(
x⊤
d f̃({(a, 1), (b, 2)}, (c, 3))

)
.

for any token d. Here, xi and pj represent the embedding of token i and position j, respectively.

Let p⊤1 p3 = p, p⊤2 p3 = q, p⊤3 p3 = r, x⊤
i xi = s, x⊤

i xj = t for any i ̸= j, p⊤1 xi = u for any i, p⊤2 xi = v for any i,
and p⊤3 xi = w for any i. Note that this holds due to the assumed data generating process. We consider the following
construction: p1 = b1|V |, p2 = p3 = 1|V |, and xi = aei, where ei is a zero vector with 1 on the i-th entry. This implies
p = b|V |, q = r = |V |, s = a2, t = 0, u = ab, and v = w = a.

By direct calculation, the cross-entropy loss of predicting a from abc is given by

− log

(
exp(α1a

2)

exp(α1a2) + exp(α2a2) + exp(α3a2) + |V | − 3

)
,

where

α1 =
exp(ab+ b|V |)

exp(ab+ b|V |) + exp(a+ |V |) + exp(a2 + a+ |V |)
,

α2 =
exp(a+ |V |)

exp(ab+ b|V |) + exp(a+ |V |) + exp(a2 + a+ |V |)
,

α3 =
exp(a2 + a+ |V |)

exp(ab+ b|V |) + exp(a+ |V |) + exp(a2 + a+ |V |)
.

Letting b = a2 and a → ∞, it is easy to see that we can bring the cross-entropy loss arbitrarily close to zero. Consequently,
we also have a perfect prediction accuracy.

G. Proof of Proposition 3.2
Proof. The intermediate representation of the first layer is given by f1({xi1}), f2({xi1}, xi2)}, f3({xi1 , xi2}, xi3), and
f4({xi1 , xi2 , xi3}, xi1), for some functions f1, f2, f3, and f4. To predict the last xi1 , we use the third coordinate of the
second layer representation, which is given by t(xi1xi2xi3) := g3 ({f1({xi1}), f2({xi1}, xi2)}, f3({xi1 , xi2}, xi3)), for
some function g3. It is easy to see that in general, t(xi1xi2xi3) ̸= t(xi2xi1xi3).

22

In-Context Learning from Training on Unstructured Data

H. Proof of Theorem 3.3
Proof. In the one-noisy scenario, each sentence takes one of the following forms: nabacdc, anbacdc, abnacdc, abancdc,
abacndc, and abacdnc, where n ∈ N . In order to achieve the minimum possible theoretical loss, we minimize each loss
term separately. Concretely, the minimum loss of predicting the sixth token given the first five tokens is attained by the
following rule:

• When the first five tokens do not contain any nuisance token, output a uniform probability vector over N .

• Otherwise, output the conditional probability of c[2] given x, where (x, c[2]) ∈ S1. Here, x represents the last
non-nuisance token.

Under this rule, the predicted output for any in-context example abacd is never c, since c /∈ N . In the block-noisy scenario,
each sentence takes one of the following forms: n1n2n3abacdc, aban1n2n3cdc, and abacdcn1n2n3, where n1, n2, n3 ∈ N .
The minimum loss of predicting the ninth token given the first eight tokens is attained by the following rule:

• When the seventh token is not a nuisance token, output the seventh token with probability one.

• When the seventh token is a nuisance token, output a uniform probability vector over N .

Under this rule, the predicted output for any in-context example abacdcef is e, resulting in perfect ICL accuracy.

I. Proof of Theorem 4.1
Proof. Recall that each training sentence is of the form x11x12x11x21x22x21 · · ·xN1xN2xN1. Note that we can decompose
the total loss L into L1+L2+ · · ·+L3N , where Lg denotes the loss of predicting the g-th token given all the other previous
tokens. As the xi1xi2xi1 blocks are generated independently, the optimal loss should satisfy L1 = L4 = · · · = L[3N−2] =
L[1], L2 = L5 = · · · = L[3N−1] = L[2], and L3 = L6 = · · · = L[3N] = L[3]. Therefore, it is sufficient to minimize
L[1] + L[2] + L[3].

In order to achieve the minimum possible theoretical loss, we need to minimize L[1], L[2], and L[3] separately. It is easy to
see that L[1] is minimized by outputting the marginal probability of c[1], where c ∈ S1. Similarly, L[2] is minimized by
outputting the conditional probability of c[2] given xi1 , where (xi1 , c[2]) ∈ S1. On the other hand, it is possible to achieve
an L[3] value of zero by outputting xi1 with probability one.

Now, given an ICL prompt x11x12x12x21x22x22 · · ·xℓ1xℓ2 where ℓ ≤ N , the trained model should predict xℓ1 with
probability one since {c[1] | c ∈ S2} = V and our ICL prompt corresponds to L[3]. This completes the proof.

J. Proof of Theorem 4.2
Proof. We proceed similarly as the proof of Theorem 4.1. Concretely, we separately minimize Lg for g ∈ [2k + 2], where
Lg denotes the loss of predicting the g-th token given all the other previous tokens. It is easy to see that L1 is minimized
by outputting a uniform probability vector over a1:[I], whereas Lh (for any 2 ≤ h ≤ 2k + 1) is minimized by outputting
a uniform probability vector over V . Moreover, it is possible to achieve an L2k+2 value of zero by outputting bi with
probability one.

From here, given an ICL prompt of the form ai1bi1ai2bi2 · · · aiℓ , the trained model should predict a uniform probability
vector over V if ℓ ≤ k, and bi1 if ℓ = k + 1. In all cases, the model does not predict biℓ , completing the proof.

23

In-Context Learning from Training on Unstructured Data

K. Distinguishing two different patterns requires more than one layers

Figure 2. One-layer models fail to differentiate the two patterns in Section 3.2, as evidenced by the accuracy trajectory graph on the left.
On the other hand, five-layer models are capable of doing so.

L. Experiments for Section 4.2
We conduct an experiment on a synthetic corpus consisting of (country)-(capital) relationships. Each sentence in the corpus is
categorized into exactly one of four possible categories: (1) exactly one country-capital pair; (2) exactly two country-capital
pairs; (3) exactly one country without any pair; and (4) no country. In sentences with exactly one country-capital pairs,
each capital appears in the first position, each country appears in the last position, and every sentence consists of six words
(similar to the setting in Section 4.2). The corpus generation process is as follows:

1. Randomly select 10 countries and obtain their capital cities and IOC codes.

2. Generate 130 sentences containing exactly one country-capital pair (13 for each country). Example: Paramaribo stands
as capital of Suriname.

3. Generate 30 sentences containing exactly one country without any pair.
Example: The banking sector is central to Liechtenstein’s prosperity.

4. Generate 60 sentences without any country, capital city, or IOC code.
Example: Every country has its unique cultural identity and heritage.

5. Generate 1,000 sentences containing exactly two different country-capital pairs by concatenating sentences generated
in Step 2.
Example: Brazil functions as heart of Brasilia. Turkmenistan operates as center for Ashgabat.

We train a five-layer two-head autoregressive transformer on this corpus, with an embedding dimension of 100. Similar to
Section 2.5, we assess the ICL accuracies using prompts involving countries and their capitals. We discover that the ICL
accuracies are zero regardless of the number of in-context examples (one to five), thus supporting the theory.

M. Limitations of this work
This study has several limitations. Firstly, the experiments are conducted on a relatively small scale. However, they still
provide sufficient evidence to support the theoretical findings. Secondly, the focus of this study is on two specific types
of in-context learning (ICL) tasks, as described in Section 1. Lastly, real data sets are not utilized due to the lack of
alignment with the study objectives. Despite these limitations, we believe that this work offers valuable insights into how
ICL arises through training on unstructured natural language data, supported by both theoretical and empirical evidence
from experiments involving prompting and synthetic data. Further analyses on other ICL tasks and their reliance on model
architecture can be fruitful avenues for future work.

24

In-Context Learning from Training on Unstructured Data

N. Details of experiments and data sets
All experiments utilize the Keras package in Python, employing the Adam optimizer (Kingma and Ba, 2015) with a learning
rate of 0.01. Early stopping is applied based on validation loss with a patience threshold of 5, utilizing a randomly selected
subset representing 50% of the original data set. Each transformer layer uses two heads, as we empirically demonstrated
that increasing the number of heads does not impact performance in our experiments. Each layer consists of the following
components (in order): (1) Keras’ multi-head causal self-attention block, with key_dim = value_dim = embed_dim/2;
(2) Skip connection and layer normalization; (3) One hidden layer feed-forward network using the ReLU activation with
dimension = 2× embed_dim; and (4) Skip connection and layer normalization.

The world_population.csv data set, used for the experiments in Sections 2.4 and 2.5, is obtained from https:
//www.kaggle.com/datasets/iamsouravbanerjee/world-population-dataset. According to the
author, this data set is created from https://worldpopulationreview.com/.

The us-state-capitals.csv data set, used for the experiments in Section 2.4, is obtained from https://github.
com/jasperdebie/VisInfo/blob/master/us-state-capitals.csv. Its source is unclear.

The uscities.csv data set, used for the experiments in Section 2.4, is obtained from https://simplemaps.com/
data/us-cities, with a CC 4.0 license.

25

https://www.kaggle.com/datasets/iamsouravbanerjee/world-population-dataset
https://www.kaggle.com/datasets/iamsouravbanerjee/world-population-dataset
https://worldpopulationreview.com/
https://github.com/jasperdebie/VisInfo/blob/master/us-state-capitals.csv
https://github.com/jasperdebie/VisInfo/blob/master/us-state-capitals.csv
https://simplemaps.com/data/us-cities
https://simplemaps.com/data/us-cities

