
Classifier Robustness Enhancement Via Test-Time Transformation

Tsachi Blau 1 Roy Ganz 1 Chaim Baskin 2 Michael Elad 2 Alex Bronstein 2

Abstract

It has been recently discovered that adversari-
ally trained classifiers exhibit an intriguing prop-
erty, referred to as perceptually aligned gradi-
ents (PAG). PAG implies that the gradients of
such classifiers possess a meaningful structure,
aligned with human perception. Adversarial train-
ing is currently the best-known way to achieve
classification robustness under adversarial attacks.
The PAG property, however, has yet to be lever-
aged for further improving classifier robustness.
In this work, we introduce Classifier Robust-
ness Enhancement Via Test-Time Transformation
(TETRA) – a novel defense method that utilizes
PAG, enhancing the performance of trained robust
classifiers. Our method operates in two phases.
First, it modifies the input image via a desig-
nated targeted adversarial attack into each of the
dataset’s classes. Then, it classifies the input im-
age based on the distance to each of the modified
instances, with the assumption that the shortest
distance relates to the true class. We show that the
proposed method achieves state-of-the-art results
and validate our claim through extensive experi-
ments on a variety of defense methods, classifier
architectures, and datasets. We also empirically
demonstrate that TETRA can boost the accuracy
of any differentiable adversarial training classi-
fier across a variety of attacks, including ones
unseen at training. Specifically, applying TETRA
leads to substantial improvement of up to +23%,
+20%, and +26% on CIFAR10, CIFAR100, and
ImageNet, respectively.

1Department of Electrical and ComputerEngineering,
Israel Institute of Technology 2Department of Computer
Science, Israel Institute of Technology. Correspondence
to: Tsachi Blau <tsachiblau@campus.technion.ac.il>,
Roy Ganz <ganz@campus.technion.ac.il>, Chaim
Baskin <chaimbaskin@cs.technion.ac.il>, Michael
Elad <elad@cs.technion.ac.il>, Alex Bronstein
<bron@cs.technion.ac.il>.

2nd AdvML Frontiers workshop at 40 th International Conference
on Machine Learning, Honolulu, Hawaii, USA. PMLR 202, 2023.
Copyright 2023 by the author(s).

1. Introduction
Deep neural networks (DNNs) have revolutionized the vi-
sual recognition domain by achieving unprecedentedly high
classification accuracy. DNN classifiers, however, have been
shown to be highly sensitive to minor input perturbations
(Hosseini et al., 2017; Dodge & Karam, 2017; Geirhos et al.,
2017; Temel et al., 2018; Temel & AlRegib, 2018), thereby
giving rise to the field of adversarial attacks (Szegedy et al.,
2013; Goodfellow et al., 2014; Kurakin et al., 2016; Athalye
et al., 2018; Biggio et al., 2013; Carlini & Wagner, 2017;
Kurakin et al., 2018; Nguyen et al., 2015). Adversarial at-
tacks are maliciously designed imperceptible perturbations
added to an image intended to fool a classifier. These ex-
amples are worrisome because of the vast use of DNNs in
critical tasks such as autonomous driving. Consequently,
this field has gained considerable research attention, leading
to the development of both new defenses and attack meth-
ods. One common way to create an adversarial example is
achieved by an iterative optimization process that searches
for a norm-bounded perturbation ||δ||p ≤ ϵ that is added
to the input image. The properties of the perturbation are
determined by a threat model, characterized by the choice
of the radius ϵ and the norm ℓp (typical choices for the latter
are p ∈ {1, 2,∞}).

One leading defense method is adversarial training (AT)
(Madry et al., 2017; Zhang et al., 2019; Rebuffi et al., 2021;
Gowal et al., 2020; Salman et al., 2020; Goodfellow et al.,
2014; Carlini & Wagner, 2017; Croce & Hein, 2020; Tramer
et al., 2020), in which the classifier is trained in the pres-
ence of adversarial perturbation and learns to classify the
maliciously modified training samples correctly. A major
drawback of AT is its reliance on a specific attack type,
which leads to poor generalization to unseen ones. This
issue has been mentioned in (Hendrycks et al., 2021) as one
of the unsolved problems in this field, and a few methods
(Bai et al., 2021; Blau et al., 2022) have recently attempted
to address it.

Another line of research (Zhang et al., 2021; Schwinn et al.,
2022) focuses on test-time methods that aim to improve
trained AT classifiers by changing their inference methodol-
ogy. These methods change the standard prediction process
where an instance is fed into a DNN model that outputs
a class prediction. Instead, they follow an inference algo-

Submission and Formatting Instructions for AdvML-Frontiers 2023

Clean image
Adversarial example
Transformed image

Transforming image to class

Class centroids

Distance-based prediction

Figure 1. TETRA algorithm. A cartoon depiction of the classifier decision rule describes regions of the input space classified as distinct
classes in different colors. Initially, a clean input image (green dot) belonging to the cat class is attacked, creating an adversarial example
(red dot) that has a wrong predicted class (horse instead of cat). When TETRA is applied, in its first phase, it transforms the adversarial
image into each one of the dataset classes. The transformation is represented by the dotted black arrows leading to a set of new images,
one per class (blue dots). In its second phase, TETRA calculates the distances between the adversarial example to all of the generated
images. Finally, TETRA classifies the input based on the calculated shortest distance, which leads to a correct class label prediction (cat).

rithm that strengthens the prediction. These methods are
appealing since they can be applied to any trained classifier,
without any further training or access to the training dataset.
These advantages significantly enhance DNNs’ robustness
to adversarial attacks.

Recently, researchers discovered that AT classifiers exhibit
a fascinating property that was called perceptually aligned
gradients (PAG) (Engstrom et al., 2019; Etmann et al., 2019;
Ross & Doshi-Velez, 2018; Tsipras et al., 2018). Simply put,
the gradients of a classifier, with respect to the input image,
manifest an intelligible spatial structure perceptually similar
to that of some class of the dataset. As a result, maximizing
the conditional probability of such classifiers towards some
target class, via a gradient-based method, results in class-
related semantic visual features. The discovery of PAG has
drawn considerable research interest in the past few years,
leading to a sequence of works. Tsipiras et al. (Tsipras et al.,
2018) showed that PAG does not arise in every classifier;
they emerge in AT classifiers and not in “vanilla-trained”
ones. The work of (Ganz et al., 2022) demonstrated the
surprising bidirectional connection between PAG and ro-
bustness. From the applicative point of view, to date, PAG
has mainly been studied in the context of generative tasks
(Ganz & Elad, 2021; Kawar et al., 2022).

In this work, we propose a novel test-time defense method
that leverages the PAG property for further improving the
robustness of trained robust classifiers. Our method im-
proves a classifier’s accuracy even when attacking with the
same attack that it was trained on and significantly improves
the robustness to unseen attacks. It can be applied to any
differentiable classifier – hence the name Classifier Robust-

ness Enhancement Via Test-Time Transformation (TETRA).
Our method operates in two phases, as depicted in Figure 1.
First, it modifies the input image via a designated targeted
adversarial attack into each dataset class. This modification
is meaningful due to the PAG property, which guarantees
worthy gradients. Then, it classifies based on the modifica-
tion distances, with the assumption that the shortest attack
relates to the true class.

We validate our method through extensive experiments on
a variety of defense methods, classifier architectures, and
datasets. We empirically demonstrate that TETRA can boost
the accuracy of any differentiable AT classifier across a vari-
ety of attacks, generalizing well to unseen ones. Specifically,
applying TETRA leads to substantial improvement of up to
+23%, +20%, and +26% on CIFAR10, CIFAR100 and Im-
ageNet, leading to state-of-the-art performance on test-time
defense tasks. To summarize, the key contributions of our
work are:

• We present a novel test-time robust classification method
that utilizes the PAG property and requires neither addi-
tional training nor access to the original training set.

• We show improved classifiers’ robustness, evaluated both
on trained attacks and on unseen ones.

• We evaluate our method’s performance, achieving state-
of-the-art results compared to other test-time methods.

2. Our method
In this section, we present the proposed TETRA method –
a novel test-time defense against adversarial attacks. We
introduce TETRA intuition and supporting evidence. We

Submission and Formatting Instructions for AdvML-Frontiers 2023

then propose a speed-up method referred to as FETRA, and
a novel attack dubbed ranking projected gradient descent
(RPGD), designed to find the worst-case examples for FE-
TRA.

2.1. Test-time transformation

An adversarial example is a small norm perturbation that
humans will hardly notice, yet it changes the classifier’s
prediction. It is widely accepted that the attack deviates
an image off the image’s manifold (Shamir et al., 2021;
Tanay & Griffin, 2016; Khoury & Hadfield-Menell, 2018;
Stutz et al., 2019). Hence, it seems reasonable to preprocess
perturbed images (Xie et al., 2017; Buckman et al., 2018; Xu
et al., 2017; Samangouei et al., 2018; Yang et al., 2019; Song
et al., 2017; Du & Mordatch, 2019; Grathwohl et al., 2019;
Hill et al., 2020; Yoon et al., 2021; Nie et al., 2022; Blau
et al., 2022), resulting in a projection back to the image’s
manifold. One unexplored way to perform a projection is
through a transformation into a target class, which we refer
to as targeted transformation. When performing targeted
transformation toward the true class, we are projecting the
image back to the image’s manifold, resulting in an image
with close resemblance to the input image. Unfortunately,
we do not know the true label; therefore, we perform a
targeted transformation of the image into each and every
one of the dataset classes. We assume that a transformation
into a different class changes the image considerably. Hence,
we can classify the image based on the distances between the
input image to the transformed images, where the shortest
distance relates to the true class.

Targeted PGD
(42.97)

TETRA’s
transformation

(11.22)

Figure 2. TETRA vs. PGD targeted transformation. In this figure,
we present a comparison between targeted PGD and TETRA’s
transformation, where both methods transform an image into the
desired class. PGD changes the image considerably in order to
change the classification into the toucan class, while TETRA re-
mains pixel-wise close to the input image and changes the wing
of the lorikeet only slightly so it resembles a toucan. Pixel-level
distance is presented next to the method as the ℓ2 distance.

As presented in Appendix B, AT classifiers possess the PAG

property, which was studied in the context of generative
tasks (Ganz & Elad, 2021; Kawar et al., 2022). We propose
to leverage this generative power for the targeted transfor-
mation task that lies at the core of TETRA, avoiding the use
of a specialized generative model. PAG guarantees that the
classifier gradients possess a meaningful structure. When
these are put into an iterative optimization task, the input
image is gradually transformed into a target class. When
transforming an image without regularization, however, it
might undergo significant changes, greatly departing from
the initial image. Figure 2 visualizes targeted image trans-
formations obtained from PGD and TETRA. While PGD
changes the image considerably as it moves toward the tar-
get class, TETRA’s effect is more gentle, pertaining only to
certain regions of the image and adding semantic features
that are related to the target class. An additional demonstra-
tion is provided in Figure 3, where we visualize a targeted
transformation of images into different classes.

To better explain our method, we move now to the cartoon
depiction presented in Figure 1. In this example, we attack
an image of a cat (green dot), creating an attacked image
(red dot). The attacked image looks like a cat, but the classi-
fier mistakenly confuses it with a horse. Next, we transform
the attacked image into every one of the dataset’s classes,
resulting in transformed images (blue dots). Without reg-
ularization, the transformed images would end up in the
classes’ centroids. However, a regularized transformation
produces more gentle transformations (blue points). Finally,
we calculate the distances between the attacked image and
the transformed images, correctly classifying based on the
shortest distance (blue star).

Algorithm 1 Test-Time Transformation
Input classifier f(·), input x, target label y, norm

radius ϵ, step size α, number of steps N ,
hyperparameter γ, classification classes K

1: procedure TETRA
2: for i in 1 : K do
3: δi ← 0
4: for j in 1 : N do
5: δi ← Π

(
δi − α

∇δi
LCE(f(x+δi),y)+γ δi

∥∇δi
LCE(f(x+δi),y)+γ δi∥2

)
6: end for
7: di ← ∥δi∥2
8: end for
9: ŷ = argmini=1,...,K di

10: return ŷ
11: end procedure
The operator Π(z) projects z onto the image domain
RM×N×3 ∈ [0, 1]M×N×3.

In more detail, let us be given an input image x, which might
be attacked. We then perform an iterative optimization

Submission and Formatting Instructions for AdvML-Frontiers 2023

task, which is presented in Algorithm 1. The optimization
objective,

LCE (f (x+ δ) , y) +
γ

2
· ∥δ∥22 (1)

comprises two terms: a cross-entropy (CE) loss, and an ℓ2
loss. The first term drives the image to change in a manner
that makes the classifier predict the target class y. Because
the classifier possesses PAG, the CE gradients exhibit a
target class related semantic. In contrast, the second term
regularizes the transformation so that the transformed image
remains close to the input image x. More specifically, this
expression is optimized iteratively for N steps via gradient
descent, where every step is of size α. In addition, to balance
these two terms, the hyperparameter γ needs to be fine-
tuned.

Our method performs an exhaustive search for the correct
class, as we transform the image into each dataset class.
When scaling to datasets with many classes, this method
becomes impracticable. Hence, we developed fast TETRA
(FETRA) – a method that prunes some classes, saves com-
putations, and allows scaling to large datasets. FETRA
operates by pruning the classifier’s low-rank class predic-
tions and keeping only the top k classes. These classes, in
turn, are classified using TETRA. FETRA can speed up
runtime drastically. For example, we can boost performance
by ×100 over a dataset with 1000 classes, when performing
FETRA with k = 10. FETRA, however, relies heavily on
the hypothesis that the true class is highly ranked among
the classifier’s predictions. This assumption can be used
maliciously by the attacker, who can exploit this knowledge
to modify the attack. Standard attacks focus on changing the
image so that the classifier does not predict the true class as
the most likely one. Nevertheless, there might be an attack
that aims at lowering the rank of an image, not just to the
second most likely class, but even further down.

2.2. Ranking projected gradient descent

To be able to evaluate FETRA appropriately, we created
a novel attack called ranking projected gradient descent
(RPGD). This attack is tailored to our defense, trying to
attack it at its known weaknesses. The objective of RPGD
is to reduce the rank of the true class, predicted by the
classifier, out of the top k most probable classes. We modify
the loss term of the PGD algorithm (Madry et al., 2017),
replacing it with a differentiable ranking loss (Blondel et al.,
2020)1. Ranking loss is very useful for many tasks such as in
ranking statistics. This, however, is a nontrivial expression
for a loss term, since it involves ranking and sorting, which
are non-differentiable operations. To conclude, we aim at
attacking FETRA using its worst-case examples.

1We use the implementation supplied in https://github.
com/teddykoker/torchsort

3. Experiments
In this section, we provide empirical evidence supporting
our method. First, we apply TETRA and FETRA to various
adversarially trained methods and architectures, evaluat-
ing the performance on CIFAR10, CIFAR100 (Krizhevsky,
2009) and ImageNet (Deng et al., 2009) datasets. Next,
we evaluate the RPGD attack, providing visual evidence
and intuition for our method. Finally, we offer an ablation
study in Appendix F that presents the necessity of the PAG
property for TERTA and evaluates different distance metrics.
Throughout our experiments, we evaluate multiple threat
models for every robust classifier, using AutoAttack (Croce
& Hein, 2020), as it is a strong and widely accepted attack
benchmark. Further experimental details are provided in
Appendix C.

3.1. CIFAR10 and CIFAR100

In this part, we supply results over CIFAR10 and CIFAR100
(Krizhevsky, 2009), which are two of the most common
datasets used for robustness evaluation. We compare the
proposed TETRA to the DQR method from (Schwinn et al.,
2022) which is a test-time method that boosts a robust clas-
sifier’s performance. Hence, for every robust classifier, we
show its results and the results of the other methods, creating
a few consecutive lines of results per AT classifier. More-
over, we use four common threat models: (ℓ∞, ϵ = 8/255),
(ℓ∞, ϵ = 16/255), (ℓ2, ϵ = 0.5), (ℓ2, ϵ = 1.0) and evaluate
the performance over the complete test dataset, as the top
1 classification accuracy. The test dataset contains 10, 000
images, in both CIFAR10 and CIFAR100 datasets.

The results on CIFAR10 are summarized in Table 1. We use
the top performing methods (Madry et al., 2017; Rebuffi
et al., 2021; Gowal et al., 2020) as baselines and demonstrate
that TETRA significantly improves their performance. Inter-
estingly, TETRA boosts baseline methods both for seen and
unseen attacks. In particular, for seen attacks, we enhance
the baseline method performance by up to 9%, outperform-
ing the other methods by up to 1%. For the unseen attacks,
TETRA boosts the performance of baseline methods by up
to 23%, outperforming the other methods by up to 10%. Ad-
ditionally, we compare TETRA to the PAT method (Laidlaw
et al., 2020) that addresses the issue of robustness to unseen
attacks, and report up to 52% higher accuracy.

The results on CIFAR100 are presented in Table 2. We
present our defenses, TETRA and FETRA, where FETRA
uses the top 10 classes and accelerates the calculation by
a factor of 10. We use the defense methods (Rebuffi et al.,
2021; Gowal et al., 2020) as baseline methods and demon-
strate that TETRA improves performance both for seen and
unseen attacks. For seen attacks, we enhance the baseline
method performance by up to 10% and the performance of
other methods by up to 3%, while for unseen attacks the

https://github.com/teddykoker/torchsort
https://github.com/teddykoker/torchsort

Submission and Formatting Instructions for AdvML-Frontiers 2023

Method Architecture TTM Standard
Attack

L∞ L2

8/255 16/255 0.5 1.0

PAT (Laidlaw et al., 2020) RN50 71.60% 28.70% − 33.30% −
AT (Madry et al., 2017)

RN50 L2, ϵ = 0.5
90.83% 29.04% 00.93% 69.24% 36.21%

DRQ (Schwinn et al., 2022) 88.79% 45.37% 07.09% 77.56% 51.28%
TETRA 87.40% 51.66% 14.96% 78.66% 59.82%
Rebuffi et al. (Rebuffi et al., 2021)

WRN28-10 L2, ϵ = 0.5
91.79% 47.85% 05.00% 78.80% 54.73%

DRQ (Schwinn et al., 2022) 90.99% 58.66% 13.69% 84.12% 64.69%
TETRA 88.23% 59.99% 11.45% 85.56% 66.15%
Rebuffi et al. (Rebuffi et al., 2021)

WRN28-10 L∞, ϵ = 8/255
87.33% 60.77% 25.44% 66.72% 35.01%

DRQ (Schwinn et al., 2022) 87.17% 66.23% 33.62% 72.24% 44.56%
TETRA 85.00% 66.86% 34.88% 74.24% 53.02%
Gowal et al. (Gowal et al., 2020)

WRN70-16 L∞, ϵ = 8/255
91.09% 65.88% 25.95% 66.43% 27.21%

DRQ (Schwinn et al., 2022) 90.77% 71.00% 35.89% 72.87% 39.51%
TETRA 88.18% 72.02% 40.30% 75.90% 49.21%

Table 1. CIFAR10 results. The first column displays the method used. For every base method, we report three consecutive lines of results:
one for the base method and then two test-time boosting methods, DRQ (Schwinn et al., 2022) and TETRA. The next columns, name the
architecture, the trained threat model (TTM), and the four attacks with different threat models.

baseline performance is increased by up to 20%, and the
performance of other methods by up to 8%. It is impor-
tant to emphasize that both methods, TETRA and FETRA,
present similar results as the average gap is 0.66%. This
demonstrates that FETRA’s filtering is not the reason for
the performance enhancement, and that it is just a speed-up
method.

3.2. ImageNet

The results over ImageNet are reported in Table 3. Eval-
uating ImageNet is infeasible using TETRA because of
memory and runtime issues. Therefore, we only evaluate
the faster defense variant FETRA, with top k = 20 classes,
which accelerates the calculation by a factor of 50. More-
over, we use four common threat models: (ℓ∞, ϵ = 4/255),
(ℓ∞, ϵ = 8/255), (ℓ2, ϵ = 3.0), (ℓ2, ϵ = 6.0) and evalu-
ate the performance over the complete test dataset (50, 000
images), as the top 1 classification accuracy. We use the
defense methods (Madry et al., 2017; Salman et al., 2020)
as baselines, demonstrating that FETRA improves the per-
formance both for seen and unseen attacks. For seen attacks,
we enhance the baseline performance by up to 15% and for
unseen attacks we enhance the baseline by up to 26%.

3.3. Ranking projected gradient descent

In this part, we compare the performance of two attacks
over ImageNet dataset. We compare RPGD to PGD (RPGD,
see Section 2). We show that RPGD better fits FETRA as it

is designed for its weakness. Furthermore, we demonstrate
that the accuracy drop is neglectable compared to the gain
achieved by using FETRA.

We start by comparing the top k accuracy performances of
both RPGD and PGD. As stated before in Section 2, AutoAt-
tack does not utilize the known weakness of FETRA, hence
does not create its worst-case examples. FETRA keeps only
the top k classes, estimated by a robust classifier, and then
applies TETRA to classify the remaining ones. AutoAttack
does not exploit the knowledge regarding filtering, which
leads us to the introduction of RPGD. RPGD is designed
to enable a fair robust evaluation, searching for FETRA’s
worst-case examples. This is achieved by pushing the rank
of the true class as low as possible and out of the top k
classes. To verify that RPGD indeed achieves its goal, we
suggest the analysis presented in Figure 6. This analysis
is performed using Madry et al.’s defense method, trained
on ℓ2, ϵ = 3.0. On the left-hand side of the figure, we an-
alyze the performance of both attacks, RPGD and PGD,
by evaluating the top k accuracy for different k values. To
better display the gap between the methods, we also provide
the right-hand of the graph. This plot presents the differ-
ence between the two left-side graphs and demonstrates that
each attack is preferred for its objective. For low k values,
PGD achieves lower accuracy, but for high k values, RPGD
achieves up to 5% lower accuracy.

Next, we verify that FETRA’s performance enhancement
still holds, even when considering the performance drop
caused by attacking with RPGD. To this end, we show Ta-

Submission and Formatting Instructions for AdvML-Frontiers 2023

Method Architecture TTM Standard
Attack

L∞ L2

8/255 16/255 0.5 1.0

Rebuffi et al. (Rebuffi et al., 2021)

WRN28-10 L∞, ϵ = 8/255

62.40% 32.06% 12.47% 38.32% 18.86%
DRQ (Schwinn et al., 2022) 61.32% 38.22% 19.41% 44.58% 26.78%
TETRA 55.18% 37.61% 19.72% 45.86% 32.79%
FETRA 57.95% 38.73% 19.87% 47.56% 33.01%
Gowal et al. (Gowal et al., 2020)

WRN70-16 L∞, ϵ = 8/255

69.15% 36.90% 13.64% 40.86% 17.20%
DRQ (Schwinn et al., 2022) 69.12% 43.96% 20.25% 48.95% 25.43%
TETRA 59.83% 44.66% 23.81% 51.32% 37.02%
FETRA 62.47% 46.09% 23.48% 53.06% 36.19%

Table 2. CIFAR100 results. The first column displays the method used. For every base method, we report four consecutive lines of results:
one for the base method and then three test-time boosting methods, DRQ (Schwinn et al., 2022), TETRA and FETRA. The next columns
name the architecture, the trained threat model (TTM), and the four attacks with different threat models.

Method Architecture TTM Standard
Attack

L∞ L2

4/255 8/255 3.0 6.0

Madry et al. (Madry et al., 2017) RN50 L2, ϵ = 3.0
57.90% 24.82% 05.26% 30.85% 10.35%

FETRA 51.51% 40.64% 22.10% 45.75% 34.0%
Salman et al. (Salman et al., 2020) WRN50-2 L2, ϵ = 3.0

66.91% 30.86% 06.19% 38.27% 12.85%
FETRA 63.27% 47.68% 25.23% 53.35% 38.36%
Madry et al. (Madry et al., 2017) RN50 L∞, ϵ = 4/255

62.42% 28.96% 08.12% 07.06% 00.39%
FETRA 55.75% 40.45% 17.97% 18.03% 04.42%
Salman et al. (Salman et al., 2020) WRN50-2 L∞, ϵ = 4/255

68.41% 37.80% 12.84% 07.03% 00.21%
FETRA 60.44% 48.44% 25.44% 20.18% 04.24%

Table 3. ImageNet results. The first column displays the method used. For every base method, we report two consecutive lines of results:
one is for the base method and the other is FETRA, which is our test-time boosting method. The next columns name the architecture, the
trained threat model (TTM), and the four attacks with different threat models.

ble 3, which presents an evaluation of the ImageNet dataset
attacked by AutoAttack and defended by FETRA with top
k = 20. FETRA enhances the base performance by at
least 9% and up to 26%. The performance reduction caused
by RPGD for the same k value is 2.5%, much lower than
the demonstrated enhancement. To conclude, RPGD is a
stronger attack for FETRA, resulting in a decreased perfor-
mance. Nevertheless, FETRA achieves a significant perfor-
mance enhancement. A similar analysis for CIFAR10 and
CIFAR100 is presented in Appendix E.

4. Discussion and conclusion
This work presents a novel test-time adversarially robust
classification method called TETRA, which requires nei-
ther training nor access to training data. TETRA utilizes
the PAG property in order to boost the performance of any
differentiable AT classifier. To the best of our knowledge,

this is the first time that an AT classifier has exploited the
PAG property. Our method was validated through an exten-
sive evaluation, using AutoAttack on different architectures
and AT training methods, and three standard datasets: CI-
FAR10, CIFAR100 and ImageNet. Although our method’s
improvement comes at the cost of a slight clean accuracy
degradation and longer inference time, it significantly im-
proves the performance of adversarially perturbed data com-
pared to previous methods. Future work will mainly focus
on improving clean accuracy and on accelerating inference
time.

References
Athalye, A., Engstrom, L., Ilyas, A., and Kwok, K. Synthesizing

robust adversarial examples. In International conference on
machine learning, pp. 284–293. PMLR, 2018.

Bai, T., Luo, J., Zhao, J., Wen, B., and Wang, Q. Recent advances

Submission and Formatting Instructions for AdvML-Frontiers 2023

in adversarial training for adversarial robustness. arXiv preprint
arXiv:2102.01356, 2021.

Biggio, B., Corona, I., Maiorca, D., Nelson, B., Šrndić, N., Laskov,
P., Giacinto, G., and Roli, F. Evasion attacks against machine
learning at test time. In Joint European conference on machine
learning and knowledge discovery in databases, pp. 387–402.
Springer, 2013.

Blau, T., Ganz, R., Kawar, B., Bronstein, A., and Elad, M. Threat
model-agnostic adversarial defense using diffusion models.
arXiv preprint arXiv:2207.08089, 2022.

Blondel, M., Teboul, O., Berthet, Q., and Djolonga, J. Fast differ-
entiable sorting and ranking. In International Conference on
Machine Learning, pp. 950–959. PMLR, 2020.

Buckman, J., Roy, A., Raffel, C., and Goodfellow, I. Thermome-
ter encoding: One hot way to resist adversarial examples. In
International Conference on Learning Representations, 2018.

Carlini, N. and Wagner, D. Adversarial examples are not easily
detected: Bypassing ten detection methods. In Proceedings of
the 10th ACM workshop on artificial intelligence and security,
pp. 3–14, 2017.

Cohen, J., Rosenfeld, E., and Kolter, Z. Certified adversarial robust-
ness via randomized smoothing. In International Conference
on Machine Learning, pp. 1310–1320. PMLR, 2019.

Croce, F. and Hein, M. Reliable evaluation of adversarial robust-
ness with an ensemble of diverse parameter-free attacks. In
International conference on machine learning, pp. 2206–2216.
PMLR, 2020.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L.
Imagenet: A large-scale hierarchical image database. In 2009
IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Dodge, S. and Karam, L. A study and comparison of human
and deep learning recognition performance under visual dis-
tortions. In 2017 26th international conference on computer
communication and networks (ICCCN), pp. 1–7. IEEE, 2017.

Du, Y. and Mordatch, I. Implicit generation and generalization in
energy-based models. arXiv preprint arXiv:1903.08689, 2019.

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Tran, B., and
Madry, A. Adversarial robustness as a prior for learned repre-
sentations. arXiv preprint arXiv:1906.00945, 2019.

Etmann, C., Lunz, S., Maass, P., and Schönlieb, C.-B. On the
connection between adversarial robustness and saliency map
interpretability. arXiv preprint arXiv:1905.04172, 2019.

Ganz, R. and Elad, M. Bigroc: Boosting image generation via a
robust classifier. 2021.

Ganz, R., Kawar, B., and Elad, M. Do perceptually aligned
gradients imply adversarial robustness? arXiv preprint
arXiv:2207.11378, 2022.

Geirhos, R., Janssen, D. H., Schütt, H. H., Rauber, J., Bethge, M.,
and Wichmann, F. A. Comparing deep neural networks against
humans: object recognition when the signal gets weaker. arXiv
preprint arXiv:1706.06969, 2017.

Goodfellow, I. J., Shlens, J., and Szegedy, C. Explaining and har-
nessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

Gowal, S., Qin, C., Uesato, J., Mann, T., and Kohli, P. Uncov-
ering the limits of adversarial training against norm-bounded
adversarial examples. arXiv preprint arXiv:2010.03593, 2020.

Grathwohl, W., Wang, K.-C., Jacobsen, J.-H., Duvenaud, D.,
Norouzi, M., and Swersky, K. Your classifier is secretly an
energy based model and you should treat it like one. arXiv
preprint arXiv:1912.03263, 2019.

Hendrycks, D., Carlini, N., Schulman, J., and Steinhardt, J. Un-
solved problems in ml safety. arXiv preprint arXiv:2109.13916,
2021.

Hill, M., Mitchell, J., and Zhu, S.-C. Stochastic security: Adver-
sarial defense using long-run dynamics of energy-based models.
arXiv preprint arXiv:2005.13525, 2020.

Hosseini, H., Xiao, B., and Poovendran, R. Google’s cloud vision
api is not robust to noise. In 2017 16th IEEE international
conference on machine learning and applications (ICMLA), pp.
101–105. IEEE, 2017.

Kawar, B., Ganz, R., and Elad, M. Enhancing diffusion-based
image synthesis with robust classifier guidance. arXiv preprint
arXiv:2208.08664, 2022.

Khoury, M. and Hadfield-Menell, D. On the geometry of adversar-
ial examples. arXiv preprint arXiv:1811.00525, 2018.

Krizhevsky, A. Learning multiple layers of features from tiny
images. 2009.

Kurakin, A., Goodfellow, I., and Bengio, S. Adversarial machine
learning at scale. arXiv preprint arXiv:1611.01236, 2016.

Kurakin, A., Goodfellow, I. J., and Bengio, S. Adversarial exam-
ples in the physical world. In Artificial intelligence safety and
security, pp. 99–112. Chapman and Hall/CRC, 2018.

Laidlaw, C., Singla, S., and Feizi, S. Perceptual adversarial ro-
bustness: Defense against unseen threat models. arXiv preprint
arXiv:2006.12655, 2020.

Madry, A., Makelov, A., Schmidt, L., Tsipras, D., and Vladu, A.
Towards deep learning models resistant to adversarial attacks.
arXiv preprint arXiv:1706.06083, 2017.

Nguyen, A., Yosinski, J., and Clune, J. Deep neural networks are
easily fooled: High confidence predictions for unrecognizable
images. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 427–436, 2015.

Nie, W., Guo, B., Huang, Y., Xiao, C., Vahdat, A., and Anandku-
mar, A. Diffusion models for adversarial purification. arXiv
preprint arXiv:2205.07460, 2022.

Raff, E., Sylvester, J., Forsyth, S., and McLean, M. Barrage of
random transforms for adversarially robust defense. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 6528–6537, 2019.

Rebuffi, S.-A., Gowal, S., Calian, D. A., Stimberg, F., Wiles, O.,
and Mann, T. Fixing data augmentation to improve adversarial
robustness. arXiv preprint arXiv:2103.01946, 2021.

Submission and Formatting Instructions for AdvML-Frontiers 2023

Ross, A. and Doshi-Velez, F. Improving the adversarial robustness
and interpretability of deep neural networks by regularizing
their input gradients. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

Salman, H., Ilyas, A., Engstrom, L., Kapoor, A., and Madry, A.
Do adversarially robust imagenet models transfer better? Ad-
vances in Neural Information Processing Systems, 33:3533–
3545, 2020.

Samangouei, P., Kabkab, M., and Chellappa, R. Defense-gan:
Protecting classifiers against adversarial attacks using generative
models. arXiv preprint arXiv:1805.06605, 2018.

Schwinn, L., Bungert, L., Nguyen, A., Raab, R., Pulsmeyer, F.,
Precup, D., Eskofier, B., and Zanca, D. Improving robustness
against real-world and worst-case distribution shifts through de-
cision region quantification. arXiv preprint arXiv:2205.09619,
2022.

Shamir, A., Melamed, O., and BenShmuel, O. The dimpled mani-
fold model of adversarial examples in machine learning. arXiv
preprint arXiv:2106.10151, 2021.

Song, Y., Kim, T., Nowozin, S., Ermon, S., and Kushman,
N. Pixeldefend: Leveraging generative models to under-
stand and defend against adversarial examples. arXiv preprint
arXiv:1710.10766, 2017.

Stutz, D., Hein, M., and Schiele, B. Disentangling adversarial
robustness and generalization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp.
6976–6987, 2019.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D.,
Goodfellow, I., and Fergus, R. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199, 2013.

Tanay, T. and Griffin, L. A boundary tilting persepective on
the phenomenon of adversarial examples. arXiv preprint
arXiv:1608.07690, 2016.

Temel, D. and AlRegib, G. Traffic signs in the wild: Highlights
from the ieee video and image processing cup 2017 student com-
petition [sp competitions]. arXiv preprint arXiv:1810.06169,
2018.

Temel, D., Lee, J., and AlRegib, G. Cure-or: Challenging unreal
and real environments for object recognition. In 2018 17th IEEE
international conference on machine learning and applications
(ICMLA), pp. 137–144. IEEE, 2018.

Tramer, F., Carlini, N., Brendel, W., and Madry, A. On adaptive
attacks to adversarial example defenses. Advances in Neural
Information Processing Systems, 33:1633–1645, 2020.

Tsipras, D., Santurkar, S., Engstrom, L., Turner, A., and Madry,
A. Robustness may be at odds with accuracy. arXiv preprint
arXiv:1805.12152, 2018.

Xie, C., Wang, J., Zhang, Z., Ren, Z., and Yuille, A. Mitigat-
ing adversarial effects through randomization. arXiv preprint
arXiv:1711.01991, 2017.

Xu, W., Evans, D., and Qi, Y. Feature squeezing: Detecting
adversarial examples in deep neural networks. arXiv preprint
arXiv:1704.01155, 2017.

Yang, Y., Zhang, G., Katabi, D., and Xu, Z. Me-net: Towards
effective adversarial robustness with matrix estimation. arXiv
preprint arXiv:1905.11971, 2019.

Yoon, J., Hwang, S. J., and Lee, J. Adversarial purification with
score-based generative models. In International Conference on
Machine Learning, pp. 12062–12072. PMLR, 2021.

Zhang, H., Yu, Y., Jiao, J., Xing, E., El Ghaoui, L., and Jordan,
M. Theoretically principled trade-off between robustness and
accuracy. In International conference on machine learning, pp.
7472–7482. PMLR, 2019.

Zhang, M., Levine, S., and Finn, C. Memo: Test time ro-
bustness via adaptation and augmentation. arXiv preprint
arXiv:2110.09506, 2021.

Zhang, R., Isola, P., Efros, A. A., Shechtman, E., and Wang, O.
The unreasonable effectiveness of deep features as a perceptual
metric. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 586–595, 2018.

Submission and Formatting Instructions for AdvML-Frontiers 2023

A. Related work
This section presents related works that use preprocessing and test-time inference methods for enhanced classification
robustness. The former preprocesses the image before sending it to the classifier, whereas the latter changes the inference
methodology, using an inference algorithm. Finally, we discuss several adversarial defense methods that aim at unseen
attacks.

The first work on prepossessing methods, which improve classification robustness, includes random resizing and padding
(Xie et al., 2017), thermometer encoding (Buckman et al., 2018), feature squeezing (Xu et al., 2017), defense GAN
(Samangouei et al., 2018) and masking and reconstructing (Yang et al., 2019). A newer line of preprocessing methods uses
probabilistic models. These methods aim to leverage their generative power to clear perturbations from an attacked image.
They perform it by projecting the attacked image back to the data manifold. This line of work includes purification by
pixelCNN (Song et al., 2017), EBM for restoring corrupt images (Du & Mordatch, 2019) and a density aware classifier
(Grathwohl et al., 2019). The most recent works in this field includes Langevin sampling (Hill et al., 2020) and a gradient
ascent score-based model (Yoon et al., 2021). Similarly, two recent studies utilize the generative power of diffusion models
(Nie et al., 2022; Blau et al., 2022).

Another group of adversarial defense schemes uses test-time methods. Cohen et al. (Cohen et al., 2019) and Raff et al. (Raff
et al., 2019) suggest multiple realizations of the augmented image to be performed during test-time, followed by averaging
the classification predictions. Schwinn et al. (Schwinn et al., 2022) suggest to analyze the robustness of a local decision
region nearby the attacked image. While (Cohen et al., 2019; Raff et al., 2019) require fine-tuning the model, Schwinn et al.
require neither fine-tuning nor access to the training data, similar to our method.

The last group of studies aims to provide robustness against unseen attacks. Laidlaw et al. (Laidlaw et al., 2020) provides a
latent space norm-bounded AT, and Blau et al. (Blau et al., 2022) uses a vanilla trained diffusion model as a preprocessing
step.

To the best of our knowledge, Schwinn et al. (Schwinn et al., 2022) offer the only test time method that enhances adversarially
trained robust classifiers without further training, similar to our method.

B. Background
Since the discovery of adversarial attacks (Szegedy et al., 2013; Goodfellow et al., 2014; Kurakin et al., 2016; Athalye et al.,
2018; Biggio et al., 2013; Carlini & Wagner, 2017; Kurakin et al., 2018; Nguyen et al., 2015), there has been a continuous
development of defense and attack techniques. In this section, we briefly overview key results starting with attacks, moving
to defense strategies, and finishing with the PAG property.

An adversarial attack is a perturbation δ, added to an image x, intended to push a classifier decision away from the correct
prediction. Many important studies researched adversarial attacks, of which it is important to mention Madry et al. (Madry
et al., 2017) who laid the foundation for many following works, including ours. Madry et al. introduced the projected
gradient descent (PGD) algorithm, which is an iterative optimization process that searches for the worst-case adversarial
example. PGD has access to the classifier’s weights, and is, therefore, able to find the worst-case adversary in a small radius
around a clean data sample. The allowed perturbation is defined by a threat model, characterized by an ℓp norm and a
radius ϵ, such that ||δ||p ≤ ϵ. There exist two variants for the loss term. The objective of the first variant is to maximize the
classification loss of the perturbed input, given the true label. In other words, the input image is manipulated in order to
increase the error, aiming for a wrong classifier decision (any class except the correct one). The second variant’s objective is
to minimize the classification loss of the perturbed image given a specific wrong class label y. As a result, the classifier is
more likely to predict label y. Our method utilizes the latter targeted PGD variant.

One of the leading robustification methods known as adversarial training (AT) (Madry et al., 2017; Zhang et al., 2019;
Rebuffi et al., 2021; Gowal et al., 2020; Salman et al., 2020; Goodfellow et al., 2014; Carlini & Wagner, 2017; Croce & Hein,
2020; Tramer et al., 2020). AT is a training method that robustifies a classifier against a specific attack. This is achieved
by introducing adversarial examples during the training process, and driving the classifier to learn to infer the true labels
of malicious examples. While training, the classifier weights are constantly being changed. As a result, the classifier’s
worst-case examples keep on changing as well. Hence, in every training batch, one must calculate new adversarial examples
that fit the current state of the classifier.

It has been recently discovered that some classifiers exhibit an intriguing property called perceptually aligned gradients

Submission and Formatting Instructions for AdvML-Frontiers 2023

(PAG) (Engstrom et al., 2019; Etmann et al., 2019; Ross & Doshi-Velez, 2018; Tsipras et al., 2018). PAG is manifested
through the classification loss gradients, with respect to the input image, appearing visually meaningful to humans, and
resembling one of the dataset classes. The structure of the gradients is different when performing untargeted vs. targeted
PGD. When performing untargeted PGD, the attack is not leading to a specific class; therefore, the gradients transform
the image arbitrarily. When performing targeted PGD, however, the gradients transform the image into the target class,
removing current class features. Using this property, our method enables, one to transform an image into a target class, as
used by our method.

C. Experimental setup
In this part, we provide some details about our methods. We are performing AutoAttack (Croce & Hein, 2020) on the base
classifier, then performing our defense method. Similar to previous works such as (Schwinn et al., 2022). We use N = 30
steps of TETRA and perform hyperparameter tuning, finding the best step size α and γ for every classifier. We use these
parameters for all the evaluations, clean images and all of the attacks. We state both α and γ for every dataset in Tables 4
to 6.

We evaluated the other test-time defense, DRQ (Schwinn et al., 2022), with the official code using the reported parameters.

Method Architecture TTM α γ

Madry et al. (Madry et al., 2017) + TETRA RN50 L2, ϵ = 0.5 1.5 200

Rebuffi et al. (Rebuffi et al., 2021) + TETRA WRN28-10 L2, ϵ = 0.5 0.5 400

Rebuffi et al. (Rebuffi et al., 2021) + TETRA WRN28-10 L∞, ϵ = 8/255 0.1 300

Gowal et al. (Gowal et al., 2020) + TETRA WRN70-16 L∞, ϵ = 8/255 0.3 300

Vanila + TETRA WRN28-10 - 0.05 300

Table 4. CIFAR10 params. In the first column, we state the method. In the next columns, we state the architecture, the trained threat
model (TTM), α which is the step size and γ which is the regularization weight.

Method Architecture TTM α γ

Rebuffi et al. (Rebuffi et al., 2021) + TETRA WRN28-10 L∞, ϵ = 8/255 0.1 300
Rebuffi et al. (Rebuffi et al., 2021) + FETRA WRN28-10 L∞, ϵ = 8/255 0.1 300

Gowal et al. (Gowal et al., 2020) + TETRA WRN70-16 L∞, ϵ = 8/255 0.1 100
Gowal et al. (Gowal et al., 2020) + FETRA WRN70-16 L∞, ϵ = 8/255 0.1 100

Table 5. CIFAR100 params. In the first column, we state the method. In the next columns, we state the architecture, the trained threat
model (TTM), α which is the step size and γ which is the regularization weight.

Method Architecture TTM α γ

Madry et al. (Madry et al., 2017) + FETRA RN50 L2, ϵ = 3.0 6.0 5500

Salman et al. (Salman et al., 2020) + FETRA WRN50-2 L2, ϵ = 3.0 6.0 3000

Madry et al. (Madry et al., 2017) + FETRA RN50 L∞, ϵ = 4/255 1.0 6000

Salman et al. (Salman et al., 2020) + FETRA WRN50-2 L∞, ϵ = 4/255 1.0 3000

Table 6. ImageNet params. In the first column, we state the method. In the next columns, we state the architecture, the trained threat
model (TTM), α which is the step size and γ which is the regularization weight.

Submission and Formatting Instructions for AdvML-Frontiers 2023

D. Transformed images
We proceed to the visualization of the TETRA transformation, supplying an intuitive explanation of what the transformation
looks like and why our method works.

First, we compare our method to PGD. As shown in Figure 2, PGD transforms the image’s appearance significantly in
order to change its classification. TETRA also modifies the image appearance to the target class, however, it keeps the
transformed image pixel-wise close to the input image. The transformation is performed in a rather artistic way, as it is
almost imperceptible that the toucan appears on the lorikeet’s wing.

TETRA relies on the hypothesis that the extent of the image modification relates to the probability of belonging to a
certain class. Therefore, it is important to supply visual evidence and intuition. To this end, we present Figure 3, where
we demonstrate TETRA transformation towards multiple classes. In the first column, we present the clean image. In the
following four columns, we transform the image into target classes. First, to the true class, then to a similar class, and
finally to two entirely different class categories. This figure emphasizes that a transformation of an image to the true class,
or similar ones, requires minor changes. However, when transforming an image into a different category, the image is
modulated considerably by adding some features belonging to the target class.

Submission and Formatting Instructions for AdvML-Frontiers 2023

Clean Target class

True class Dissimilar classSimilar class

honeycomb (14.38)lorikeet (0.063) toucan (11.22) Egyptian cat (15.68)

dragonfly (3.03) mixing bowl (13.78)damselfly (0.08) necklace (12.68)

salt shaker (0.46) vase (3.60) sunglass (7.28)spoonbill (11.78)

Figure 3. Visualization of TETRA’s transformation. Clean images from the ImageNet dataset (Deng et al., 2009) (left column) are
transformed by TETRA into (left-to-right): the true class, a class from the same category, and two classes from different categories.
Pixel-level distance is more noticeable as the perceptual distance to the target class grows (presented in the images’ titles as the ℓ2
distance).

Submission and Formatting Instructions for AdvML-Frontiers 2023

E. RPGD analysis

100 101

Top K

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 A
cc

ur
ac

y

CIFAR10 - Accumulated Accuracy
PGD
RPGD

100 101

Top K

0.10

0.05

0.00

0.05

0.10

Di
ffe

re
nc

e(
PG

D,
 R

PG
D)

CIFAR10 - Difference (PGD, RPGD)

Difference(PGD, RPGD)

Figure 4. CIFAR10 top k accuracy comparison PGD vs RPGD. the x-axis of the left figure represents the top k group size that we select,
using Madry et al. (Madry et al., 2017) ℓ2, ϵ = 0.5. The y-axis represents the top k accuracy, the probability that the true label is contained
in the top k group. On the right figure, we present the difference between the two graphs of the left figure, PGD −RPGD.

100 101 102

Top K
0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 A
cc

ur
ac

y

CIFAR100 - Accumulated Accuracy
PGD
RPGD

100 101 102

Top K

0.04

0.02

0.00

0.02
Di

ffe
re

nc
e(

PG
D,

 R
PG

D)
CIFAR100 - Difference (PGD, RPGD)

Difference(PGD, RPGD)

Figure 5. CIFAR100 top k accuracy comparison PGD vs RPGD. the x-axis of the left figure represents the top k group size that we select,
using Madry et al. (Rebuffi et al., 2021) ℓ∞, ϵ = 8/255. The y-axis represents the top k accuracy, the probability that the true label is
contained in the top k group. On the right figure, we present the difference between the two graphs of the left figure, PGD −RPGD.

Submission and Formatting Instructions for AdvML-Frontiers 2023

100 101 102 103

Top K

0.2

0.4

0.6

0.8

1.0

Ac
cu

m
ul

at
ed

 A
cc

ur
ac

y

ImageNet - Accumulated Accuracy
PGD
RPGD

100 101 102 103

Top K

0.10

0.05

0.00

0.05
Di

ffe
re

nc
e(

PG
D,

 R
PG

D)
ImageNet - Difference (PGD, RPGD)

Difference(PGD, RPGD)

Figure 6. ImageNet top k accuracy comparison PGD vs RPGD. the x-axis of the left-hand side of the figure represents the top k group
size that we select, using Madry et al. (Madry et al., 2017) ℓ2, ϵ = 3.0. The y-axis represents the top k accuracy, the probability that the
true label is contained in the top k group. For example, if we examine k = 20 it means that we seek the probability that the true label is
in one of the top 20 predictions of the classifier, which is around 60%. On the right-hand side of the figure, we present the difference
between the two graphs of the left-hand side, PGD −RPGD.

Submission and Formatting Instructions for AdvML-Frontiers 2023

F. Ablation study
In this part, we discuss the ablations that we performed in order to better understand the contribution of different parts of our
method. In Appendix F.1 we discuss the necessity of the PAG property in the TETRA algorithm, next in Appendix F.2 we
discuss different options for the distance metric used for classification.

F.1. Vanila classifier

TETRA can be applied to any differentiable classifier. We claim, however, that it enhances the classifier robustness only
over classifiers that possess PAG. In this part, we empirically support this claim.

In Table 7, we present TETRA accuracy on CIFAR10 dataset, where the classifier is vanilla trained. As we can see, TETRA
achieves an accuracy of around 1% for all of the attacks. When applying TETRA to PAG classifiers, it achieves much
better results, as presented in Table 1. Meaning that TETRA performs well only when applied to classifiers that possess
the PAG property. The reason is that our method heavily relies on the generative power of PAG, which does not exist in
vanilla-trained classifiers.

Method Architecture TTM Standard
Attack

L∞ L2

8/255 16/255 0.5 1.0

Vanila
WRN28-10 None

95.26% 00.00% 00.00% 00.00% 00.00%
DRQ (Schwinn et al., 2022) 10.95% 11.31% 11.04% 11.75% 11.38%
TETRA 93.04% 01.11% 01.12% 01.24% 01.10%

Table 7. CIFAR10 vanilla classifier results. In the first column, we state the method. We report three consecutive lines of results. One for
the base method and then two test time boosting methods: DRQ (Schwinn et al., 2022) and TETRA. In the next columns, we state the
architecture, the trained threat model (TTM), and four attacks with different threat models.

Submission and Formatting Instructions for AdvML-Frontiers 2023

F.2. Distance metrics

In TETRA’s second phase, we calculate the distance between the input image and the transformed images, and we classify
based on the shortest one. Hence, the distance metric that we use for the classification is important. Different metrics have
different properties, and we aim at a distance metric that is able to measure the semantic distance between images.

We compare ℓ2, ℓ1 and LPIPS (Zhang et al., 2018) distances over CIFAR10 dataset, and presente the results in Table 8. We
compare the results using the following defense methods (Madry et al., 2017; Rebuffi et al., 2021; Gowal et al., 2020). As
demonstrated, ℓ2 distance metric performs better, therefore is a favorable choice.

Method Architecture TTM Standard
Attack

L∞ L2

8/255 16/255 0.5 1.0

AT (Madry et al., 2017)

RN50 L2, ϵ = 0.5

90.83% 29.04% 00.93% 69.24% 36.21%
TETRA LPIPS 85.91% 54.49% 17.46% 78.70% 61.68%
TETRA L1 85.91% 54.55% 17.64% 78.70% 61.68%
TETRA L2 85.76% 54.55% 17.64% 78.74% 61.87%
Rebuffi et al. (Rebuffi et al., 2021)

WRN28-10 L2, ϵ = 0.5

91.79% 47.85% 05.00% 78.80% 54.73%
TETRA LPIPS 87.31% 58.57% 09.97% 85.30% 67.03%
TETRA L1 87.31% 58.57% 09.97% 85.30% 67.03%
TETRA L2 88.33% 59.74% 11.06% 85.57% 66.01%

Rebuffi et al. (Rebuffi et al., 2021)

WRN28-10 L∞, ϵ = 8/255

87.33% 60.77% 25.44% 66.72% 35.01%
TETRA LPIPS 80.97% 66.49% 33.54% 74.73% 59.25%
TETRA L1 80.97% 66.49% 33.54% 74.73% 59.25%
TETRA L2 84.86% 66.96% 35.15% 74.84% 53.32%

Gowal et al. (Gowal et al., 2020)

WRN70-16 L∞, ϵ = 8/255

91.10% 65.88% 25.95% 66.44% 27.22%
TETRA LPIPS 83.41% 71.51% 38.49% 76.53% 58.60%
TETRA L1 83.41% 71.51% 38.49% 76.56% 58.60%
TETRA L2 87.58% 72.00% 40.44% 75.65% 49.22%

Table 8. CIFAR10 results. In the first column, we state the method. For every base method, we report three consecutive lines of results.
One for the base method and then two TETRA distance metric variations used for classification: L2 and LPIPS (Zhang et al., 2018). In
the next columns, we state the architecture, the trained threat model (TTM), and four attacks with different threat models.

Submission and Formatting Instructions for AdvML-Frontiers 2023

G. Runtime analysis
In this part, we compare the inference time of the test-time methods that we used, over CIFAR10 and CIFAR100. For
CIFAR10 we compare TETRA to DRQ (Schwinn et al., 2022), and for CIFAR100 we compare FETRA to DRQ (Schwinn
et al., 2022). As can be seen, for both of the datasets, our method is slower than the baseline. Our method, however, is faster
than DRQ (Schwinn et al., 2022). These experiments were performed using one GeForce RTX 3080 with batch size = 1.

Method Architecture TTM Inference time

AT (Madry et al., 2017)
RN50 L2, ϵ = 0.5

×1
DRQ (Schwinn et al., 2022) ×160
TETRA ×23
Rebuffi et al. (Rebuffi et al., 2021)

WRN28-10 L2, ϵ = 0.5
×1

DRQ (Schwinn et al., 2022) ×117
TETRA ×26
Rebuffi et al. (Rebuffi et al., 2021)

WRN28-10 L∞, ϵ = 8/255
×1

DRQ (Schwinn et al., 2022) ×119
TETRA ×26
Gowal et al. (Gowal et al., 2020)

WRN70-16 L∞, ϵ = 8/255
×1

DRQ (Schwinn et al., 2022) ×290
TETRA ×127

Table 9. Inference time comparison over CIFAR10. In this table we perform an inference time comparison between 3 defense methods.
For every base classifier, we report three consecutive lines of inference time. One for the base method, next we present DRQ, and finally
TETRA. In the first column we present the method name. Next we present the architecture, and the trained threat model (TTM), and
finally we present the inference time. This value stands for how much time it takes for every method to perform.

Method Architecture TTM Inference time

Rebuffi et al. (Rebuffi et al., 2021)
WRN28-10 Linf , ϵ = 8/255

×1
DRQ (Schwinn et al., 2022) ×686
FETRA ×27
Gowal et al. (Gowal et al., 2020)

WRN70-16 L∞, ϵ = 8/255
×1

DRQ (Schwinn et al., 2022) ×1380
FETRA ×121

Table 10. Inference time comparison over CIFAR100. In this table we perform an inference time comparison between 3 defense methods.
For every base classifier, we report three consecutive lines of inference time. One for the base method, next we present DRQ, and finally
TETRA. In the first column we present the method name. Next we present the architecture, and the trained threat model (TTM), and
finally we present the inference time. This value stands for how much time it takes for every method to perform.

