
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RE-DENSIFICATION MEETS CROSS-SCALE PROPAGA-
TION: REAL-TIME NEURAL COMPRESSION OF LIDAR
POINT CLOUDS

Anonymous authors
Paper under double-blind review

ABSTRACT

LiDAR point clouds are fundamental to various applications, yet high-precision
scans incur substantial storage and transmission overhead. Existing methods typ-
ically convert unordered points into hierarchical octree or voxel structures for
dense-to-sparse predictive coding. However, the extreme sparsity of geomet-
ric details hinders efficient context modeling, thereby limiting their compres-
sion performance and speed. To address this challenge, we propose to generate
compact features for efficient predictive coding. Our framework comprises two
lightweight modules. First, the Geometry Re-Densification Module re-densifies
encoded sparse geometry, extracts features at denser scale, and then re-sparsifies
the features for predictive coding. This module avoids costly computation on
highly sparse details while maintaining a lightweight prediction head. Second, the
Cross-scale Feature Propagation Module leverages occupancy cues from multiple
resolution levels to guide hierarchical feature propagation. This design facilitates
information sharing across scales, thereby reducing redundant feature extraction
and providing enriched features for the Geometry Re-Densification Module. By
integrating these two modules, our method yields a compact feature representa-
tion that provides efficient context modeling and accelerates the coding process.
Experiments on the KITTI dataset demonstrate state-of-the-art compression ra-
tios and real-time performance, achieving 26 FPS for encoding/decoding at 12-bit
quantization. The code will be publicly available upon acceptance.

1 INTRODUCTION

With the rapid advancement of 3D sensing technologies, massive amounts of point cloud data have
been accumulated in various fields such as autonomous driving and mapping You et al. (2020). This
surge in data volume has led to an increasing demand for precise point cloud compression (PCC).
Currently, most PCC methods represent raw coordinate data using quantized structures such as range
images (Wang et al., 2022; Zhou et al., 2022; Wang & Liu, 2022; Stathoulopoulos et al., 2024),
voxels (Quach et al., 2019; He et al., 2022; Wang et al., 2025; Yu et al., 2025), or octrees (Biswas
et al., 2020; Huang et al., 2020; Que et al., 2021; Chen et al., 2022; Fu et al., 2022; Song et al.,
2023), and then apply techniques like prediction or transformation to achieve compression.

Although existing PCC methods have made significant progress in rate-distortion (RD) performance,
their foundational representations, voxels or octrees, exhibit inherent limitations in high-precision
compression scenarios. Both representations quantize a 3D space into discrete volumes, marking
each as occupied only if it contains at least one point. However, as shown in Fig. 1a and Fig. 1b,
with the quantization resolution increases, the local neighborhood around a given voxel becomes
increasingly sparse, drastically reducing the availability of contextual information. We term this
phenomenon as High-Resolution Contextual Sparsity (HRCS). In such cases, predicting the oc-
cupancy of a given voxel becomes particularly challenging due to the sparsity of context. However,
simply enlarging the receptive field typically incurs substantial computational overhead (where the
receptive field will grow cubic in 3D space), making it impractical for efficient compression.

To quantify HRCS, we conducted data statistics on all frames of the KITTI dataset. For the octree of
each sample, we collected two key statistics: (i) the total number of nodes at each level, and (ii) the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(a)

(b)

8 10 12 14 16
Octree Level

0

20k

40k

60k

80k

100k

120k

N
um

be
r o

f O
ct

re
e

N
od

es

Octree Nodes
Neighbors

0

2

4

6

8

N
um

be
r o

f N
ei

gh
bo

rs

Number of Octree Nodes and Neighbors vs. Level

(c)

Figure 1: Illustration of High-Resolution Contextual Sparsity (HRCS) phenomenon: (a) and (b) de-
pict the voxelized octree representations at levels 8 and 12 for a point cloud from the KITTI dataset,
respectively. The red bounding box highlights a 3×3×3 neighborhood centered at the same spatial
location. As the resolution increases, the number of valid context nodes within this neighborhood
drops sharply, from 21 nodes at level 8 to zero at level 12, which illustrates the emergence of HRCS.
(c) quantifies HRCS on the KITTI dataset, where the average number of neighbors per node de-
creases sharply with increasing octree level.

average number of occupied neighbors within a 3× 3× 3 cube centered at each node. As illustrated
in Fig. 1c, with increasing resolution (i.e., at deeper octree levels), the growth rate of the number of
nodes slows down significantly, while the average number of neighbors per node drops sharply. At
certain levels, the average number of neighbors even falls below one. Moreover, this decline exhibits
a marked inflection point at a specific octree level, indicating a nonlinear loss of contextual richness.

To solve the HRCS problem without compromising coding efficiency, this paper proposes a Geom-
etry Re-Densification (GRED) strategy. Specifically, given the task of encoding nodes Xl at level l,
GRED first traces back to a shallower level k, where Xk retains relatively denser neighborhood fea-
tures. Xk is then reverted to the original sparse domain through a series of lightweight convolutions
and upsampling operations. These features are spatially aligned with Xl which are subsequently uti-
lized to facilitate the occupancy prediction of Xl. Upon GRED, this paper proposes a Cross-Scale
Feature Propagation (XFP) module to better leverage information across different resolution levels.
Specifically, XFP combines dense features from shallow levels with sparse features from deeper lev-
els. The sparse features are first densified using GRED. Then, the features from both levels are fused
to predict the occupancy of octree nodes. This cross-scale fusion enables more accurate predictions
under sparse contextual conditions while maintaining computational efficiency.

In the following sections, we first review related work in PCC, followed by a detailed description of
GRED and XFP in the proposed method. In the experimental section, we evaluate our method on
two widely used datasets, KITTI (Geiger et al., 2012) and Ford (Pandey et al., 2011). The results
demonstrate the effectiveness and superiority of the proposed method.

2 RELATED WORK

This section summarizes the representative point cloud compression works up to now. According to
the different representation methods of point cloud data during the compression process, we classify
most of the existing PCC schemes into two categories: 1. Voxel-based PCC; 2. Octree-based PCC.

Voxel-based PCC. Voxel-based approaches split the point cloud into sufficiently small voxels, uti-
lizing sparse convolution (Tang et al., 2023) to optimize memory usage. Based on the voxel, many
PCC techniques have emerged (Wiesmann et al., 2021; Nguyen et al., 2021; Tzamarias et al., 2022;
Nguyen & Kaup, 2022; Pang et al., 2024; Zhang et al., 2025a; Meng et al., 2025; Zhang et al.,
2025b). For example, Wang et al. (2021) proposed a voxel-based geometry compression method

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

that partitions point clouds into non-overlapping 3D cubes and leverages a variational autoencoder-
driven convolutional neural network to extract latent features and hyperpriors for entropy coding.
Recently, Wang et al. (2025) proposed a universal multiscale conditional coding framework, Uni-
corn, which leverages sparse tensors from voxelized point clouds and cross-scale temporal priors to
enhance geometry compression. Zhang & Gao (2025) proposed a dynamic point cloud compres-
sion framework based on voxelized data, featuring a slimmable architecture with multiple coding
routes for rate-distortion optimization, and a coarse-to-fine motion module to improve inter-frame
prediction.

Octree-based PCC. Octree-based approaches typically construct an L level octree by recursively
subdividing the point cloud within a pre-defined bounding volume, and achieve compression by
predicting the occupancy status of each octree node. Based on the octree structure, many PCC tech-
niques have emerged (Kammerl et al., 2012; Golla & Klein, 2015; Garcia & de Queiroz, 2017; Wen
et al., 2020; Luo et al., 2024). For example, Huang et al. (2020) proposed an octree-based com-
pression method that leverages a tree-structured conditional entropy model to exploit sparsity and
structural redundancy in LiDAR point clouds. Similarly, Fu et al. (2022) proposed an octree-based
deep learning framework that encodes point clouds by leveraging rich sibling and ancestor contexts
with an attention mechanism. Cui et al. (2023) proposed OctFormer, which constructs node se-
quences with non-overlapping context windows and shares attention results to reduce computation.
Song et al. (2023) proposed an octree-based entropy model with a hierarchical attention mecha-
nism and grouped context structure, reducing the complexity and decoding latency of large-scale
auto-regressive models.

In summary, both voxel-based and octree-based PCC approaches have seen substantial progress,
with learning-based methods outperforming traditional handcrafted-feature approaches (Mekuria
et al., 2017; Schwarz et al., 2019; Garcia et al., 2020; Song et al., 2021; Wang et al., 2022; Qin et al.,
2024; Cao et al., 2025) in terms of rate-distortion performance. However, under high-resolution
settings, both representations tend to suffer from HRCS. This sparsity significantly limits the effec-
tiveness of feature learning and representation. Despite its impact, this challenge remains largely
underexplored in current research.

3 METHOD

To address the HRCS problem and meet the requirements of real-time LiDAR PCC, this paper
proposes a fast encoding framework based on octree representation. The overall architecture is
illustrated in Fig. 2. The proposed framework comprises four key components: octree construction,
prior construction, cross-scale feature propagation, and entropy coding. In particular, this section
provides a detailed introduction to the Cross-Scale Feature Propagation module, with an emphasis
on its core component, namely the Geometry Re-Densification module.

3.1 GEOMETRY RE-DENSIFICATION MODULE

The irregular and unordered nature of LiDAR point clouds poses significant challenges for efficient
processing on modern hardware architectures. To better exploit existing hardware, most compres-
sion methods convert raw point clouds into octree structures. By recursively dividing space into
eight subcells at each level, octrees provide a compact and hierarchical representation of geometry.
The maximum level L of the octree controls reconstruction fidelity. With octree, existing codecs can
perform progressive, dense-to-sparse predictive coding of occupancy codes, modeling the distribu-
tion by exploiting contexts from encoded sibling nodes and ancestral nodes to minimize storage.

Despite the compact and regular structure of octree representations, they face the challenge of HRCS
in encoding high-resolution LiDAR point clouds. To address this problem, we propose a Geome-
try Re-Densification (GRED) module and integrate it into the dense-to-sparse progressive coding
pipeline. At each HRCS-affected level, GRED downsamples the sparse occupancy codes into denser
representations to enhance local context extraction, and then reverts to the original sparse domain
for effective prediction and entropy coding. Concretely, for each HRCS-affected level, the module
performs the following steps:

1. Re-Densification. Downsample the occupancy codes of the last encoded level into a denser
octree level, producing an aligned dense feature map with zero-padding for empty nodes.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

164

8 0 128 0 0 8 0 0

0 0 0 0 9 0 0 0

21

𝑙
>
𝑡
?

False

True

Shallow-Level

Propagation

Deep-Level

Propagation

ෝ𝐩𝑙

𝐗𝑙

Octree construction Prior construction Cross-Scale Feature Propagation Entropy Coding

𝐅𝑙

U
p
sam

p
lin

g

R
esB

lo
ck

𝐗𝑙−1

P
ru

n
in

g

𝐅𝑘+1𝐆𝑘 𝐅𝑘

𝑘
=
𝑙

𝑘 = 𝑘 + 1
False

T
ru
e

𝐅𝑙

U
p
sam

p
lin

g

R
esB

lo
ck

P
ru

n
in

g

𝐅𝑘+1

𝐆𝑘

𝐇𝑘

𝑘
=
𝑙

𝑘 = 𝑘 + 1
False

T
ru
e

𝐗𝑙−1

𝐅𝒌

𝐅𝑙

U
p
sam

p
lin

g

R
esB

lo
ck

P
ru

n
in

g

𝐒𝑙−1

𝐗𝑙−1

𝐅𝑙−1

Geometry Re-Densification Module Deep-Level PropagationShallow-Level Propagation

⋯

⋯

𝐗𝑘 𝐗𝑘

Entropy

Encoder

Entropy

Decoder

0

9

0

0

0

⋯

Decoded 𝐗𝑙

Bitstream

⋯

Cross-Scale

Adaptation

Cross-Scale

Adaptation

Occupancy code matrices

{𝐗0, 𝐗1,⋯ , 𝐗𝑙−1}

Feature matrices

{𝐅0, 𝐅1,⋯ , 𝐅𝑙−1}

Nodes from level 0 to 𝑙 − 1:

Occupancy code: 21,⋯
Coordinate: 0,0,0 ,⋯
Level: 0,⋯ , 𝑙 − 1 P

red
icto

r

D
o

w
n

sam
p

lin
g

D
o

w
n

sam
p

lin
g

Figure 2: Pipeline of compressing a single octree level in the proposed LiDAR PCC framework.
The framework consists of four main stages: octree construction, prior construction, cross-scale
feature propagation, and entropy coding. The cross-scale feature propagation module comprises
two key components: the shallow-level propagation block and the deep-level propagation block,
both adapted from the geometry re-densification module to exploit cross-scale features.

2. Feature Extraction. Apply lightweight convolutions to the dense feature map to extract rich
local spatial representations.

3. Re-Sparsification. Recursively upsample and prune the dense features using the encoded
occupancy codes, producing a sparse feature map aligned with the nodes at current level.

4. Prediction & Coding. Use a multilayer perceptron (MLP)-based predictor on the sparse
feature map to estimate the occupancy distribution over 255 classes, and encode the true
occupancy codes using the predicted distribution.

Without loss of generality, we denote octree as X = {X1,X2, . . . ,XL}, where L is the maximum
level of octree, Xl ∈ {1, . . . , 255}N l

represents the occupancy sequence of all nodes at level l, and
N l denotes the number of nodes at that level. Lossless compression aims to approximate the true
occupancy distribution P (X) with an estimated distribution Q(X) by minimizing the cross-entropy:

H(P,Q) = EP (X) [− logQ(X)] . (1)

Standard octree-based codecs typically estimate the distribution of occupancy codes in a layer-wise
autoregressive manner, i.e., previously encoded levels serve as priors for predicting the current one:

Q(X) =

L∏
l=1

Q
(
Xl | X1:l−1

)
, (2)

where each conditional distribution is predicted by an occupancy predictor:

Q
(
Xl | X1:l−1

)
= Predictor

(
X1:l−1

)
. (3)

Different methods design various predictors to estimate this conditional distribution, often leverag-
ing spatial context or learned priors. However, as illustrated in Fig. 1c, this stage is exactly where
the HRCS problem emerges, limiting the predictor’s ability to make accurate estimations.

Suppose predictions are being made at level l. Given the encoded occupancy codes {Xk, · · · ,Xl−1},
to obtain denser context features, GRED first downsamples Xl−1 into a pre-defined dense octree
level k:

Gk = Downsampling
(
Xl−1

)
, (4)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where the Downsampling(·) operation embeds the occupancy codes of l − 1 into feature maps at
level k using sparse convolutions. In Gk, each channel corresponds to a specific occupancy state
of a node at level l − 1, thereby enabling Re-Densification to enrich the context information with
higher density.

To extract contextual features, Gk is fed to a ResBlock for Feature Extraction, thereby obtaining
the feature Fk:

Fk = ResBlock
(
Gk

)
. (5)

Although it is possible to directly predict occupancy in this dense space, it would incur prohibitive
computational costs due to the vast number of potential sub-nodes. Instead, GRED progressively
reverts Fk to the original sparse space Fl through multi-step upsampling, thereby achieving the
Re-Sparsification of the features:

Fk+1 = Pruning
(
Upsampling

(
Fk

)
,Xk

)
, (6)

where Upsampling(·) is a linear transformation followed by a PReLU activation, performing an
8× channel expansion, and Pruning(·) discards features of unoccupied child nodes. This step is
recursively applied until the feature map Fl is obtained. This feature is then upsampled and fed into
an MLP-based predictor to estimate the occupancy distribution:

p̂l = Predictor
(
Fl

)
. (7)

Then the true occupancy codes Xl are entropy-encoded using p̂l, finishing Prediction & Coding.
Overall, GRED enriches the available context with low computational overhead, while preserving
the progressive reconstruction workflow of the decoder. It embodies the principle of dense feature,
sparse prediction.

Although many 3D tasks employ densification operations (Choe et al., 2022; Deng et al., 2024), such
as quantization and downsampling, before processing and analysis, LiDAR point cloud compression
presents a unique constraint: the decoder cannot access the full geometry at the beginning of decod-
ing. Therefore, globally pre-densifying all octree levels is infeasible. This insight, combined with
the observed nonlinear drop in occupancy density across octree levels, supports the necessity of
on-the-fly re-densification within a progressive octree coding pipeline.

3.2 CROSS-SCALE FEATURE PROPAGATION MODULE

While the proposed GRED module effectively mitigates HRCS, we delve into the rich inter-scale
contextual dependencies across the octree, such as the geometric context from ancestor nodes, to
improve occupancy prediction accuracy. Existing octree-based codecs typically extract features and
predict occupancy codes independently at each octree level or within local node windows. However,
this per-level processing overlooks the strong contextual dependencies across octree scales, leading
to redundant feature extraction and limited compression efficiency.

To fully leverage inter-scale context, we propose a unified Cross-Scale Feature Propagation (XFP)
Module that (i) directly propagates features across octree levels and (ii) generalizes the core idea of
the GRED Module into a broader, multi-scale framework. In fact, the GRED Module can be viewed
as a special case of XFP, applied only at the deepest levels. XFP shares features from coarser
(shallower) levels with finer (deeper) levels, avoiding redundant feature extraction and enhancing
contextual awareness. Overall, XFP leverages the octree’s hierarchical structure and sparse convo-
lution to efficiently construct a coherent multi-scale feature representation, which facilitates more
accurate occupancy prediction and compact encoding.

Suppose we are predicting the occupancy codes at level l, meaning that the feature maps
{F1, · · · ,Fl−1} and occupancy codes {X1, · · · ,Xl−1} are available. The first step in XFP is to
determine an appropriate feature propagation strategy. In this work, we define two propagation
regimes based on a pre-defined decision-making level t:

1. Shallow levels (l ≤ t): feature propagation is conducted without re-densification, as the
geometry remains relatively dense.

2. Deep levels (l > t): feature propagation incorporates contextual information from level k
through occupancy-based re-densification.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Shallow-Level Propagation. For levels l ≤ t, the octree is relatively shallow and the contextual in-
formation is sufficiently dense, making the HRCS problem less prominent. At these levels, we adopt
a simplified version of the GRED module, omitting the Re-Densification step. The Feature Extrac-
tion and Re-Sparsification stages are accordingly adapted to balance computational complexity and
processing speed. The specific adaptations are as follows:

In the Feature Extraction step, since the re-densified feature G is omitted, the input is directly the
encoded feature from level l−1, denoted as Fl−1. A ResBlock is then applied to extract features,
obtain the representation Sl−1:

Sl−1 = ResBlock(Fl−1). (8)

Next, through one step of Re-Sparsification, Sl−1 is upsampled to level l to produce the re-sparsified
feature Fl:

Fl = Pruning
(
Upsampling

(
Concat

(
Sl−1,Xl−1

))
, Xl−1

)
, (9)

where Concat denotes channel-wise concatenation of matrices. The obtained feature Fl then un-
dergoes the same Prediction & Coding as GRED for occupancy estimation and entropy encoding.

Deep-Level Propagation with Re-Densification. For l > t, the spatial sparsity makes direct prop-
agation less effective. Therefore, we apply the full GRED module at these levels. However, during
this process, we aim to incorporate additional inter-scale contextual information to further enrich the
extracted features. As a result, the Feature Extraction and Re-Sparsification components of GRED
are adapted accordingly, as detailed below:

GRED utilizes the re-densified feature Gk for Feature Extraction. To fully leverage the information
from the previous scale, we concatenate Gk with the original feature map Fk and use ResBlock to
obtain the fused representation Hk:

Hk = ResBlock
(
Concat(Fk, Gk)

)
. (10)

The fused representation Hk will replace the original input feature Fk in the Re-Sparsification,
enabling the original features of different scales can be fused into the current level:

Fk+1 = Pruning
(
Upsampling

(
Concat(Hk,Xk)

)
, Xk

)
, k = t, . . . , l − 1. (11)

By recursively applying the above process, we obtain the feature Fl, which integrates contextual
information from the preceding l − t scales. Finally, Prediction & Coding is performed at level l
based on the feature Fl.

This cross-scale propagation scheme effectively reuses context-rich features from earlier levels and
adapts them to finer resolutions through sparse, occupancy-aware operations. By combining the
shallow and deep propagation pathways, the proposed XFP module unifies dense and sparse pro-
cessing into a single framework, enabling efficient and context-aware feature extraction throughout
the octree hierarchy.

4 EXPERIMENTS

In this section, we present a comprehensive experimental evaluation of our method, including im-
plementation details, comparative results with state-of-the-art approaches, and ablation studies.

4.1 SETTINGS

In this section, we detail the experimental setup, including the benchmark datasets, evaluation met-
rics, and comparative baselines. The implementation details are provided in the appendix.

Benchmark Datasets. Experiments are conducted on two different LiDAR datasets: KITTI (Geiger
et al., 2012) and Ford (Pandey et al., 2011) dataset. The KITTI dataset consists of 22 stereo se-
quences collected by a Velodyne LiDAR scanner across diverse continuous scenes, totaling 43,552
frames. Following Fu et al. (2022), we use sequences #00 to #10 for training and #11 to #21 for
testing. The Ford dataset comprises three distinct sequences (#01, #02, and #03), each containing
1,500 frames. Consistent with Song et al. (2023), we use sequence #01 for training, and sequences

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

60

65

70

75

80

85

90
D

1
PS

N
R

 (d
B

)

D1 PSNR vs. BPP (KITTI)

Ours
Light EHEM
OctAttention
RENO
G-PCC octree

(a)

1 2 3 4 5 6 7 8 9
BPP (Bits Per Input Point)

55

60

65

70

75

80

85

D
1

PS
N

R
 (d

B
)

D1 PSNR vs. BPP (KITTI q1mm)

Ours
Unicorn

(b)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
BPP (Bits Per Input Point)

60

65

70

75

80

85

D
1

PS
N

R
 (d

B
)

D1 PSNR vs. BPP (Ford)

Ours
Light EHEM
RENO
G-PCC octree
Unicorn

(c)

0 1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

65

70

75

80

85

90

95

D
2

PS
N

R
 (d

B
)

D2 PSNR vs. BPP (KITTI)

Ours
Light EHEM
OctAttention
RENO
G-PCC octree

(d)

1 2 3 4 5 6 7 8 9
BPP (Bits Per Input Point)

60

65

70

75

80

85

90
D

2
PS

N
R

 (d
B

)

D2 PSNR vs. BPP (KITTI q1mm)

Ours
Unicorn

(e)

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
BPP (Bits Per Input Point)

65

70

75

80

85

90

D
2

PS
N

R
 (d

B
)

D2 PSNR vs. BPP (Ford)

Ours
Light EHEM
RENO
G-PCC octree
Unicorn

(f)

Figure 3: Rate-distortion performance comparison on the KITTI dataset (left two columns) and the
Ford dataset (rightmost column).

#02 and #03 for testing. Instead of training on each dataset separately for performance tuning, we
adopt joint training across both datasets to enhance generalization ability.

Evaluation Metrics. We adopt point-to-point PSNR (D1 PSNR) and point-to-plane PSNR (D2
PSNR) (Tian et al., 2017) for distortion measure. These are standard metrics recommended by
MPEG (Schwarz et al., 2019). We employ the Bjøntegaard Delta (BD) metrics (Bjøntegaard, 2001)
for evaluating rate-distortion performance, namely Bjøntegaard Delta Peak Signal-to-Noise Ratio
(BD-PSNR) and Bjøntegaard Delta Rate (BD-Rate). It is important to note that both BD-Rate and
BD-PSNR measure the relative gains of a tested model compared to a baseline. A negative BD-Rate
or a positive BD-PSNR indicates that the tested model outperforms the baseline.

Compared Methods. We compare 5 widely recognized PCC methods. Among them, G-
PCC (Schwarz et al., 2019), established by MPEG, serves as the standardized geometry-based
benchmark for PCC; OctAttention (Fu et al., 2022) and Light EHEM (Song et al., 2023) repre-
sent transformer-driven octree compression method; Unicorn (Wang et al., 2025) is a recent voxel-
based PCC method. Finally, RENO (You et al., 2025) introduces an efficient sampling strategy,
optimizing the trade-off between compression performance and computational speed. All methods
were re-evaluated using their official implementations under standardized experimental conditions,
except for EHEM and Unicorn, for which we rely on the originally reported metrics due to the
unavailability of their source code.

4.2 PERFORMANCE ANALYSIS

This section evaluates the proposed method in terms of rate-distortion performance, computational
efficiency, and qualitative visualization, providing a comprehensive assessment of its effectiveness.

Rate-Distortion Performance. This section presents the RD performance of the proposed method
compared to several existing methods, using two standard evaluation curves: D1 PSNR vs. Bits Per
input Point (BPP) and D2 PSNR vs. BPP. A curve closer to the upper-left corner indicates higher
reconstruction accuracy at lower bitrates, demonstrating better compression performance. The ex-
perimental results are illustrated in Fig. 3. Note that, Unicorn adopts different testing conditions on
the KITTI dataset compared to other methods, leading to unaligned metric results. To ensure a fair

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: BD-Rate (%) and BD-PSNR (dB) gains of our model over existing methods.

Ours vs. KITTI Ford
Existing BD-Rate (%) BD-PSNR (dB) BD-Rate (%) BD-PSNR (dB)
Methods D1 D2 D1 D2 D1 D2 D1 D2

OctAttention (Fu et al., 2022) -4.815 -4.869 0.644 0.650 - - - -
Light EHEM (Song et al., 2023) 1.405 1.398 -0.142 -0.143 14.444 14.920 -2.314 -2.375
Unicorn (Wang et al., 2025) -1.266 -1.494 0.210 0.238 6.633 6.702 -1.043 -1.058
RENO (You et al., 2025) -15.610 -15.607 1.892 1.895 -8.728 -8.718 1.512 1.512
G-PCC octree (Schwarz et al., 2019) -21.949 -21.972 2.536 2.545 -17.039 -17.033 2.997 2.998

0 5 10 15 20
FPS of Encoding and Decoding at 12-bit Precision

0

1

2

3

B
D

 D
1

PS
N

R
 G

ai
ns

 (d
B

) o
ve

r G
-P

C
C

Better

BD Gains (dB) vs. FPS (frames/s)

Ours
Light EHEM
Unicorn
OctAttention
RENO
G-PCC octree

(a)

60 65 70 75 80 85 90
D1 PSNR (dB)

0.05

0.10

0.15

0.20

0.25

En
co

di
ng

 T
im

e
(s

)

Encoding Time vs. D1 PSNR (KITTI)

Ours
RENO
G-PCC octree

(b)

60 65 70 75 80 85
D1 PSNR (dB)

0.05

0.10

0.15

D
ec

od
in

g
Ti

m
e

(s
)

Decoding Time vs. D1 PSNR (KITTI)

Ours
RENO
G-PCC octree

(c)

Figure 4: Comparison of encoding time and decoding time on the KITTI dataset.

comparison, we follow the same testing conditions as Unicorn and plot the resulting RD curves in
Fig. 3b and Fig. 3e. As observed on the KITTI dataset, our method achieves performance compa-
rable to the transformer-based Light EHEM, and outperforms the recent sparse convolution-based
method Unicorn at high bitrates, demonstrating clear advantages in RD performance. Moreover,
our method provides substantial computational efficiency improvements over both Light EHEM and
Unicorn, as discussed in the Computational Efficiency section. On the Ford dataset, the perfor-
mance is less favorable, yet our method still outperforms methods with similar coding latency, such
as RENO and G-PCC octree. This performance gap may be attributed to the limited number of train-
ing samples (only 1,500 frames). Table 1 provides quantitative RD performances of the proposed
method over existing methods. On the KITTI dataset, our method achieves an average gain of 2.536
dB (D1 PSNR) and 2.545 dB (D2 PSNR) over G-PCC, as well as 0.210 dB (D1 PSNR) and 0.238
dB (D2 PSNR) improvements over Unicorn. Compared to the efficiency-oriented method RENO,
our approach delivers 1.892 dB and 1.895 dB gains in D1 and D2 PSNR, respectively. These results
confirm that the proposed effectively exploits redundant information within the octree structure,
thereby improving compression performance.

Computational Efficiency. To evaluate the real-time performance of the proposed method, we mea-
sured the encoding and decoding times of our method and several existing baselines, as summarized
in Table 2. The reported times are averaged over 11-bit to 16-bit quantized point clouds of the KITTI
test set. The proposed method demonstrates faster runtime than most competing methods. Although
slightly slower than the efficiency-oriented method RENO, our method still maintains real-time pro-
cessing speed while achieving significantly better RD performance. For a more intuitive comparison,

Table 2: Comparison of average encoding time and decoding time across 11-16bits (in seconds).

KITTI Ford
Methods Enc Time Dec Time Enc Time Dec Time

OctAttention (Fu et al., 2022) 0.229 239.250 - -
Light EHEM (Song et al., 2023) 0.290 0.330 - -
Unicorn (Wang et al., 2025) 1.821 1.678 2.338 2.157
RENO (You et al., 2025) 0.059 0.056 0.072 0.057
G-PCC octree (Schwarz et al., 2019) 0.149 0.103 0.150 0.107
Ours 0.082 0.089 0.103 0.112

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 3: BD-Rate (%) and BD-PSNR (dB) gains of the proposed modules on the KITTI dataset.

Compared with Baseline Compared with G-PCC octree
Methods BD-Rate (%) BD-PSNR (dB) BD-Rate (%) BD-PSNR (dB)

D1 D2 D1 D2 D1 D2 D1 D2

Baseline 0 0 0 0 3.348 3.346 -0.361 -0.363
+ GRED -8.511 -8.495 0.940 0.939 -5.449 -5.433 0.576 0.573
+ GRED + XFP -26.245 -26.239 3.718 3.724 -21.949 -21.972 2.536 2.545

Fig. 4a plots the BD-PSNR gains against frames per second (FPS) on the 12-bit quantized KITTI
test set. Our method reaches 13 FPS for the overall encoding and decoding process, while delivering
a BD-PSNR gain of 2.54 dB over G-PCC, surpassing other methods with comparable compression
performance. To further evaluate the runtime across different reconstruction qualities, we compare
the encoding and decoding times of our method against comparable methods across different quanti-
zation precisions. As illustrated in Fig. 4b and Fig. 4c, our method consistently outperforms G-PCC
across most settings. At high quantization precision, the runtime becomes slightly longer than that
of RENO, likely due to the overhead introduced by the re-densification module. Nevertheless, our
method still maintains a competitive speed of approximately 10 FPS, which is sufficient for typical
point cloud processing scenarios. Under lower quantization precision, such as 12-bit, our method
achieves over 20 FPS for encoding/decoding. This speed is well aligned with the scanning rate of
mainstream LiDAR systems, enabling real-time coding of LiDAR point clouds. These results col-
lectively highlight the computational efficiency and practical applicability of the proposed method.

4.3 ABLATION STUDIES

To evaluate the individual contributions of the proposed components, we conduct ablation studies
on the GRED module and the XFP module. Each component is systematically removed to assess its
impact on overall compression performance.

Ablation of XFP. To evaluate the effectiveness of the proposed XFP module, we conducted an
ablation study by removing the cross-scale features. Quantitative results in Table 3 show that this
removal results in a degradation of approximately 2.778 dB (D1 PSNR) and 2.785 dB (D2 PSNR),
indicating that the integration of cross-scale information through XFP is critical for improving com-
pression efficiency.

Ablation of GRED. To evaluate the effectiveness of the proposed GRED module, we further re-
moved GRED on top of the XFP ablation. In this setting, the dense features extracted from the
shallowe level are no longer utilized for predicting the occupancy of deeper levels. As a result,
the model is directly exposed to the HRCS problem under high-resolution encoding. Quantitative
results in Table 3 show that removing the GRED module leads to a further performance drop of
approximately 0.940 dB. This performance gap highlights the positive impact of the GRED module
in mitigating the effects of HRCS and enhancing performance.

5 CONCLUSION

This paper addresses the challenge of HRCS in LiDAR point cloud compression, which poses a sig-
nificant obstacle to efficient occupancy prediction at high resolutions. To overcome this issue while
achieving real-time processing, we propose a novel compression framework that incorporates the
Geometry Re-densification (GRED) module and the Cross-scale Feature Propagation (XFP) module,
enabling efficient intra-scale and cross-scale context modeling. Extensive experiments demonstrate
that the proposed method achieves superior rate-distortion performance and competitive encoding
and decoding speeds, validating its effectiveness in terms of both compression quality and efficiency.

While the proposed framework demonstrates strong performance, it is primarily designed to vali-
date the core ideas of GRED and XFP. To ensure a clear evaluation of these modules, we exclude
the cross-scale parameter-sharing strategies used in prior works. In future work, we plan to ex-
plore level-aware neural blocks that enable parameter sharing across octree levels, with the goal of
enhancing parameter efficiency.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

To facilitate reproducibility, we provide the complete source code of our method in the supplemen-
tary materials. Additionally, the appendix includes detailed descriptions of the data preprocessing
steps, and the training and testing configurations used in our experiments. These materials together
provide the necessary information for reproducing the results presented in the paper.

REFERENCES

Sourav Biswas, Jerry Liu, Kelvin Wong, Shenlong Wang, and Raquel Urtasun. MuSCLE: Multi
sweep compression of LiDAR using deep entropy models. In Proceedings of the International
Conference on Neural Information Processing Systems (NeurIPS), 2020.

Gisle Bjøntegaard. Calculation of average PSNR differences between RD-curves. Input document
VCEG-M33, Video Coding Experts Group, 13th VCEG Meeting, Austin, Texas, USA, 2001.

Yuhao Cao, Yu Wang, and Haoyao Chen. Real-time LiDAR point cloud compression and transmis-
sion for resource-constrained robots. In IEEE International Conference on Robotics and Automa-
tion (ICRA), pp. 12789–12795, 2025.

Zhili Chen, Zian Qian, Sukai Wang, and Qifeng Chen. Point cloud compression with sibling context
and surface priors. In European Conference on Computer Vision (ECCV), pp. 744–759, 2022.

Jaesung Choe, ByeongIn Joung, Francois Rameau, Jaesik Park, and In So Kweon. Deep point cloud
reconstruction. In International Conference on Learning Representations (ICLR), 2022.

Mingyue Cui, Junhua Long, Mingjian Feng, Boyang Li, and Huang Kai. OctFormer: Efficient
octree-based transformer for point cloud compression with local enhancement. In Proceedings of
the AAAI Conference on Artificial Intelligence (AAAI), pp. 470–478, 2023.

Hao Deng, Kunlei Jing, Shengmei Cheng, Cheng Liu, Jiawei Ru, Jiang Bo, and Lin Wang. Lin-
Net: Linear network for efficient point cloud representation learning. In Advances in Neural
Information Processing Systems (ICLR), volume 37, pp. 43189–43209, 2024.

Chunyang Fu, Ge Li, Rui Song, Wei Gao, and Shan Liu. OctAttention: Octree-based large-scale
contexts model for point cloud compression. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pp. 625–633, 2022.

Diogo C. Garcia and Ricardo L. de Queiroz. Context-based octree coding for point-cloud video. In
IEEE International Conference on Image Processing (ICIP), pp. 1412–1416, 2017.

Diogo C. Garcia, Tiago A. Fonseca, Renan U. Ferreira, and Ricardo L. de Queiroz. Geometry coding
for dynamic voxelized point clouds using octrees and multiple contexts. IEEE Transactions on
Image Processing, 29:313–322, 2020.

A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? The KITTI vision bench-
mark suite. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 3354–3361, 2012.

Tim Golla and Reinhard Klein. Real-time point cloud compression. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 5087–5092, 2015.

Yun He, Xinlin Ren, Danhang Tang, Yinda Zhang, Xiangyang Xue, and Yanwei Fu. Density-
preserving deep point cloud compression. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pp. 2333–2342, 2022.

Lila Huang, Shenlong Wang, Kelvin Wong, Jerry Liu, and Raquel Urtasun. OctSqueeze: Octree-
structured entropy model for LiDAR compression. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 1313–1323, 2020.

Julius Kammerl, Nico Blodow, Radu Bogdan Rusu, Suat Gedikli, Michael Beetz, and Eckehard
Steinbach. Real-time compression of point cloud streams. In IEEE International Conference on
Robotics and Automation (ICRA), pp. 778–785, 2012.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations (ICLR), pp. 1–10, 2019.

Ao Luo, Linxin Song, Keisuke Nonaka, Kyohei Unno, Heming Sun, Masayuki Goto, and Jiro Katto.
SCP: Spherical-coordinate-based learned point cloud compression. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2024.

Rufael Mekuria, Kees Blom, and Pablo Cesar. Design, implementation, and evaluation of a point
cloud codec for tele-immersive video. IEEE Transactions on Circuits and Systems for Video
Technology, 27(4):828–842, 2017.

Lixuan Meng, Ronghuang Ou, Qi Zhang, Shan Liu, and Ge Li. PCGCD: Joint point cloud geometry
compression and denoising. In Data Compression Conference (DCC), pp. 23–32, 2025.

Dat Thanh Nguyen and André Kaup. Learning-based lossless point cloud geometry coding using
sparse tensors. In IEEE International Conference on Image Processing (ICIP), pp. 2341–2345,
2022.

Dat Thanh Nguyen, Maurice Quach, Giuseppe Valenzise, and Pierre Duhamel. Lossless coding of
point cloud geometry using a deep generative model. IEEE Transactions on Circuits and Systems
for Video Technology, 31(12):4617–4629, 2021.

Gaurav Pandey, James R McBride, and Ryan M Eustice. Ford campus vision and LiDAR data set.
The International Journal of Robotics Research, 30(13):1543–1552, 2011.

Jiahao Pang, Kevin Bui, and Dong Tian. PIVOT-Net: Heterogeneous point-voxel-tree-based frame-
work for point cloud compression. In International Conference on 3D Vision (3DV), pp. 1270–
1279, 2024.

Tai Qin, Ge Li, Wei Gao, and Shan Liu. Multi-grained point cloud geometry compression via
dual-model prediction with extended octree. ACM Transactions on Multimedia Computing, Com-
munications, and Applications, 20(9), 2024.

Maurice Quach, Giuseppe Valenzise, and Frederic Dufaux. Learning convolutional transforms for
lossy point cloud geometry compression. In Proceedings of the IEEE International Conference
on Image Processing (ICIP), pp. 4320–4324, 2019.

Zizheng Que, Guo Lu, and Dong Xu. VoxelContext-Net: An octree based framework for point
cloud compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 6042–6051, 2021.

Sebastian Schwarz, Marius Preda, Vittorio Baroncini, Madhukar Budagavi, Pablo Cesar, Philip A.
Chou, Robert A. Cohen, Maja Krivokuća, Sébastien Lasserre, Zhu Li, Joan Llach, Khaled Mam-
mou, Rufael Mekuria, Ohji Nakagami, Ernestasia Siahaan, Ali Tabatabai, Alexis M. Tourapis,
and Vladyslav Zakharchenko. Emerging MPEG standards for point cloud compression. IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, 9(1):133–148, 2019.

Fei Song, Yiting Shao, Wei Gao, Haiqiang Wang, and Thomas Li. Layer-wise geometry aggregation
framework for lossless LiDAR point cloud compression. IEEE Transactions on Circuits and
Systems for Video Technology, 31(12):4603–4616, 2021.

Rui Song, Chunyang Fu, Shan Liu, and Ge Li. Efficient hierarchical entropy model for learned point
cloud compression. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 14368–14377, 2023.

Nikolaos Stathoulopoulos, Mario A.V. Saucedo, Anton Koval, and George Nikolakopoulos. RecNet:
An invertible point cloud encoding through range image embeddings for multi-robot map sharing
and reconstruction. In IEEE International Conference on Robotics and Automation (ICRA), pp.
4883–4889, 2024.

Haotian Tang, Shang Yang, Zhijian Liu, Ke Hong, Zhongming Yu, Xiuyu Li, Guohao Dai, Yu Wang,
and Song Han. TorchSparse++: Efficient training and inference framework for sparse convolu-
tion on GPUs. In Proceedings of the IEEE/ACM International Symposium on Microarchitecture
(MICRO), pp. 225–239, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Dong Tian, Hideaki Ochimizu, Chen Feng, Robert Cohen, and Anthony Vetro. Geometric distortion
metrics for point cloud compression. In IEEE International Conference on Image Processing
(ICIP), pp. 3460–3464, 2017.

Dion E. O. Tzamarias, Kevin Chow, Ian Blanes, and Joan Serra-Sagristà. Fast run-length compres-
sion of point cloud geometry. IEEE Transactions on Image Processing, 31:4490–4501, 2022.

Jianqiang Wang, Hao Zhu, Haojie Liu, and Zhan Ma. Lossy point cloud geometry compression via
end-to-end learning. IEEE Transactions on Circuits and Systems for Video Technology, 31(12):
4909–4923, 2021.

Jianqiang Wang, Ruixiang Xue, Jiaxin Li, Dandan Ding, Yi Lin, and Zhan Ma. A versatile point
cloud compressor using universal multiscale conditional coding – Part I: Geometry. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 47(1):269–287, 2025.

Sukai Wang and Ming Liu. Point cloud compression with range image-based entropy model for
autonomous driving. In European Conference on Computer Vision (ECCV), pp. 323–340, 2022.

Sukai Wang, Jianhao Jiao, Peide Cai, and Lujia Wang. R-PCC: A baseline for range image-based
point cloud compression. In International Conference on Robotics and Automation (ICRA), pp.
10055–10061, 2022.

Xuanzheng Wen, Xu Wang, Junhui Hou, Lin Ma, Yu Zhou, and Jianmin Jiang. Lossy geometry
compression of 3D point cloud data via an adaptive octree-guided network. In IEEE International
Conference on Multimedia and Expo (ICME), pp. 1–6, 2020.

Louis Wiesmann, Andres Milioto, Xieyuanli Chen, Cyrill Stachniss, and Jens Behley. Deep com-
pression for dense point cloud maps. IEEE Robotics and Automation Letters, 6(2):2060–2067,
2021.

Kang You, Tong Chen, Dandan Ding, M Salman Asif, and Zhan Ma. RENO: Real-time neural com-
pression for 3D LiDAR point clouds. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 1–10, 2025.

Yurong You, Yan Wang, Wei-Lun Chao, Divyansh Garg, Geoff Pleiss, Bharath Hariharan, Mark
Campbell, and Kilian Q Weinberger. Pseudo-lidar++: Accurate depth for 3d object detection in
autonomous driving. In International Conference on Learning Representations (ICLR), 2020.

Pengpeng Yu, Ye Zhang, Fan Liang, Haoran Li, and Yulan Guo. Hierarchical distortion learning for
fast lossy compression of point clouds. IEEE Transactions on Multimedia, pp. 1–16, 2025.

Chenhao Zhang and Wei Gao. AdaDPCC: Adaptive rate control and rate-distortion-complexity
optimization for dynamic point cloud compression. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), pp. 13188–13196, 2025.

Junteng Zhang, Jianqiang Wang, Dandan Ding, and Zhan Ma. Scalable point cloud attribute com-
pression. IEEE Transactions on Multimedia, 27:889–899, 2025a.

Qi Zhang, Yiting Shao, Lixuan Meng, Hailong Jiao, Shan Liu, and Ge Li. Rate-distortion opti-
mized motion estimation for dynamic point cloud geometry compression. In Data Compression
Conference (DCC), pp. 417–417, 2025b.

Xuanyu Zhou, Charles R. Qi, Yin Zhou, and Dragomir Anguelov. RIDDLE: Lidar data compression
with range image deep delta encoding. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pp. 17191–17200, 2022.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A DIFERENCES WITH EXISTING METHODS

To the best of our knowledge, this work is the first to explicitly identify and address the High-
Resolution Contextual Sparsity (HRCS) problem in point cloud compression. While it is difficult to
rigorously determine whether existing methods have implicitly mitigated HRCS in a generalizable
way, we carefully examine several representative approaches to clarify this issue.

Transformer-based Methods (e.g., EHEM, OctAttention). These methods represent octree nodes
as explicit feature vectors and use transformer architectures to capture long-range dependencies
between nodes, thereby enlarging the receptive field. However, it is important to note that such
methods essentially process octree nodes in a 1D sequence space, rather than in the native 3D space.
While their attention mechanism can implicitly model 3D geometry, it discards the explicit 3D struc-
tural information and instead depends heavily on learned embeddings. As a result, these methods
typically require large attention windows (e.g., 8192 nodes in Light EHEM) to achieve competitive
performance. According to our analysis, this leads to around 10× FLOPs compared to our approach.
Thus, while transformer-based methods might sidestep the HRCS problem by modeling 1D node
sequence via long-range attention, this comes at the cost of significantly increased computational
complexity and latency. Therefore, especially in scenarios where complexity or runtime is a con-
cern, such methods cannot be considered a viable solution to the HRCS problem.

Sparse Convolution-based Methods (e.g., SparsePCGC, Unicorn). These methods exploit voxel-
level neighborhoods via sparse convolutions in a coarse-to-fine reconstruction pipeline. By design,
sparse convolutions skip computation on empty voxels to improve efficiency. However, this sparsity
impedes information propagation across voxels when the point cloud is highly sparse at finer scales,
making these approaches particularly vulnerable to HRCS. For instance, if an occupied voxel is sur-
rounded by 26 empty neighbors (3 × 3 × 3 − 1), no amount of stacking 3 × 3 × 3 kernel sparse
convolutions can retrieve geometric context for this voxel, making this voxel actually isolated. Al-
though SparsePCGC alleviates this problem to some extent by increasing the depth of the convolu-
tion blocks, it suffers from high coding latency. In contrast, our method proposes GRED and XFP
modules, which explicitly aim to address HRCS.

In summary, while existing methods may touch on related ideas, none have explicitly recognized
HRCS as a core challenge or introduced a targeted solution for it. Our work is, to our knowledge, the
first to both formally define HRCS and provide an effective architectural mechanism to overcome
it. For clarity, we provide a visualization comparing the context modeling processes of existing
methods with our approach in Fig. 5, highlighting the key differences in design.

164

0 8 0 0

9 0 0 0

21

⋯

⋯

⋯ 164

0 8 0 0

9 0 0 0

21

⋯

⋯

⋯

Common context flow Our context flow

Comparison of different context flows of octree-based point cloud coding

Shallow levels

(Dense)

Deep levels

(Sparse)

1

2

3

1

2

3

Figure 5: Comparison of context flows in existing octree-based methods (left) and our approach
(right). Lines with different colors and numbers indicate different feature extraction and occu-
pancy prediction steps. In common designs, context flow is typically unidirectional, and encod-
ing/decoding at each octree level depends on geometry from multiple preceding levels. By contrast,
our approach adopts a bidirectional context flow at deeper octree levels, while at shallow levels, each
octree level relies only on the feature and geometry of the immediately preceding level.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

B DETAILED MODEL STRUCTURE

To provide a clearer understanding of the model structure and workflow of key modules in
our proposed network, we present a detailed breakdown of the Upsampling(·), ResBlock(·),
Downsampling(·), and Predictor(·) components. These modules are implemented using PyTorch
and TorchSparse (Tang et al., 2023), which enable efficient processing of sparse 3D data. The de-
tailed workflow is illustrated in Fig. 6.

Input feats: 𝑁 × 𝑐ℎ
Input coords: 𝑁 × 3

SparseConv3d

𝑐ℎ → 𝑐ℎ
kernel size=3

PReLU

+

ResBlock Workflow

PReLU

Linear 𝑐ℎ → 𝑐ℎ × 8

Input coords ↑× 2

ResBlock

Upsampling Workflow

PReLU

Downsampling Workflow Predictor Workflow

Softmax

Linear 𝑐ℎ → 255

Input feats: 𝑁 × 𝑐ℎ
Input coords: 𝑁 × 3

Input feats: 𝑁 × 𝑐ℎ
Input coords: 𝑁 × 3

Input feats: 𝑁 × 8
Input coords: 𝑁 × 3

Linear 𝑐ℎ → 𝑐ℎ

SparseConv3d

𝑐ℎ → 𝑐ℎ
kernel size=3

SparseConv3d

𝑐ℎ → 𝑐ℎ
kernel size=3 SparseConv3d

𝑐ℎ → 𝑐ℎ
kernel size=3

PReLU

Linear 𝑐ℎ → 𝑐ℎ

PReLU

Figure 6: Illustration of the detailed workflows of the Upsampling(·), ResBlock(·),
Downsampling(·), and Predictor(·) modules within the proposed network architecture.

In the current implementation, our primary objective is to validate the core ideas of geometry re-
densification and cross-scale feature propagation. To ensure an isolated evaluation of the proposed
modules, we intentionally omit the cross-scale parameter-sharing mechanisms employed in previous
works. Consequently, our model is less parameter-efficient compared to prior methods, as shown in
Table 4, since the number of parameters increases linearly with the decrease of the pre-defined mini-
mum octree level (L−11 in this paper). For the remaining geometry at this maximum downsampling
level, we directly encode the coordinates based on their symbol frequencies. In future work, we plan
to improve parameter efficiency by introducing level-aware neural blocks that support parameter
sharing across octree levels.

Table 4: Comparison of the number of model parameters.

Methods PCGCv2 OctAttention EHEM Ours RENO

Number of parameters 0.77M 6.99M 13.01M 131.89M 0.28M

C IMPLEMENTATION DETAILS

This section outlines the details of our implementation, including quantization strategies for the
KITTI dataset, octree-based operations, training configurations, and evaluation metrics.

C.1 QUANTIZATION OF KITTI DATASET

The KITTI point clouds are not officially quantized, which has led to two different quantization
approaches:

1. The first approach normalizes the point clouds within a bounding box of size 400× 400×
400 centered at the origin (0, 0, 0), scales the coordinates by 216, and then applies quanti-
zation.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

2. The second approach, adopted by RENO (You et al., 2025), scales the original floating-
point coordinates by 10000, followed by quantization using an additional scale factor
posQ ∈ {8, 16, 32, 64, 128, 256, 512} to generate point clouds of different precision levels.

These two approaches yield point clouds of different fidelity, leading to different PSNR values even
under lossless compression settings, where the only distortion arises from the quantization process.
Consequently, in Fig. 3a and Fig. 3d, the RD points of RENO do not align with those of other
methods, despite all methods being lossless compression methods. While it is technically feasible
to unify the quantization strategy, we follow RENO’s official setting to report its results, as it better
reflects the method’s ideal RD performance.

For clarity, we refer to the highest-precision results from both quantization approaches as 16-bit
quantization throughout this paper. In our experiments, the octree level is varied from 11 to 16,
enabling control over the RD trade-off by adjusting the spatial resolution.

C.2 IMPLEMENTATION OF OCTREE OPERATIONS

Our model is implemented using PyTorch and TorchSparse. Two components are essential for en-
abling octree-based operations with sparse convolution: coordinate upsampling/downsampling and
occupancy code generation.

Coordinate Sampling. To efficiently generate node coordinates for all octree levels, we first sort
the input coordinates in Morton order, which exploits the hierarchical spatial locality between Mor-
ton codes and octree structures. Starting from the input coordinates, we repeatedly divide them by
2, apply floor rounding, and remove consecutive duplicates. This yields the coordinates of nodes
at progressively shallower octree levels. For coordinate upsampling, we reconstruct child node
coordinates by adding a pre-defined offset matrix (leveraging matrix broadcasting) to the parent co-
ordinates. We then apply a masking operation to discard coordinates corresponding to unoccupied
nodes. Importantly, this process preserves the original Morton order of the coordinate matrix, en-
suring perfect alignment between the encoder and decoder without the need for explicit reordering.

Occupancy Code Generation. To generate the 0–255 occupancy codes, we apply a fixed-weight
sparse convolution with kernel size 2 and stride 2, using an all-one input feature tensor. Each 8-
neighbor group (in 2 × 2 × 2) is encoded as an 8-bit occupancy code. For the reverse process, the
occupancy code can be efficiently decoded into binary masks using bitwise operations and matrix
broadcasting.

C.3 TRAINING

Loss Function. To train the proposed model, we adopt the standard cross-entropy loss, which
is widely used in the octree-based PCC. Specifically, the model outputs a probability distribution
Q ∈ RN×255, where each row corresponds to the predicted occupancy probability of one of the N
nodes over the 255 possible occupancy codes (from 1 to 255). Let the ground truth occupancy codes
be represented by X ∈ {1, . . . , 255}N . The loss function is defined as:

LCE = − 1

N

N∑
i=1

logQi,Xi
, (12)

where Qi,Xi denotes the predicted probability for the ground truth occupancy code Xi at the i-th
node. This loss encourages the model to assign higher probabilities to the correct occupancy codes.

Other Settings. We adopt the AdamW optimizer (Loshchilov & Hutter, 2019) with a weight decay
of 0.0001 and a learning rate of 0.0001. Gradient clipping is applied with a maximum norm threshold
of 1.0 to stabilize training. The model is trained for 60 epochs with a batch size of 8. All experiments
were conducted on a computer equipped with an AMD EPYC 7R32 CPU and 2× 4090 GPUs.
Training takes approximately 4 days on the KITTI dataset and around 6 hours on the Ford dataset.

D MORE QUANTITATIVE ANALYSIS

In this section, we provide further quantitative analysis to complement the main results.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

70

75

80

85

90

D
1

PS
N

R
 (d

B
)

D1 PSNR vs. BPP (KITTI)

Baseline + GRED + XFP
Baseline + GRED
Baseline

1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

75

80

85

90

95

D
2

PS
N

R
 (d

B
)

D2 PSNR vs. BPP (KITTI)

Baseline + GRED + XFP
Baseline + GRED
Baseline

Figure 7: Rate-distortion performance comparison for ablation studies on GRED and XFP modules.

1 2 3 4 5 6 7 8 9
BPP (Bits Per Input Point)

60

65

70

75

80

85

90

D
1

PS
N

R
 (d

B
)

D1 PSNR vs. Bitrate (KITTI)

Ours (t=L-4)
Ours (t=L-3)

1 2 3 4 5 6 7 8 9
BPP (Bits Per Input Point)

65

70

75

80

85

90

95

D
2

PS
N

R
 (d

B
)

D2 PSNR vs. Bitrate (KITTI)

Ours (t=L-4)
Ours (t=L-3)

Figure 8: Rate-distortion performance comparison for different choices of t on the KITTI dataset.

D.1 ABLATION ON GRED AND XFP MODULES

To evaluate the individual contributions of the proposed components, we conduct ablation studies on
the GRED and XFP modules. This results in three model variants: “Baseline”, “Baseline+GRED”,
and “Baseline+GRED+XFP”. In addition to the RD performance presented in Table 3, we provide
the corresponding RD curves in Fig. 7 for visual comparison. The results show that removing
XFP leads to a noticeable drop in performance across all bitrates. Removing GRED, on the other
hand, only affects performance at higher bitrates (i.e., under high-precision quantization). These
observations are consistent with the results in Table 3 and support our analysis regarding the HRCS
issue.

D.2 ABLATION ON THE CHOICE OF t

As demonstrated in the Method section, we apply the re-densification module only at levels l >
t, making t a key hyperparameter. A smaller t causes re-densification to be performed on more
levels, enabling more efficient context modeling but at the cost of higher re-densification overhead.
Moreover, applying re-densification to shallower levels with dense geometry is often redundant.
Therefore, the benefit of reducing t diminishes quickly. In our experiments, unless otherwise stated,
we set t = L− 4 by default, where L is the deepest octree level. Here, we compare the performance
of two settings: t = L − 4 and t = L − 3. The resulting RD performance is shown in Fig. 8
and Table 5. We can observe slight improvements at high precision when reducing t from L− 3 to
L−4. However, the average gain across all bitrates is relatively minor. Overall, the setting t = L−4
achieves a 0.76% bitrate reduction on the KITTI dataset.

Table 5: BD gains of the t = L− 4 setting over the t = L− 3 setting.

BD-Rate (%) BD-PSNR (dB)
D1 D2 D1 D2

KITTI -0.760 -0.759 0.093 0.093

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.3 COMPUTATIONAL EFFICIENCY

We conducted additional experiments to measure the complexity during the encoding and decoding
process, and the results are summarized in Table 6. Note that the FLOPs of sparse convolution
depend on the sparsity of the input point clouds, which varies across samples. The reported FLOPs
of our model represent the average over the test set of the KITTI dataset. For comparison, we provide
the official metrics of Light EHEM in Table 7. Note that the FLOPs reported by Light EHEM are
measured per window (with 8192 octree nodes). To ensure a fair comparison, we converted this
into an expected average per sample by using the mean octree node count of quantized KITTI point
clouds. Based on the summarized results, it is evident that our approach is more efficient in terms of
hardware overhead and execution speed compared to the transformer-based method Light EHEM.

Table 6: Detailed complexity metrics of our model on the KITTI dataset.

Prec. (bits) Enc Mem (GB) Dec Mem (GB) Enc GFLOPs Dec GFLOPs Enc Time (s) Dec Time (s)

16 2.1 2.0 752.9 752.9 0.18 0.21
15 1.6 1.5 455.7 455.7 0.11 0.13
14 1.2 1.1 238.2 238.2 0.07 0.08
13 0.9 0.8 108.9 108.9 0.05 0.06
12 0.7 0.6 44.7 44.7 0.04 0.04
11 0.6 0.6 16.9 16.9 0.03 0.02

Table 7: Detailed complexity metrics of Light EHEM on the KITTI dataset.

Enc/Dec GFLOPs Number of Enc/Dec
Prec. (bits) Mem (GB) per Window Octree Nodes GFLOPs Enc Time (s) Dec Time (s)

16 2.6 102.9 421911.3 5299.6 1.63 1.94
15 2.6 102.9 302393.4 3798.4 - -
14 2.6 102.9 191616.0 2406.9 0.79 0.92
13 2.6 102.9 105002.2 1318.9 - -
12 2.6 102.9 49486.4 621.6 0.29 0.33
11 2.6 102.9 20591.8 258.7 - -

D.4 SEQUENCE-WISE PERFORMANCE

Considering the variation in sequence characteristics within the KITTI dataset, we provide sequence-
wise RD performance for further analysis and comparison among G-PCC, OctAttention, and our
method. The evaluation metrics include D1 PSNR, D2 PSNR, and Chamfer Distance (CD), a widely
adopted geometric distortion metric. The results are illustrated in Fig. 9 (sequences #11-#15) and
Fig. 10 (sequences #16-#20). These visualizations highlight the performance consistency and
robustness of our method across different scenes.

E QUALITATIVE ANALYSIS

To further evaluate the effectiveness of the proposed method, we visualize compression results at
three different bitrates, ranging from low to high. As shown in Fig. 11, the proposed method consis-
tently produces reconstructed point clouds with lower distortion under comparable bit rates. These
visual results align well with the findings in the Rate-Distortion Performance section, validating its
superiority in compression performance.

F LLM USAGE STATEMENT

We used a large language model (LLM) solely for language refinement of the manuscript. The
LLM did not contribute to the research ideas, experimental design, data analysis, or interpretation
of results.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

60

65

70

75

80

85

90

D
1

PS
N

R
 (d

B
)

D1 PSNR vs. BPP (KITTI 11)

Ours
OctAttention
G-PCC octree

0 1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

65

70

75

80

85

90

95

D
2

PS
N

R
 (d

B
)

D2 PSNR vs. BPP (KITTI 11)

Ours
OctAttention
G-PCC octree

0 1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

0.000

0.002

0.004

0.006

0.008

C
ha

m
fe

r D
is

ta
nc

e
(M

)

Chamfer Distance vs. BPP (KITTI 11)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12 13 14
BPP (Bits Per Input Point)

60

65

70

75

80

85

90

D
1

PS
N

R
 (d

B
)

D1 PSNR vs. BPP (KITTI 12)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12 13 14
BPP (Bits Per Input Point)

65

70

75

80

85

90

95
D

2
PS

N
R

 (d
B

)

D2 PSNR vs. BPP (KITTI 12)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12 13 14
BPP (Bits Per Input Point)

0.000

0.002

0.004

0.006

0.008

C
ha

m
fe

r D
is

ta
nc

e
(M

)

Chamfer Distance vs. BPP (KITTI 12)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

60

65

70

75

80

85

90

D
1

PS
N

R
 (d

B
)

D1 PSNR vs. BPP (KITTI 13)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

65

70

75

80

85

90

95

D
2

PS
N

R
 (d

B
)

D2 PSNR vs. BPP (KITTI 13)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

0.000

0.002

0.004

0.006

0.008

C
ha

m
fe

r D
is

ta
nc

e
(M

)

Chamfer Distance vs. BPP (KITTI 13)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12 13
BPP (Bits Per Input Point)

60

65

70

75

80

85

90

D
1

PS
N

R
 (d

B
)

D1 PSNR vs. BPP (KITTI 14)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12 13
BPP (Bits Per Input Point)

65

70

75

80

85

90

95

D
2

PS
N

R
 (d

B
)

D2 PSNR vs. BPP (KITTI 14)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12 13
BPP (Bits Per Input Point)

0.000

0.002

0.004

0.006

0.008

C
ha

m
fe

r D
is

ta
nc

e
(M

)

Chamfer Distance vs. BPP (KITTI 14)

Ours
OctAttention
G-PCC octree

0 1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

60

65

70

75

80

85

90

D
1

PS
N

R
 (d

B
)

D1 PSNR vs. BPP (KITTI 15)

Ours
OctAttention
G-PCC octree

0 1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

65

70

75

80

85

90

95

D
2

PS
N

R
 (d

B
)

D2 PSNR vs. BPP (KITTI 15)

Ours
OctAttention
G-PCC octree

0 1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

0.000

0.002

0.004

0.006

0.008

C
ha

m
fe

r D
is

ta
nc

e
(M

)

Chamfer Distance vs. BPP (KITTI 15)

Ours
OctAttention
G-PCC octree

Figure 9: Sequence-wise rate-distortion performance comparison on the KITTI test sequences #11-
#15.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

60

65

70

75

80

85

90

D
1

PS
N

R
 (d

B
)

D1 PSNR vs. BPP (KITTI 16)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

65

70

75

80

85

90

95

D
2

PS
N

R
 (d

B
)

D2 PSNR vs. BPP (KITTI 16)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

0.000

0.002

0.004

0.006

0.008

C
ha

m
fe

r D
is

ta
nc

e
(M

)

Chamfer Distance vs. BPP (KITTI 16)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12 13 14
BPP (Bits Per Input Point)

60

65

70

75

80

85

90

D
1

PS
N

R
 (d

B
)

D1 PSNR vs. BPP (KITTI 17)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12 13 14
BPP (Bits Per Input Point)

65

70

75

80

85

90

95
D

2
PS

N
R

 (d
B

)

D2 PSNR vs. BPP (KITTI 17)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12 13 14
BPP (Bits Per Input Point)

0.000

0.002

0.004

0.006

0.008

C
ha

m
fe

r D
is

ta
nc

e
(M

)

Chamfer Distance vs. BPP (KITTI 17)

Ours
OctAttention
G-PCC octree

0 1 2 3 4 5 6 7 8 9 10 11
BPP (Bits Per Input Point)

60

65

70

75

80

85

90

D
1

PS
N

R
 (d

B
)

D1 PSNR vs. BPP (KITTI 18)

Ours
OctAttention
G-PCC octree

0 1 2 3 4 5 6 7 8 9 10 11
BPP (Bits Per Input Point)

65

70

75

80

85

90

95

D
2

PS
N

R
 (d

B
)

D2 PSNR vs. BPP (KITTI 18)

Ours
OctAttention
G-PCC octree

0 1 2 3 4 5 6 7 8 9 10 11
BPP (Bits Per Input Point)

0.000

0.002

0.004

0.006

0.008

C
ha

m
fe

r D
is

ta
nc

e
(M

)

Chamfer Distance vs. BPP (KITTI 18)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

60

65

70

75

80

85

90

D
1

PS
N

R
 (d

B
)

D1 PSNR vs. BPP (KITTI 19)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

65

70

75

80

85

90

95

D
2

PS
N

R
 (d

B
)

D2 PSNR vs. BPP (KITTI 19)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12
BPP (Bits Per Input Point)

0.000

0.002

0.004

0.006

0.008

C
ha

m
fe

r D
is

ta
nc

e
(M

)

Chamfer Distance vs. BPP (KITTI 19)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12 13
BPP (Bits Per Input Point)

60

65

70

75

80

85

90

D
1

PS
N

R
 (d

B
)

D1 PSNR vs. BPP (KITTI 20)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12 13
BPP (Bits Per Input Point)

65

70

75

80

85

90

95

D
2

PS
N

R
 (d

B
)

D2 PSNR vs. BPP (KITTI 20)

Ours
OctAttention
G-PCC octree

1 2 3 4 5 6 7 8 9 10 11 12 13
BPP (Bits Per Input Point)

0.000

0.002

0.004

0.006

0.008

C
ha

m
fe

r D
is

ta
nc

e
(M

)

Chamfer Distance vs. BPP (KITTI 20)

Ours
OctAttention
G-PCC octree

Figure 10: Sequence-wise rate-distortion performance comparison on the KITTI test sequences
#16-#20.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

(a) Ours: 72.52dB (D1), 2.46BPP (b) RENO: 70.17dB (D1), 2.26BPP

(c) Ours: 78.55dB (D1), 4.11BPP (d) RENO: 76.21dB (D1), 4.17BPP

(e) Ours: 84.59dB (D1), 5.90BPP (f) RENO: 82.25dB (D1), 6.53BPP

0 0.01 0.02 0.03 0.04 0.05

Figure 11: Visualization of reconstruction quality of sample “11 000000.bin” at different quantiza-
tion precisions.

20

	Introduction
	Related work
	Method
	Geometry Re-Densification Module
	Cross-Scale Feature Propagation Module

	Experiments
	Settings
	Performance Analysis
	Ablation Studies

	Conclusion
	Diferences with Existing Methods
	Detailed Model Structure
	Implementation Details
	Quantization of KITTI Dataset
	Implementation of Octree Operations
	Training

	More Quantitative Analysis
	Ablation on GRED and XFP Modules
	Ablation on the Choice of t
	Computational Efficiency
	Sequence-wise Performance

	Qualitative Analysis
	LLM Usage Statement

