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ABSTRACT

LiDAR point clouds are fundamental to various applications, yet high-precision
scans incur substantial storage and transmission overhead. Existing methods typ-
ically convert unordered points into hierarchical octree or voxel structures for
dense-to-sparse predictive coding. However, the extreme sparsity of geomet-
ric details hinders efficient context modeling, thereby limiting their compres-
sion performance and speed. To address this challenge, we propose to generate
compact features for efficient predictive coding. Our framework comprises two
lightweight modules. First, the Geometry Re-Densification Module re-densifies
encoded sparse geometry, extracts features at denser scale, and then re-sparsifies
the features for predictive coding. This module avoids costly computation on
highly sparse details while maintaining a lightweight prediction head. Second, the
Cross-scale Feature Propagation Module leverages occupancy cues from multiple
resolution levels to guide hierarchical feature propagation. This design facilitates
information sharing across scales, thereby reducing redundant feature extraction
and providing enriched features for the Geometry Re-Densification Module. By
integrating these two modules, our method yields a compact feature representa-
tion that provides efficient context modeling and accelerates the coding process.
Experiments on the KITTI dataset demonstrate state-of-the-art compression ra-
tios and real-time performance, achieving 26 FPS for encoding/decoding at 12-bit
quantization. The code will be publicly available upon acceptance.

1 INTRODUCTION

With the rapid advancement of 3D sensing technologies, massive amounts of point cloud data have
been accumulated in various fields such as autonomous driving and mapping You et al. (2020). This
surge in data volume has led to an increasing demand for precise point cloud compression (PCC).
Currently, most PCC methods represent raw coordinate data using quantized structures such as range
images (Wang et al., 2022; Zhou et al., 2022; Wang & Liu, 2022; Stathoulopoulos et al., 2024),
voxels (Quach et al., 2019; He et al., 2022; Wang et al., 2025; Yu et al., 2025), or octrees (Biswas
et al., 2020; Huang et al., 2020; Que et al., 2021; Chen et al., 2022; Fu et al., 2022; Song et al.,
2023), and then apply techniques like prediction or transformation to achieve compression.

Although existing PCC methods have made significant progress in rate-distortion (RD) performance,
their foundational representations, voxels or octrees, exhibit inherent limitations in high-precision
compression scenarios. Both representations quantize a 3D space into discrete volumes, marking
each as occupied only if it contains at least one point. However, as shown in Fig. 1a and Fig. 1b,
with the quantization resolution increases, the local neighborhood around a given voxel becomes
increasingly sparse, drastically reducing the availability of contextual information. We term this
phenomenon as High-Resolution Contextual Sparsity (HRCS). In such cases, predicting the oc-
cupancy of a given voxel becomes particularly challenging due to the sparsity of context. However,
simply enlarging the receptive field typically incurs substantial computational overhead (where the
receptive field will grow cubic in 3D space), making it impractical for efficient compression.

To quantify HRCS, we conducted data statistics on all frames of the KITTI dataset. For the octree of
each sample, we collected two key statistics: (i) the total number of nodes at each level, and (ii) the
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Figure 1: Illustration of High-Resolution Contextual Sparsity (HRCS) phenomenon: (a) and (b) de-
pict the voxelized octree representations at levels 8 and 12 for a point cloud from the KITTI dataset,
respectively. The red bounding box highlights a 3×3×3 neighborhood centered at the same spatial
location. As the resolution increases, the number of valid context nodes within this neighborhood
drops sharply, from 21 nodes at level 8 to zero at level 12, which illustrates the emergence of HRCS.
(c) quantifies HRCS on the KITTI dataset, where the average number of neighbors per node de-
creases sharply with increasing octree level.

average number of occupied neighbors within a 3× 3× 3 cube centered at each node. As illustrated
in Fig. 1c, with increasing resolution (i.e., at deeper octree levels), the growth rate of the number of
nodes slows down significantly, while the average number of neighbors per node drops sharply. At
certain levels, the average number of neighbors even falls below one. Moreover, this decline exhibits
a marked inflection point at a specific octree level, indicating a nonlinear loss of contextual richness.

To solve the HRCS problem without compromising coding efficiency, this paper proposes a Geom-
etry Re-Densification (GRED) strategy. Specifically, given the task of encoding nodes Xl at level l,
GRED first traces back to a shallower level k, where Xk retains relatively denser neighborhood fea-
tures. Xk is then reverted to the original sparse domain through a series of lightweight convolutions
and upsampling operations. These features are spatially aligned with Xl which are subsequently uti-
lized to facilitate the occupancy prediction of Xl. Upon GRED, this paper proposes a Cross-Scale
Feature Propagation (XFP) module to better leverage information across different resolution levels.
Specifically, XFP combines dense features from shallow levels with sparse features from deeper lev-
els. The sparse features are first densified using GRED. Then, the features from both levels are fused
to predict the occupancy of octree nodes. This cross-scale fusion enables more accurate predictions
under sparse contextual conditions while maintaining computational efficiency.

In the following sections, we first review related work in PCC, followed by a detailed description of
GRED and XFP in the proposed method. In the experimental section, we evaluate our method on
two widely used datasets, KITTI (Geiger et al., 2012) and Ford (Pandey et al., 2011). The results
demonstrate the effectiveness and superiority of the proposed method.

2 RELATED WORK

This section summarizes the representative point cloud compression works up to now. According to
the different representation methods of point cloud data during the compression process, we classify
most of the existing PCC schemes into two categories: 1. Voxel-based PCC; 2. Octree-based PCC.

Voxel-based PCC. Voxel-based approaches split the point cloud into sufficiently small voxels, uti-
lizing sparse convolution (Tang et al., 2023) to optimize memory usage. Based on the voxel, many
PCC techniques have emerged (Wiesmann et al., 2021; Nguyen et al., 2021; Tzamarias et al., 2022;
Nguyen & Kaup, 2022; Pang et al., 2024; Zhang et al., 2025a; Meng et al., 2025; Zhang et al.,
2025b). For example, Wang et al. (2021) proposed a voxel-based geometry compression method
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that partitions point clouds into non-overlapping 3D cubes and leverages a variational autoencoder-
driven convolutional neural network to extract latent features and hyperpriors for entropy coding.
Recently, Wang et al. (2025) proposed a universal multiscale conditional coding framework, Uni-
corn, which leverages sparse tensors from voxelized point clouds and cross-scale temporal priors to
enhance geometry compression. Zhang & Gao (2025) proposed a dynamic point cloud compres-
sion framework based on voxelized data, featuring a slimmable architecture with multiple coding
routes for rate-distortion optimization, and a coarse-to-fine motion module to improve inter-frame
prediction.

Octree-based PCC. Octree-based approaches typically construct an L level octree by recursively
subdividing the point cloud within a pre-defined bounding volume, and achieve compression by
predicting the occupancy status of each octree node. Based on the octree structure, many PCC tech-
niques have emerged (Kammerl et al., 2012; Golla & Klein, 2015; Garcia & de Queiroz, 2017; Wen
et al., 2020; Luo et al., 2024). For example, Huang et al. (2020) proposed an octree-based com-
pression method that leverages a tree-structured conditional entropy model to exploit sparsity and
structural redundancy in LiDAR point clouds. Similarly, Fu et al. (2022) proposed an octree-based
deep learning framework that encodes point clouds by leveraging rich sibling and ancestor contexts
with an attention mechanism. Cui et al. (2023) proposed OctFormer, which constructs node se-
quences with non-overlapping context windows and shares attention results to reduce computation.
Song et al. (2023) proposed an octree-based entropy model with a hierarchical attention mecha-
nism and grouped context structure, reducing the complexity and decoding latency of large-scale
auto-regressive models.

In summary, both voxel-based and octree-based PCC approaches have seen substantial progress,
with learning-based methods outperforming traditional handcrafted-feature approaches (Mekuria
et al., 2017; Schwarz et al., 2019; Garcia et al., 2020; Song et al., 2021; Wang et al., 2022; Qin et al.,
2024; Cao et al., 2025) in terms of rate-distortion performance. However, under high-resolution
settings, both representations tend to suffer from HRCS. This sparsity significantly limits the effec-
tiveness of feature learning and representation. Despite its impact, this challenge remains largely
underexplored in current research.

3 METHOD

To address the HRCS problem and meet the requirements of real-time LiDAR PCC, this paper
proposes a fast encoding framework based on octree representation. The overall architecture is
illustrated in Fig. 2. The proposed framework comprises four key components: octree construction,
prior construction, cross-scale feature propagation, and entropy coding. In particular, this section
provides a detailed introduction to the Cross-Scale Feature Propagation module, with an emphasis
on its core component, namely the Geometry Re-Densification module.

3.1 GEOMETRY RE-DENSIFICATION MODULE

The irregular and unordered nature of LiDAR point clouds poses significant challenges for efficient
processing on modern hardware architectures. To better exploit existing hardware, most compres-
sion methods convert raw point clouds into octree structures. By recursively dividing space into
eight subcells at each level, octrees provide a compact and hierarchical representation of geometry.
The maximum level L of the octree controls reconstruction fidelity. With octree, existing codecs can
perform progressive, dense-to-sparse predictive coding of occupancy codes, modeling the distribu-
tion by exploiting contexts from encoded sibling nodes and ancestral nodes to minimize storage.

Despite the compact and regular structure of octree representations, they face the challenge of HRCS
in encoding high-resolution LiDAR point clouds. To address this problem, we propose a Geome-
try Re-Densification (GRED) module and integrate it into the dense-to-sparse progressive coding
pipeline. At each HRCS-affected level, GRED downsamples the sparse occupancy codes into denser
representations to enhance local context extraction, and then reverts to the original sparse domain
for effective prediction and entropy coding. Concretely, for each HRCS-affected level, the module
performs the following steps:

1. Re-Densification. Downsample the occupancy codes of the last encoded level into a denser
octree level, producing an aligned dense feature map with zero-padding for empty nodes.
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Figure 2: Pipeline of compressing a single octree level in the proposed LiDAR PCC framework.
The framework consists of four main stages: octree construction, prior construction, cross-scale
feature propagation, and entropy coding. The cross-scale feature propagation module comprises
two key components: the shallow-level propagation block and the deep-level propagation block,
both adapted from the geometry re-densification module to exploit cross-scale features.

2. Feature Extraction. Apply lightweight convolutions to the dense feature map to extract rich
local spatial representations.

3. Re-Sparsification. Recursively upsample and prune the dense features using the encoded
occupancy codes, producing a sparse feature map aligned with the nodes at current level.

4. Prediction & Coding. Use a multilayer perceptron (MLP)-based predictor on the sparse
feature map to estimate the occupancy distribution over 255 classes, and encode the true
occupancy codes using the predicted distribution.

Without loss of generality, we denote octree as X = {X1,X2, . . . ,XL}, where L is the maximum
level of octree, Xl ∈ {1, . . . , 255}N l

represents the occupancy sequence of all nodes at level l, and
N l denotes the number of nodes at that level. Lossless compression aims to approximate the true
occupancy distribution P (X) with an estimated distribution Q(X) by minimizing the cross-entropy:

H(P,Q) = EP (X) [− logQ(X)] . (1)

Standard octree-based codecs typically estimate the distribution of occupancy codes in a layer-wise
autoregressive manner, i.e., previously encoded levels serve as priors for predicting the current one:

Q(X) =

L∏
l=1

Q
(
Xl | X1:l−1

)
, (2)

where each conditional distribution is predicted by an occupancy predictor:

Q
(
Xl | X1:l−1

)
= Predictor

(
X1:l−1

)
. (3)

Different methods design various predictors to estimate this conditional distribution, often leverag-
ing spatial context or learned priors. However, as illustrated in Fig. 1c, this stage is exactly where
the HRCS problem emerges, limiting the predictor’s ability to make accurate estimations.

Suppose predictions are being made at level l. Given the encoded occupancy codes {Xk, · · · ,Xl−1},
to obtain denser context features, GRED first downsamples Xl−1 into a pre-defined dense octree
level k:

Gk = Downsampling
(
Xl−1

)
, (4)
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where the Downsampling(·) operation embeds the occupancy codes of l − 1 into feature maps at
level k using sparse convolutions. In Gk, each channel corresponds to a specific occupancy state
of a node at level l − 1, thereby enabling Re-Densification to enrich the context information with
higher density.

To extract contextual features, Gk is fed to a ResBlock for Feature Extraction, thereby obtaining
the feature Fk:

Fk = ResBlock
(
Gk

)
. (5)

Although it is possible to directly predict occupancy in this dense space, it would incur prohibitive
computational costs due to the vast number of potential sub-nodes. Instead, GRED progressively
reverts Fk to the original sparse space Fl through multi-step upsampling, thereby achieving the
Re-Sparsification of the features:

Fk+1 = Pruning
(
Upsampling

(
Fk

)
,Xk

)
, (6)

where Upsampling(·) is a linear transformation followed by a PReLU activation, performing an
8× channel expansion, and Pruning(·) discards features of unoccupied child nodes. This step is
recursively applied until the feature map Fl is obtained. This feature is then upsampled and fed into
an MLP-based predictor to estimate the occupancy distribution:

p̂l = Predictor
(
Fl

)
. (7)

Then the true occupancy codes Xl are entropy-encoded using p̂l, finishing Prediction & Coding.
Overall, GRED enriches the available context with low computational overhead, while preserving
the progressive reconstruction workflow of the decoder. It embodies the principle of dense feature,
sparse prediction.

Although many 3D tasks employ densification operations (Choe et al., 2022; Deng et al., 2024), such
as quantization and downsampling, before processing and analysis, LiDAR point cloud compression
presents a unique constraint: the decoder cannot access the full geometry at the beginning of decod-
ing. Therefore, globally pre-densifying all octree levels is infeasible. This insight, combined with
the observed nonlinear drop in occupancy density across octree levels, supports the necessity of
on-the-fly re-densification within a progressive octree coding pipeline.

3.2 CROSS-SCALE FEATURE PROPAGATION MODULE

While the proposed GRED module effectively mitigates HRCS, we delve into the rich inter-scale
contextual dependencies across the octree, such as the geometric context from ancestor nodes, to
improve occupancy prediction accuracy. Existing octree-based codecs typically extract features and
predict occupancy codes independently at each octree level or within local node windows. However,
this per-level processing overlooks the strong contextual dependencies across octree scales, leading
to redundant feature extraction and limited compression efficiency.

To fully leverage inter-scale context, we propose a unified Cross-Scale Feature Propagation (XFP)
Module that (i) directly propagates features across octree levels and (ii) generalizes the core idea of
the GRED Module into a broader, multi-scale framework. In fact, the GRED Module can be viewed
as a special case of XFP, applied only at the deepest levels. XFP shares features from coarser
(shallower) levels with finer (deeper) levels, avoiding redundant feature extraction and enhancing
contextual awareness. Overall, XFP leverages the octree’s hierarchical structure and sparse convo-
lution to efficiently construct a coherent multi-scale feature representation, which facilitates more
accurate occupancy prediction and compact encoding.

Suppose we are predicting the occupancy codes at level l, meaning that the feature maps
{F1, · · · ,Fl−1} and occupancy codes {X1, · · · ,Xl−1} are available. The first step in XFP is to
determine an appropriate feature propagation strategy. In this work, we define two propagation
regimes based on a pre-defined decision-making level t:

1. Shallow levels (l ≤ t): feature propagation is conducted without re-densification, as the
geometry remains relatively dense.

2. Deep levels (l > t): feature propagation incorporates contextual information from level k
through occupancy-based re-densification.

5
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Shallow-Level Propagation. For levels l ≤ t, the octree is relatively shallow and the contextual in-
formation is sufficiently dense, making the HRCS problem less prominent. At these levels, we adopt
a simplified version of the GRED module, omitting the Re-Densification step. The Feature Extrac-
tion and Re-Sparsification stages are accordingly adapted to balance computational complexity and
processing speed. The specific adaptations are as follows:

In the Feature Extraction step, since the re-densified feature G is omitted, the input is directly the
encoded feature from level l−1, denoted as Fl−1. A ResBlock is then applied to extract features,
obtain the representation Sl−1:

Sl−1 = ResBlock(Fl−1). (8)

Next, through one step of Re-Sparsification, Sl−1 is upsampled to level l to produce the re-sparsified
feature Fl:

Fl = Pruning
(
Upsampling

(
Concat

(
Sl−1,Xl−1

))
, Xl−1

)
, (9)

where Concat denotes channel-wise concatenation of matrices. The obtained feature Fl then un-
dergoes the same Prediction & Coding as GRED for occupancy estimation and entropy encoding.

Deep-Level Propagation with Re-Densification. For l > t, the spatial sparsity makes direct prop-
agation less effective. Therefore, we apply the full GRED module at these levels. However, during
this process, we aim to incorporate additional inter-scale contextual information to further enrich the
extracted features. As a result, the Feature Extraction and Re-Sparsification components of GRED
are adapted accordingly, as detailed below:

GRED utilizes the re-densified feature Gk for Feature Extraction. To fully leverage the information
from the previous scale, we concatenate Gk with the original feature map Fk and use ResBlock to
obtain the fused representation Hk:

Hk = ResBlock
(
Concat(Fk, Gk)

)
. (10)

The fused representation Hk will replace the original input feature Fk in the Re-Sparsification,
enabling the original features of different scales can be fused into the current level:

Fk+1 = Pruning
(
Upsampling

(
Concat(Hk,Xk)

)
, Xk

)
, k = t, . . . , l − 1. (11)

By recursively applying the above process, we obtain the feature Fl, which integrates contextual
information from the preceding l − t scales. Finally, Prediction & Coding is performed at level l
based on the feature Fl.

This cross-scale propagation scheme effectively reuses context-rich features from earlier levels and
adapts them to finer resolutions through sparse, occupancy-aware operations. By combining the
shallow and deep propagation pathways, the proposed XFP module unifies dense and sparse pro-
cessing into a single framework, enabling efficient and context-aware feature extraction throughout
the octree hierarchy.

4 EXPERIMENTS

In this section, we present a comprehensive experimental evaluation of our method, including im-
plementation details, comparative results with state-of-the-art approaches, and ablation studies.

4.1 SETTINGS

In this section, we detail the experimental setup, including the benchmark datasets, evaluation met-
rics, and comparative baselines. The implementation details are provided in the appendix.

Benchmark Datasets. Experiments are conducted on two different LiDAR datasets: KITTI (Geiger
et al., 2012) and Ford (Pandey et al., 2011) dataset. The KITTI dataset consists of 22 stereo se-
quences collected by a Velodyne LiDAR scanner across diverse continuous scenes, totaling 43,552
frames. Following Fu et al. (2022), we use sequences #00 to #10 for training and #11 to #21 for
testing. The Ford dataset comprises three distinct sequences (#01, #02, and #03), each containing
1,500 frames. Consistent with Song et al. (2023), we use sequence #01 for training, and sequences

6
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Figure 3: Rate-distortion performance comparison on the KITTI dataset (left two columns) and the
Ford dataset (rightmost column).

#02 and #03 for testing. Instead of training on each dataset separately for performance tuning, we
adopt joint training across both datasets to enhance generalization ability.

Evaluation Metrics. We adopt point-to-point PSNR (D1 PSNR) and point-to-plane PSNR (D2
PSNR) (Tian et al., 2017) for distortion measure. These are standard metrics recommended by
MPEG (Schwarz et al., 2019). We employ the Bjøntegaard Delta (BD) metrics (Bjøntegaard, 2001)
for evaluating rate-distortion performance, namely Bjøntegaard Delta Peak Signal-to-Noise Ratio
(BD-PSNR) and Bjøntegaard Delta Rate (BD-Rate). It is important to note that both BD-Rate and
BD-PSNR measure the relative gains of a tested model compared to a baseline. A negative BD-Rate
or a positive BD-PSNR indicates that the tested model outperforms the baseline.

Compared Methods. We compare 5 widely recognized PCC methods. Among them, G-
PCC (Schwarz et al., 2019), established by MPEG, serves as the standardized geometry-based
benchmark for PCC; OctAttention (Fu et al., 2022) and Light EHEM (Song et al., 2023) repre-
sent transformer-driven octree compression method; Unicorn (Wang et al., 2025) is a recent voxel-
based PCC method. Finally, RENO (You et al., 2025) introduces an efficient sampling strategy,
optimizing the trade-off between compression performance and computational speed. All methods
were re-evaluated using their official implementations under standardized experimental conditions,
except for EHEM and Unicorn, for which we rely on the originally reported metrics due to the
unavailability of their source code.

4.2 PERFORMANCE ANALYSIS

This section evaluates the proposed method in terms of rate-distortion performance, computational
efficiency, and qualitative visualization, providing a comprehensive assessment of its effectiveness.

Rate-Distortion Performance. This section presents the RD performance of the proposed method
compared to several existing methods, using two standard evaluation curves: D1 PSNR vs. Bits Per
input Point (BPP) and D2 PSNR vs. BPP. A curve closer to the upper-left corner indicates higher
reconstruction accuracy at lower bitrates, demonstrating better compression performance. The ex-
perimental results are illustrated in Fig. 3. Note that, Unicorn adopts different testing conditions on
the KITTI dataset compared to other methods, leading to unaligned metric results. To ensure a fair
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Table 1: BD-Rate (%) and BD-PSNR (dB) gains of our model over existing methods.

Ours vs. KITTI Ford
Existing BD-Rate (%) BD-PSNR (dB) BD-Rate (%) BD-PSNR (dB)
Methods D1 D2 D1 D2 D1 D2 D1 D2

OctAttention (Fu et al., 2022) -4.815 -4.869 0.644 0.650 - - - -
Light EHEM (Song et al., 2023) 1.405 1.398 -0.142 -0.143 14.444 14.920 -2.314 -2.375
Unicorn (Wang et al., 2025) -1.266 -1.494 0.210 0.238 6.633 6.702 -1.043 -1.058
RENO (You et al., 2025) -15.610 -15.607 1.892 1.895 -8.728 -8.718 1.512 1.512
G-PCC octree (Schwarz et al., 2019) -21.949 -21.972 2.536 2.545 -17.039 -17.033 2.997 2.998
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Figure 4: Comparison of encoding time and decoding time on the KITTI dataset.

comparison, we follow the same testing conditions as Unicorn and plot the resulting RD curves in
Fig. 3b and Fig. 3e. As observed on the KITTI dataset, our method achieves performance compa-
rable to the transformer-based Light EHEM, and outperforms the recent sparse convolution-based
method Unicorn at high bitrates, demonstrating clear advantages in RD performance. Moreover,
our method provides substantial computational efficiency improvements over both Light EHEM and
Unicorn, as discussed in the Computational Efficiency section. On the Ford dataset, the perfor-
mance is less favorable, yet our method still outperforms methods with similar coding latency, such
as RENO and G-PCC octree. This performance gap may be attributed to the limited number of train-
ing samples (only 1,500 frames). Table 1 provides quantitative RD performances of the proposed
method over existing methods. On the KITTI dataset, our method achieves an average gain of 2.536
dB (D1 PSNR) and 2.545 dB (D2 PSNR) over G-PCC, as well as 0.210 dB (D1 PSNR) and 0.238
dB (D2 PSNR) improvements over Unicorn. Compared to the efficiency-oriented method RENO,
our approach delivers 1.892 dB and 1.895 dB gains in D1 and D2 PSNR, respectively. These results
confirm that the proposed effectively exploits redundant information within the octree structure,
thereby improving compression performance.

Computational Efficiency. To evaluate the real-time performance of the proposed method, we mea-
sured the encoding and decoding times of our method and several existing baselines, as summarized
in Table 2. The reported times are averaged over 11-bit to 16-bit quantized point clouds of the KITTI
test set. The proposed method demonstrates faster runtime than most competing methods. Although
slightly slower than the efficiency-oriented method RENO, our method still maintains real-time pro-
cessing speed while achieving significantly better RD performance. For a more intuitive comparison,

Table 2: Comparison of average encoding time and decoding time across 11-16bits (in seconds).

KITTI Ford
Methods Enc Time Dec Time Enc Time Dec Time

OctAttention (Fu et al., 2022) 0.229 239.250 - -
Light EHEM (Song et al., 2023) 0.290 0.330 - -
Unicorn (Wang et al., 2025) 1.821 1.678 2.338 2.157
RENO (You et al., 2025) 0.059 0.056 0.072 0.057
G-PCC octree (Schwarz et al., 2019) 0.149 0.103 0.150 0.107
Ours 0.082 0.089 0.103 0.112
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Table 3: BD-Rate (%) and BD-PSNR (dB) gains of the proposed modules on the KITTI dataset.

Compared with Baseline Compared with G-PCC octree
Methods BD-Rate (%) BD-PSNR (dB) BD-Rate (%) BD-PSNR (dB)

D1 D2 D1 D2 D1 D2 D1 D2

Baseline 0 0 0 0 3.348 3.346 -0.361 -0.363
+ GRED -8.511 -8.495 0.940 0.939 -5.449 -5.433 0.576 0.573
+ GRED + XFP -26.245 -26.239 3.718 3.724 -21.949 -21.972 2.536 2.545

Fig. 4a plots the BD-PSNR gains against frames per second (FPS) on the 12-bit quantized KITTI
test set. Our method reaches 13 FPS for the overall encoding and decoding process, while delivering
a BD-PSNR gain of 2.54 dB over G-PCC, surpassing other methods with comparable compression
performance. To further evaluate the runtime across different reconstruction qualities, we compare
the encoding and decoding times of our method against comparable methods across different quanti-
zation precisions. As illustrated in Fig. 4b and Fig. 4c, our method consistently outperforms G-PCC
across most settings. At high quantization precision, the runtime becomes slightly longer than that
of RENO, likely due to the overhead introduced by the re-densification module. Nevertheless, our
method still maintains a competitive speed of approximately 10 FPS, which is sufficient for typical
point cloud processing scenarios. Under lower quantization precision, such as 12-bit, our method
achieves over 20 FPS for encoding/decoding. This speed is well aligned with the scanning rate of
mainstream LiDAR systems, enabling real-time coding of LiDAR point clouds. These results col-
lectively highlight the computational efficiency and practical applicability of the proposed method.

4.3 ABLATION STUDIES

To evaluate the individual contributions of the proposed components, we conduct ablation studies
on the GRED module and the XFP module. Each component is systematically removed to assess its
impact on overall compression performance.

Ablation of XFP. To evaluate the effectiveness of the proposed XFP module, we conducted an
ablation study by removing the cross-scale features. Quantitative results in Table 3 show that this
removal results in a degradation of approximately 2.778 dB (D1 PSNR) and 2.785 dB (D2 PSNR),
indicating that the integration of cross-scale information through XFP is critical for improving com-
pression efficiency.

Ablation of GRED. To evaluate the effectiveness of the proposed GRED module, we further re-
moved GRED on top of the XFP ablation. In this setting, the dense features extracted from the
shallowe level are no longer utilized for predicting the occupancy of deeper levels. As a result,
the model is directly exposed to the HRCS problem under high-resolution encoding. Quantitative
results in Table 3 show that removing the GRED module leads to a further performance drop of
approximately 0.940 dB. This performance gap highlights the positive impact of the GRED module
in mitigating the effects of HRCS and enhancing performance.

5 CONCLUSION

This paper addresses the challenge of HRCS in LiDAR point cloud compression, which poses a sig-
nificant obstacle to efficient occupancy prediction at high resolutions. To overcome this issue while
achieving real-time processing, we propose a novel compression framework that incorporates the
Geometry Re-densification (GRED) module and the Cross-scale Feature Propagation (XFP) module,
enabling efficient intra-scale and cross-scale context modeling. Extensive experiments demonstrate
that the proposed method achieves superior rate-distortion performance and competitive encoding
and decoding speeds, validating its effectiveness in terms of both compression quality and efficiency.

While the proposed framework demonstrates strong performance, it is primarily designed to vali-
date the core ideas of GRED and XFP. To ensure a clear evaluation of these modules, we exclude
the cross-scale parameter-sharing strategies used in prior works. In future work, we plan to ex-
plore level-aware neural blocks that enable parameter sharing across octree levels, with the goal of
enhancing parameter efficiency.
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REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide the complete source code of our method in the supplemen-
tary materials. Additionally, the appendix includes detailed descriptions of the data preprocessing
steps, and the training and testing configurations used in our experiments. These materials together
provide the necessary information for reproducing the results presented in the paper.
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APPENDIX

A DIFERENCES WITH EXISTING METHODS

To the best of our knowledge, this work is the first to explicitly identify and address the High-
Resolution Contextual Sparsity (HRCS) problem in point cloud compression. While it is difficult to
rigorously determine whether existing methods have implicitly mitigated HRCS in a generalizable
way, we carefully examine several representative approaches to clarify this issue.

Transformer-based Methods (e.g., EHEM, OctAttention). These methods represent octree nodes
as explicit feature vectors and use transformer architectures to capture long-range dependencies
between nodes, thereby enlarging the receptive field. However, it is important to note that such
methods essentially process octree nodes in a 1D sequence space, rather than in the native 3D space.
While their attention mechanism can implicitly model 3D geometry, it discards the explicit 3D struc-
tural information and instead depends heavily on learned embeddings. As a result, these methods
typically require large attention windows (e.g., 8192 nodes in Light EHEM) to achieve competitive
performance. According to our analysis, this leads to around 10× FLOPs compared to our approach.
Thus, while transformer-based methods might sidestep the HRCS problem by modeling 1D node
sequence via long-range attention, this comes at the cost of significantly increased computational
complexity and latency. Therefore, especially in scenarios where complexity or runtime is a con-
cern, such methods cannot be considered a viable solution to the HRCS problem.

Sparse Convolution-based Methods (e.g., SparsePCGC, Unicorn). These methods exploit voxel-
level neighborhoods via sparse convolutions in a coarse-to-fine reconstruction pipeline. By design,
sparse convolutions skip computation on empty voxels to improve efficiency. However, this sparsity
impedes information propagation across voxels when the point cloud is highly sparse at finer scales,
making these approaches particularly vulnerable to HRCS. For instance, if an occupied voxel is sur-
rounded by 26 empty neighbors (3 × 3 × 3 − 1), no amount of stacking 3 × 3 × 3 kernel sparse
convolutions can retrieve geometric context for this voxel, making this voxel actually isolated. Al-
though SparsePCGC alleviates this problem to some extent by increasing the depth of the convolu-
tion blocks, it suffers from high coding latency. In contrast, our method proposes GRED and XFP
modules, which explicitly aim to address HRCS.

In summary, while existing methods may touch on related ideas, none have explicitly recognized
HRCS as a core challenge or introduced a targeted solution for it. Our work is, to our knowledge, the
first to both formally define HRCS and provide an effective architectural mechanism to overcome
it. For clarity, we provide a visualization comparing the context modeling processes of existing
methods with our approach in Fig. 5, highlighting the key differences in design.
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Figure 5: Comparison of context flows in existing octree-based methods (left) and our approach
(right). Lines with different colors and numbers indicate different feature extraction and occu-
pancy prediction steps. In common designs, context flow is typically unidirectional, and encod-
ing/decoding at each octree level depends on geometry from multiple preceding levels. By contrast,
our approach adopts a bidirectional context flow at deeper octree levels, while at shallow levels, each
octree level relies only on the feature and geometry of the immediately preceding level.
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B DETAILED MODEL STRUCTURE

To provide a clearer understanding of the model structure and workflow of key modules in
our proposed network, we present a detailed breakdown of the Upsampling(·), ResBlock(·),
Downsampling(·), and Predictor(·) components. These modules are implemented using PyTorch
and TorchSparse (Tang et al., 2023), which enable efficient processing of sparse 3D data. The de-
tailed workflow is illustrated in Fig. 6.

Input feats: 𝑁 × 𝑐ℎ
Input coords: 𝑁 × 3

SparseConv3d

𝑐ℎ → 𝑐ℎ
kernel size=3
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+

ResBlock Workflow
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Linear 𝑐ℎ → 𝑐ℎ
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Figure 6: Illustration of the detailed workflows of the Upsampling(·), ResBlock(·),
Downsampling(·), and Predictor(·) modules within the proposed network architecture.

In the current implementation, our primary objective is to validate the core ideas of geometry re-
densification and cross-scale feature propagation. To ensure an isolated evaluation of the proposed
modules, we intentionally omit the cross-scale parameter-sharing mechanisms employed in previous
works. Consequently, our model is less parameter-efficient compared to prior methods, as shown in
Table 4, since the number of parameters increases linearly with the decrease of the pre-defined mini-
mum octree level (L−11 in this paper). For the remaining geometry at this maximum downsampling
level, we directly encode the coordinates based on their symbol frequencies. In future work, we plan
to improve parameter efficiency by introducing level-aware neural blocks that support parameter
sharing across octree levels.

Table 4: Comparison of the number of model parameters.

Methods PCGCv2 OctAttention EHEM Ours RENO

Number of parameters 0.77M 6.99M 13.01M 131.89M 0.28M

C IMPLEMENTATION DETAILS

This section outlines the details of our implementation, including quantization strategies for the
KITTI dataset, octree-based operations, training configurations, and evaluation metrics.

C.1 QUANTIZATION OF KITTI DATASET

The KITTI point clouds are not officially quantized, which has led to two different quantization
approaches:

1. The first approach normalizes the point clouds within a bounding box of size 400× 400×
400 centered at the origin (0, 0, 0), scales the coordinates by 216, and then applies quanti-
zation.
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2. The second approach, adopted by RENO (You et al., 2025), scales the original floating-
point coordinates by 10000, followed by quantization using an additional scale factor
posQ ∈ {8, 16, 32, 64, 128, 256, 512} to generate point clouds of different precision levels.

These two approaches yield point clouds of different fidelity, leading to different PSNR values even
under lossless compression settings, where the only distortion arises from the quantization process.
Consequently, in Fig. 3a and Fig. 3d, the RD points of RENO do not align with those of other
methods, despite all methods being lossless compression methods. While it is technically feasible
to unify the quantization strategy, we follow RENO’s official setting to report its results, as it better
reflects the method’s ideal RD performance.

For clarity, we refer to the highest-precision results from both quantization approaches as 16-bit
quantization throughout this paper. In our experiments, the octree level is varied from 11 to 16,
enabling control over the RD trade-off by adjusting the spatial resolution.

C.2 IMPLEMENTATION OF OCTREE OPERATIONS

Our model is implemented using PyTorch and TorchSparse. Two components are essential for en-
abling octree-based operations with sparse convolution: coordinate upsampling/downsampling and
occupancy code generation.

Coordinate Sampling. To efficiently generate node coordinates for all octree levels, we first sort
the input coordinates in Morton order, which exploits the hierarchical spatial locality between Mor-
ton codes and octree structures. Starting from the input coordinates, we repeatedly divide them by
2, apply floor rounding, and remove consecutive duplicates. This yields the coordinates of nodes
at progressively shallower octree levels. For coordinate upsampling, we reconstruct child node
coordinates by adding a pre-defined offset matrix (leveraging matrix broadcasting) to the parent co-
ordinates. We then apply a masking operation to discard coordinates corresponding to unoccupied
nodes. Importantly, this process preserves the original Morton order of the coordinate matrix, en-
suring perfect alignment between the encoder and decoder without the need for explicit reordering.

Occupancy Code Generation. To generate the 0–255 occupancy codes, we apply a fixed-weight
sparse convolution with kernel size 2 and stride 2, using an all-one input feature tensor. Each 8-
neighbor group (in 2 × 2 × 2) is encoded as an 8-bit occupancy code. For the reverse process, the
occupancy code can be efficiently decoded into binary masks using bitwise operations and matrix
broadcasting.

C.3 TRAINING

Loss Function. To train the proposed model, we adopt the standard cross-entropy loss, which
is widely used in the octree-based PCC. Specifically, the model outputs a probability distribution
Q ∈ RN×255, where each row corresponds to the predicted occupancy probability of one of the N
nodes over the 255 possible occupancy codes (from 1 to 255). Let the ground truth occupancy codes
be represented by X ∈ {1, . . . , 255}N . The loss function is defined as:

LCE = − 1

N

N∑
i=1

logQi,Xi
, (12)

where Qi,Xi denotes the predicted probability for the ground truth occupancy code Xi at the i-th
node. This loss encourages the model to assign higher probabilities to the correct occupancy codes.

Other Settings. We adopt the AdamW optimizer (Loshchilov & Hutter, 2019) with a weight decay
of 0.0001 and a learning rate of 0.0001. Gradient clipping is applied with a maximum norm threshold
of 1.0 to stabilize training. The model is trained for 60 epochs with a batch size of 8. All experiments
were conducted on a computer equipped with an AMD EPYC 7R32 CPU and 2× 4090 GPUs.
Training takes approximately 4 days on the KITTI dataset and around 6 hours on the Ford dataset.

D MORE QUANTITATIVE ANALYSIS

In this section, we provide further quantitative analysis to complement the main results.
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Figure 7: Rate-distortion performance comparison for ablation studies on GRED and XFP modules.
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Figure 8: Rate-distortion performance comparison for different choices of t on the KITTI dataset.

D.1 ABLATION ON GRED AND XFP MODULES

To evaluate the individual contributions of the proposed components, we conduct ablation studies on
the GRED and XFP modules. This results in three model variants: “Baseline”, “Baseline+GRED”,
and “Baseline+GRED+XFP”. In addition to the RD performance presented in Table 3, we provide
the corresponding RD curves in Fig. 7 for visual comparison. The results show that removing
XFP leads to a noticeable drop in performance across all bitrates. Removing GRED, on the other
hand, only affects performance at higher bitrates (i.e., under high-precision quantization). These
observations are consistent with the results in Table 3 and support our analysis regarding the HRCS
issue.

D.2 ABLATION ON THE CHOICE OF t

As demonstrated in the Method section, we apply the re-densification module only at levels l >
t, making t a key hyperparameter. A smaller t causes re-densification to be performed on more
levels, enabling more efficient context modeling but at the cost of higher re-densification overhead.
Moreover, applying re-densification to shallower levels with dense geometry is often redundant.
Therefore, the benefit of reducing t diminishes quickly. In our experiments, unless otherwise stated,
we set t = L− 4 by default, where L is the deepest octree level. Here, we compare the performance
of two settings: t = L − 4 and t = L − 3. The resulting RD performance is shown in Fig. 8
and Table 5. We can observe slight improvements at high precision when reducing t from L− 3 to
L−4. However, the average gain across all bitrates is relatively minor. Overall, the setting t = L−4
achieves a 0.76% bitrate reduction on the KITTI dataset.

Table 5: BD gains of the t = L− 4 setting over the t = L− 3 setting.

BD-Rate (%) BD-PSNR (dB)
D1 D2 D1 D2

KITTI -0.760 -0.759 0.093 0.093
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D.3 COMPUTATIONAL EFFICIENCY

We conducted additional experiments to measure the complexity during the encoding and decoding
process, and the results are summarized in Table 6. Note that the FLOPs of sparse convolution
depend on the sparsity of the input point clouds, which varies across samples. The reported FLOPs
of our model represent the average over the test set of the KITTI dataset. For comparison, we provide
the official metrics of Light EHEM in Table 7. Note that the FLOPs reported by Light EHEM are
measured per window (with 8192 octree nodes). To ensure a fair comparison, we converted this
into an expected average per sample by using the mean octree node count of quantized KITTI point
clouds. Based on the summarized results, it is evident that our approach is more efficient in terms of
hardware overhead and execution speed compared to the transformer-based method Light EHEM.

Table 6: Detailed complexity metrics of our model on the KITTI dataset.

Prec. (bits) Enc Mem (GB) Dec Mem (GB) Enc GFLOPs Dec GFLOPs Enc Time (s) Dec Time (s)

16 2.1 2.0 752.9 752.9 0.18 0.21
15 1.6 1.5 455.7 455.7 0.11 0.13
14 1.2 1.1 238.2 238.2 0.07 0.08
13 0.9 0.8 108.9 108.9 0.05 0.06
12 0.7 0.6 44.7 44.7 0.04 0.04
11 0.6 0.6 16.9 16.9 0.03 0.02

Table 7: Detailed complexity metrics of Light EHEM on the KITTI dataset.

Enc/Dec GFLOPs Number of Enc/Dec
Prec. (bits) Mem (GB) per Window Octree Nodes GFLOPs Enc Time (s) Dec Time (s)

16 2.6 102.9 421911.3 5299.6 1.63 1.94
15 2.6 102.9 302393.4 3798.4 - -
14 2.6 102.9 191616.0 2406.9 0.79 0.92
13 2.6 102.9 105002.2 1318.9 - -
12 2.6 102.9 49486.4 621.6 0.29 0.33
11 2.6 102.9 20591.8 258.7 - -

D.4 SEQUENCE-WISE PERFORMANCE

Considering the variation in sequence characteristics within the KITTI dataset, we provide sequence-
wise RD performance for further analysis and comparison among G-PCC, OctAttention, and our
method. The evaluation metrics include D1 PSNR, D2 PSNR, and Chamfer Distance (CD), a widely
adopted geometric distortion metric. The results are illustrated in Fig. 9 (sequences #11-#15) and
Fig. 10 (sequences #16-#20). These visualizations highlight the performance consistency and
robustness of our method across different scenes.

E QUALITATIVE ANALYSIS

To further evaluate the effectiveness of the proposed method, we visualize compression results at
three different bitrates, ranging from low to high. As shown in Fig. 11, the proposed method consis-
tently produces reconstructed point clouds with lower distortion under comparable bit rates. These
visual results align well with the findings in the Rate-Distortion Performance section, validating its
superiority in compression performance.

F LLM USAGE STATEMENT

We used a large language model (LLM) solely for language refinement of the manuscript. The
LLM did not contribute to the research ideas, experimental design, data analysis, or interpretation
of results.
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Figure 9: Sequence-wise rate-distortion performance comparison on the KITTI test sequences #11-
#15.
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Figure 10: Sequence-wise rate-distortion performance comparison on the KITTI test sequences
#16-#20.
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(a) Ours: 72.52dB (D1), 2.46BPP (b) RENO: 70.17dB (D1), 2.26BPP

(c) Ours: 78.55dB (D1), 4.11BPP (d) RENO: 76.21dB (D1), 4.17BPP

(e) Ours: 84.59dB (D1), 5.90BPP (f) RENO: 82.25dB (D1), 6.53BPP

0 0.01 0.02 0.03 0.04 0.05

Figure 11: Visualization of reconstruction quality of sample “11 000000.bin” at different quantiza-
tion precisions.
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