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Abstract
We conduct a feasibility study into the applica-001
bility of answer-unaware question generation002
models to textbook passages. We show that003
a significant portion of errors in such systems004
arise from asking irrelevant or un-interpretable005
questions and that such errors can be amelio-006
rated by providing summarized input. We find007
that giving these models human-written sum-008
maries instead of the original text results in a009
significant increase in acceptability of gener-010
ated questions (33% -> 83%) as determined011
by expert annotators. We also find that, in012
the absence of human-written summaries, auto-013
matic summarization can serve as a good mid-014
dle ground.015

1 Introduction016

Writing good questions that target salient concepts017

is difficult and time consuming. Automatic Ques-018

tion Generation (QG) is a powerful tool that could019

be used to significantly lessen the amount of time it020

takes to write such questions. A QG system that au-021

tomatically generates relevant questions from text-022

books would help professors write quizzes faster023

and help students spend more time reviewing flash-024

cards rather than writing them.025

Previous work on QG has focused primarily on026

answer-aware QG models. These models require027

the explicit selection of an answer span in the input028

context, typically through the usage of highlight029

tokens. This adds significant overhead to the ques-030

tion generation process and is undesirable in cases031

where clear lists of salient key terms are unavail-032

able. We conduct a feasibility study on the ap-033

plication of answer-unaware question generation034

models (ones which do not require manual selec-035

tion of answer spans) to an educational context.036

Our contributions are as follows:037

• We show that the primary way answer-038

unaware QG models fail is by generating ir-039

relevant or un-interpretable questions.040

Input: The perplexity of a language model on a test set is the 
inverse probability of the test set, normalized by the number of 
words. For a test set W = w1w2…wN we can use the chain 
rule to expand the probability of  W.

Automatic 
Summarization

Human 
Summarization

Q: What is the 
perplexity of a 
test set?
A: w1w2…wN

Q: What is the 
perplexity of a 
language model on 
a test set?
A: the inverse 
probability of the 
test set

Q: What is the 
inverse probability 
of the test set 
normalized by the 
number of words?
A: Perplexity

Figure 1: Relevance, interpretability, and acceptability
of generated questions are significantly improved when
using human-written summaries (yellow) or automatically-
generated summaries (green) as input instead of the origi-
nal text (red).

• We show that giving answer-unaware QG 041

models human-written summaries instead of 042

the original text results in a significant in- 043

crease in acceptability of generated questions 044

(33% -> 83%). 045

• We show that, in the absence of human- 046

written summaries, providing automatically 047

generated summaries as input is a good alter- 048

native. 049

2 Related Work & Background 050

Early attempts to use QG for educational applica- 051

tions involved generating gap-fill or “cloze" ques- 052

tions1 (Taylor, 1953) from textbooks (Agarwal and 053

Mannem, 2011). One may optionally choose to 054

generate distractors to make these questions mul- 055

tiple choice (Narendra et al., 2013; Correia et al., 056

1For example, Q: “Dynamic Programming was introduced
in ____" A: 1957
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2012). This procedure has been shown to be ef-057

fective in classroom settings (Zavala and Mendoza,058

2018) and students’ scores on this style of gener-059

ated question correlate positively with their scores060

on human-written questions (Guo et al., 2016).061

However, there are many situations where gap-fill062

questions are not effective, as they are only able to063

ask about specific unambiguous key terms.064

In recent years, with the advent of large crowd-065

sourced datasets for extractive question answer-066

ing (QA) such as SQuAD (Rajpurkar et al., 2018),067

neural models have become the primary methods068

of choice for generating traditional interrogative069

style questions (Kurdi et al., 2019). A common070

task formulation for neural QG is to phrase the071

task as answer-aware, that is, given a context072

passage C = {c0, ..., cn} and an answer span073

within this context A = {ck, ..., ck+l} such that074

k ≥ 0 and k + l ≤ n, train a model to maxi-075

mize P (Q|A,C) where Q = {q0, ..., qm} are the076

tokens in the question. These models are typically077

evaluated using n-gram overlap metrics such as078

BLEU/ROUGE/METEOR (Papineni et al., 2002;079

Lin, 2004; Banerjee and Lavie, 2005) with the ref-080

erence being the original human-authored question081

as provided by the extractive QA dataset.082

The feasibility of using answer-aware neural083

QG in an educational setting was investigated by084

Wang et al. (2018), who used a BiLSTM encoder085

(Zhang et al., 2015) to encode C and A and a uni-086

directional LSTM decoder to generate Q. They087

trained on the SQuAD dataset (Rajpurkar et al.,088

2018) and evaluated on textbooks from various do-089

mains (history, sociology, biology). They showed090

that generated questions were largely grammatical,091

relevant, and had high n-gram overlap with human-092

authored questions. However, given that we may093

not always have a convenient list of key terms to094

use as answer spans for an input passage, there is a095

desire to move past answer-aware QG models and096

evaluate the feasibility of answer-unaware models097

for use in education.098

Shifting to answer-unaware models creates new099

challenges. As Vanderwende (2008) claims, the100

task of deciding what is and is not important is,101

itself, an important task. Without manually se-102

lected answer spans to guide it, an answer-unaware103

model must itself decide what is and is not impor-104

tant enough to ask a question about. Previous work105

primarily accomplishes this by separately model-106

ing P (A|C), i.e. which spans in the input context107

T5

extract answer: Here is a 
sentence. <hl> Now we 
will ask a question <hl>

generate question: Here is 
a sentence. Now we will 
ask <hl> a question <hl>

question:  What will we 
ask now? context: Here is 
a sentence. Now we will 

ask a question

a question

What will we 
ask now?

a question

Figure 2: Diagram of the model’s three different fine-
tuning tasks: Answer extraction, question generation, and
question answering

are most likely to be used as answer targets for 108

questions. We can then take these extracted answer 109

spans and give them as input to an answer-aware 110

QG model P (Q|A,C). This modeling choice al- 111

lows for more controllable QG and more direct 112

modeling of term salience. 113

Previous work done by Subramanian et al. (2018) 114

trained a BiLSTM Pointer Network (Vinyals et al., 115

2015) for answer extraction and showed that it out- 116

performed an entity-based baseline when predict- 117

ing answer spans from SQuAD passages. However, 118

their human evaluation centered around question 119

correctness and fluency rather than relevance of an- 120

swer selection. Similar follow-up studies also fail 121

to explicitly ask human annotators whether or not 122

the extracted answers, and subsequent generated 123

questions, were relevant to the broader topic of the 124

context passage (Willis et al., 2019; Cui et al., 2021; 125

Wang et al., 2019; Du and Cardie, 2018; Alberti 126

et al., 2019; Back et al., 2021). 127

In our study, we explicitly ask annotators to de- 128

termine whether or not a generated question is rel- 129

evant to the topic of the textbook chapter from 130

which it is generated. In addition, we show that 131

models trained for answer extraction on SQuAD 132

frequently select irrelevant or ambiguous answers 133

when applied to textbook material. We show that 134

summaries of input passages can be used instead 135

of the original text to aid in the modeling of topic 136

salience and that questions generated from human- 137

written and automatically-generated summaries are 138

more relevant, interpretable, and acceptable. 139

3 Methodology 140

To perform answer-unaware QG, we take inspira- 141

tion from work done by Dong et al. (2019) and Bao 142

et al. (2020) who show that large language models, 143
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Chapter 2 Chapter 3 Chapter 4
# Questions (n = 139) (n = 93) (n = 66)

Acceptable? 54.0% 58.1% 53.0%
Grammatical? 94.2% 93.5% 93.9%
Interpretable? 74.1% 76.3% 72.7%
Relevant? 72.7% 81.7% 83.3%
Correct? 95.0% 100% 98.5%

Table 1: Distribution of human evaluation scores across
the three chapters of annotation. Labels are determined
via majority vote among our three annotators.

when fine-tuned for both QA and QG, perform bet-144

ter than models tuned for only one of those tasks.145

We assume that answer extraction will help both146

QA and QG and therefore use a model that was147

fine-tuned on all three. We chose a version of the148

T5 language model (Raffel et al., 2020) fine-tuned149

on SQuAD due to the clean separation between150

tasks afforded by T5’s task-specific prefixes such151

as “generate question:" and “extract answer:".2152

The three fine-tuning tasks that were used to153

train our model are illustrated in Figure 2. For154

question generation, the model is trained to perform155

answer-aware question generation by modeling156

P (Q|A,C). For question answering, the model157

is trained to perform extractive QA by modeling158

P (A|C,Q). Finally, for answer extraction, instead159

of directly modeling P (A|C), a new context C ′ =160

{c0, ..., cs, ..., ce, ..., cn+2} is generated where cs161

and ce are highlight tokens that denote the start162

(s) and end (e) of the sub-sequence within which163

we want to extract an answer span. The answer164

extraction fine-tuning task thus becomes modeling165

P (A|C ′) where A = {ck, ..., ck+l} such that k ≥166

s and k + l ≤ e.167

Because T5 has a fixed maximum context length168

of 512 tokens, input passages that contain n > 512169

tokens must be split up into smaller sub-passages.170

We perform this splitting such that no sentences are171

divided between sub-passages and all sub-passages172

have a roughly equal number of sentences.3 Fi-173

nally, to generate questions, we iteratively choose174

the start and end of each sentence in a given sub-175

passage as our cs and ce and extract at most one176

answer span per sentence.4 We then generate one177

question per extracted answer span using the same178

model in an answer-aware fashion.179

2https://huggingface.co/valhalla/t5-base-qa-qg-hl
3Sentence boundaries are determined by NLTK
4If the generated answer span tokens are not sequentially

present in the highlighted sentence, the answer is discarded
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0

20

40

60

80

100

33

93

56
61

96

49

89

74
78

98

83

99
94 95 98

Original Text
Automatic Summary
Human Summary

Figure 3: Results of our human evaluation for each input
method. Numbers represent the proportion of questions
that were labeled as having the given attribute (as deter-
mined by majority vote among our three annotators).

4 Experiments 180

Our first experiment evaluates the performance of 181

the model on the original text extracted from Juraf- 182

sky and Martin (2009)’s textbook “Speech and Lan- 183

guage Processing 3rd Edition".5 To ensure proper 184

comparison, we manually extracted the text from 185

our three chapters of interest (Chapters 2, 3, and 186

4). When extracting text, all figures, tables, and 187

equations were omitted and all references to them 188

were either replaced with appropriate parentheti- 189

cal citations or removed when possible. In total, 190

we generated 1208 question-answer pairs from the 191

original text. 192

Our second experiment evaluates the perfor- 193

mance of the model on human-written summaries. 194

We asked three research assistants (RAs) to write 195

summaries for each subsection of the same three 196

chapters (2-4) of the textbook. These RAs were en- 197

couraged to make these summaries easily readable 198

by humans rather than to be easily understandable 199

by machines. From these 3 sets of summaries we 200

generated a total of 667 question-answer pairs. 201

Our final experiment evaluates the performance 202

of the model on automatically generated sum- 203

maries. To perform this automatic summarization 204

we used a BART (Lewis et al., 2019) language 205

model which was fine-tuned for summarization 206

on the CNN/DailyMail dataset (Nallapati et al., 207

2016).6 The same chunking procedure as described 208

in Section 3 was performed on input passages that 209

were larger than 512 tokens. The summarized out- 210

put sub-passages were then concatenated together 211

5https://web.stanford.edu/ jurafsky/slp3/
6https://huggingface.co/facebook/bart-large-cnn
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before running question generation. In total we212

generated 318 question-answer pairs from our au-213

tomatic summaries.214

5 Evaluation215

For evaluation, we randomly sampled 100 question-216

answer pairs from each of the three experiments to217

construct our evaluation set of 300 questions. We218

recruited three expert annotators, all undergradu-219

ates in computer science, to evaluate the quality220

of the question-answer pairs. All 300 pairs were221

given to all three annotators. We asked the anno-222

tators to answer the following yes/no questions:223

a) Would you directly use this question as a flash-224

card?, b) Is this question grammatical?, c) Does225

this question make sense out of context?, d) Is this226

question relevant? and e) Is the answer to this227

question correct? We report these in our tables as228

“Acceptable?", “Grammatical?", “Interpretable?",229

“Relevant?", and “Correct?" respectively. We pro-230

vided many annotation examples to our annotators231

and wrote clear guidelines about each category to232

ensure high agreement. Our full annotator guide-233

lines can be found in Appendix A.234

In Figure 3 we report the results of our evalu-235

ation across the three experiments. We note that236

a majority of observed errors in the original text237

questions stem from them being either irrelevant238

or un-interpretable out of context. We also see that239

generating questions directly from human-written240

summaries significantly improves relevance and in-241

context interpretability, resulting in over 80% being242

labeled as acceptable by annotators. Finally, in the243

case of automatic summaries, we see that relevance244

and in-context interpretability are somewhat im-245

proved as compared to the original text questions246

while grammaticality suffers slightly.247

In Table 1 we report the distribution of scores248

across chapters. We note that scores are largely con-249

sistent across the three chapters, with lower average250

relevance for Chapter 2 questions likely owing to251

the source material containing many worked exam-252

ples of regular expressions and application-specific253

details.254

In Table 2 we report the per-annotator statistics255

as well as the pairwise inter-annotator agreement256

(IAA). While at first glance it may seem that agree-257

ment is low for grammaticality and correctness,258

this is somewhat expected for highly unbalanced259

classes (Artstein and Poesio, 2008). For the other260

three categories we see an average pairwise agree-261

A1 A2 A3 Pairwise IAA

Acceptable? 69.7 48.7 47.7 (0.41, 0.50, 0.33)
Grammatical? 98.3 90.7 86.3 (0.16, 0.49, 0.10)
Interpretable? 79.7 70.7 59.7 (0.51, 0.43, 0.32)
Relevant? 79.0 71.3 69.0 (0.41, 0.29, 0.25)
Correct? 91.7 90.7 90.0 (0.03, 0.08, 0.06)

Table 2: Comparison between our three annotators (A1,
A2, A3) on all 300 questions across all categories. Num-
bers represent percentages. Pairwise Inter-Annotator
Agreement is calculated by Cohen κ and is reported in
the order (A1-A2, A2-A3, A3-A1).

ment of approximately 0.4 which suggests a fairly 262

large degree of agreement for such a seemingly 263

amorphous and ambiguous category. Examples of 264

questions for each category on which there was 265

significant disagreement are listed in Appendix B. 266

6 Conclusion and Future Work 267

In this work we show that answer-unaware QG 268

models have difficulty both choosing relevant top- 269

ics to ask about and generating questions that are 270

interpretable out of context. We show that asking 271

questions on summarized text ameliorates this in 272

large part and that these gains can be approximated 273

by the use of automatic summarization. 274

Future work should seek to further explore the 275

relationship between summarization and QG. Work 276

done concurrently to ours by Lyu et al. (2021) al- 277

ready has promising results in this direction, show- 278

ing that training a QG model on synthetic data 279

from summarized text improves performance on 280

downstream QA. 281

Additionally, future work should focus on further 282

refining and standardizing the metrics used for both 283

automatic and human evaluation of QG. As noted 284

by Nema and Khapra (2018) n-gram overlap met- 285

rics correlate poorly with in-context interpretability 286

and evaluation on downstream QA fails to address 287

the relevance of generated questions. 288
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A Annotator Guidelines460

In Table 3 we report the annotation guidelines given461

to our annotators. In the original document, under462

each category, 3 or more example annotations were463

given, each containing an explanation as to why the464

selection was made. Categories such as grammati-465

cality had upwards of 10 or more examples given466

to ensure maximum possible agreement between 467

annotators. Several discussion sessions were held 468

between the authors and annotators to ensure that 469

these guidelines were well understood and that they 470

were sensible for the task. 471

During annotation, annotators were not given the 472

original source text from which the question was 473

generated. Instead, they were given the original 474

textbook chapters to use as reference material for 475

relevance and were allowed to use online search en- 476

gines to check for grammaticality and correctness. 477

B Example Disagreements 478

In Table 4 we list questions for which there was 479

at least one dissenting annotator for the given cate- 480

gory. 481

We see that for categories such as “Relevant?" 482

and “Interpretable?", annotations are often depen- 483

dent on the level of granularity with which the topic 484

is being discussed. For example, a question such 485

as “Who named the minimum edit distance algo- 486

rithm?" may or may not be relevant depending on 487

how granular of a class the student is taking. 488

For categories such as “Correct?" or “Accept- 489

able?" certain particularities about otherwise good 490

questions can easily disqualify them from receiv- 491

ing a positive annotation. In the case of “What 492

NLP algorithms require algorithms for word seg- 493

mentation?", keen-eyed annotators would notice 494

that the question is non-sensical, however others 495

may note that both Japanese and Thai do, in fact, 496

require word segmentation. Particularities such as 497

these make this task very difficult, even for expert 498

annotators. 499

We provide our full annotation data in CSV form 500

in the supplementary material for further inspec- 501

tion. 502
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Would you directly use this question as a flashcard? (Yes / No):
A Yes answer to this question means that the generated question is salient, grammatically correct, non-awkwardly phrased and
has one correct answer. If you answer Yes to this question you may skip the rest of the annotation for the given example – the
answers for all other questions are assumed to be Yes. If you answer No, then please continue on to the rest of the questions.
Importantly, if you *did* answer yes to all of the other questions, do not feel pressured to answer yes to this question. There
are many reasons why you might not want to directly use a question as a flashcard (too easy, too general, etc.) that are not
enumerated here.

Is this question grammatically correct? (Yes / No):
A Yes answer to this question implies that a question has no grammatical errors. Awkwardly worded questions that are
grammatical should be annotated as such (answer Yes for these questions).

Does this question make sense out of context? (Yes / No):
This question asks if there are any references made by the question to other items that have been “previously discussed”. For
our use case, questions should never refer to other specific items in the text from which they were drawn. A Yes answer to
this implies that the question is interpretable when taken on its own and is a question that someone would ask if there was no
pre-existing context.

Is this question relevant? (Yes / No):
A Yes answer to this question implies that the question being asked is important for understanding the main points that the
chapter (and by extension the book) is attempting to teach. Questions that are relevant should be ones that would plausibly be
asked on a quiz or a test from a fairly thorough course on computational linguistics. Questions that are about insignificant details
or questions that are about specific illustrated examples that are not useful for understanding the main points of the chapter
should be given a No. Anything that is relevant (or tangentially relevant) to computational linguistics should be given a Yes.

Is the answer to the question correct? (Yes / No):
A Yes answer to this question implies that the answer given is one of a multitude of plausible correct answers to the question. If
the question has multiple correct answers and the given answer is one of them, it should be annotated as a Yes. If the question
is bad/ungrammatical or underspecified to such an extent that you cannot judge the answer properly, you should annotate Yes.
However, irrelevant questions that are grammatical and reasonably interpretable should be annotated properly.

Table 3: Guidelines given to our human annotators before annotating for the acceptability, grammaticality, inter-
pretability, relevance, and correctness of generated questions.

Q: What is another name for a corpus that NLP algorithms learn from? A: training corpus
Acceptable? Q: What would happen if we accidentally trained the model on the test set? A: bias

Q: What would give a lower cross-entropy? A: The more accurate model

Q: What are words like uh and um called fillers? A: filled pauses
Grammatical? Q: What context do words that are in our vocabulary appear in a test set in? A: unseen

Q: What word has the same lemma cat but are different wordforms? A: cats

Q: What gives us a way to quantify both of these intuitions about string similarity? A: Edit distance
Interpretable? Q: What is another important step in text processing? A: Sentence segmentation

Q: What seems to matter more than its frequency? A: whether a word occurs or not

Q: What isn’t big enough to give us good estimates in most cases? A: web
Relevant? Q: Who named the minimum edit distance algorithm? A: Wagner and Fischer

Q: What do algorithms have to deal with? A: ambiguities

Q: What do square brackets not allow us to say? A: s or nothing
Correct? Q: What NLP algorithms require algorithms for word segmentation? A: Japanese and Thai

Q: What encode some facts that we think of as strictly syntactic in nature? A: Bigram probabilities

Table 4: Questions for which there was disagreement on the label for the given category

7


