A Feasibility Study of Answer-Unaware Question Generation for Education

Abstract

We conduct a feasibility study into the applicability of answer-unaware question generation models to textbook passages. We show that a significant portion of errors in such systems arise from asking irrelevant or un-interpretable questions and that such errors can be ameliorated by providing summarized input. We find that giving these models human-written summaries instead of the original text results in a significant increase in acceptability of generated questions (33% -> 83%) as determined by expert annotators. We also find that, in the absence of human-written summaries, automatic summarization can serve as a good middle ground.

1 Introduction

Writing good questions that target salient concepts is difficult and time consuming. Automatic Question Generation (QG) is a powerful tool that could be used to significantly lessen the amount of time it takes to write such questions. A QG system that automatically generates relevant questions from textbooks would help professors write quizzes faster and help students spend more time reviewing flashcards rather than writing them.

Previous work on QG has focused primarily on answer-aware QG models. These models require the explicit selection of an answer span in the input context, typically through the usage of highlight tokens. This adds significant overhead to the question generation process and is undesirable in cases where clear lists of salient key terms are unavailable. We conduct a feasibility study on the application of answer-unaware question generation models (ones which do not require manual selection of answer spans) to an educational context. Our contributions are as follows:

- We show that the primary way answer-unaware QG models fail is by generating irrelevant or un-interpretable questions.
- We show that giving answer-unaware QG models human-written summaries instead of the original text results in a significant increase in acceptability of generated questions (33% -> 83%).
- We show that, in the absence of human-written summaries, providing automatically generated summaries as input is a good alternative.

2 Related Work & Background

Early attempts to use QG for educational applications involved generating gap-fill or “cloze” questions\(^1\) (Taylor, 1953) from textbooks (Agarwal and Mannem, 2011). One may optionally choose to generate distractors to make these questions multiple choice (Narendra et al., 2013; Correia et al., 2014).

\(^1\)For example, Q: “Dynamic Programming was introduced in ____” A: 1957
2012). This procedure has been shown to be effective in classroom settings (Zavala and Mendoza, 2018) and students’ scores on this style of generated question correlate positively with their scores on human-written questions (Guo et al., 2016). However, there are many situations where gap-fill questions are not effective, as they are only able to ask about specific unambiguous key terms.

In recent years, with the advent of large crowd-sourced datasets for extractive question answering (QA) such as SQuAD (Rajpurkar et al., 2018), neural models have become the primary methods of choice for generating traditional interrogative style questions (Kurdi et al., 2019). A common task formulation for neural QA is to phrase the task as answer-aware, that is, given a context passage \(C = \{c_0, ..., c_n\} \) and an answer span within this context \(A = \{c_k, ..., c_{k+l}\} \) such that \(k \geq 0 \) and \(k + l \leq n \), train a model to maximize \(P(Q|A, C) \) where \(Q = \{q_0, ..., q_m\} \) are the tokens in the question. These models are typically evaluated using n-gram overlap metrics such as BLEU/ROUGE/METEOR (Papineni et al., 2002; Lin, 2004; Banerjee and Lavie, 2005) with the reference being the original human-authored question as provided by the extractive QA dataset.

The feasibility of using answer-aware neural QA in an educational setting was investigated by Wang et al. (2018), who used a BiLSTM encoder (Zhang et al., 2015) to encode \(C \) and \(A \) and a unidirectional LSTM decoder to generate \(Q \). They trained on the SQuAD dataset (Rajpurkar et al., 2018) and evaluated on textbooks from various domains (history, sociology, biology). They showed that generated questions were largely grammatical, relevant, and had high n-gram overlap with human-authored questions. However, given that we may not always have a convenient list of key terms to use as answer spans for an input passage, there is a desire to move past answer-aware QA models and evaluate the feasibility of answer-unaware models for use in education.

Shifting to answer-unaware models creates new challenges. As Vanderwende (2008) claims, the task of deciding what is and is not important is, itself, an important task. Without manually selected answer spans to guide it, an answer-unaware model must itself decide what is and is not important enough to ask a question about. Previous work primarily accomplishes this by separately modeling \(P(A|C) \), i.e. which spans in the input context are most likely to be used as answer targets for questions. We can then take these extracted answer spans and use them as input to an answer-aware QA model \(P(Q|A, C) \). This modeling choice allows for more controllable QA and more direct modeling of term salience.

Previous work done by Subramanian et al. (2018) trained a BiLSTM Pointer Network (Vinyals et al., 2015) for answer extraction and showed that it outperformed an entity-based baseline when predicting answer spans from SQuAD passages. However, their human evaluation centered around question correctness and fluency rather than relevance of answer selection. Similar follow-up studies also fail to explicitly ask human annotators whether or not the extracted answers, and subsequent generated questions, were relevant to the broader topic of the context passage (Willis et al., 2019; Cui et al., 2021; Wang et al., 2019; Du and Cardie, 2018; Alberti et al., 2019; Back et al., 2021).

In our study, we explicitly ask annotators to determine whether or not a generated question is relevant to the topic of the textbook chapter from which it is generated. In addition, we show that models trained for answer extraction on SQuAD frequently select irrelevant or ambiguous answers when applied to textbook material. We show that summaries of input passages can be used instead of the original text to aid in the modeling of topic salience and that questions generated from human-written and automatically-generated summaries are more relevant, interpretable, and acceptable.

3 Methodology

To perform answer-unaware QA, we take inspiration from work done by Dong et al. (2019) and Bao et al. (2020) who show that large language models,
when fine-tuned for both QA and QG, perform better than models tuned for only one of those tasks. We assume that answer extraction will help both QA and QG and therefore use a model that was fine-tuned on all three. We chose a version of the T5 language model (Raffel et al., 2020) fine-tuned on SQuAD due to the clean separation between tasks afforded by T5’s task-specific prefixes such as “generate question:” and “extract answer:”.

The three fine-tuning tasks that were used to train our model are illustrated in Figure 2. For question generation, the model is trained to perform answer-aware question generation by modeling $P(Q|A,C)$. For question answering, the model is trained to perform extractive QA by modeling $P(A|C,Q)$. Finally, for answer extraction, instead of directly modeling $P(A|C)$, a new context $C' = \{c_0, ..., c_s, ..., c_{k-1} \}$ is generated where c_s and c_e are highlight tokens that denote the start (s) and end (e) of the sub-sequence within which we want to extract an answer span. The answer extraction fine-tuning task thus becomes modeling $P(A|C')$ where $A = \{c_k, ..., c_{k+l} \}$ such that $k \geq s$ and $k + l \leq e$.

Because T5 has a fixed maximum context length of 512 tokens, input passages that contain $n > 512$ tokens must be split up into smaller sub-passages. We perform this splitting such that no sentences are divided between sub-passages and all sub-passages have a roughly equal number of sentences. Finally, to generate questions, we iteratively choose the start and end of each sentence in a given sub-passage as our c_s and c_e and extract at most one answer span per sentence. We then generate one question per extracted answer span using the same model in an answer-aware fashion.

Table 1: Distribution of human evaluation scores across the three chapters of annotation. Labels are determined via majority vote among our three annotators.

<table>
<thead>
<tr>
<th># Questions</th>
<th>Chapter 2 ($n = 139$)</th>
<th>Chapter 3 ($n = 93$)</th>
<th>Chapter 4 ($n = 66$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acceptable?</td>
<td>54.0%</td>
<td>58.1%</td>
<td>53.0%</td>
</tr>
<tr>
<td>Grammatical?</td>
<td>94.2%</td>
<td>93.5%</td>
<td>93.9%</td>
</tr>
<tr>
<td>Interpretable?</td>
<td>74.1%</td>
<td>76.3%</td>
<td>72.7%</td>
</tr>
<tr>
<td>Relevant?</td>
<td>72.7%</td>
<td>81.7%</td>
<td>83.3%</td>
</tr>
<tr>
<td>Correct?</td>
<td>95.0%</td>
<td>100%</td>
<td>98.5%</td>
</tr>
</tbody>
</table>

Figure 3: Results of our human evaluation for each input method. Numbers represent the proportion of questions that were labeled as having the given attribute (as determined by majority vote among our three annotators).

4 Experiments

Our first experiment evaluates the performance of the model on the original text extracted from Jurafsky and Martin (2009)’s textbook “Speech and Language Processing 3rd Edition”. To ensure proper comparison, we manually extracted the text from our three chapters of interest (Chapters 2, 3, and 4). When extracting text, all figures, tables, and equations were omitted and all references to them were either replaced with appropriate parenthetical citations or removed when possible. In total, we generated 1208 question-answer pairs from the original text.

Our second experiment evaluates the performance of the model on human-written summaries. We asked three research assistants (RAs) to write summaries for each subsection of the same three chapters (2-4) of the textbook. These RAs were encouraged to make these summaries easily readable by humans rather than to be easily understandable by machines. From these 3 sets of summaries we generated a total of 667 question-answer pairs.

Our final experiment evaluates the performance of the model on automatically generated summaries. To perform this automatic summarization we used a BART (Lewis et al., 2019) language model which was fine-tuned for summarization on the CNN/DailyMail dataset (Nallapati et al., 2016). The same chunking procedure as described in Section 3 was performed on input passages that were larger than 512 tokens. The summarized output sub-passages were then concatenated together
before running question generation. In total we generated 318 question-answer pairs from our automatic summaries.

5 Evaluation

For evaluation, we randomly sampled 100 question-answer pairs from each of the three experiments to construct our evaluation set of 300 questions. We recruited three expert annotators, all undergraduates in computer science, to evaluate the quality of the question-answer pairs. All 300 pairs were given to all three annotators. We asked the annotators to answer the following yes/no questions: a) Would you directly use this question as a flashcard?, b) Is this question grammatical?, c) Does this question make sense out of context?, d) Is this question relevant?, and e) Is the answer to this question correct? We report these in our tables as “Acceptable?”, “Grammatical?”, “Interpretable?”, “Relevant?”, and “Correct?” respectively. We provided many annotation examples to our annotators and wrote clear guidelines about each category to ensure high agreement. Our full annotator guidelines can be found in Appendix A.

In Table 1 we report the distribution of scores across chapters. We note that a majority of observed errors in the original text questions stem from them being either irrelevant or un-interpretable out of context. We also see that generating questions directly from human-written summaries significantly improves relevance and in-context interpretability, resulting in over 80% being labeled as acceptable by annotators. Finally, in the case of automatic summaries, we see that relevance and in-context interpretability are somewhat improved as compared to the original text questions while grammaticality suffers slightly.

Table 1: Distribution of scores across chapters.

<table>
<thead>
<tr>
<th>Class</th>
<th>Chapter 1</th>
<th>Chapter 2</th>
<th>Chapter 3</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relevant</td>
<td>79.0</td>
<td>71.3</td>
<td>69.0</td>
<td>71.0</td>
</tr>
<tr>
<td>Grammatical</td>
<td>79.7</td>
<td>70.7</td>
<td>59.7</td>
<td>66.7</td>
</tr>
<tr>
<td>Interpretable</td>
<td>91.7</td>
<td>90.7</td>
<td>90.0</td>
<td>90.0</td>
</tr>
<tr>
<td>Acceptable</td>
<td>69.7</td>
<td>48.7</td>
<td>47.7</td>
<td>50.0</td>
</tr>
</tbody>
</table>

In Table 2 we report the per-annotator statistics as well as the pairwise inter-annotator agreement (IAA). While at first glance it may seem that agreement is low for grammaticality and correctness, this is somewhat expected for highly unbalanced classes (Artstein and Poesio, 2008). For the other three categories we see an average pairwise agreement of approximately 0.4 which suggests a fairly large degree of agreement for such a seemingly amorphous and ambiguous category. Examples of questions for each category on which there was significant disagreement are listed in Appendix B.

6 Conclusion and Future Work

In this work we show that answer-unaware QG models have difficulty both choosing relevant topics to ask about and generating questions that are interpretable out of context. We show that asking questions on summarized text ameliorates this in large part and that these gains can be approximated by the use of automatic summarization.

Future work should seek to further explore the relationship between summarization and QG. Work done concurrently to ours by Lyu et al. (2021) already has promising results in this direction, showing that training a QG model on synthetic data from summarized text improves performance on downstream QA.

Additionally, future work should focus on further refining and standardizing the metrics used for both automatic and human evaluation of QG. As noted by Nema and Khapra (2018) n-gram overlap metrics correlate poorly with in-context interpretability and evaluation on downstream QA fails to address the relevance of generated questions.

References

Daniel Jurafsky and James H Martin. 2009. Speech and language processing (Prentice Hall series in Artificial Intelligence). Prentice Hall NJ.

Siyuan Wang, Zhongyu Wei, Zihao Fan, Yang Liu, and Xuanjing Huang. 2019. A multi-agent communication framework for question-worthy phrase extraction and question generation. In AAAI.

Annotator Guidelines

In Table 3 we report the annotation guidelines given to our annotators. In the original document, under each category, 3 or more example annotations were given, each containing an explanation as to why the selection was made. Categories such as grammaticality had upwards of 10 or more examples given to ensure maximum possible agreement between annotators. Several discussion sessions were held between the authors and annotators to ensure that these guidelines were well understood and that they were sensible for the task.

During annotation, annotators were not given the original source text from which the question was generated. Instead, they were given the original textbook chapters to use as reference material for relevance and were allowed to use online search engines to check for grammaticality and correctness.

B Example Disagreements

In Table 4 we list questions for which there was at least one dissenting annotator for the given category.

We see that for categories such as “Relevant?” and “Interpretable?”, annotations are often dependent on the level of granularity with which the topic is being discussed. For example, a question such as “Who named the minimum edit distance algorithm?” may or may not be relevant depending on how granular of a class the student is taking.

For categories such as “Correct?” or “Acceptable?” certain particularities about otherwise good questions can easily disqualify them from receiving a positive annotation. In the case of “What NLP algorithms require algorithms for word segmentation?”, keen-eyed annotators would notice that the question is non-sensical, however others may note that both Japanese and Thai do, in fact, require word segmentation. Particularities such as these make this task very difficult, even for expert annotators.

We provide our full annotation data in CSV form in the supplementary material for further inspection.
Would you directly use this question as a flashcard? (Yes / No):
A Yes answer to this question means that the generated question is salient, grammatically correct, non-awkwardly phrased and has one correct answer. If you answer Yes to this question you may skip the rest of the annotation for the given example – the answers for all other questions are assumed to be Yes. If you answer No, then please continue on to the rest of the questions. Importantly, if you *did* answer yes to all of the other questions, do not feel pressured to answer yes to this question. There are many reasons why you might not want to directly use a question as a flashcard (too easy, too general, etc.) that are not enumerated here.

Is this question grammatically correct? (Yes / No):
A Yes answer to this question implies that a question has no grammatical errors. Awkwardly worded questions that are grammatical should be annotated as such (answer Yes for these questions).

Does this question make sense out of context? (Yes / No):
This question asks if there are any references made by the question to other items that have been “previously discussed”. For our use case, questions should never refer to other specific items in the text from which they were drawn. A Yes answer to this implies that the question is interpretable when taken on its own and is a question that someone would ask if there was no pre-existing context.

Is this question relevant? (Yes / No):
A Yes answer to this question implies that the question being asked is important for understanding the main points that the chapter (and by extension the book) is attempting to teach. Questions that are relevant should be ones that would plausibly be asked on a quiz or a test from a fairly thorough course on computational linguistics. Questions that are about insignificant details or questions that are about specific illustrated examples that are not useful for understanding the main points of the chapter should be given a No. Anything that is relevant (or tangentially relevant) to computational linguistics should be given a Yes.

Is the answer to the question correct? (Yes / No):
A Yes answer to this question implies that the answer given is one of a multitude of plausible correct answers to the question. If the question has multiple correct answers and the given answer is one of them, it should be annotated as a Yes. If the question is bad/ungrammatical or underspecified to such an extent that you cannot judge the answer properly, you should annotate Yes. However, irrelevant questions that are grammatical and reasonably interpretable should be annotated properly.

Table 3: Guidelines given to our human annotators before annotating for the acceptability, grammaticality, interpretability, relevance, and correctness of generated questions.

<table>
<thead>
<tr>
<th>Acceptable?</th>
<th>Q: What is another name for a corpus that NLP algorithms learn from?</th>
<th>A: training corpus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q: What would happen if we accidentally trained the model on the test set?</td>
<td>A: bias</td>
</tr>
<tr>
<td></td>
<td>Q: What would give a lower cross-entropy?</td>
<td>A: The more accurate model</td>
</tr>
<tr>
<td>Grammatical?</td>
<td>Q: What are words like uh and um called fillers?</td>
<td>A: filled pauses</td>
</tr>
<tr>
<td></td>
<td>Q: What context do words that are in our vocabulary appear in a test set in?</td>
<td>A: unseen</td>
</tr>
<tr>
<td></td>
<td>Q: What word has the same lemma cat but are different wordforms?</td>
<td>A: cats</td>
</tr>
<tr>
<td>Interpretable?</td>
<td>Q: What gives us a way to quantify both of these intuitions about string similarity?</td>
<td>A: Edit distance</td>
</tr>
<tr>
<td></td>
<td>Q: What is another important step in text processing?</td>
<td>A: Sentence segmentation</td>
</tr>
<tr>
<td></td>
<td>Q: What seems to matter more than its frequency?</td>
<td>A: whether a word occurs or not</td>
</tr>
<tr>
<td>Relevant?</td>
<td>Q: What isn’t big enough to give us good estimates in most cases?</td>
<td>A: web</td>
</tr>
<tr>
<td></td>
<td>Q: Who named the minimum edit distance algorithm?</td>
<td>A: Wagner and Fischer</td>
</tr>
<tr>
<td></td>
<td>Q: What do algorithms have to deal with?</td>
<td>A: ambiguities</td>
</tr>
<tr>
<td>Correct?</td>
<td>Q: What do square brackets not allow us to say?</td>
<td>A: s or nothing</td>
</tr>
<tr>
<td></td>
<td>Q: What NLP algorithms require algorithms for word segmentation?</td>
<td>A: Japanese and Thai</td>
</tr>
<tr>
<td></td>
<td>Q: What encode some facts that we think of as strictly syntactic in nature?</td>
<td>A: Bigram probabilities</td>
</tr>
</tbody>
</table>

Table 4: Questions for which there was disagreement on the label for the given category