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ABSTRACT

Behavior generation in autonomous driving aims to simulate dynamic driving sce-
narios from recorded driving logs. A popular approach is to apply next-token-
prediction with discrete trajectory tokenization. In this work, we explore what
makes a good trajectory tokenizer from the perspective of logged data usage. We
first analyze the four properties (coverage, utilization, symmetry and robustness)
of vocabularies of data-driven and rule-based trajectory tokenizers and their im-
pact on performance and generalization. Data-driven tokenizers often build vocab-
ularies with better utilization but suffer from insufficient coverage and sensitivity
to noise, while rule-based methods have better coverage but contain too many use-
less tokens. With these insights, we propose TrajTok, a trajectory tokenizer that
combines the two methods with rule-based vocabulary candidate setup and data-
driven filtering and selection processes. The tokenizer has balanced coverage and
utilization as well as good symmetry and robustness. Furthermore, we propose a
spatial-aware label smoothing method for the cross-entropy loss to better model
the similarities between the trajectory tokens. Our method wins first place in the
2025 Waymo Open Sim Agents Challenge.

1 INTRODUCTION
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Figure 1: Comparison of tokenizers with different logged data usage in NTP behavior genera-
tion model. Combining data-driven and rule-based method, the proposed TrajTok balances coverage
and utilization while has well symmetry and robustness.

Behavior generation aims to simulate realistic and dynamic chains of actions using logged data. In
autonomous driving, behavior generation is a key component in simulators for data collection and
evaluation. It typically takes the historical trajectories of agents and environmental information as
inputs and generates future multi-agent trajectories auto-regressively (Chen et al., 2024).

Recently, inspired by large language models (LLMs) (Floridi & Chiriatti, 2020; Touvron et al.,
2023), a series of behavior generation models adopt the next-token-prediction (NTP) paradigm (Phil-
ion et al., 2023; Seff et al., 2023; Wu et al., 2024; Zhao et al., 2024), as shown in Fig. 1 (upper left).
These models build a vocabulary, a finite set of trajectories that tries to model the continuous distri-
bution space with trajectory tokenizers. With the trajectory vocabulary, these models transform the
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complex trajectory distribution in continuous space into a simpler discrete space for easier multi-
modal behavior handling and model fitting.

Due to the low-dimensional nature of trajectories, various methods can be applied for trajectory
tokenization, including data-driven methods such as VQ-VAE (Van Den Oord et al., 2017), K-
means (Arthur & Vassilvitskii, 2006) and K-disks (Philion et al., 2023), and rule-based methods
such as gridding (Seff et al., 2023). However, which method and what properties lead to a good
trajectory tokenizer remain unclear to the community.

In this paper, we study what makes a good trajectory tokenizer and how to use the logged data in
the tokenization process. First, we analyze the properties of trajectory tokens, including coverage,
utilization, symmetry, and robustness, as well as their impact on the performance and generalization
of NTP behavior generation models. As shown in Fig. 1 (a), we find that data-driven tokenizers tend
to produce vocabularies within the recorded distribution, resulting in high utilization but low cover-
age. Additionally, their sensitivity to noisy data results in erroneous vocabulary and the asymmetry
affects generalization. In contrast, rule-based methods cover a wider region with good symmetry
and robustness, which leads to better generalization. However, they rely solely on human priors
without adapting to the real data distribution, resulting in vocabularies that contain many redundant
trajectories that do not appear in reality and low utilization, as shown in Fig. 1 (b). Under the same
vocabulary size, their performance is far inferior to data-driven methods.

Based on these analyses, we propose TrajTok, a tokenizer specifically designed for trajectories that
combines data-driven and rule-based methods, as shown in Fig. 1 (c). It first sets up a primary vo-
cabulary candidate with rules, then applies data-driven filtering and expansion. The former ensures
the stability and symmetry of the vocabulary, while the latter balances coverage and utilization.

Furthermore, we study loss designs related to vocabularies. A few NTP models use cross-entropy
loss with label smoothing (Szegedy et al., 2016) to reduce overfitting and improve generalization.
The standard label smoothing mechanism assigns the same weight to all non-ground-truth tokens,
ignoring their similarity to ground-truth ones. As the similarity of trajectories is closely related to
spatial distance, we propose a spatial-aware label smoothing method that assigns different weights
to tokens conditioned on their distances to the ground-truth one. This smoothing method improves
the performance of NTP behavior generation models effectively.

Our method wins first place in the Waymo Open Sim Agent Challenge (WOSAC) (Montali et al.,
2023) 2025 with a Realism Meta of 0.7852, with good generalization across datasets.

Our contributions are threefold:

• We conduct a detailed investigation of trajectory tokenization in NTP behavior generation
from the perspective of logged data usage and analyze the coverage, utilization, symmetry,
and robustness of data-driven and rule-based methods.

• We propose TrajTok, a plug-and-play trajectory tokenizer that combines rule-based and
data-driven methods, which achieves state-of-the-art performance on the Waymo Open Sim
Agent Challenge.

• We explore token-related loss design in NTP behavior generation models and propose a
spatial-aware label smoothing method for the cross-entropy loss.

2 RELATED WORK

2.1 BEHAVIOR GENERATION MODELS

The behavior generation task proposed by Waymo Open Sim Agent Challenge (WOSAC) (Montali
et al., 2023) aims to generate next states (including position and heading) of agents step by step
realistically conditioned on environmental information and historical steps. The traditional encoder-
decoder architectures (Shi et al., 2022; Zhou et al., 2023) in motion prediction can be used in this
task, but they suffer from low data utilization and significant out-of-distribution (OOD) problems
in the auto-regressive generation process Zhou et al. (2024). Inspired by large language models
(LLM), most recent works adapt the next-token-prediction (NTP) paradigm. Trajeglish (Philion
et al., 2023) first models the behavior generation task as discrete NTP with a data-driven tokenizer
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K-disks. SMART (Wu et al., 2024) introduces a map discrete tokenizer and further analyzes the
scalability of the architecture, while KiGRAS (Zhao et al., 2024) factorizes the driving scene in
action space with kinematic transformations. Furthermore, CATK (Zhang et al., 2025) introduces a
closed-loop fine-tuning strategy to further address the OOD problem.

Despite NTP-based models, diffusion models are another approach for behavior generation. These
models focus on generating controllable (Zhong et al., 2022; Huang et al., 2024) or adversarial (Xie
et al., 2024; Yin et al., 2024) behaviors with guidance, while their realism is much lower than NTP-
based models on WOSAC.

2.2 TRAJECTORY TOKENIZERS FOR BEHAVIOR GENERATION

Trajectory tokenizers transform the states of agents from continuous space to discrete space. Various
tokenizers are adopted in discrete NTP behavior generation models, including VQ-VAE, K-means,
K-disks and naive grid-based methods. Most of them are long-existing general approaches and
only the K-disk proposed by Trajeglish (Philion et al., 2023) is specifically designed for trajectory
tokens. K-disks randomly select a state in logged data as a trajectory token and exclude all logged
states within a certain distance from the selected states, then randomly select the next token in the
remaining data. Therefore, it is more like a sampling algorithm rather than a clustering algorithm.
Grid-based methods such as that used in MotionLM (Seff et al., 2023) simply select the token with
a uniform distribution in a pre-defined region of each state component.

Varying from deep-learning methods, clustering or sampling algorithms and rule-based methods,
these tokenizers rely on logged trajectory data at different levels. However, there is a lack of compre-
hensive analysis of these tokenizers and the data usage preference behind them. Trajeglish (Philion
et al., 2023) compares some tokenizers only in terms of discretization error, without studying their
impacts on the performance of behavior generation models.

3 METHODS

3.1 PROBLEM FORMULATION

The behavior generation task can be defined as follows: Given an initial scene, including the HD
map M and the past Th states of all agents {S−Th

, ...,S0}, the goal is to generate the states of all
agents at each future time step within Tf steps, i.e., {S1, ...,STf

}.

We focus on the discrete NTP behavior generation models that output trajectories as actions, such
as SMART (Wu et al., 2024) and Trajeglish (Philion et al., 2023). We denote the model as Nθ,V

with trainable parameters θ and trajectory vocabulary V = {c1, c2, ..., c|V|}. Each trajectory token
ci ∈ RL×3 consists of L points with (x, y, yaw) in the agent-centric coordinate. We denote the
number of all agents as NA, and the model outputs the trajectory tokens at ∈ RNA×L×3 for each
agent in the interval L as:

at = Nθ,V(S−Th:t×L,M) (1)

where t ∈ {0, 1, 2, ..., (Tf//L)} is the end timestamp for each interval. The output trajectory token
for each agent is selected from the vocabulary, i.e. a

(i)
t ∈ V . Then, a coordinate transform f is

applied to calculate states in the next interval:

St×L+1:t×(L+1)+1 = f(at,St) (2)

The tokenizer Tok() generates the vocabulary V . Pure rule-based tokenizers only use predefined
hyper-parameters θtok, such as the vocabulary size and sample range as input, i.e.

Vrule based = Tok(θtok) (3)

Data-driven tokenizers generate the vocabulary with a dataset D, i.e.

Vdata driven = Tok(θtok,D) (4)

3.2 TRAJTOK

As Fig. 2 shows, TrajTok generates the trajectory vocabulary through the following steps:

3
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Step 4. Final generation Generated vocabulary

Raw trajectory endpoints in dataset Step 1. Data preparation and flipping

Step 2. Vocabulary candidate & preliminary selection Step 3. Filtering and expanding

Figure 2: The vocabulary generation process of TrajTok. The blue points are endpoints of logged
trajectories and the yellow grids are selected in each process.

Step 1: Data preparation and flipping. First, all valid trajectories of length L in the dataset
are extracted and normalized to the agent-centric coordinate system. We denote the normalized
trajectories as D ∈ RND×L×3, where ND is the number of trajectories. Then, the trajectories are
flipped along the x-axis and concatenated with original trajectories, i.e.

D̃ = Concatenate(D,Flip(D)) (5)

The flipping operation ensures the symmetry of trajectories, which results in symmetric tokens along
the x-axis.

Step 2: Rule-based vocabulary candidate setup and preliminary selection. The vocabulary
candidate is set up with a grid. Given ranges xmin, xmax, ymin, ymax and intervals xinterval, yinterval, the
size of the grid is (H,W ) = (ymax−ymin

yinterval
, xmax−xmin

xinterval
). Each trajectory in flipped data D̃ is associated

with a cell if its endpoint falls within the cell. We denote D̂ij ∈ RN traj
ij ×L×3 as all trajectories

associated with cell (i, j) and N traj
ij as the number of these trajectories for each grid. For preliminary

selection, a grid is marked as valid if N traj
ij is larger than a threshold sp. The validity binary map B

is set through

Bij = 1[N traj
ij ≥sp]

(6)

Step 3: Data-driven filtering and expanding. The preliminary selected grids are within the dis-
tribution of logged data, and are sensitive to noise, as shown in Fig 2. To cover more possible
trajectories in reality and improve robustness, filtering and expanding are then applied. For a grid
(i, j) on the map, we compute the number of its selected neighbors within the distance of k, i.e.

N vb
ij =

∑i+k
m=i−k

∑j+k
n=j−k Bmn (7)

Then we add an unselected grid from step 2 if the number of its selected neighbors N vb
ij is larger

than the threshold sa, and remove a selected grid if N vb
ij is less than the threshold sr through

B̂ij =

{
1 if Bij = 0 and N vb

ij ≥ sa
0 if Bij = 1 and N vb

ij ≤ sr
(8)

Step 4: Final generation. Finally, the trajectory vocabulary is generated for each selected grid. The
average of logged data trajectories is used if there are trajectories associated with the cell.

V1 = {
∑N traj

ij

m=0D̂ijm

N traj
ij

| i ∈ [0,W ] ∧ j ∈ [0, H] ∧ B̂ij = 1 ∧N traj
ij > 0} (9)

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

If not, the vocabulary is generated with curve interpolation from the origin point to the center of the
grid pij . This happens if the cell is set valid in the expanding process. The yaw of the endpoint rij
is estimated from the trajectories in nearby grids.

V2 = {Curve Interp(0, pij , rij , L) | i ∈ [0,W ] ∧ j ∈ [0, H] ∧ B̂ij = 1 ∧N traj
ij = 0} (10)

The final vocabulary is:

VTrajTok = V1 ∪ V2 (11)

3.3 SPATIAL-AWARE LABEL SMOOTHING

NTP models often use cross-entropy loss with label smoothing (Szegedy et al., 2016) to alleviate
overfitting and improve generalization. Standard label smoothing assigns the same probability to
each non-ground-truth label. Denoting the index of the ground-truth label as j and the parameter of
label smoothing as ε, the target probability y for each label i is calculated as:

yi =

{
1− ε if i = j
ε
|V| if i ̸= j (12)

Under this mechanism, the loss is the same for predicting a trajectory token from the ground truth
and one next to the ground truth. However, the former impacts the performance of behavior gener-
ation more significantly. Thus, we hope the model can be more tolerant of tokens that are spatially
close to the ground-truth, while rejecting tokens that are far away. We calculate the average er-
ror between each token trajectory and the ground-truth trajectory, and assign the target probability
inversely proportional to the square of the error:

ki =
1

||ci − cj||2
(13)

yi =

{
1− ε if i = j

εki∑|V|
m=0,m ̸=j km

if i ̸= j (14)

This spatial-aware label smoothing can both reduce errors and improve generalization.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We conduct experiments on the Waymo Open Motion Dataset (WOMD) (Ettinger et al.,
2021). There are 486,995/44,097/44,920 scenarios in the training/validation/test set. Each scenario
contains 9 seconds of agent states with an interval of 0.1s and a high-definition map. The behavior
generation task is to generate the states in the future 8 seconds of up to 128 agents with states in the
past 1 second in an autoregressive manner.

Metrics. We use the metrics in the Waymo Open Sim Agents Challenge (Montali et al., 2023). The
main metric is the Realism Meta, which is composed of the Kinematic, Interactive, and Map-based
metrics. Notably, it takes several days to compute the metrics on the whole validation set with the
official code. Previous works (Zhang et al., 2025) conduct ablation studies with evaluation on a
small subset, which may lead to biased results. We improve the code and decrease the computation
time to less than 2 hours while strictly aligning the protocol and results with the official version.
With the efficient evaluation tool, all our ablation studies are evaluated on the whole validation set.

4.2 RESULTS

WOSAC leaderboard. Table 1 lists the results of the top 15 entries in the 2025 Waymo Open Sim
Agents Challenge. TrajTok wins the first place in the Waymo Open Sim Agent Challenge 2025
with a Realism Meta metric of 0.7852. It also reaches state-of-the-art performance on Map-based
metrics of 0.9207 and competitive performance on other metrics. Without any fine-tuning processes,
our approach has comparable or superior performance compared to other methods that are also

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Waymo Open Sim Agents Challenge leaderboard 2025. Top 15 entries in the Submission
Period are presented.

Method Realism Meta ↑ Kinematic↑ Interactive ↑ Map-based ↑ minADE ↓

SMART-R1 0.7855 0.4940 0.8109 0.9194 1.2990
TrajTok (Ours) 0.7852 0.4887 0.8116 0.9207 1.3179
unimotion 0.7851 0.4943 0.8105 0.9187 1.3036
SMART-tiny-CLSFT (Zhang et al., 2025) 0.7846 0.4931 0.8106 0.9177 1.3065
SMART-tiny-RLFTSim 0.7844 0.4893 0.8128 0.9164 1.3470
comBOT 0.7837 0.4899 0.8102 0.9175 1.3687
AgentFormer 0.7836 0.4906 0.8103 0.9167 1.3422
UniMM (Lin et al., 2025) 0.7829 0.4914 0.8089 0.9161 1.2949
R1Sim 0.7827 0.4894 0.8105 0.9147 1.3593
SimFormer 0.7820 0.4920 0.8060 0.9167 1.3221
SMART-tiny-RLFT 0.7815 0.4853 0.8107 0.9133 1.4266
SMART topk32 0.7814 0.4854 0.8089 0.9153 1.3931
SMART-tiny-RLFT 0.7780 0.4799 0.8070 0.9109 1.6388
llm2ad 0.7779 0.4846 0.8048 0.9109 1.2827
UniTFormer 0.7776 0.4892 0.7997 0.9140 1.3592

Table 2: Performance of SMART model with different tokenizers on validation split of WOMD.
The models are trained on a random 20% subset of the training set and the metrics are of WOSAC
2024 version.

Tokenizer Realism Meta ↑ Kinematic↑ Interactive ↑ Map-based ↑ minADE ↓
VQ-VAE 0.7596 0.4629 0.8101 0.8642 1.3982
K-means 0.7476 0.4375 0.7903 0.8635 1.4797
K-disks 0.7584 0.4602 0.8004 0.8748 1.3532
Grid 0.7527 0.4121 0.8099 0.8737 1.4137
TrajTok 0.7702 0.4867 0.8132 0.8769 1.3428

Table 3: Performance of K-disks and TrajTok
across datasets.

Tokenizer Logged Dataset Realism Meta ↑ minADE ↓
K-disks Waymo 0.7584 1.3537
K-disks nuScenes 0.7350 (-0.0234) 1.4074

TrajTok Waymo 0.7702 1.3428
TrajTok nuScenes 0.7641 (-0.0061) 1.3681

Table 4: Performance of K-disks and TrajTok
with different sizes of logged data.

Tokenizer Logged Data Size Realism Meta ↑ minADE ↓
K-disks 107 0.7584 1.3537
K-disks 106 0.7539 (-0.0045) 1.3628
K-disks 105 0.7442 (-0.0142) 1.3696

TrajTok 107 0.7702 1.3428
TrajTok 106 0.7691 (-0.0011) 1.3445
TrajTok 105 0.7675 (-0.0027) 1.3511

developed on the SMART-tiny model but need fine-tuning, such as SMART-tiny-CLSFT (Zhang
et al., 2025).

Comparison with other tokenizers. We compare TrajTok with other tokenizers, including VQ-
VAE, K-means, K-disks and grid method on the SMART (Wu et al., 2024) model, as shown in
Table 2. The size of vocabularies of each tokenizer is 2000 for fair comparison. Results show
that our method reaches the best performance among all tokenizers that are adopted in behavior
generation models.

Generalization. The generalization of the tokenizer is reflected in its ability to handle diverse
real-world data with vocabularies derived from any data record. We investigate generalization of
TrajTok through two experimental setups: ❶ Building vocabularies with nuScenes (Caesar et al.,
2020) data and training and evaluating on WOMD to evaluate the tokenizer’s generalization across
datasets. The results are shown in Table. 3. ❷ Building vocabularies with a small subset of WOMD
to evaluate the tokenizer’s ability to infer the overall distribution from few sampled data. The results
are shown in Table. 4.

Qualitative results. Fig. 3 shows the vehicle trajectory vocabularies generated by different tok-
enizers. The data-driven methods K-means and K-disks produce trajectory tokens that are asym-
metric and contain kinematically implausible noisy trajectories. The purely rule-based grid method
generates many invalid trajectories (e.g., lateral shifts of over 1 meter within 0.5 seconds) and has
lower density at the same vocabulary size. In contrast, TrajTok demonstrates good symmetry and
stability, with generated trajectories that largely adhere to kinematic principles. Fig. 4 illustrates
the behavior generated by TrajTok in two scenarios. The first is a busy intersection scene where
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Gridding 

K-means 

K-disks 

TrajTok

Figure 3: Trajectory vocabularies from TrajTok and other tokenizers. Each colored line repre-
sents a trajectory token within 0.5 seconds in agent-centric coordinate system. The size of all four
vocabularies is 2000.

A

B
C

ED F

Figure 4: Generated behavior in two scenarios.
traffic in direction A is queued, maintaining appropriate distances between vehicles, while vehicles
in directions B and C make left turns. This demonstrates TrajTok’s capability to handle interactions
among a large number of vehicles precisely. The second scenario features an atypical intersection
where vehicles in direction E need to turn left and backward, alternating passage with vehicles from
directions D and F. Benefiting from its superior coverage, TrajTok effectively manages vehicle in-
teractions in uncommon scenarios.

4.3 ABLATION

Vocabulary Size. We ablate the vocabulary size in Fig. 5. Increasing the vocabulary size improves
the ability to represent complex distributions but may lead to model underfitting, which is also

7
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Figure 5: Ablation of vocabulary size of vehicles.

Table 5: Ablation of Spatial-Aware label smoothing.

Tokenizer Label Smoothing Type Realism Meta↑ minADE ↓
K-disks default 0.7443 1.4230
K-disks spatial-aware 0.7584 1.3537

TrajTok default 0.7597 1.3797
TrajTok spatial-aware 0.7702 1.3428

observed in LLMs (Tao et al., 2024). Rule-based gridding methods require a larger vocabulary
size to reach optimal performance, while data-driven methods need a smaller size. The optimal
vocabulary size for TrajTok lies between data-driven and rule-based methods. Additionally, TrajTok
achieves the best performance across different vocabulary sizes.

Spatial-Aware label smoothing. Table 5 presents the ablation study for Spatial-Aware Label
Smoothing. Whether using K-disks or TrajTok as tokenizers, Spatial-Aware Label Smoothing im-
proves performance compared to standard label smoothing.

4.4 ANALYSIS AND DISCUSSIONS

Coverage. Qualitatively, Fig. 6 plots the endpoints of real trajectories and vocabulary trajectories.
Data-driven methods generate vocabularies within the distribution of real trajectories and leave sev-
eral insufficiently covered regions. The vocabulary generated by rule-based methods extends far
beyond the real distribution range. In contrast, the vocabulary of TrajTok covers most of the val-
ued trajectories. Quantitatively, Fig. 7 shows the missing rate of tokenization at different distances,
which is defined as the proportion of trajectories with discretization errors larger than a given dis-
tance. TrajTok has a better missing rate at larger distances. It shows that TrajTok has appropriate
coverage and is better at dealing with the long tail effect in tokenization.

Utilization. Fig. 8 shows the frequency of each token in the vocabulary. Rule-based gridding
methods have a large number of tokens with zero frequency. Although the frequency of uncommon

K-means 

Gridding 

K-disks 

TrajTok

Figure 6: The distribution of logged trajectories and vocabularies of vehicles. Orange dots
indicate the endpoints of logged trajectories, while blue dots indicate those of vocabularies.
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Figure 7: The missing rate of tokenization for
cyclists.

Figure 8: The frequency of vocabularies for
cyclists.

Table 6: Symmetric tokenizers have better
performance.

Tokenizer Realism Meta↑ minADE ↓

K-disks w/ symmetry 0.7610 1.3541
K-disks w/o symmetry 0.7584 1.3532

K-means w/ symmetry 0.7526 1.3519
K-means w/o symmetry 0.7476 1.3597

TrajTok w/ symmetry 0.7702 1.3428
TrajTok w/o symmetry 0.7670 1.3611

Table 7: The average discretization error of
tokenizers for vehicles. The vocabulary size is
2000.

Tokenizer Realism Meta average discretization error (m)

K-means 0.7476 0.0224
K-disks 0.7584 0.0204
Grid 0.7527 0.0813
TrajTok 0.7702 0.0520

tokens of TrajTok is lower than that of data-driven methods, most of them match with several logged
trajectories. With the increase of tokens for rare trajectories, there is a trade-off between coverage
and utilization. TrajTok balances these two properties.

Symmetry. Due to the symmetry of vehicle kinematic models, the diversity of real-world traffic
scenarios, and the symmetry of vehicle kinematic models, the possible distribution boundary of
trajectories in reality is nearly symmetric. In the experiments, we remove the flipping operation in
the TrajTok generation process, resulting in a performance decline. Data-driven methods, due to the
randomness of data distribution and algorithms, can not guarantee the generation of a symmetric
vocabulary. We flip the trajectories below the x-axis to above the x-axis, generate a vocabulary of
half size on the flipped trajectories, and then flip it back to obtain the complete vocabulary. The
vocabularies generated in this manner show improved performance, as shown in Table 6. Both
aspects of the experiments demonstrate the importance of symmetry.

Robustness. Fig. 3 and Fig. 6 show that TrajTok is less sensitive to noise. In contrast, K-disks
may directly add noisy trajectories to the vocabulary during random sampling. K-means may also
pick outliers since they have large distances to other samples.

Does lower average discretization error lead to a better tokenizer? Average discretization error
is used to evaluate the performance of a tokenizer in previous work (Philion et al., 2023). However,
as shown in Table 7, the average discretization error of K-disks is lower than that of TrajTok, yet
its performance is inferior to TrajTok. The indicator cannot entirely reflect the distance between the
vocabulary and distribution in the real world. For example, it cannot well indicate the long-tail effect
in Fig. 7. When the average discretization error is already low, the performance of the tokenizer is
influenced mostly by other factors.

5 CONCLUSION

In this paper, we analyze data-driven and rule-based tokenizers from four perspectives including
coverage, utilization, symmetry, and robustness. Based on the analysis, we combine data-driven and
rule-based methods and introduce TrajTok. Additionally, we propose a spatial-aware label smooth-
ing method to better model the similarities between the trajectory tokens. Experiments demonstrate
the effectiveness of our methods.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

Model Settings. We use the SMART-tiny (Wu et al., 2024) model as base NTP behavior generation
model for experiments with TrajTok. Follow original settings, the the number of decoder layers
(including Map-Agent Cross-Attention Layer, Agent Interaction Self-Attention Layer and Temporal
Self-Attention Layer) is 6 and the hidden dim is 128. The interval L is set to 5 and the re-plan
frequency is 2 Hz, which means the model predict the 0.5-second trajectory at 10Hz every 0.5s.
The original model build different trajectory vocabularies for each type of agents (vehicle, bicycle
and pedestrian) but use the same head to predict classification logits for all types. We use separate
prediction heads instead and set their output dim the same as the vocabulary size each. For spatial-
aware label smoothing, the total target probability of all non-ground-truth labels ε is 0.1, which is
the same as standard label smoothing used in original model.

Tokenizer. For TrajTok, we set the grid range and interval for each type of agents as Table 8.
We extract trajectories that last 0.5s from the Waymo Open Motion Dataset(WOMD). In the submit
version, the sizes of vocabularies for vehicle, bicycle and pedestrian are 8040, 2798, 3001 separately.

Training Details. We train the model with 8×A100 80GB GPUs for 32 epochs on the training split
of the WOMD with the AdamW optimizer. The total batch size is 48. The initial learning rate to
5× 10−4 and is decayed to 5× 10−6 based on the cosine annealing schedule.
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Agent Type xmin xmax xinterval ymin ymax yinterval

Vehicle -5 20 0.1 -1.5 4.5 0.05
Bicycle -1 8 0.05 -1 1 0.05
Pedestrian -1.5 4.5 0.05 -2 2 0.05

Table 8: Detailed hyper-parameters of the submit version of TrajTok. The unit of all parameters is
meter.

B LLM USAGE

LLMs are used in writing for improving grammar and correcting typos.
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