
Towards Enforcing Hard Physics Constraints in Operator Learning

Valentin Duruisseaux * 1 Miguel Liu-Schiaffini * 1 Julius Berner 1 Anima Anandkumar 1

Abstract
Enforcing physics constraints in surrogate mod-
els for PDE evolution operators can improve the
physics plausibility of their predictions and their
convergence and generalization properties. Impos-
ing these differential constraints softly as training
loss terms can suffer from various challenges and
does not guarantee faithfulness to the constraints
at inference time, calling for stronger ways to im-
pose the constraints. In this paper, we strongly
enforce physics constraints in operator learning by
projecting the output of any given operator surro-
gate model onto the space of functions satisfying
a specified differential constraint, and perform
that projection in a suitable transformed space.
Compared to prior works, our method is efficient,
compatible with any existing operator learning
architecture (both during or after training), and
ensures that the physics constraint holds at all
points in the spatiotemporal domain. While it
remains unclear how to perform the projection
efficiently for nonlinear differential constraints,
we describe how our approach works remarkably
well for linear differential constraints by perform-
ing the projection very efficiently in Fourier space.
As an example, we enforce the divergence-free
condition of the incompressible Navier–Stokes
equations, where our projection operator enforces
the constraint without sacrificing faithfulness to
the data, and does so at a small additional cost.

1. Introduction and related works
Partial differential equations (PDEs) are a critical tool for
modeling physical phenomena and dynamical systems rel-
evant for scientific and engineering applications (Strang,
2007). Unfortunately, existing numerical methods for solv-

*Equal contribution 1Department of Computing and
Mathematical Sciences, California Institute of Technology,
Pasadena, CA 91125, USA. Correspondence to: Valentin
Duruisseaux <vduruiss@caltech.edu>, Miguel Liu-Schiaffini
<mliuschi@caltech.edu>, Julius Berner <jberner@caltech.edu>.

Accepted at 41 st International Conference on Machine Learning
(ICML) 2024 AI for Science workshop, Vienna, Austria.

ing PDEs become very computationally expensive when
applied to large-scale systems such as the Earth’s cli-
mate (Schneider et al., 2017; 2019). As an attempt to cir-
cumvent these computational limitations, machine learn-
ing methods have recently been proposed to learn solution
operators of PDEs from data (Lu et al., 2021a; Gupta &
Brandstetter, 2022; Kovachki et al., 2023).

Among these methods, neural operators (Li et al., 2020b;
Kovachki et al., 2023; Azizzadenesheli et al., 2024) have
shown great promise, primarily due to their ability to receive
input functions at arbitrary discretizations and query output
functions at arbitrary points, but also due to their universal
operator approximation property (Kovachki et al., 2021). A
variety of neural operators have been proposed (Li et al.;
Li et al., 2023; Rahman et al., 2022; 2023; Kossaifi et al.,
2023; Liu-Schiaffini et al., 2023) and successfully applied
to a wide range of problems (Kurth et al., 2022; Wen et al.,
2023; Gopakumar et al., 2023; Zhou et al., 2024). Other
operator learning frameworks exist, such as DeepONet (Lu
et al., 2021a) and its extensions which have been applied in
various contexts (Clark di Leoni et al., 2021; Lin et al., 2021;
2023; Yin et al., 2021; Oommen et al., 2022; Lanthaler et al.,
2022; Duruisseaux & Chakraborty, 2023).

However, purely data-driven approaches may underperform
in situations with limited or low-resolution data (Li et al.,
2021). In these cases, data-driven models may be supple-
mented or constrained using prior knowledge of physics con-
straints or conservation laws (Karniadakis et al., 2021; Liu
& Chowdhury, 2023). In operator learning, these constraints
are typically incorporated as additional loss terms (Li et al.,
2021; Wang et al., 2021b; Goswami et al., 2022; White
et al., 2023), similarly to how they are enforced in Physics-
Informed Neural Networks (PINNs) (Raissi et al., 2017a;b;
2019). However, a variety of issues can arise with these
soft constraints. The resulting composite loss can be more
challenging to minimize, with more expensive training iter-
ations due to the presence of derivatives in the physics loss,
and may be more prone to numerical issues (such as worse
conditioning, conflicting loss terms, inaccuracies in approx-
imating derivatives, and existence of trivial or non-desired
solution satisfying the constraints on the collocation points
where the physics loss is computed) (Li et al., 2021; Leiteritz
& Pflüger, 2021; Krishnapriyan et al., 2021; Wang et al.,
2021a; 2022; Rohrhofer et al., 2022; White et al., 2023). In

1

Towards Enforcing Hard Physics Constraints in Operator Learning

Operator
surrogate

Projection
function function function

Fourier
Transform

Constraint set

Figure 1. Diagram of our proposed framework for enforcing general physics constraints applied to linear differential physics constraints.
Projecting onto the constraint set amounts to solving a least-squares problem with a linear constraint in Fourier space.

addition, the ability to provably and robustly follow known
physical constraints is crucial for certain high-risk applica-
tions, but soft constraints are unable to provide guarantees
of faithfulness to physics constraints at inference time.

These drawbacks motivate the exact enforcement of physics
constraints in machine learning models, both at training
and inference time, and a variety of approaches have been
proposed for neural networks. Structural modifications to
PINNs have been proposed to enforce hard Dirichlet and
periodic boundary conditions (Lu et al., 2021b). ProbCon-
serv (Hansen et al., 2024) enforces conservation laws by first
obtaining a predictive distribution for the solution at speci-
fied target points and then applying a discretization of the
integral form of the constraint as a Bayesian update. Harder
et al. (2024) designed constraining layers to incorporate
downscaling constraints into neural networks for climate
super-resolution, to ensure mass and energy conservation
between low and high resolution. Negiar et al. (2022) and
Chalapathi et al. (2024) proposed to find optimal linear com-
binations of learned basis functions that satisfy the PDE at
the given collocation points by solving a PDE-constrained
optimization problem using differentiable optimization.

In the context of strongly imposing the divergence-free con-
dition ∇ · u = 0 for fluid flows (which we consider in our
numerical experiments), Mohan et al. (2023) leveraged the
fact that a vector field u is divergence-free if u = ∇× v for
some vector field v, and learned v using neural networks.
Richter-Powell et al. (2022) explored the use of further char-
acterizations of divergence-free vector fields to strongly
enforce that constraint in neural networks. In a more gen-
eral setting, HelmFluid (Xing et al., 2024) leverages the
Helmholtz theorem (Bladel, 1959) that decomposes a dy-
namic field into a curl-free component and a divergence-free

component u = ∇Φ+∇× v and learns the potential func-
tion Φ and the stream function v. However, these methods
are in general harder to train or may lack expressivity be-
cause of the reparametrizations, and also rely on derivative
computations which are typically costly. Jiang et al. (2020)
introduced a spectral projection layer for neural networks
and investigated its use with 3d CNNs. Jiang et al. (2020)’s
approach serves as inspiration for the proposed approach,
and can be thought of as the special case of our approach to
enforce the divergence-free condition in neural networks.

More generally, hard constraints have also been enforced
in structured dynamical systems for which the underlying
structure is very well-understood, such as Hamiltonian sys-
tems with their underlying symplectic structure (Lutter et al.,
2019; Zhong et al., 2020; Jin et al., 2020; Burby et al., 2020;
Cranmer et al., 2020; Sæmundsson et al., 2020; Santos et al.,
2022; Valperga et al., 2022; Duruisseaux et al., 2023a;b).

One of the few attempts at systematically enforcing hard
constraints specifically for operator learning is BOON (Saad
et al., 2023) which focuses on enforcing boundary condi-
tions by modifying the integral kernels. However, BOON
does not allow for enforcing physical constraints in the inte-
rior of the domain. As such, to our knowledge, our work is
the first to enforce physical constraints within the interior
of the physical domain in the operator learning setting.

Our approach: We enforce hard physics constraints in op-
erator learning frameworks by projecting the output function
of any operator surrogate model onto the space of functions
satisfying a specified constraint, and perform this projection
in a suitable transformed space.

Compared to prior works, our method is compatible with any
existing operator learning architecture (both during train-

2

Towards Enforcing Hard Physics Constraints in Operator Learning

ing and at inference time), and ensures that the physics
constraint holds at all points in the spatiotemporal domain.

While it remains unclear how to perform the projection
efficiently for nonlinear differential constraints, for linear
differential constraints, the projection can be performed in
Fourier space very efficiently, as presented by Jiang et al.
(2020) with neural networks, with a small additional cost.
By pairing the Fourier projection layer more generally with
a neural operator, this additional layer can be thought of
as a mapping on function spaces, and the output function
can be queried on an arbitrarily fine grid. This way, with
a neural operator, the discretization error of our approach
can, in principle, be driven arbitrarily low. In addition,
the operator learning paradigm allows carefully designed
architectures, such as graph neural operators (GNOs) (Li
et al., 2020a;c), to predict on arbitrary geometries with
non-uniform grids, which could also be enabled by our
approach after suitable modifications. Overall, thinking
of the projection layer as a mapping on function spaces
(instead of a mapping between grid discretizations) allows
to leverage the numerous advantages of neural operators,
and allows to consider new settings and can lead to further
future developments and that were not initially conceivable
with neural networks.

We test our approach for linear differential constraints to
enforce the divergence-free condition for flow fields in in-
compressible Navier-Stokes, and investigate the effect of
appending the projection layer during training or at infer-
ence time. In this context, the projection onto the space
of divergence-free vector fields is also known as the Leray
projection. Table 1 compares the desirable properties of
our approach and other existing methods to enforce the
divergence-free condition. We demonstrate experimentally
that our projection layer enforces strongly the divergence-
free condition at every point without harming the fidelity to
the data. This complements the observations made by Jiang
et al. (2020) that the projection layer can also lead to supe-
rior predictions of various key flow statistics. In addition,
we demonstrate experimentally that the divergence error of
our approach converges to 0 as the resolution of the dis-
cretization of the output function from the operator model
increases. We also observe that it may not be necessary
to perform the entire training procedure on the constrained
model and that only finetuning the trained unconstrained
model using the constraints for a few epochs might be bet-
ter suited in certain cases. Unlike prior approaches, our
projection layer can also be used in a plug-and-play fashion.

In our experiments, the benefits provided by the addition
of our projection layer come at a computational time cost
between 1.06× and 1.16× that of the baseline model.

Method Efficient Holds Res.-
exactly agnostic

Soft physics loss ✓ ✗ ✓
(Jiang et al., 2020) ✓ ✓ ✗
(Richter-Powell et al., 2022) ✗ ✓ ✓
(Mohan et al., 2023) ✓ ✓ ✗

Ours ✓ ✓ ✓

Table 1. Comparison of different methods for enforcing the
divergence-free condition, the particular instance of a linear differ-
ential constraint we consider in our experiments.

2. Background and problem statement
Let A,U be Banach spaces. Consider a parametric PDE

P(a;u) = 0 in Ω× (0,∞)

B(a;u) = 0 on δΩ× (0,∞) (1)
I(a;u) = 0 on Ω̄× {0},

where P,B,I are operators representing the PDE, boundary
conditions, and initial conditions, respectively. The operator
learning problem consists in learning the solution operator
G : A → U mapping an input function a ∈ A to the
corresponding solution function u ∈ U of the PDE. The
solution operator G of interest depends on the problem; one
example is the time-stepping operator (Stuart & Humphries,
1998) for the solution u(x, t), where A = U, which maps
u(x, 0) 7→ u(x, h) for some positive time-step h > 0.

We first consider general nonlinear differential constraints
C(u) = 0 on int (Ω)× (0,∞), and propose a general frame-
work for projecting the output function of any operator
surrogate model onto the space of functions satisfying these
nonlinear differential constraints. While it is unclear how
to construct an efficient projection for general nonlinear
differential constraints, we will later restrict ourselves to the
class of linear differential constraints of the form

0 = C(u(x, t)) =
∑
|α|≤k

ℓα(x, t)∂
αu(x, t), (2)

where α is an n-dimensional multi-index, for which the pro-
jection can be performed in Fourier space very efficiently.

Problem statement: Given the true solution operator G,
let G̃ denote a surrogate model. In general, the output of G̃
does not satisfy the specified physics differential constraints
C(u) = 0 over the interior of the domain. We would like
to construct a mechanism to modify G̃ and obtain a new
surrogate model G∗ : A → U such that G∗ ≈ G̃ for which
the constraints are enforced, i.e.,

C (G∗(a)) = 0 for all a ∈ A. (3)

3

Towards Enforcing Hard Physics Constraints in Operator Learning

In practice, since a is a discretized function, we relax this
condition and require that

sup
a∈A

C (G∗(a)) < ε (4)

for some tolerance ε > 0 depending only on the discretiza-
tion of a, with ε → 0 as this discretization is refined.

3. Proposed approach
3.1. General method

Given a surrogate model G̃ for the solution operator G, we
define the constrained surrogate operator G∗ via

G∗(a) := (prC ◦ G̃)(a), (5)

where for a ∈ A, prC is an operator projecting G̃(a) onto
the space of functions u ∈ U satisfying C(u) = 0. The
advantage of this decomposition is that the dependence on
the constraint C lies only in prC. As a result, our approach
is agnostic to the choice of surrogate model G̃ and can be
seamlessly combined with any operator learning framework.

The construction of prC relies on a choice of invertible trans-
form T : U → U′ with a corresponding discrete transform
Td (assuming without loss of generality that T(0) = 0).
With the transform T, we can equivalently rewrite the linear
differential constraint as T(C(u)) = 0.

Given a ∈ A, a surrogate operator model G̃, a discrete
version ũd of the model output ũ = G̃(a), and a transform
T with its corresponding discrete transform Td, we construct
the projection operator prC as follows. We represent T(ũd)
formally as

T(ũd) =

K∑
k=1

ckφk (6)

in some specified K-dimensional function subspace with
basis {φ1, . . . , φK}, where a good choice of K depends on
the fineness of the discretization of ũd. We can approximate
the constraint T(C(ũd)) = 0 as some algebraic equation

Ĉ(c1, . . . , cK) = 0, (7)

for the coefficients {c1, . . . , cK} of T(ũd).

The approximate projection of ũ onto the space of functions
of the form

∑K
k=1 ckφk satisfying Ĉ(c1, . . . , cK) = 0 is

obtained by solving the constrained optimization problem

min
c1,...,cK

∥∥∥∥∥ũd −T−1
d

(
K∑

k=1

ckφk

)∥∥∥∥∥
U′

subject to Ĉ(c1, , . . . , cK) = 0

(8)

for the projected optimal coefficients {c∗1, . . . , c∗K}, where
the norm ∥ · ∥U′ is appropriately discretized given the dis-
cretization on ũd. The inverse discrete transform

u∗
d = T−1

d

(
K∑

k=0

c∗kφk

)
(9)

then gives a discrete version u∗
d of the output of the con-

strained operator

u∗ := G∗(a) = (prC ◦ G̃)(a). (10)

Remark 3.1. In practice, many physics constraints of in-
terest hold globally over the interior of the spatiotemporal
domain. By applying the transform T and solving the op-
timization problem over {c1, . . . , cK}, we ensure that the
constraint holds approximately over the entire domain, with
the discretization error decreasing as K increases.

To summarize, instead of enforcing the differential con-
straints directly in physical space where derivatives can be
expensive to compute, we use a transform T and enforce
the transformed constraints in the transformed space before
returning to the original physical space. In practice, we
choose the transform T so that the subsequent operations in
the projection operator prC become simpler or less compu-
tationally expensive. As an example, with linear differential
constraints and U = U′ = L2, we can select the Fourier
transform F and leverage Fourier theory to replace the lin-
ear differential constraints by a linear system of equations
in Fourier modes, as discussed in Section 3.2.

Given a nonlinear differential constraint, we might not be
able to find a transform T such that the constrained optimiza-
tion problem (8) has a closed-form solution. In this case,
we would need to rely on iterative optimization methods.
For end-to-end training, one can leverage differentiable im-
plicit layers (Amos & Kolter, 2017; Amos, 2019; Agrawal
et al., 2019a;b) (also known as declarative nodes (Gould
et al., 2021)) in which the relationship between the input
and output is implicitly defined in terms of the solution to an
optimization problem of a parametrized objective function.
End-to-end learning is enabled via the implicit function
theorem (instead of the chain rule) for efficient backpropa-
gation without unrolling the optimization procedure. There
are some similarities with the approach presented in Negiar
et al. (2022); Chalapathi et al. (2024), where the constraints
are enforced by adding a constraint layer made differentiable
using implicit differentiation and differentiable optimiza-
tion. However, in their approach they are not solving a con-
strained optimization problem in some transformed space,
but rather solve a constrained optimization problem in the
original space to find optimal linear combinations of learned
basis functions that satisfy the PDE at given collocation
points. They also need to fix the number of basis functions a
priori and cannot use their layer in a plug-and-play fashion.

4

Towards Enforcing Hard Physics Constraints in Operator Learning

3.2. Application to linear differential constraints

We focus on the case where C is a linear differential con-
straint of the form

0 = C(u(x, t)) =
∑
|α|≤k

ℓα(x, t)∂
αu(x, t), (11)

where, for x ∈ Rn, each α is a n-dimensional multi-index.
There are many applications governed by PDEs with linear
differential constraints. Examples in fluid dynamics include
the divergence-free condition (e.g., incompressible Navier-
Stokes), the irrotational flow condition, and the continuity
equation (e.g., compressible Navier-Stokes). A related con-
straint is the conservation of electrical charge in Maxwell’s
equations. Steady-state and equilibrium conditions in physi-
cal processes often take the form of linear differential con-
straints as well. Linear differential constraints include lin-
ear PDEs themselves (in this case, C = P), such as the
Maxwell, Helmholtz, Klein–Gordon, Schrödinger, Poisson,
Laplace, wave, heat, diffusion, and advection equations.

The proposed approach for enforcing linear differential
constraints is depicted in Figure 1. We choose T to be
the Fourier transform F. Since differentiating in physi-
cal space corresponds to pointwise scalar multiplication in
Fourier space, the discretized constraint in Equation (7) be-
comes a linear system of equations in the Fourier modes
{c1, . . . , cK} of the discrete Fourier transform Fd.

Furthermore, if U = U′ = L2, we can use the discrete
form of Plancherel’s theorem to rewrite the constrained
optimization problem in Equation (8) as

min
v

∥Fd(ũd)− v∥L2 subject to Ĉv = 0, (12)

where v ∈ Ck and Ĉ is the constraint matrix. This is a least
norm problem with linear constraint Ĉ(v) = 0, which has a
closed-form solution via the pseudo-inverse Ĉ† of Ĉ:

v∗ = Fd(ũd)− Ĉ†(Fd(ũd)). (13)

For a ∈ A, we then define the projected output to be

G∗(a) = F−1
d (v∗). (14)

Remark 3.2. The closed form solution (13) of the least norm
problem is differentiable, so the constrained operator G∗

in Equation (14) is differentiable using auto-differentiation,
given a differentiable surrogate model G̃. The projection
operator prC may thus be incorporated seamlessly into
training pipelines and the constrained model can be
trained end-to-end. In (Jiang et al., 2020), the constrained
optimization problem is formulated slightly differently, and
a more explicit formula for the projection in Fourier space
is provided for the 3d case, used in conjunction with CNNs.

Remark 3.3. While Jiang et al. (2020) focused on neural
networks (especially CNNs), the Fourier projection for lin-
ear differential constraints can be used more generally with
a neural operator as surrogate model. In this context, the
projection layer can be thought of as a mapping on function
spaces, for which the output function is truly divergence-
free. In practice, the divergence error of our method only
depends on the resolution of the grid on which the output
solution is queried, and can in principle be driven arbitrarily
low by increasing the output resolution. In Section 4.2.1,
we demonstrate empirically the convergence to 0 of the
divergence with a constrained neural operator as the out-
put resolution increases. In addition, the operator learning
paradigm allows carefully designed architectures, such as
graph neural operators (GNOs) (Li et al., 2020a;c), to predict
on arbitrary geometries with non-uniform grids. With an
adequate modification (e.g. a non-uniform FFT) and when
paired with a GNO, our projection layer would then allow
an end-to-end constrained operator surrogate model that can
be queried at any location and for which the discretization
error can be driven arbitrarily low.

4. Numerical Experiments
The projection method introduced in Section 3.2 can be
applied to arbitrary linear differential constraints. In this
paper, we focus on enforcing the divergence-free condition
of flow fields in incompressible Navier–Stokes equations,
with various Reynolds numbers. In this context, the projec-
tion onto the space of divergence-free vector fields is known
as the Leray projection. We consider Kolmogorov flows,
which can be expressed as

∂tu+ u · ∇u− 1

Re
∆u = −∇p+ sin(4y)x̂ (15)

∇ · u = 0, (16)

where u is the velocity fields, p is the pressure field, Re
denotes the Reynolds number, and x̂ is a unit vector. These
incompressible Navier–Stokes equations hold over a 2d
toroidal domain [0, 2π]2.

The solution operator of interest maps the initial condition
u(·, 0) = u0 to a time-evolved solution u(·, τ) for some
time-step τ > 0. The divergence-free constraint we enforce
is ∇ · u = 0, which is a linear differential operator. Details
regarding the implementation of that constraint within our
approach is presented in Appendix B. For our experiments,
we use the Re = 500 and Re = 5000 Kolmogorov flows
datasets presented in (Li et al., 2022), and refer the reader
to that paper for more details regarding these datasets.

To investigate the effect of appending the projection layer
during training or at inference time, we compare the perfor-
mance of a baseline model with 3 different models:

5

Towards Enforcing Hard Physics Constraints in Operator Learning

• Baseline: the original surrogate model G̃ is trained for
N epochs in a purely data-driven way.

• B+Projection: (Baseline with Projection) The original
surrogate model G̃ is trained for N epochs in a purely
data-driven way, and its output is projected using prC
at inference time.

• B+Finetuning: (Baseline with Constraint Finetuning)
After training the surrogate model G̃ for (N − N ′)
epochs, we add the projection layer prC and finetune
the constrained model G∗ = (prC ◦ G̃) for N ′ epochs.

• Fully Constrained: We add the projection layer to the
untrained surrogate model G̃, and train the constrained
model G∗ = (prC ◦ G̃) for N epochs.

In this paper, we use a Fourier Neural Operator (FNO) (Li
et al., 2020b) as our surrogate model G̃. A general descrip-
tion of the FNO architecture is provided in Appendix A.
The details regarding the experiments setup, the FNO
architectures used, and the training hyperparameters, are
presented in Appendix C.

Remark 4.1 (Computational Cost). For the divergence-free
condition, the constraint matrix Ĉ is the same for every
problem given a fixed number of constraint modes. Thus,
the the pseudo-inverse Ĉ† of Ĉ to solve the constrained
least norm problem (12) only needs to be computed
once. The overall additional cost of our approach (in the
forward pass) lies in evaluating equations (13-14), which
essentially amounts in our implementation to the cost of 2
matrix-vector multiplications, one Fast Fourier Transform
(FFT), and one inverse FFT. On our computing architecture,
with the size of our FNO and 64 constraint modes, each
epoch to train the constrained FNO took between 1.06×
and 1.16× the amount of time it took for one epoch with
the unconstrained FNO (and the implementation of the
projection could be further optimized).

Remark 4.2. We train each model with 5 different random
seeds, and report our results as mean (± standard deviation).

Remark 4.3. The projection layer can be thought of as a
mapping on function spaces, for which the output function
is divergence-free. However, some divergence error is
introduced when discretizing the output function, and
depends on the resolution of the discretization. This
discretization error in our approach can, in principle, be
driven arbitrarily low by querying the output function on a
sufficiently fine grid. We demonstrate this in Section 4.2.1,
by showing that the divergence error in the constrained
model predictions decrease from ∼ 10−5 for a 64 × 64
resolution down to ∼ 10−11 for 1920 × 1920. For this
reason, we report the divergence error in the constrained

models predictions as ≈ 0 in the subsequent tables. Note
that to compute derivatives to test the divergence error in
the model predictions, we use spectral derivatives (i.e. we
compute the derivatives in Fourier space) instead of finite
differences derivatives since these allow us to get much
more accurate derivatives at a lower computational cost.

Remark 4.4. The vector fields from the datasets considered
here are not perfectly divergence-free, so the test L2 error
can serve as a proxy for fidelity to the data but slightly
higher values do not necessarily reflect poorer performance.

4.1. Re = 500 Kolmogorov Flow

We first consider the Re = 500 Kolmogorov flow dataset.
The results, presented in Table 2, show that for the three
different constrained approaches lead to a strongly enforced
divergence-free condition without harming the fidelity to the
data compared to the baseline FNO model. On the contrary,
the projection layer consistently lead to lower test L2 error.
Figure 2 displays an example of vector field predictions
using the baseline model and the constrained approach.

Method Test L2 (×10−2) Divergence
Baseline 2.3267 (±0.0924) 0.722 (±0.015)

B+Projection 2.2896 (±0.0917) ≈ 0
B+Finetuning 2.2278 (±0.1166) ≈ 0
Fully Constrained 2.1574 (±0.0386) ≈ 0

Table 2. Test L2 and divergence-free errors obtained with the three
methods based on our approach and the baseline model for the
Re = 500 Kolmogorov flow dataset. See Remark 4.3 for an
explanation of what is meant here by ≈ 0 divergence-free error.

4.2. Re = 5000 Kolmogorov Flow

4.2.1. 64× 64 RESOLUTION

We now spatially subsample the 256 × 256 Re = 5000
Kolmogorov flow dataset to obtain 64×64 vector fields. The
results, presented in Table 3, show that our approach leads
to a strongly enforced divergence-free condition without
hurting the fidelity to the data.

Method Test L2 (×10−2) Divergence
Baseline 2.1535 (±0.0410) 1.641 (±0.015)

B+Projection 2.0957 (±0.0390) ≈ 0
B+Finetuning 2.1006 (±0.0286) ≈ 0
Fully Constrained 2.1794 (±0.0238) ≈ 0

Table 3. Test L2 and divergence-free errors obtained with the three
methods based on our approach and the FNO baseline model, for
the Re = 5000 Kolmogorov flow dataset with resolution 64× 64.
See Remark 4.3 for an explanation of what is meant here by ≈ 0.

6

Towards Enforcing Hard Physics Constraints in Operator Learning

(a) u1 reference (b) u2 reference

(c) u1 baseline prediction (d) u2 baseline prediction

(e) u1 constrained prediction (f) u2 constrained prediction

Figure 2. Example of vector fields from the Re = 500 Kolmogorov
flow test dataset with the corresponding predictions using the
baseline model and the constrained approach.

We demonstrate that the divergence error obtained using
the constraint projection can be driven arbitrarily low by
increasing the resolution of the discretization of the output
function. We evaluate the models on finer grids to obtain
higher resolution vector fields and compute the divergence
error using spectral derivatives on the finer-grid predictions.
We start from a low resolution of 64× 64 (i.e. scaling factor
of 1), and progressively increase the resolution via (64 ×
S)× (64× S) (i.e. scaling factor of S) up to 1920× 1920
with a scaling factor of 30. We can see from Figure 3 the
convergence to 0 of the divergence error for the constrained
model predictions as the grid resolution increases, from
∼10−5 for 64× 64 down to ∼10−11 for 1920× 1920.

4.2.2. 128× 128 RESOLUTION

We repeat the experiment of Section 4.2.1 but subsample the
Re = 5000 Kolmogorov flow dataset to obtain 128 × 128
vector fields. The results are presented in Table 4. In all 3
different methods, our approach led to a strongly enforced
divergence-free condition with slightly lower test L2 errors.

0 5 10 15 20 25 30
Scaling Factor

10 10

10 8

10 6

10 4

10 2

100

Di
ve

rg
en

ce
 E

rro
r Baseline Model

Constrained Model

Figure 3. Evolution of the divergence error for the baseline and
constrained models predictions as the grid resolution of the output,
(64× S)× (64× S), increases with the scaling factor S.

Method Test L2 (×10−2) Divergence
Baseline 1.6938 (±0.0470) 1.642 (±0.036)

B+Projection 1.6617 (±0.0440) ≈ 0
B+Finetuning 1.6722 (±0.0278) ≈ 0
Fully Constrained 1.6367 (±0.0120) ≈ 0

Table 4. Test L2 and divergence-free errors obtained with the three
methods based on our approach and the baseline model for the
Re = 5000 Kolmogorov flow dataset with resolution 128× 128.
See Remark 4.3 for an explanation of what is meant here by ≈ 0.

4.2.3. ZERO-SHOT SUPER-RESOLUTION

Finally, we tested the ability of our projected surrogate
models to perform zero-shot super-resolution. We used the
models trained on 64×64 data from Section 4.2.1, and took
advantage of the operator learning paradigm to predict the
vector fields on a finer 256× 256 grid.

Table 5 displays the L2 error when comparing the zero-shot
super-resolution predictions to the reference Kolmogorov
flow data, and Figure 4 displays an example of super-
resolution predictions. The observations made in the earlier
experiments extend to this super-resolution experiment: us-
ing the projection layer does not harm the test L2 error.

Method ×4 Super-Resolution Error (×10−2)
Baseline 2.1351 (±0.0410)

B+Projection 2.0804 (±0.0387)

B+Finetuning 2.0821 (±0.0285)

Fully Constrained 2.1580 (±0.0234)

Table 5. Test L2 super-resolution errors on 256× 256 vector fields
from the Re = 5000 Kolmogorov flow test dataset, with the base-
line and constrained models trained on 64× 64 data.

7

Towards Enforcing Hard Physics Constraints in Operator Learning

(a) u1 reference (b) u2 reference

(c) u1 baseline prediction (d) u2 baseline prediction

(e) u1 constrained prediction (f) u2 constrained prediction

Figure 4. Example of super-resolution results on 256× 256 vector
fields from the Re = 5000 Kolmogorov flow test dataset with
the corresponding predictions using the baseline and constrained
models trained on 64× 64 data.

Discussion
In this paper, we have introduced a new general approach
for enforcing hard physics constraints in operator learning
frameworks, consisting in projecting the output of any oper-
ator surrogate model onto the space of functions satisfying a
specified constraint, where the projection is performed in a
suitable transformed space. We focus mostly on the special
case of linear differential constraints, where the projection
can be performed in Fourier space at a small cost.

We have seen throughout our experiments with incom-
pressible Navier–Stokes equations that our projection layer
strongly enforced the divergence-free condition on the pre-
dicted vector fields without harming the fidelity to the data
compared to the baseline. It actually most often lead to
lower test L2 errors, despite the divergence-free condition
not being strongly enforced in the training data. This com-

plements the numerical experiment conducted by Jiang et al.
(2020) using neural networks which showed that the projec-
tion layer can also allow for superior results in terms of the
distribution predictions of key flow statistics (such as total
kinetic energy, dissipation, and large eddy turnover time).

In some cases, training the projected operator model with
the projection layer led to further reduction of the L2 test
errors when compared to projecting the trained baseline
model (B+Projection). We also note that the variability of
the results obtained, characterized by the standard devia-
tion, seems to decrease as the number of epoch with the
constraining layer increases. Improvement in the quality of
the distribution predictions of various key flow statistics was
also observed in the experiment conducted by Jiang et al.
(2020) when the projection layer was included within a CNN
during training. It may however not be necessary to carry
the entire training on the constrained model (Fully Con-
strained). Only finetuning the trained unconstrained model
using the constraints for a few epochs (B+Finetuning) might
be more suitable in some contexts. For instance, in the low-
data regime, training with the constraining projection right
from the start could be harder than only using the projection
layer for finetuning the trained unconstrained model once
its predictions already match the data reasonably well.

We also demonstrated experimentally that the divergence
error of the constrained models using our Fourier projection
layer converges to 0 as the resolution of the discretization of
the output function from the operator model increases. We
further noted that the benefits provided by our projection
layer come at minor additional computational cost.

While our approach performed very well for imposing the
divergence-free condition on the fluid flow problems con-
sidered here, it suffers from limitations that need to be ad-
dressed before it can be used for more realistic larger-scale
problems with limited available data. We intend to use this
framework as a stepping stone towards a more general mech-
anism for enforcing hard constraints in operator learning
frameworks. In particular, we will investigate how to ex-
tend our approach to allow for the full flexibility of using
non-uniform output grids with graph neural operators and
for non-periodic vector fields, and to integrate it with other
mechanisms to enforce boundary conditions. Thinking of
the projection layer as a mapping on function spaces (in-
stead of a mapping between grid discretizations) allows to
leverage the numerous advantages of neural operators over
neural networks and could lead to numerous future develop-
ments and that were not initially conceivable with neural net-
works. Note that the application of the proposed approach
to general nonlinear differential constraints remains unclear
and unexplored, so we intend to pursue the construction
of appropriate transforms and projection maps for specific
restricted classes of nonlinear differential constraints.

8

Towards Enforcing Hard Physics Constraints in Operator Learning

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Agrawal, A., Amos, B., Barratt, S., Boyd, S., Diamond,

S., and Kolter, J. Z. Differentiable convex optimization
layers. In Advances in Neural Information Processing
Systems, volume 32, 2019a.

Agrawal, A., Barratt, S. T., Boyd, S. P., Busseti, E., and
Moursi, W. M. Differentiating through a cone program.
Journal of Applied and Numerical Optimization, 2019b.

Amos, B. Differentiable Optimization-Based Modeling for
Machine Learning. PhD thesis, Carnegie Mellon Univer-
sity, May 2019.

Amos, B. and Kolter, J. Z. OptNet: Differentiable optimiza-
tion as a layer in neural networks. In Proceedings of the
34th International Conference on Machine Learning, vol-
ume 70 of Proceedings of Machine Learning Research,
pp. 136–145. PMLR, 06–11 Aug 2017.

Azizzadenesheli, K., Kovachki, N., Li, Z., Liu-Schiaffini,
M., Kossaifi, J., and Anandkumar, A. Neural operators
for accelerating scientific simulations and design. Nature
Reviews Physics, pp. 1–9, 2024.

Bladel, J. On Helmholtz’s theorem in finite regions. IRE
Transactions on Antennas and Propagation, 7(5):119–
119, 1959. doi: 10.1109/TAP.1959.1144767.

Burby, J. W., Tang, Q., and Maulik, R. Fast neural Poincaré
maps for toroidal magnetic fields. Plasma Physics and
Controlled Fusion, 63(2):024001, dec 2020.

Chalapathi, N., Du, Y., and Krishnapriyan, A. S. Scal-
ing physics-informed hard constraints with mixture-of-
experts. In The Twelfth International Conference on
Learning Representations, 2024.

Clark di Leoni, P., Lu, L., Meneveau, C., Karniadakis, G.,
and Zaki, T. DeepONet prediction of linear instability
waves in high-speed boundary layers. 2021.

Cranmer, M., Greydanus, S., Hoyer, S., Battaglia, P. W.,
Spergel, D. N., and Ho, S. Lagrangian neural networks.
ICLR 2020 Workshop on Integration of Deep Neural Mod-
els and Differential Equations, 2020.

Duruisseaux, V. and Chakraborty, A. An operator learning
framework for spatiotemporal super-resolution of scien-
tific simulations. 2023.

Duruisseaux, V., Burby, J. W., and Tang, Q. Approxima-
tion of nearly-periodic symplectic maps via structure-
preserving neural networks. Scientific Reports, 13(8351),
2023a.

Duruisseaux, V., Duong, T., Leok, M., and Atanasov, N.
Lie group forced variational integrator networks for learn-
ing and control of robot systems. In Proceedings of the
5th Annual Learning for Dynamics and Control Confer-
ence, volume 211 of Proceedings of Machine Learning
Research, pp. 731–744. PMLR, 2023b.

Gopakumar, V., Pamela, S., Zanisi, L., Li, Z., Anandkumar,
A., and Team, M. Fourier neural operator for plasma
modelling. arXiv preprint arXiv:2302.06542, 2023.

Goswami, S., Bora, A., Yu, Y., and Karniadakis, G. E.
Physics-informed deep neural operator networks. 2022.
doi: 10.48550/arXiv.2207.05748.

Gould, S., Hartley, R., and Campbell, D. J. Deep declarative
networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021. ISSN 1939-3539. doi: 10.
1109/tpami.2021.3059462.

Gupta, J. K. and Brandstetter, J. Towards multi-
spatiotemporal-scale generalized pde modeling. arXiv
preprint arXiv:2209.15616, 2022.

Hansen, D., Maddix, D. C., Alizadeh, S., Gupta, G., and
Mahoney, M. W. Learning physical models that can
respect conservation laws. Physica D: Nonlinear Phe-
nomena, 457:133952, 2024. ISSN 0167-2789. doi:
10.1016/j.physd.2023.133952.

Harder, P., Hernandez-Garcia, A., Ramesh, V., Yang, Q.,
Sattigeri, P., Szwarcman, D., Watson, C., and Rolnick, D.
Hard-constrained deep learning for climate downscaling,
2024.

Jiang, C. M., Kashinath, K., Prabhat, and Marcus, P. Enforc-
ing physical constraints in CNNs through differentiable
PDE layer. In ICLR 2020 Workshop on Integration of
Deep Neural Models and Differential Equations, 2020.

Jin, P., Zhang, Z., Zhu, A., Tang, Y., and Karniadakis, G. E.
SympNets: Intrinsic structure-preserving symplectic net-
works for identifying Hamiltonian systems. Neural Net-
works, 132(C), 12 2020.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. Physics-informed machine
learning. Nature Reviews Physics, 3(6):422–440, 2021.

Kossaifi, J., Kovachki, N., Azizzadenesheli, K., and Anand-
kumar, A. Multi-grid tensorized fourier neural operator
for high resolution PDEs. 2023.

9

Towards Enforcing Hard Physics Constraints in Operator Learning

Kovachki, N., Lanthaler, S., and Mishra, S. On universal
approximation and error bounds for Fourier neural opera-
tors. J. Mach. Learn. Res., 22(1), 2021. ISSN 1532-4435.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Re-
search, 24(89):1–97, 2023.

Krishnapriyan, A. S., Gholami, A., Zhe, S., Kirby, R. M.,
and Mahoney, M. W. Characterizing possible failure
modes in physics-informed neural networks. In Neural
Information Processing Systems, 2021.

Kurth, T., Subramanian, S., Harrington, P., Pathak, J.,
Mardani, M., Hall, D., Miele, A., Kashinath, K., and
Anandkumar, A. FourCastNet: Accelerating global high-
resolution weather forecasting using adaptive Fourier neu-
ral operators. 2022. doi: 10.48550/arXiv.2208.05419.

Lanthaler, S., Molinaro, R., Hadorn, P., and Mishra, S. Non-
linear reconstruction for operator learning of PDEs with
discontinuities. 2022. doi: 10.48550/arXiv.2210.01074.

Leiteritz, R. and Pflüger, D. How to avoid trivial so-
lutions in physics-informed neural networks. ArXiv,
abs/2112.05620, 2021.

Li, Z., Huang, D. Z., Liu, B., and Anandkumar, A. Fourier
neural operator with learned deformations for pdes on
general geometries. J. Mach. Learn. Res., 24(1), mar .
ISSN 1532-4435.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Graph kernel network for partial differential
equations, 2020a.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier
neural operator for parametric partial differential equa-
tions. arXiv preprint arXiv:2010.08895, 2020b.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Multipole
graph neural operator for parametric partial differential
equations, 2020c.

Li, Z., Zheng, H., Kovachki, N., Jin, D., Chen, H., Liu,
B., Azizzadenesheli, K., and Anandkumar, A. Physics-
informed neural operator for learning partial differential
equations. ACM/JMS Journal of Data Science, 2021.

Li, Z., Liu-Schiaffini, M., Kovachki, N., Azizzadenesheli,
K., Liu, B., Bhattacharya, K., Stuart, A., and Anandku-
mar, A. Learning chaotic dynamics in dissipative systems.
Advances in Neural Information Processing Systems, 35:
16768–16781, 2022.

Li, Z., Kovachki, N., Choy, C., Li, B., Kossaifi, J., Otta, S. P.,
Nabian, M. A., Stadler, M., Hundt, C., Azizzadenesheli,
K., and Anandkumar, A. Geometry-Informed Neural
Operator for Large-Scale 3D PDEs. 2023.

Lin, C., Li, Z., Lu, L., Cai, S., Maxey, M., and Karniadakis,
G. E. Operator learning for predicting multiscale bubble
growth dynamics. The Journal of Chemical Physics, 154
(10), 03 2021. ISSN 0021-9606. doi: 10.1063/5.0041203.

Lin, G., Moya, C., and Zhang, Z. B-DeepONet: An en-
hanced bayesian DeepONet for solving noisy parametric
PDEs using accelerated replica exchange SGLD. Jour-
nal of Computational Physics, 473:111713, 2023. ISSN
0021-9991. doi: 10.1016/j.jcp.2022.111713.

Liu, F. and Chowdhury, A. Deep learning with physics
priors as generalized regularizers. arXiv preprint
arXiv:2312.08678, 2023.

Liu-Schiaffini, M., Singer, C. E., Kovachki, N., Schneider,
T., Azizzadenesheli, K., and Anandkumar, A. Tipping
point forecasting in non-stationary dynamics on function
spaces. arXiv preprint arXiv:2308.08794, 2023.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G.
Learning nonlinear operators via DeepONet based on the
universal approximation theorem of operators. Nature
Machine Intelligence, 3(3):218–229, 2021a.

Lu, L., Pestourie, R., Yao, W., Wang, Z., Verdugo, F., and
Johnson, S. G. Physics-informed neural networks with
hard constraints for inverse design. SIAM Journal on
Scientific Computing, 43(6):B1105–B1132, 2021b. doi:
10.1137/21M1397908.

Lutter, M., Ritter, C., and Peters, J. Deep Lagrangian net-
works: Using physics as model prior for deep learning. In
International Conference on Learning Representations,
2019.

Mohan, A. T., Lubbers, N., Chertkov, M., and Livescu,
D. Embedding hard physical constraints in neural net-
work coarse-graining of three-dimensional turbulence.
Phys. Rev. Fluids, 8:014604, Jan 2023. doi: 10.1103/
PhysRevFluids.8.014604.

Negiar, G., Mahoney, M. W., and Krishnapriyan, A. S.
Learning differentiable solvers for systems with hard con-
straints. 2022.

Oommen, V., Shukla, K., Goswami, S., Dingreville, R., and
Karniadakis, G. E. Learning two-phase microstructure
evolution using neural operators and autoencoder archi-
tectures. npj Computational Materials, 8, 09 2022. doi:
10.1038/s41524-022-00876-7.

10

Towards Enforcing Hard Physics Constraints in Operator Learning

Rahman, M. A., Florez, M. A., Anandkumar, A., Ross, Z. E.,
and Azizzadenesheli, K. Generative adversarial neural
operators. Transactions on Machine Learning Research,
2022. ISSN 2835-8856.

Rahman, M. A., Ross, Z. E., and Azizzadenesheli, K. U-
NO: U-shaped neural operators. Transactions on Machine
Learning Research, 2023. ISSN 2835-8856.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics
informed deep learning (part i): Data-driven solu-
tions of nonlinear partial differential equations. ArXiv,
abs/1711.10561, 2017a.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics
informed deep learning (part ii): Data-driven discov-
ery of nonlinear partial differential equations. ArXiv,
abs/1711.10566, 2017b.

Raissi, M., Perdikaris, P., and Karniadakis, G. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
Physics, 378:686–707, 2019. ISSN 0021-9991. doi:
10.1016/j.jcp.2018.10.045.

Richter-Powell, J., Lipman, Y., and Chen, R. T. Q. Neural
conservation laws: A divergence-free perspective. In Ad-
vances in Neural Information Processing Systems, 2022.

Rohrhofer, F., Posch, S., Gößnitzer, C., and Geiger, B. Un-
derstanding the difficulty of training physics-informed
neural networks on dynamical systems. 2022.

Saad, N., Gupta, G., Alizadeh, S., and Maddix, D. C. Guid-
ing continuous operator learning through physics-based
boundary constraints. In International Conference on
Learning Representations, 2023.

Sæmundsson, S., Terenin, A., Hofmann, K., and Deisen-
roth, M. P. Variational integrator networks for physically
structured embeddings. In AISTATS, 2020.

Santos, S., Ekal, M., and Ventura, R. Symplectic momentum
neural networks - using discrete variational mechanics as
a prior in deep learning. In Proceedings of The 4th Annual
Learning for Dynamics and Control Conference, volume
168 of Proceedings of Machine Learning Research, pp.
584–595, Jun 2022.

Schneider, T., Teixeira, J., Bretherton, C. S., Brient, F.,
Pressel, K. G., Schär, C., and Siebesma, A. P. Climate
goals and computing the future of clouds. Nature Climate
Change, 7(1):3–5, 2017.

Schneider, T., Kaul, C. M., and Pressel, K. G. Possible
climate transitions from breakup of stratocumulus decks
under greenhouse warming. Nature Geoscience, 12(3):
163–167, 2019.

Strang, G. Computational science and engineering. SIAM,
2007.

Stuart, A. and Humphries, A. R. Dynamical systems and
numerical analysis, volume 2. Cambridge University
Press, 1998.

Valperga, R., Webster, K., Turaev, D., Klein, V., and Lamb,
J. Learning reversible symplectic dynamics. In Proceed-
ings of The 4th Annual Learning for Dynamics and Con-
trol Conference, volume 168 of Proceedings of Machine
Learning Research, pp. 906–916. PMLR, Jun 2022.

Wang, S., Teng, Y., and Perdikaris, P. Understanding and
mitigating gradient flow pathologies in physics-informed
neural networks. SIAM Journal on Scientific Computing,
43(5):A3055–A3081, 2021a. doi: 10.1137/20M1318043.

Wang, S., Wang, H., and Perdikaris, P. Learning the solution
operator of parametric partial differential equations with
physics-informed deeponets. Science Advances, 7(40):
eabi8605, 2021b. doi: 10.1126/sciadv.abi8605.

Wang, S., Yu, X., and Perdikaris, P. When and why PINNs
fail to train: A neural tangent kernel perspective. Journal
of Computational Physics, 449:110768, 2022. ISSN 0021-
9991. doi: 10.1016/j.jcp.2021.110768.

Wen, G., Li, Z., Long, Q., Azizzadenesheli, K., Anandku-
mar, A., and Benson, S. M. Real-time high-resolution
CO2 geological storage prediction using nested Fourier
neural operators. Energy Environ. Sci., 16:1732–1741,
2023. doi: 10.1039/D2EE04204E.

White, C., Berner, J., Kossaifi, J., Elleithy, M., Pitt, D., Lei-
bovici, D., Li, Z., Azizzadenesheli, K., and Anandkumar,
A. Physics-informed neural operators with exact differen-
tiation on arbitrary geometries. In The Symbiosis of Deep
Learning and Differential Equations III, 2023.

Xing, L., Wu, H., Ma, Y., Wang, J., and Long, M. Helmfluid:
Learning helmholtz dynamics for interpretable fluid pre-
diction. In International Conference on Machine Learn-
ing, 2024.

Yin, M., Ban, E., Rego, B., Zhang, E., Cavinato, C.,
Humphrey, J., and Karniadakis, G. E. Simulating progres-
sive intramural damage leading to aortic dissection using
an operator-regression neural network. 2021.

Zhong, Y. D., Dey, B., and Chakraborty, A. Symplectic
ODE-Net: Learning Hamiltonian dynamics with control.
In International Conference on Learning Representations,
2020.

Zhou, T., Wan, X., Huang, D. Z., Li, Z., Peng, Z., Anand-
kumar, A., Brady, J. F., Sternberg, P. W., and Daraio,
C. Ai-aided geometric design of anti-infection catheters.
Science Advances, 10(1):eadj1741, 2024.

11

Towards Enforcing Hard Physics Constraints in Operator Learning

A. Description of FNO
Neural operators compose linear integral operators K with pointwise non-linear activation functions σ to approximate
highly non-linear operators. More precisely, we define the neural operator

Gθ := Q ◦ (WL +KL + bL) ◦ · · · ◦ σ(W1 +K1 + b1) ◦P (17)

where P, Q are the pointwise neural networks that encode the lower dimension function into higher dimensional space
and vice versa. The model stacks L layers of σ(Wl +Kl + bl) where Wl are pointwise linear operators (matrices), Kl

are integral kernel operators, bl are bias terms, and σ are fixed activation functions. The parameters θ consists of all the
parameters in P,Q,Wl,Kl, bl.

A Fourier neural operator (FNO) (Li et al., 2020b) is a neural operator using Fourier integral operator layers, which are
defined via (

K(ϕ)vt
)
(x) = F−1

(
Rϕ · (Fvt)

)
(x) (18)

where Rϕ is the Fourier transform of a periodic function κ parameterized by ϕ. On a uniform mesh, the Fourier transform
F can be implemented using the fast Fourier transform (FFT). Here is a depiction of the Fourier Neural Operator:

Figure 5. The FNO architecture (extracted from (Li et al., 2020b)).

B. Divergence-free Constraint Implementation
Given a velocity field u(x) = (u1(x), u2(x)) on the 2d torus x = (x1, x2) ∈ T2, the divergence-free condition reads

∇ · u(x1, x2) =
∂u1

∂x1
+

∂u2

∂x2
= 0. (19)

Although we consider a time-evolving flow field in the Navier–Stokes equation, we remove the dependence on time here for
notational convenience since the divergence-free condition applies at all times.

Since u is assumed to be a 2d periodic function, its non-zero Fourier modes ξ = (ξ1, ξ2) lie in Z2. Taking the Fourier
transform of Equation (19) gives

F

(
∂u1

∂x1
+

∂u2

∂x2

)
(ξ1, ξ2) = 0 =⇒ ξ1û1(ξ) + ξ2û2(ξ) = 0, (20)

where û denotes the Fourier transform of u. This constraint must hold for all (ξ1, ξ2) ∈ Z2.

Upon discretizing into a K×K grid and applying the discrete Fourier transform instead of the continuous Fourier transform,
Equation (20) remains the same, with the exception that ξ now takes values {c0, . . . , cK−1}2, for some discrete set of
modes c0, . . . , cK−1. We may thus construct the constraint matrix Ĉ from Equation (7) by adding one row representing
Equation (20) for every such ξ. This ensures that the divergence-free condition applies over the entire domain, up to
discretization error.

12

Towards Enforcing Hard Physics Constraints in Operator Learning

However, there is an additional practical concern: the current construction does not guarantee that the solution to Equation (8)
is a purely real velocity field, and naively removing the imaginary components after projection may result in a flow field
with non-zero divergence. As such, we must enforce conjugate symmetry. Specifically, for every non-Nyquist (ξ1, ξ2), the
following must hold:

û1(ξ1, ξ2) = û1(−ξ1,−ξ2) û2(ξ1, ξ2) = û2(−ξ1,−ξ2). (21)

Furthermore, at the Nyquist frequencies, û1 and û2 must be purely real.

To enforce both the conjugate symmetry and real Nyquist criterion, we decompose each Fourier mode into its real and
imaginary components which makes both the variables and the constraints in the optimization problem purely real.

C. Hyperparameters
In our numerical experiments, we used a Fourier Neural Operator (FNO) with 6 layers, each of width 64 with 20 Fourier
modes. The resulting FNO model possesses 10.9M trainable parameters. For the constrained models, we used 64 Fourier
constraint modes for the projection layer.

We trained all our models for N = 800 epochs and used N ′ = 50 for the B+Finetuning approach. The models were trained
using the following optimizer and schedulers in PyTorch:
optimizer = torch.optim.Adam(model.parameters(), lr=0.002, weight decay=1e-6)

scheduler = torch.optim.lr scheduler.ReduceLROnPlateau(optimizer, ’min’, factor = 0.8, patience= 20)

The models were trained on 90% of the data, and tested on the remaining 10%.

For the Re = 500 Kolmogorov flow experiment from Section 4.1, the dataset consists of 1000 simulations of spatial
resolution 64× 64 with 400 time steps each, for a total of 400,000 samples. We used a batch size of 256 in that experiment.

For the Re = 5000 Kolmogorov flow experiments from Section 4.2, the dataset consists of 100 simulations of spatial
resolution 256× 256 with 400 time steps each, for a total of 40,000 samples. The dataset is downsampled in space to obtain
the 64× 64 and 128× 128 datasets. We used 256 as batch size for the 64× 64 data, and 32 for the 128× 128 data.

13

