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Abstract
Recent advances in Large Language Models
(LLMs) have raised urgent concerns about LLM-
generated text authenticity, prompting regulatory
demands for reliable identification mechanisms.
Although watermarking offers a promising solu-
tion, existing approaches struggle to simultane-
ously achieve three critical requirements: text
quality preservation, model-agnostic detection,
and message embedding capacity, which are cru-
cial for practical implementation. To achieve
these goals, the key challenge lies in balancing
the trade-off between text quality preservation
and message embedding capacity. To address this
challenge, we propose BiMark, a novel water-
marking framework that achieves these require-
ments through three key innovations: (1) a bit-
flip unbiased reweighting mechanism enabling
model-agnostic detection, (2) a multilayer archi-
tecture enhancing detectability without compro-
mising generation quality, and (3) an informa-
tion encoding approach supporting multi-bit wa-
termarking. Through theoretical analysis and ex-
tensive experiments, we validate that, compared
to state-of-the-art multi-bit watermarking meth-
ods, BiMark achieves up to 30% higher extraction
rates for short texts while maintaining text quality
indicated by lower perplexity, and performs com-
parably to non-watermarked text on downstream
tasks such as summarization and translation.

1. Introduction
Large Language Models (LLMs) (OpenAI, 2022; Team,
2024b) have recently emerged in advancing cutting-edge
technologies, and their rapid evolution has made LLM-
generated content increasingly indistinguishable from
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human-created text. However, pressing security challenges
(Zhang et al., 2023b; Wei et al., 2025; Gong et al., 2025;
Luo et al., 2024; Zhang et al., 2025a;b; 2023a; 2024b; Pan
et al., 2025) have been raised with the rapid progression of
AI technologies (Zheng et al., 2024b; Zhang et al., 2024a;
Zheng et al., 2024a; 2023; 2025; Guan et al., 2023), such
as the misuse of LLMs (Tang et al., 2024) and synthetic
data pollution (Shumailov et al., 2024). Therefore, recent
legislation, such as the AI Act of the European Union (Eu-
ropean Commission, 2023) and the executive order of the
U.S. Department of Commerce (The White House, 2023),
mandates the implementation of technical measures to mark
and detect LLM-generated content. Thus, it appeals to LLM
watermarking (Zhang et al., 2024e; Tang et al., 2024), a
promising method to address these challenges, offering a
proactive approach to embedding identifiable patterns in
LLM-generated text (Liu et al., 2024).

Depending on whether it is integrated with the language
model, watermarking can be categorized into inference-
time watermarking and post-hoc watermarking (Tang et al.,
2024). Compared to post-hoc methods that require an ad-
ditional auxiliary module (Abdelnabi & Fritz, 2021; Yang
et al., 2022; Yoo et al., 2023a), inference-time watermark-
ing (Dathathri et al., 2024; Aaronson, 2023; Kirchenbauer
et al., 2023) can embed detectable patterns linked to a secret
key by modifying the LLM token sampling process in a plug-
and-play manner, thereby efficiently achieving a crypto-
graphically guaranteed detectable secret watermark (Aaron-
son, 2023; Kirchenbauer et al., 2023).

In general, implementing language model watermarking
necessitates three key requirements: 1) Text quality preser-
vation: The integration of watermarking mechanisms must
maintain the fundamental utility and performance of lan-
guage models (Hu et al., 2023; Kuditipudi et al., 2023).
2) Model-agnostic detection: The watermark verification
process should function independently of the generating
model’s architecture, parameters, or access rights (Kirchen-
bauer et al., 2023; Kuditipudi et al., 2023). 3) Message
embedding capacity: The watermarking scheme should ac-
commodate sufficient capacity to encode crucial metadata
such as model identity, generation timestamp, and content
provenance (Bob & Dan, 2024; Pang et al., 2024).

Note that it is not trivial to satisfy the above three require-
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Table 1. Comparison between BiMark (our method) and related studies.
Techniques Methods Requirements

Timing*
Vocabulary

Partition
Text Quality
Preservation

Model-Agnostic
Detection

Message Embedding
Capacity

Post-Hoc /
Yang et al. (2022), REMARK-LLM (Zhang et al., 2024c)
AWT (Abdelnabi & Fritz, 2021), Yoo et al. (2023a)
He et al. (2022a), CATER (He et al., 2022b)

Inference-
Time

/
Aaronson (2023)
Kuditipudi et al. (2023), Zhao et al. (2024)
Fernandez et al. (2023)

Cumulative
Probability

γ-reweight (Hu et al., 2023)
DiPmark (Wu et al., 2023)

Token
Counting

GINSEW (Zhao et al., 2023)
Soft Red List (Kirchenbauer et al., 2023)
SynthID (Dathathri et al., 2024)
MPAC (Yoo et al., 2023b), Qu et al. (2024)
BiMark (Ours)

* Inference-time watermarking is achieved by modifying the sampling strategy of the model, such as adjusting the probability distribution of tokens.
Post-hoc watermarking is achieved by editing existing text, such as synonym replacement and paraphrasing. In this table, indicates “Not
Considered”, indicates “Partially Considered”, and indicates “Considered”. For multi-bit capacity, indicates methods require the prior
knowledge of embedded messages, and indicates methods can work without such knowledge.

ments, as there is a trade-off between text quality preserva-
tion and message embedding capacity (Yoo et al., 2023b;
Qu et al., 2024; Kirchenbauer et al., 2023). Some existing
works (Yoo et al., 2023b; Qu et al., 2024) achieve efficient
multi-bit watermarking by embedding one message bit per
token through hashing. However, they rely on text quality-
compromising zero-bit watermarking (Kirchenbauer et al.,
2023) as a foundation, leading their enhancement of mes-
sage embedding capacity inevitably come at the cost of text
quality preservation. Note that, although other methods
(Fernandez et al., 2023; Fairoze et al., 2023; Wang et al.,
2023) can mitigate this issue to some extent by associat-
ing messages with secret keys or hash functions, they lack
detection efficiency due to using messages non-invertibly.

To this end, we propose an integrated pipeline called BiMark
to embed and extract multi-bit messages via watermarking
while preserving text quality. BiMark requires neither train-
ing for embedding nor access to language models for detec-
tion. This approach simultaneously achieves the three key
requirements. Our three-fold contributions are as follows:

1. For filling the gap between text quality preservation
through unbiased reweighting and model-agnostic de-
tection, we propose a token counting based reweighting
approach that enables model-agnostic detection.

2. For handling the trade-off between message embed-
ding capacity and text quality preservation, we present
a multilayer reweighting mechanism that enhances de-
tectability without sacrificing text quality.

3. For implementing multi-bit watermarking, we intro-
duce an XOR-enhanced information encoding ap-
proach that enables messages carrying and message-
agnostic extraction while preserving text quality.

2. Related Work
LLM watermarking aims to address the urgent need to dif-
ferentiate model-generated text from human-written content.
Text watermarking (Fang et al., 2017; Ziegler et al., 2019;
He et al., 2022b; Fairoze et al., 2023; Fridrich et al., 2004;
Christ et al., 2024; Zhao et al., 2024) has evolved signifi-
cantly since its early application in content protection. Here
we review related work on inference-time watermarking
around the three key capacities in LLM watermarking.

Text quality preservation. Early watermarking methods
such as Soft Red List (Kirchenbauer et al., 2023) signifi-
cantly influenced the field but faced challenges with text
quality preservation due to their biased nature. Recent work
has addressed this challenge through two main approaches:
unbiased reweighting (Hu et al., 2023; Wu et al., 2023)
and distortion-free sampling (Kuditipudi et al., 2023; Zhao
et al., 2024; Dathathri et al., 2024). Unbiased reweighting
methods, such as γ-reweight (Hu et al., 2023) and DiP-
mark (Wu et al., 2023), modify the probability distributions
of generated text to inject watermarks while ensuring that
the expected probability distribution remains unchanged.
Distortion-free sampling methods, such as Gumbel sam-
pling (Aaronson, 2023; Kuditipudi et al., 2023) and Syn-
thID (Dathathri et al., 2024), employ secret keys to guide
the sampling process rather than modifying the probability
distribution. Many of them enable model-agnostic detection,
but lack multi-bit functionality.

Model-agnostic detection. The ability to detect water-
marks without accessing the original or an auxiliary model
is crucial for practical deployment. Existing watermarking
methods developed from unbiased reweighting (Hu et al.,
2023; Wu et al., 2023) utilize cumulative probability to
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partition the vocabulary, which makes them unsuitable for
model-agnostic detection. In the scenario of multi-bit water-
marking, a similar concept critical for practical deployment
is message-agnostic detection. That is, the ability to extract
messages without access to the message space. Among
existing multi-bit watermarking methods, only the works
of Yoo et al. (2023b) and (Qu et al., 2024) satisfy this prop-
erty through extracting messages from a voting matrix bit
by bit. However, they are developed based on Soft Red List
and thus without guaranteeing text quality.

Message embedding capacity. Message embedding capac-
ity enables information to be embedded in and extracted
from watermarked text, which is essential for tracing text
provenance (Cohen et al., 2025; Pang et al., 2024). Recent
studies develop multi-bit watermarking for message embed-
ding capacity by associating each message with a unique
secret key (Fernandez et al., 2023), or incorporating mes-
sages into hash functions as inputs (Fairoze et al., 2023;
Wang et al., 2023). These methods require access to mes-
sage space for extraction, as the messages themselves are
entangled with hash functions in a non-invertible manner.

Yoo et al. (2023b) proposed a position allocation technique
incorporating Soft Red List (Kirchenbauer et al., 2023),
which can solve this problem. They allocate each token to
a subunit of a message for watermark embedding, and ex-
tract the message bit by bit, which is in a message-agnostic
way. Qu et al. (2024) further incorporates error correction
codes to enhance multi-bit watermarking resilience. How-
ever, these methods were designed using Soft-List, leading
to a lack of unbiasedness. As shown in the Tab. 1, a com-
prehensive comparison between BiMark and related studies
is presented, highlighting our contributions in this field.

3. Preliminary
3.1. Watermarking for LLMs

Text generation of LLMs. A Large Language Model
(LLM) produces text sequentially. Let V denote a vocab-
ulary set of all tokens. A LLM generates a single token
x ∈ V from a probability distribution PM ∈ ∆V over
all possible next tokens conditioned on preceding tokens,
and continue this process autoregressively. Denoting a se-
quence of tokens (x1, x2, · · · , xn) as x1:n, the joint gen-
eration probability of a token sequence can be written as:
PM (xn+1:n+m|x1:n) =

∏m
i=1 PM (xn+i|x1:n+i−1).

Watermarking LLM-generated text. To reliably distin-
guish between LLM-generated and human-written text, wa-
termarking methods actively inject detectable signals using
secret keys (Kirchenbauer et al., 2023; Aaronson, 2023)
into LLM-generated text. During detection, through mea-
suring the similarity between extracted signals and injected
signals with the same keys, the watermark can be verified.

Early works (Kirchenbauer et al., 2023; Kuditipudi et al.,
2023; Hu et al., 2023) only focus on addressing the binary
question of whether a text contains watermarks, referred to
zero-bit watermarking. For more reliable text authenticity,
watermarking methods that can carry informative messages
are proposed, referred to as multi-bit watermarking (Yoo
et al., 2023b; Fairoze et al., 2023; Cohen et al., 2025).

A zero-bit watermarking scheme has two key components:
1) a distribution reweighting function Rk : ∆V → ∆V
through which the key k modifies the original probability
distribution to inject signals, where ∆V is the set of all possi-
ble probability distributions over the vocabulary set V; and
2) a detector: D : V∗ → {True,False} which determines
whether a token sequence contains the watermarks, where
V∗ denotes all possible token sequences over vocabulary V .

A multi-bit watermarking scheme has two components: 1)
a distribution reweighting function Rk,m : ∆V → ∆V that
works similarly to the zero-bit scheme but additionally in-
corporates a message m ∈ {0, 1}ℓ for watermarking, where
ℓ is the message length. 2) a detector: D : V∗ → {0, 1}ℓ,
which is also similar to a zero-bit watermark detector but
can extract embedded messages from watermarked text.

3.2. Soft Red List Watermarking

Soft Red List (Kirchenbauer et al., 2023) is a pioneering
inference-time watermarking method, introducing the in-
genious concept of green list and red list for LLM water-
marking. We examine this method because its green list and
red list approach inspired our bit-flip unbiased reweighting
technique, which determines green lists through a coin flip.

Green-Red partition for watermarking. Soft Red List
embedding watermarks by employing a uniquely devised
vocabulary bipartition framework guided by a pseudoran-
dom function prfk. This function, initialized with a secret
key k, takes a sliding window of previous tokens as input
and generates a binary mask for vocabulary partitioning.
The context-localized and key-dependent nature of prfk en-
sures both efficiency and tamper resistance of the watermark.
Given a proportion γ, the method splits vocabulary V into a
green list and a red list using prfk such that the size of green
lists is γ|V|. When generating text, the method constructs
a probability distribution PM,w to facilitate watermarking
by adjusting PM — enhancing probabilities for tokens on
green lists while decreasing those on red lists.

Z-test for watermark detection. Soft Red List water-
marks can be detected by comparing the proportion of green
tokens in the text with the expected proportion γ, because
the watermarked LLM is influenced to generate more to-
kens from green lists created by a secret key. Specifically,
given a text segment with T tokens, let G denote the count
of tokens on green lists. Since green list membership is



BiMark: Unbiased multilayer Watermarking for Large Language Models

BiMark has three key components: 1) a bit-flip unbiased reweighting function that preserves text quality while facilitating efficient model-agnostic watermark detection, 2) a 
multi-layer reweighting mechanism that enhances watermark detectability, and 3) an XOR-enhanced position allocation technique that  …
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Figure 1. Pipeline of BiMark. a) The LLm outputs a probability distribution over all tokens (grey lines). b) The message embedding
process (red lines) modifies this distribution using a pseudorandom function that selects message bits and generates one-time pad masks.
After XOR operations create fair coin flips, multilayer unbiased reweighting guides token sampling. c) Message extraction (green lines)
reconstructed the message by observing token subset memberships across multilayers and using majority voting to recover message bits.

randomly determined for each token, a non-watermarked
text will have a green token proportion close to γ following
the law of large numbers. To statistically test for deviations,
a one-proportion z-test can be applied:

z =
G/T − γ√
γ(1− γ)/T

.

If the z-score surpasses a predefined threshold, it suggests
that the text is watermarked, since the proportion of green to-
kens deviates significantly from the expected value γ. When
using the z-score for watermark detection, the correspond-
ing p-value reflects the false positive rate (Type-I error),
whereas the false negative rate (Type-II error) is influenced
by the inherent entropy characteristics of the LLM (Kirchen-
bauer et al., 2023; Kuditipudi et al., 2023).

3.3. Watermarking via Unbiased Reweighting

While Soft Red List effectively embeds detectable water-
marks, it potentially degrades text quality by introducing
biases in the generation process. To address this limita-
tion, Hu et al. (2023) proposed unbiased watermarking,
which aims to maintain the original distribution of gener-
ated text while enabling watermark detectability. Assume
that a service provider creates watermarks using a secret key
k randomly chosen from a key space K following a prior
distribution Pk(k). A desirable watermarking property is
that the probability distributions of watermarked text and
non-watermarked text are identical. This can be formally
defined as follows:
Definition 3.1 (n-shot undetectable (Hu et al., 2023)). For
a fixed input sequence a ∈ V∗, we say that watermarked
LLM and key prior pair (PM,w, Pk) is n-shot-undetectable
compared to original LLM PM if for any n number of
strings xi ∈ V∗:

n∏
i=1

PM (xi|a) =
∑
k∈K

Pk(k)

n∏
i=1

PM,w(x
i|a; k).

To achieve 1-shot undetectability, Hu et al. (2023) proposed

unbiased reweighting function for a single token generation:

Definition 3.2. (Unbiased reweighting function (Hu et al.,
2023)). Given a random variable E and a reweighting func-
tion RE : ∆V → ∆V , we say that RE is an unbiased
reweighting function if and only if for all probability distri-
butions P ∈ ∆V , EE [RE(P )] = P .

To achieve n-shot undetectability, they introduced a context
tracking mechanism that only generates watermarked tokens
when encountering new context tokens and generates non-
watermarked tokens otherwise. This mechanism prevents
the reuse of previously consumed context tokens as seeds
for watermarking, thereby ensuring the independence of
random variables used in the reweighting function.

3.4. Multi-bit Watermarking via Position Allocation

Many prior works (Fernandez et al., 2023; Fairoze et al.,
2023; Wang et al., 2023; Yoo et al., 2023b; Qu et al.,
2024) have explored multi-bit watermarking that extends
beyond zero-bit detection. Among them, Yoo et al. (2023b)
proposed Multi-bit Watermarking via Position Allocation
(MPAC), which enables message embedding without addi-
tional latency compared to Soft Red List and allows message
extraction in a message-agnostic manner. We examine this
technique, as it inspired BiMark, which integrates it with
XOR operations to achieve unbiased watermarking.

Message embedding. MPAC inherits the framework of Soft
Red List and encodes messages into watermarks by selecting
different vocabulary subsets as green lists. Assuming the
message is a binary string m ∈ {0, 1}ℓ , for each token
generation: A pseudorandom function prfk takes previous
tokens in a sliding window to 1) partition the vocabulary V
into two balanced subsets 1 V0 and V1, 2) select one position
p ∈ {1, 2, · · · , ℓ} which determines which message bit will
be encoded. The method then designates the vocabulary
subset Vm[p] as the green list, and the subsequent process

1In the original paper, the number of partitions can be over 2.
For ease of discussion, we take bipartition here.
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Sunny Cloudy Rainy Windy Stormy Foggy

Sunny Cloudy Rainy Windy Stormy Foggy
1

Sunny Cloudy Rainy Windy Stormy Foggy 0

Figure 2. Bit-flip unbiased reweighting. Given a vocabulary bipar-
tition V0 (shown in yellow) and V1 (shown in blue), a probability
distribution PM over the vocabulary V is adjusted based on a
fair coin flip e. When e = 0, probabilities of V0 is increased by
δ0% and probabilities of V1 is decreased by δ1%. When e = 1,
probabilities of V1 is increased by δ1% and probabilities of V0 is
decreased by δ0%. This symmetric adjustment preserves original
probabilities in expectation when the coin flip are fair.

of increasing probabilities following as Soft Red List.

Message extraction. MPAC extracts embedded messages
from text using a green-list voting matrix M ∈ Rℓ×2 in a
message-agnostic manner. Given a text, for each token x,
the method pseudorandomly reconstructs the correspond-
ing vocabulary partition V1 and V0, along with the mes-
sage position p. Next, it checks the subset membership
of token x: if x ∈ V0, then M [p][0] is incremented by
1; if x ∈ V1, then M [p][1] is incremented by 1. After
processing all tokens, based on the assumption that wa-
termarked text contains more green tokens than red to-
kens, each bit of the extracted message can be obtained as
argmax(M [p][:]) for p ∈ {1, · · · , ℓ}. The sum of the ma-
jority votes

∑ℓ
p=1 max(M [p][:]) serves as the total green to-

kens for determining whether the text contains watermarks.

4. The Proposed BiMark
BiMark is an unbiased multi-bit watermarking framework
designed to achieve text quality preservation, message em-
bedding capacity, and model-agnostic and message-agnostic
detection simultaneously. It operates in two phases: wa-
termark embedding and watermark detection. In the em-
bedding phase, we introduce a novel bit-flip reweighting
function that preserves text quality while facilitating model-
agnostic detection. To enhance watermark detectability, a
multilayer reweighting mechanism is employed. For car-
rying messages, we propose multi-bit watermarking via
XOR-enhanced position allocation based on a one-time pad
mechanism. In the detection phase, a voting matrix is con-
structed based on the text for message extraction. Fig. 1
illustrates the overall architecture of BiMark.

4.1. Bit-Flip Unbiased Reweighting

An unbiased reweighting function is the core component of
unbiased watermarking. While unbiased reweighting helps

preserve text quality in watermarking, existing methods (Hu
et al., 2023; Wu et al., 2023) based on cumulative probability
distributions require access to model probabilities, making
them unsuitable for model-agnostic detection.

We propose a bit-flip reweighting function that relies on
token counting-based bipartitions, enabling both unbiased
reweighting and model-agnostic detection. The core mech-
anism of which is straightforward: we use a fair coin flip
to determine the direction of probability redistribution be-
tween two vocabulary bipartitions V0 and V1. When the
coin shows heads, we increase the probabilities of tokens
in V1 while proportionally decreasing the probabilities in
V0, and vice versa for tails. This symmetric adjustment
and the fairness of the coin flip ensure the expected token
distribution remains unchanged while creating a detectable
pattern in text generated by watermarked LLMs.

Formally, let a random variable e represent a fair coin flip,
where e = 1 indicates heads and e = 0 indicates tails. Given
a vocabulary bipartition (V0,V1), the bit-flip reweighting
function Fig. 2 adjusts an original probability as follows:

Rθ,e(PM )(x) =


(1 + δ1)PM (x) if e = 1 ∧ x ∈ V1,

(1− δ0)PM (x) if e = 1 ∧ x ∈ V0,

(1− δ1)PM (x) if e = 0 ∧ x ∈ V1,

(1 + δ0)PM (x) if e = 0 ∧ x ∈ V0.
(1)

Here, δ0 and δ1 are scaling factors for V0 and V1, respec-
tively, and θ = (δ0, δ1,V0,V1) denotes reweighting func-
tion configuration. Fig. 2 illustrates an example of the bit-
flip unbiased reweighting. The scaling factors δ0 and δ1
must maintain a valid probability distribution. Subject to
the constraint that the probability distribution sums to unity,
a valid δ0 can be derived by a valid δ1 as Lemma 4.1.

Lemma 4.1 (Scaling factor constraint). Let τ =∑
x∈V1

PM (x) be the total probability of partition V1 in
the distribution PM . For τ < 1, the scaling factor of V0

must satisfy:
δ0 = δ1 · τ/ (1− τ) . (2)

Proof. Let ∆ be the absolute change in probability between
partitions V0 and V1. When ∆ > 0, for the probability
distribution to remain valid:

∆ = δ1τ = δ0(1− τ),

It is clear to see that δ0 = δ1 · τ/ (1− τ).

Due to the constraint in Eq. (2), when δ1 ensures a valid
probability distribution, δ0 also satisfies the corresponding
bound. Although the unbiased reweighting function is es-
tablished, implementing watermarking faces a challenge of
determining appropriate scaling factors δ0, δ1 that maintain
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a valid probability distribution while achieving effective
watermarking. This requires carefully handling edge cases
and constraints that arise in real-world scenarios.

For practical implementation, we introduce a base scaling
factor δ̃ ∈ [0, 1] and derive δ1 adaptively based on τ from
Eq. (3). However, two scenarios2 require special attention:
(1) If τ = 0, we set δ1 = 0 since all tokens in V1 have zero
probability and any non-zero δ1 would have no effect on the
probability distribution and will break the symmetry of our
reweighting scheme when e = 1. (2) If (1+ δ̃)τ > 1, we set
δ1 = (1−τ)/τ which makes the probability of V1 become 1
and the probability of V0 become 0, ensuring the reweighted
distribution remains a valid probability distribution over two
partitions. Consequently, the scaling factor δ1 becomes:

δ1 =


0 if τ = 0,

(1− τ)/τ if (1 + δ̃)τ > 1,

δ̃ otherwise.
(3)

It is easy to check this piecewise definition of δ1 ensures a
valid probability distribution for all possible cases.
Theorem 4.2 (Bit-Flip unbiased reweighting). For any prob-
ability distribution P over a vocabulary V and a reweighting
function Rθ,e defined above, we have Ee[Rθ,e(P )] = P .

This property follows naturally from our design: we use
fair coin flips to determine which partition’s probabilities
to increase or decrease, and ensure the probability changes
are equal in magnitude. The symmetry of these adjustments
guarantees unbiasedness while enabling watermark detec-
tion through token count analysis—a key advantage over pre-
vious cumulative probability-based approaches. The proof
of Theorem 4.2 can be found in App. A.1. Note that both V0

and V1 have equal probabilities of being the green list due
to fair coin flips. To obtain a consistent proportion for the z-
test, both sets should have equal size: |V0| = |V1| = |V|/2.

4.2. Multilayer Unbiased Reweighting

In Soft Red List (Kirchenbauer et al., 2023), watermark
detectability can be enhanced by combining a smaller green
list proportion γ with a larger logit adjustment value δ. Since
Soft Red List imposes no constraints on the unbiased prop-
erty, δ can be arbitrarily large—in the extreme case, restrict-
ing generation to only green list tokens (Kirchenbauer et al.,
2023). In contrast, the bit-flip reweighting is constrained by
unbiased probability adjustment—with only a single layer
reweighting (one bipartition), the watermark may be weak
and difficult to detect due to an imbalanced probability dis-
tribution. To address this limitation, we propose a multilayer
reweighting mechanism that preserves the unbiased property
while enhancing watermark detectability through multiple

2For ease of presentation, we assume (1+δ1)τ > (1+δ0)(1−
−τ) and focus on the edge outlier caused by expanding V1.
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Figure 3. Multilayer bit-flip reweighting. Given multiple bipar-
titions, each reweighting layer adjusts the probability from the
previous reweighting layer based on the bipartition and the fair
coin flip result of this layer. In layer 1, “Sunny” belongs to V1

and e = 1, making “Sunny” become green and gain probability.
In layer 2, “Sunny” belongs to V0 and e = 0, making “Sunny”
become green and gain probability. In layer 3, “Sunny” belongs to
V1 and e = 1, making “Sunny” become red and lose probability.

independent bipartitions and fair coin flips to iteratively
adjust probability distributions, as shown in Fig. 3.

Formally, given a sequence of independent vocabulary bi-
partitions [(V1

0 ,V1
1 ), · · · , (Vd

0 ,Vd
1 )] and a sequence of inde-

pendent fair coin flips e = [e1, e2, · · · , ed], i.e. ei follows
Bernoulli(0.5), the multilayer reweighting is defined as:

PM,w = Rθd,ed ◦Rθd−1,ed−1 ◦ ... ◦Rθ1,e1(PM ),

where ◦ denotes function composition (applied from right to
left), and Rθi,ei is a bit-flip reweighting function configured
with the i-th bipartition, the i-th fair coin flip, and a base
scaling factor δ̃ used to obtain a valid δ0 and a valid δ1 for
unbiased reweighting as described in Section 4.1.

When vocabulary bipartitions (V0
i,V1

i) and fair coin flips
ei are independent across layers, the multilayer reweighting
is still unbiased, i.e., Ee[PM,w] = PM . A discussion and
proof of this property can be found in App. A.3.

4.3. XOR-enhanced Position Allocation

Integrating with the multilayer unbiased reweighting mech-
anism, we propose an unbiased multi-bit watermarking
method via XOR-enhanced position allocation technique,
which can embed messages into text while maintaining text
quality and can extract the message from the text.

Message embedding. To embed a message m ∈ {0, 1}ℓ
into generated text, we pseudorandomly encode it into a
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sequence of balanced bits as fair coin flips e that guides our
multilayer reweighting. This encoding process is achieved
through a one-time pad with XOR operations. For a single
token generation, fair coin flips e are constructed as follows:

1) Message bit selection: A message index p ∈ {1, · · · , ℓ} is
pseudorandomly selected using previous tokens in a sliding
window as a seed. Then, m[p] is one bit of the message that
will be embedded in the generated token.

2) Random mask generation: A sequence of balanced
bits b = [b1, b2, · · · , bd] is pseudorandomly sampled from
Bernoulli(0.5) using previous tokens in a sliding window
as a seed. These bits serve as a one-time pad mask.

3) Fair coin flip computation: To encode the message bit, for
each layer, a fair coin flip is calculated by ei = m[p]⊕ bi,
where ⊕ is the XOR operation and i ∈ {1, 2, · · · , d}. These
fair coin flips are used in the multilayer bit-flip reweighting.

This process ensures two crucial properties. First, the mes-
sage is recoverable because the XOR operation is reversible
— given bi and ei for each token, the corresponding message
bit m[p] can be recovered. Second, and equally impor-
tant, the unbiased property is guaranteed. This is because
XORing any fixed bit (in our case, m[p]) with a random
bit sampled from Bernoulli(0.5) produces a result bit that
also follows Bernoulli(0.5) (see App. A.4 for proof) — a
property that ensures fair coin flips for unbiased reweight-
ing regardless of the message content. See App. C for the
complete watermarked text generation algorithm.

Note that in this encoding process, message bits and one-
time pad masks are contructed pseudorandomly for each
token during text generation. The vocabulary partitions used
in unbiased reweighting are constructed pseudorandomly
before the entire text generation process. Compared to
existing methods which construct vocabulary partitions or
permutation for each token (Kirchenbauer et al., 2023; Hu
et al., 2023; Wu et al., 2023), this approach is more efficient.

Message extraction. The embedded message m is ex-
tracted from the watermarked text by analyzing the statisti-
cal patterns created by the multilayer reweighting process.
The approach is extended from the voting matrix method
introduced in Section 3.4 adapting the multilayer reweight-
ing and the XOR operations. Given a text segment, votes of
message bits are gathered from each token x as follows:

1) Recovering variables used by encoding: The message
index p and the one-time pad mask b = [b1, b2, · · · , bd] used
in the generation phase are reconstructed pseudorandomly
using the same key. Note the message m[p] is unknown but
can be reconstructed if the ei, i ∈ {1, 2, · · · , d} is known.

2) Gathering votes of message bits: To reconstruct the mes-
sage bit, for each layer i, the fair coin flip ei is estimated

through tokens’ subset membership as follows:

êi =

{
0 if x ∈ Vi

0,

1 if x ∈ Vi
1.

This estimation leverages the statistical bias introduced dur-
ing generation — tokens were more likely from partitions
corresponding to the respective coin flip results.

The message bit m[p] is estimated by êi ⊕ bi, which is a
reversal of the XOR operation, and is taken as a vote of
the message bit. This vote is accumulated by incrementing
M [p][êi ⊕ bi] by 1. The multilayer design provides d inde-
pendent votes per token, enhancing extraction reliability.

3) Extracting message bits through majority voting: After
all tokens are processed, the message is extracted through
the majority vote bit by bit as follows:

m[p] = argmax(M [p][:]) for p ∈ {1, 2, · · · , ℓ}.

The extraction process reliably recovers the embedded mes-
sage by leveraging both the deterministic nature of the pseu-
dorandom function and the statistical patterns created by
our multilayer reweighting scheme. See App. C for the
complete watermark detection algorithm.

In summary, BiMark achieves unbiased multi-bit water-
marking through a carefully orchestrated pipeline. During
generation, the multilayer unbiased reweighting mechanism
applies iterative probability adjustments guided by fair coin
flips where message bits are encoded, which creates de-
tectable statistical patterns while preserving the original
generation distribution. During detection, these patterns are
verified by analyzing token distribution across bipartitions
of multiple layers and aggregating evidence in a voting ma-
trix, enabling message extraction. The framework maintains
text quality while enabling message embedding capacity
with model-agnostic and message-agnostic detection.

5. Experimental Analyses
We conduct comprehensive experiments to evaluate Bi-
Mark’s effectiveness across three key dimensions: mes-
sage embedding capacity, text quality preservation, and an
ablation study of the multilayer mechanism. For compar-
isons, we focus on inference-time methods that are pub-
licly available and support model-agnostic and message-
agnostic detection. The code is available at: https:
//github.com/Kx-Feng/BiMark.git.

5.1. Message Embedding Capacity

Experimental setup. For experiments of message embed-
ding capacity, the Llama3-8B model (AI@Meta, 2024) is
used for text generation with temperature 1.0 and top-50
sampling. C4-RealNewslike (Raffel et al., 2020) dataset

https://github.com/Kx-Feng/BiMark.git
https://github.com/Kx-Feng/BiMark.git
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Table 2. Message extraction rate.

Bits Method
Text Length (Tokens)

50 100 200 300
Rate PPL Rate PPL Rate PPL Rate PPL

8
BiMark 95.26 8.5 97.62 7.38 98.15 5.78 97.88 4.57
MPAC (1) 49.49 9.44 79.72 8.64 89.51 8.08 93.48 7.85
MPAC (1.5) 78.81 9.76 89.75 9.13 96.4 8.63 98.57 8.39

16
BiMark 85.55 8.60 93.31 7.35 95.54 5.83 95.54 4.71
MPAC (1) 57.04 9.36 68.25 8.63 79.31 8.17 87.50 7.89
MPAC (1.5) 66.06 9.69 78.21 8.87 89.04 8.45 93.83 8.45

32
BiMark 66.35 8.63 82.69 7.48 89.68 5.89 90.22 4.75
MPAC (1) 45.06 9.16 56.79 8.34 67.96 7.92 74.32 7.67
MPAC (1.5) 51.03 9.77 65.35 8.96 78.15 8.49 84.70 8.35

* “Rate”(↑) denotes message extraction rate which is the ratio of correctly extracted
bits, and “PPL” (↓) denotes perplexity. “MPAC (1)” and “MPAC (1.5)” indicate that
the value added to green tokens’ logit scores are δ = 1 and δ = 1.5, respectively.

Table 3. 8-Bit message extraction rate from damaged text.
Ratio Method Length

25 50 100 150 200 250 300

0.1
BiMark 70.25 82.4 91.02 93.74 94.94 95.23 95.24
MPAC (1) 50.38 59.5 67.08 73.41 76.34 80.15 82.1
MPAC (1.5) 56.42 66.8 76.85 82.64 86.55 89.33 91.62

0.2
BiMark 60.61 71.6 81.71 86.29 88.62 89.39 90.01
MPAC (1) 45.51 52.83 60.72 64.29 67.31 70.03 72.19
MPAC (1.5) 50.04 58.04 67.36 73.1 76.37 78.99 80.85

0.3
BiMark 53.37 62.52 70.37 74.22 76.23 77.3 78.23
MPAC (1) 43.18 48.71 53.36 56.3 58.29 59.78 60.57
MPAC (1.5) 45.59 51.16 58.11 62.24 64.73 67.07 68.31

is used as prompts. For pseudorandom operations of wa-
termarking methods, a 2-token sliding context window is
used for seeding. For evaluating the generation quality
of language models with watermarks, perplexity of gener-
ated text is calculated using Gemma-9B (Team, 2024a) as
an oracle model which has more parameters than Llama3-
8B. The baseline methods include MPAC (Yoo et al.,
2023b), Soft Red List (Kirchenbauer et al., 2023), and Syn-
thID (Dathathri et al., 2024). For MPAC and Soft Red List,
the proportion γ of green lists is 0.5 for a balance between
detectability and text quality, and also fair comparison with
BiMark’s vocabulary bipartiiton setting. For SynthID, the
number of tournaments is 30, as recommended in the default
setting. For BiMark, the base scaling factor δ̃ is 1.0, and the
number of layers d is 10, which provides a balance between
detectability and computational efficiency.

Multi-bit watermarking scenario. In this experiment, we
compare BiMark with MPAC (Yoo et al., 2023b), a state-
of-the-art multi-bit watermarking method that is model-
agnostic and message-agnostic detectable. We test with
varying message lengths (8, 16, and 32 bits) and text lengths
(50, 100, 200, and 300 tokens), using message extraction
rate, i.e. the bit accuracy between embedded messages and
extracted messages, as the evaluation metric. As shown in
Tab. 2, MPAC significantly sacrifices text quality when the
value δ added to logit scores of green tokens grows from
1 to 1.5, even though it improves the message extraction.
In contrast, BiMark consistently achieves higher extraction
rates with lower perplexity. For 50-token texts, BiMark
improves message extraction rates by 20.87%, 29.50%, and

(a) llama3-8B (b) Qwen2.5-3B

BiMark
SynthID
Soft Red List

BiMark
SynthID
Soft Red List

Figure 4. Zero-bit Watermark Detection.

30.02% for 8-bit, 16-bit, and 32-bit messages respectively,
compared to MPAC. The performance improvement is more
evident with both shorter texts and longer messages, which
typically present greater challenges in watermarking.

We further evaluate resilience against synonym substitution
attacks (Jovanović et al., 2023; Zhang et al., 2024d; Hou
et al., 2023; Ren et al., 2023) using BERT (Devlin et al.,
2018) and WordNet (Miller, 1995). Tab. 3 demonstrates Bi-
Mark’s superior performance—for 100-token texts, BiMark
maintains 18.44%, 21.30%, and 26.24% higher extraction
rates than those of MPAC under 0.1, 0.2, and 0.3 text sub-
stitution ratios, respectively. This enhanced resilience is
attributed to the fact that the multilayer mechanism pro-
vides abundant watermark evidences, leading the statistical
patterns of detection to be more distinguishable between
watermarked and non-watermarked text.

Zero-bit watermarking scenario. We access BiMark’s
performance on zero-bit watermarking by embedding 1-
bit messages through our framework and compare it with
two state-of-the-art model-agnostic zero-bit watermarking
methods: Soft Red List (Kirchenbauer et al., 2023) and
SynthID (Dathathri et al., 2024), which are biased and unbi-
ased methods, respectively. True positive rate (TPR) at 1%
false positive rate (FPR) is used as the evaluation metric of
this task. The results in Fig. 4 show that BiMark achieves
significantly improved performance and comparable detec-
tion performance compared to Soft Red List and SynthID,
respectively, while maintaining lower perplexity on both
Llama3-8B and Qwen2.5 (Team, 2024b).

5.2. Text Quality Preservation

Watermarks’ impact on generated text quality is assessed
in two downstream tasks of language models: text sum-
marization and machine translation. For text summariza-
tion, BART-large (Lewis et al., 2019) is employed on the
CNN/DailyMail dataset (See et al., 2017), where the per-
formance is evaluated using BERTScore-F1 (Zhang* et al.,
2020) and ROUGE-1 (Lin, 2004). For machine translation,
MBart (Lewis et al., 2019) is employed on the WMT’16
En-Ro subset (Bojar et al., 2016), where the performance is
evaluated using BLEU (Papineni et al., 2002).
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Table 4. LLM downstream tasks performance.

Method Text Summarization Machine Translation
BERTScore ROUGE-1 BERTScore BLEU

No Watermark 32.45± .01 38.32± .02 56.21±.03 21.93±.17

Soft Red List (1.0) 32.11±.02 37.97±.04 55.74±.18 21.36±.16

Soft Red List (1.5) 31.61±.04 37.51±.06 55.06±.15 20.67±.25

Soft Red List (2.0) 31.15±.02 36.99±.05 54.17±.18 19.63±.02

Gumbel Sampling 32.22±.03 38.19±.02 56.12±.06 22.14±.05

γ-Reweight 32.25±.02 38.09± .02 55.67±.05 21.49±.14

DiPmark 32.33±.02 38.21±.03 56.11±.04 21.87±.06

SynthID 32.45±.03 38.32±.04 56.17±.09 22.11±.03

BiMark (Ours) 32.48±.03 38.32±.03 56.14±.07 22.15±.09

* “Soft Red List(1.0)” indicates that the value added to green tokens’ logit scores
are δ = 1. The same applies to “Soft Red List(1.5)” and “Soft Red List(2.0)”

Baseline methods include Soft Red List, Gumbel Sam-
pling (Kuditipudi et al., 2023), γ-Reweight (Hu et al., 2023),
DiPmark (Wu et al., 2023), and SynthID (Dathathri et al.,
2024). Soft Red List, SynthID, and BiMark use the same
settings as previous experiments, while other methods take
default or recommended settings in the original works.
In Tab. 4, Soft Red List shows obvious quality degrada-
tion, where performance drops significantly as watermark
strength increases (indicated by δ). Among unbiased meth-
ods, BiMark achieves comparable performance while addi-
tionally supporting embedding and extracting useful mes-
sages. The consistent performance across both summariza-
tion and translation tasks demonstrates that our unbiased
multilayer watermarking successfully preserves language
models’ essential abilities for downstream tasks.

5.3. Ablation Study

Computational cost analysis. While multilayer reweight-
ing introduces additional computational overhead during
token generation, in our experiments, generating a single
token using BiMark with a batch size of 1 and 50 takes
0.036s and 0.047s on average, respectively, showing that
our BiMark is efficient in parallelized inference.

Impact of the multilayer mechanism. An ablation study
is conducted across the following four scenarios:

1) Layer number analysis: Fig. 5 (a) evaluates watermark
detection across varying layer numbers d = 1, 5, 10, 20
with fixed δ̃ = 1.0. Results show that detectability initially
improves with increasing layers until reaching a peak, then
decreases as the number of layers becomes excessive. 2) In-
dividual layer contribution: Fig. 5 (b) analyzes each layer’s
contribution to detection with δ̃ = 1.0 and d = 10. Results
show that all layers contribute to detection, with shallow lay-
ers providing particularly strong signals. 3) Scaling factor
analysis: Fig. 5 (c) evaluates detection performance with
a base scaling factor δ̃ ranging from 0.1 to 1.0 and fixed
d = 50. Performance follows the same pattern as layer anal-
ysis. 4) Resilience analysis: Fig. 5 (d) assesses resilience
against 10% word substitution across different layer num-
bers. Results indicate that watermark resilience improves

v

(c) Scaling factor analysis

(b) Individual layer contribution

(d) Resilience analysis

(a) Layer number analysis
v

Figure 5. Ablation experiments of multilayer reweighting.

with increased layers, slightly decreases after reaching a
peak, but remains superior to single-layer approaches.

As shown in App. A.2, watermark detectability depends
on the base scaling factor δ̃ and probability balance be-
tween bipartitions. Observation (2) occurs because multi-
layer reweighting is iterative, with shallow layers having a
dominant impact on the final probability distribution. Since
shallow layers typically have more evenly distributed prob-
abilities over tokens, their reweighting effects are more
substantial and cannot be reversed by subsequent layers.
Observation (1) occurs because while adding layers initially
strengthens the watermark signal and improves detectability,
excessive layers diminish performance since deeper lay-
ers contribute minimally to detection while adding noise.
Observation (3) occurs because appropriate base scaling
factors enable gradual probability reweighting across layers,
allowing deeper layers to contribute to detection. Obser-
vation (4) occurs because multilayer reweighting creates
multiple independent watermark evidence, which enhances
the distinguishability between watermarked and clean text.

6. Conclusion
This work presents BiMark, a novel watermarking frame-
work for LLMs that simultaneously achieves three critical
capabilities: text quality preservation, message embedding
capacity, and model-agnostic detection. These properties are
essential for practical deployment and are validated through
both theoretical and empirical analysis. BiMark’s superior
message embedding capacity stems from subtle patterns
generated by a multilayer mechanism, which reveals new
possibilities for exploring more secure watermarking via
fine-grained probability distribution reweighting.
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A. Proof & Analyses
A.1. Proof of Theorem 4.2

Proof. For any x ∈ V , we consider Ee[Rθ,e(PM )(x)] by examining two cases:

Case 1: If x ∈ V1,

Ee[Rθ,e(PM )(x)] =
1

2
[(1 + δ1)PM (x)] +

1

2
[(1− δ1)PM (x)]

= PM (x).

Case 2: If x ∈ V0,

Ee[Rθ,e(PM )(x)] =
1

2
[(1− δ0)PM (x)] +

1

2
[(1 + δ0)PM (x)]

= PM (x).

Since this holds for all x ∈ V , we have Ee[Rθ,e(PM )] = PM . Note that this result holds regardless of the specific value of
δ1 (and consequently δ0), as long as they maintain a valid probability distribution.

A.2. Type-II Error Analysis of Single-Layer Unbiased Reweighting

To understand the multilayer watermarking scheme, we first analyze the Type-II error rate (false negative rate) of watermark
detection in a single-layer reweighting. While the multilayer reweighting involves complex interactions between layers, this
single-layer analysis provides crucial insights into the fundamental behavior of the multilayer approach.

Statistical properties of a single-layer reweighting. Given a text sequence of length T , let G denote the count of tokens
belonging to green lists during detection. Under the null hypothesis H0 (i.e., the token sequence contains no watermark), the
expected proportion of green tokens is 0.5 due to balanced vocabulary bipartitions. Under the alternative hypothesis H1 (i.e.,
the token sequence is watermarked), this proportion deviates from 0.5 due to the single-layer reweighting scheme. For a
single token xt at position t, let Gt be a random variable indicating whether xt belongs to the corresponding green list.

Corollary A.1. Under a single-layer unbiased reweighting, the expectation and the variance of Gt follow:

E[Gt] =

{
0.5 + δ̃τt if 0 ≤ τt ≤ 1

1+δ̃
,

1.5− τt if 1
1+δ̃

< τt < 1,

Var[Gt] =

{
0.25− δ̃2τ2t if 0 ≤ τt ≤ 1

1+δ̃
,

−0.75 + 2τt − τ2t if 1
1+δ̃

< τt < 1,

where δ̃ is the base scaling factor for unbiased reweighting.

Proof. Given a vocabulary bipartition V0 and V1, and a fair coin flip e, in a bit-flip unbiased reweighting, green tokens are
defined based on two conditions: when e = 0, tokens x ∈ V0 are green, and when e = 1, tokens x ∈ V1 are green. Since the
value of e and the vocabulary bipartition are independent, an indicator Gt follows:

Gt =

{
1 if (e = 0 ∧ x ∈ V0) or (e = 1 ∧ x ∈ V1),

0 otherwise.
(4)

Let P t
M and P t

M,w denote the original and reweighted probability distribution at time step t, respectively. Note τ =∑
x∈V1

PM (x), according to the definition of bit-flip unbiased reweighting (see Eq. (1)), we have:

PM,w(x|x ∈ V1) =

{
(1 + δ)PM (x) if e = 1

(1− δ)PM (x) if e = 0

PM,w(x|x ∈ V0) =

{
(1− δτ

1−τ )PM (x) if e = 1

(1 + δτ
1−τ )PM (x) if e = 0.

(5)
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The expectation of Gt can be derived as follows:

E[Gt] =
∑
x∈V

[P t
M,w(x|x ∈ V1) + P t

M,w(x|x ∈ V0)]Gt

=
∑
x∈V

[P t
M,w(x|x ∈ V1, e = 1)Pr(e = 1) + P t

M,w(x|x ∈ V1, e = 0)Pr(e = 0)

+ P t
M,w(x|x ∈ V0, e = 1)Pr(e = 1) + P t

M,w(x|x ∈ V0, e = 0)Pr(e = 0)]Gt

=
∑
x∈V

[P t
M,w(x|x ∈ V1, e = 1)Pr(e = 1) + P t

M,w(x|x ∈ V0, e = 0)Pr(e = 0)] (∵ Eq. (4))

= 0.5
∑
x∈V

[P t
M,w(x|x ∈ V1, e = 1) + P t

M,w(x|x ∈ V0, e = 0)] (∵ e ∼ Bernoulli(0.5))

= 0.5
∑
x∈V

[(1 + δ)Pt
M (x|x ∈ V1) + (1 +

δτt
1− τt

)Pt
M (x|x ∈ V0)] (∵ Eq. (5))

= 0.5[(1 + δ)τt + (1 +
δτt

1− τt
)(1− τt)]

= 0.5 + δτt.

Given that δ is determined by both δ̃ and τt in Eq. (3), E(Gt) can be expressed as a piecewise function:

E[Gt] =

{
0.5 + δ̃τt if 0 ≤ τt <

1
1+δ̃

,

1.5− τt if τt ≥ 1
1+δ̃

.
(6)

To derive V ar[Gt], since Gt takes values of either 1 or 0, we have G2
t = Gt, and consequently E[G2

t ] = E[Gt]. Using the
variance formula and this property, we have:

Var[Gt] = E[G2
t ]− E[Gt]

2 = E[Gt]− (E[Gt])
2.

This leads to the following piecewise expression:

Var[Gt] :=

{
0.25− δ̃2τ2t if 0 ≤ τt <

1
1+δ̃

,

−0.75 + 2τt − τ2t if τt ≥ 1
1+δ̃

.
(7)

Type-II error analysis. The Type-II error rate β is the probability of failing to detect a watermark when one is present. For
the z-test with significance level α:

β = P (z < z1−α|H1),

where z1−α is the critical value and z is our test statistic, since the proportion of green lists is 0.5:

z =
G/T − 0.5√

0.25/T
. (8)

Under H1, the total count G approximately follows a normal distribution by the Central Limit Theorem:

G ∼ N(T · E[Gt], T ·Var[Gt]). (9)

Using Eq. (8) and Eq. (9), the expectation and variance of z under H1 can be derived, and under H1, it follows:

z ∼ N(2(E[Gt]− 0.5)
√
T , 4 ·Var[Gt])

Consequently, the Type-II error rate is:

β = Φ(
z1−α − 2(E[Gt]− 0.5)

√
T

2
√

Var[Gt]
)
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Key insights. The Type-II error rate decreases when E[Gt] increases or Var[Gt] decreases. When δ̃ = 1, E[Gt] reaches its
maximum when τ = 0.5, implying that our watermarking scheme is most effective for high-entropy text, which aligns with
previous findings from (Kirchenbauer et al., 2023) and (Kuditipudi et al., 2023). Note that E[Gt] reaches its maximum
when τ = 1

1+δ̃
. This actually corresponds to the case when τ is amplified to occupy the entire probability space. In this case,

probabilities in V0 will be shrunk to 0. As multilayer reweighting is iterative, this process will concentrate probabilities
among a few tokens. This property indicates that shallow layers of reweighting have more impact on the ultimate reweighted
probability distribution. Once tokens are shrunk to near-zero probabilities in early layers, even if they are allocated to green
lists in deeper layers, their probabilities cannot be effectively recovered.

A.3. Multilayer Reweighting

We analyze the expectation of reweighted probability distribution layer by layer. Let P i
M denote the distribution after

applying i layers of reweighting. For any layer i, we know from Theorem 4.2 that Eei [Rθi,ei(P
i−1
M )] = P i−1

M . This property
holds true at each layer regardless of the outcomes of previous layers due to the fact:

1. Vocabulary bipartitions (Vi
0,Vi

1) is independent of (Vi+1
0 ,Vi+1

1 );

2. Fair coin flip ei is independent of ei+1;

3. Bipartitions and fair coin flips are independent of each other.

Therefore, by analyzing from the innermost layer outward, we conclude that the entire composition maintains the unbiased
property:

Ee[PM,w] = PM .

A.4. Property of XOR operaion

We first define our variables. Let x ∈ {0, 1} be our original bit. Let b ∈ {0, 1} be a random bit sampled from Bernoulli(0.5).
Let e = x⊕ b be the result of the XOR operation.

We need to prove that Pr(e = 1) = 1/2 and Pr(e = 0) = 1/2, regardless of the value of x.

when x = 0, e = 0 ⊕ b. If b = 1, then e = 0. If b = 0, then e = 1. Because Pr(b = 1) = Pr(b = 0) = 1/2, we have
Pr(e = 0|x = 0) = 1/2 and Pr(e = 1|x = 0) = 1/2.

When x = 1, e = 1 ⊕ b. If b = 1, then e = 0. If b = 0, then e = 1. Because Pr(b = 1) = Pr(b = 0) = 1/2, we have
Pr(e = 0|x = 1) = 1/2 and Pr(e = 1|x = 1) = 1/2.

Since the statement holds true for both possible values of x, we can conclude that e follows a Bernoulli(0.5) distribution
regardless of the original value of x.
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B. More Experiments
To further assess watermark resilience, watermark detection performance against paraphrasing attacks is evaluated. These
attacks are performed using DIPPER (Krishna et al., 2023), a fine-tuned language model for watermark evasion with
controllable lexical and order diversity parameters.

Table 5. Watermark detection against paraphrasing attacks.

Method
Text Length (Token)

50 100 200 300
/ (20,0) (0,20) (20,20) / (20,0) (0,20) (20,20) / (20,0) (0,20) (20,20) / (20,0) (0,20) (20,20)

Soft Red List 68.88 15.43 35.27 13.08 92.53 32.39 69.94 27.4 98.11 56.25 90.84 49.4 99.78 71.16 96.9 66.52
SynthID 97.25 54.82 87.03 50 98.04 83.14 96.52 76.13 99.48 97.83 99.55 94.75 100 97.78 100 97.21
DiPmark 59.57 10.86 24.4 10.25 76.07 23.71 34.03 15.56 89.94 41.62 62.63 0.236 94.76 65.39 89.57 42.81
BiMark 97.87 67.4 89.17 59.94 98.42 78.37 95.71 70.9 99.81 91.62 99.2 87.28 100 98.93 100 98.35
* “(20, 0)”, “(0,20)”, and “(20,20)” follows the notation of (lexical diversity, order diversity).

C. Algorithms
Alg. 1 summarizes the watermarked text generation process for message embedding discussed in Sec. 4.2. Alg. 2 summarizes
the watermark detection process for message extraction discussed in Sec. 4.2. The overall process is visualized in Fig. 6.

D. Extracting the message from watermarked text

0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0  ...

Message content indexes  
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5 3 2 0 4 0 2 5 3 5 2 4 3 5 0 4 5 1 0 2 3 4 3 5 3 0 5 2 1 4 0 5 2 3 …

......

010110100011

......

111100100010

Obtain a message bit   

Sample an index  from pseudorandomly

Multilayer fair coin flips

Obtain balanced bits  that carry the message bit 
for unbiased reweighting, where 

Pseudorandomly obtain multiple balanced bits  ,  
where 

...

......

......

......

......

......

010010100001

......
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A sequence of vocabulary bipartitions for multi-layer unbiased reweighting  
A multi-bit message , for example  

position 

layer 

Extracted 
message

A. Random position allocation for one message bit

B. Random balanced bits as a one-time pad mask 

C. Fair coin flips for unbiased multilayer reweighting

D. Extracting messages from text

Given:

Message embedding via text generation Message extraction

Figure 6. The complete process of BiMark. The right part shows original LLM text generation. The watermark embedding process begins
when the LLM outputs an original probability distribution PM . Step A pseudorandomly selects a message bit m[p]. Step B samples d
independent balanced bits b = [b1, b2, · · · , bd] from Bernoulli(0.5) as a one-time pad mask. Step C applies XOR operations between b
and m[p] to obtain fair coin flips e = [e1, e2, · · · , ed], then conducts multilayer unbiased reweighting. The next token is sampled from
the reweighted distribution, and the process continues iteratively. Step D processes token sequences to extract messages. For each token,
the message index p and one-time pad mask b are pseudorandomly reconstructed. Based on token subset membership, estimations of fair
coin flips ê are obtained. Using bi ⊕ êi, votes for message bits are collected. The final message is extracted via majority voting.
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Algorithm 1 Embedding multi-bit message

Input: a language model LM
a sequence of tokens as a prompt
a sequence of balanced vocabulary bipartitions
[(V1

0 ,V1
1 ), (V2

0 ,V2
1 ), ..., (Vd

0 ,Vd
1 )]

a message m ∈ {0, 1}ℓ, window size h
a base scaling factor δ̃
bit-flip unbiased reweighting function R
pseudorandom functions prfp, prfb

for t = 1, 2, · · · do

1. Apply LM to all prior tokens to get a probability
distribution PM

0 over the vocabulary.

2. If the current previous tokens x−h: in the sliding
window have been used as a seed,
then sample a next token xt from PM

0;
else record the current previous tokens x−h: and
apply prfp and prfb to it to get seedp and seedb.

3. Sample an index pt ∈ {1, 2, · · · , ℓ} using seedp.
Sample b1t , b

2
t , · · · , bdt ∼ Bern(0.5) using seedb.

for i = 1, 2, · · · , d do
4. Let θi = (Vi

0,Vi
1, δ̃), and calculate

eit = m[pt]⊕ bit.

5. Obtain the i-layer reweighted distribution

P i
M = Rθi,eit

(P i−1
M ).

end for

6. Sample the next token xt from PM,w = P d
M .

end for

Algorithm 2 Extracting multi-bit message from text

Input: a sequence of balanced vocabulary bipartitions
[(V1

0 ,V1
1 ), (V2

0 ,V2
1 ), ..., (Vd

0 ,Vd
1 )]

message length ℓ, window size h
pseudorandom functions prfp, prfb

1. Initialize a ℓ× 2 voting matrix M

for t = 1, 2, · · · do

2. If the current previous tokens x−h: in a sliding
window h have been used as a seed,
then skip the current token and continue;
else record current previous tokens x−h: and
apply it to prfp and prfb to get seedp and seedb.

3. Sample an index p ∈ {1, 2, · · · , ℓ} using seedp.
Sample b1, b2, · · · , bd ∼ Bern(0.5) using seedb.

for i = 1, 2, · · · d do
4. êit = 1 if xt ∈ Vi

0 else êit = 0.
5. locit = bit ⊕ êt.
6. update M [pt][loc

i] += 1.
end for

end for

for p from 1 to ℓ do
7. m[p] = max(M [p][0], [p][1])

end for

8. Return the extracted message m
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D. Examples of Watermarked Text

Text Detection

Prompt

A food processor opens up a world of possibilities, such as hot soups or icy cold
concoctions. It may be a bit bulky, but processors can be used to make raw desserts,
banana ice cream and pie crusts. For more savory options, processors are great for
quickly ricing and shredding vegetables. Get your own for less than $30 on Amazon.
2. Wooden spoons are going to be your new best friends. Metal tools scratch many
pots and pans, but wood won’t cause them any harm.

N/A

No Watermark

Try making banana ice cream with only an immersion blender instead of a traditional
ice cream maker and a food processor. It’s a fast and no-mess way to make a tasty
treat. Try this Cinnamon & Honey Banana Nice Cream Recipe: 3 ripe frozen bananas
1 tbsp. cinnamon 1 cup almond milk Blend in a large food processor or blender with
an immersion mixer until smooth. Top with honey, sliced almonds, or your favorite
toppings and enjoy! 3. A good blender will work wonders for smoothies and soup
purees and won’t cause you to break your wallet. If you are an ingredient combo junkie,
a blender may be a more economical option than a processor. You can blend together a
variety of foods in your blender to make raw vegan desserts like cashew or macadamia
nut-based creams. 4. If you think you can forego ice cream, think again! You can make
raw ice cream alternatives that are healthy for your waistline but still taste great. Try this
recipe fora Raw Coconut Ice Cream: 4 tbsp almond milk ¼ tbsp vanilla extract ½ cup
unsweetened shredded coconut Blend in your food processor and pour over chopped
bananas on a plate. Freeze for 15-20 minutes. Enjoy! 5. Spaghetti squash is a must have
for any raw vegan. Not only is spaghetti squash delicious, but they can be very filling
and require no pasta machine. Spaghetti squash are also very versatile and can be eaten
in a variety of ways. 6. A dehydrator is another great raw food tool. Try making raw
vegan jerky, dehydrating fruit and veggies to make crispy chips or making desserts like
cookies or brownies. 7. You can make your own veggie chips. 8. You can even make
your own veggie chips. They aren’t bad, so stop buying them! Use your dehydrator and
some non-stick parchment sheets to make your own at home in three simple steps. Thinly
slice vegetables (thinness depends on crispiness), dehydrate for 12 hours and enjoy! 9.
You can add a little spice to any recipe with a small jar containing chili flakes. They
come in handy for many dishes. From savory salads made with freshingredients to
simple avocado toast, they make any dish a little bit more interesting. 10. Another great
way to add some flavor to your raw cuisine is through the use of spices. Spices can be a
fun and easy way to boost flavor. A good salt-free blend

z-score: 0.9758

p-value: 0.1645

N/A

BiMark

They’re also much easier to clean: Just wash it with soap and water, and leave it out in
the open air to dry. You should also invest in a silicone spoon. They’re great for scraping
bowls, stirring sauces or blending sauces into a puree. 3. Use a mesh sieve to strain your
sauce or pasta water. You don’t need to buy one — simply purchase a vegetable steamer
or cheesecloth from your local supermarket. Lay the steamer or cloth in a heat-safe
strainer, and pour the sauce through it. Alternatively, try tying up the steamer or cloth
around a wooden spoon and straining that way. 4. If you’re working with a tiny kitchen
and limited counter space, consider investing in a collapsible silicone spatula. Like all
high-quality tools, it’s heat resistant and dishwasher safe. Silicone spatulas are great for
stirring and mixing, because the soft rubber won’t scratch any cookware. They also
have flat edges, which make them perfect for scraping those last bits of batter out of
bowls. 5. Don’t buy tongs or a fork for flipping food. A spatula makes the whole
business much easier. Spatulas are incredibly adaptable — they work on oiled and
greased surfaces, and they’re ideal for tossing or turning the salad. The handle is flat,
which means the spatula is safe to put on a chopping board. Unlike a fork or slotted
spoon, the spatula is gentle on fragile fish and doesn’t disturb the delicate bits of salad
leaves. 6. For less than $30 you can buy a bamboo cutting board. Be sure to select a
board made of untreated bamboo, and purchase one with a groove running down the
center for easy food disposal. Since the bamboo’s naturally water resistant, there’s no
need to soak the board in water or bleach; you can just wash it with hot water and soap.
Be careful, though: Wooden cutting boards can crack if they get too hot, so keep it off
the stove. 7. Don’t throw out your coffee grinder. It’s an ideal gadget for transforming
spices into powdery blends. Keep an eye on the grind: If it gets too fine, the grinder may
release static electricity, which will make it hard for spices to exit the chamber. If they
keep getting stuck, mix the spice around with a spoon. For even more flavor, try
placing the grinder on an electric heater. If you’re using whole spices, let them heat up
directly. This will help open up
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Before SAP Labs designed its new digs in Palo Alto, company executives asked employees how
to make it a welcoming place to work. After all, that’s where they spend most of their day. The
answer? Windows. Lots of windows letting in lots of light. The German-based business software
company complied – even going so far as to move executives away from windows to give more
workers access to daylight. As the country embraces “green” building design – be it in the
workplace or at home – daylight has become a premium.
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“Light has so many things to contribute to our satisfaction and productivity levels,” said Mark
de la Vergne, president of the International Commission on Illumination. “We’re just coming to
realize that.” Daylight not only promotes healthier lives and work environments, but can be an
economic incentive for businesses and homeowners and a tool for the real estate market. It can
boost productivity, stimulate better decision-making and reduce energy and operating costs – all
reasons green builders are encouraging more natural light than in past years. “Daylight is a
commodity that we’ve neglected for so long as Americans,” said David Johnston, president of
Pacific Green Building and an expert on designing green buildings. “I think we’re starting to
see a real awakening.” Green design is a trend that has swept over the Western U.S. in the last
decade. As more people seek efficient, earth-friendly homes, they demand natural light, especially
for indoor activities. “The value of natural light is huge,” said Tim Eddy, senior principal for
architecture and design company ZGF. “With the amount of time we spend indoors, it’s the way
for all of us to remain healthfully connected to a natural cycle.” People naturally respond to direct
sunlight. It’s been part of our environment forever. It affects us from the inside out – the way we
feel, how well we sleep, how much energy we have, and how we think. “There is an energy in the
air, and you can just get a spark from it,” Eddy said. Natural light is a human response to nature,
de la Vergne said. It’s also an economic response to a growing building trend. In the last decade,
green building has taken its place alongside the more practical – and often more costly –
considerations of building design and construction. It’s considered a “must” item for homeowners,
office buildings and residential builders throughout the country. The U.S. Green Building Council,
which established a rating standard for green building, now provides certification for tens of
thousands of buildings – residential and commercial – across the country. There aren’t statistics on
how many homes have “natural light” on their wish list. But “green” homes are increasingly
popular. The Leadership in Energy and Environmental Design certification program – popular for
homes, particularly in the West, and a requirement for green buildings owned by the federal
government – certifies residential buildings based on criteria such as energy efficiency, water
efficiency, location, material selection and sustainable design. “Any homebuyer who plans to stay
in a home longer than five years is better
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When the federal government set new energy and environmental requirements this summer, it
raised standards for indoor lighting, calling for buildings to let in more natural light through
windows. That goal dovetails nicely with energy efficiency goals set in recent years. “Daylight
is free, and at a time when energy is super expensive, you can save money and reduce carbon
emissions,” said Michael Howard, the new director of lighting research at the Pacific Northwest
National Laboratory in Richland. Howard says the new research, including the first-ever test bed
to be constructed to measure natural light, could lead to big energy savings in the future.
Lighting represents the largest share of electricity use in commercial buildings nationwide –
more than the air conditioners and furnaces in buildings combined. And lighting accounts for 27
percent of the power consumed by homes. The new energy and environmental requirements
being considered by Congress would lead to big improvements in energy efficiency nationwide.
At the same time, a coalition ofexperts at the Pacific Northwest National Laboratory is looking
at the impact of natural light on worker productivity and job satisfaction. This all has become
important in the new age of energy efficiency. “Green building is the buzz now,” Howard said.
“Green building is the buzz now.” How much sunlight do we need? One of the questions the
new research, including the test bed to be constructed next year, is what is the right amount of
light to set the stage for a productive work environment. Howard says most federal buildings aim
for lighting that would equal the equivalent of a full moon. But lighting that would equal the
equivalent of a full moon is actually too much light. In fact, he says it could cause problems with
worker productivity. “Some studies are showing that you need less light, about two to three
times less, to be more productive,” he said. The new test bed to be constructed next year is a
state-of-the-art 25,000-square-foot office building at Richland’s Hanford site. It will study
everything from window placements to the impact of natural light on worker productivity. The
new test bed will look for ways to better design natural light to maximize worker productivity.
“We think that it’ll be very helpful in understanding if we’re really getting the benefits,” he said.
The new test bed to be constructed next year is a state-of-the-art 25,000-square-foot office building
at Richland’s Hanford site. It will study everything from window placements to the impact of
natural light on worker productivity. The new test bed will look for ways to better design natural
light to maximize worker
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