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ABSTRACT

Dynamic data pruning accelerates training by focusing on informative samples.
However, comparing importance scores across different model states introduces
inconsistency (score context drift), and variable selection rates bias gradient dy-
namics over time (temporal gradient bias). We introduce RePB (Resolving Prun-
ing Biases), a framework addressing these issues. RePB performs pruning de-
cisions within local windows (short sequences of batches) during training, using
loss scores computed with a near-constant model state within each window to en-
sure valid comparisons. These decisions determine the data subset used in the
subsequent training phase. To counteract temporal gradient bias arising from non-
uniform sample inclusion, cumulative temporal rescaling reweights sample losses
during training based on their historical selection frequency. We provide theoreti-
cal grounding for RePB’s consistency in score comparison and gradient alignment.
Experiments show RePB achieves near-full-dataset accuracy using reduced data
(most above 30%) across 16 datasets, 17 models and 13 tasks, offering a robust
and scalable approach to efficient deep learning.

1 INTRODUCTION

The remarkable success of deep learning models across diverse applications (He et al., 2016; Doso-
vitskiy et al., 2021a) often comes at the cost of immense computational resources and vast datasets
(Kaplan et al., 2020; Russakovsky et al., 2015; Feng et al., 2019). As models continue to grow in
complexity and datasets expand, improving training efficiency without compromising model quality
becomes paramount. Data selection, which aims to train models on smaller, carefully chosen data
subsets, represent a promising direction for achieving such efficiency gains (Coleman et al., 2020;
Raju et al., 2021; Sener & Savarese, 2018; He et al., 2024).
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Figure 1: Overview of RePB framework.

Among data selection techniques, dy-
namic methods that adapt the train-
ing subset during the learning pro-
cess hold particular appeal (Qin et al.,
2024; Zhou et al., 2025; Raju et al.,
2021). By responding to the chang-
ing importance or redundancy of data
points as the model evolves, dynamic
pruning can potentially offer greater
efficiency than static selection fixed
before training (Coleman et al., 2020;
Paul et al., 2021; Toneva et al., 2019).
However, the practical effectiveness
and reliability of dynamic pruning are
often undermined by two fundamen-
tal consistency issues. First, score context drift: importance metrics (e.g., sample loss Qin et al.
(2024); Zhou et al. (2025); Raju et al. (2021), gradient norm Katharopoulos & Fleuret (2018)) used
for pruning decisions are typically evaluated using the current model state. Because the model pa-
rameters (the context) drift significantly during training, comparing scores computed at different
steps lacks statistical validity and can lead to suboptimal pruning choices (Blalock et al., 2020).
Second, temporal gradient bias: iteratively selecting non-uniform subsets epoch after epoch alters
the effective sampling distribution over time compared to standard uniform sampling from the full
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dataset. This introduces a bias in the expected cumulative gradient trajectory, potentially hindering
convergence or leading the model to different optima (Qin et al., 2024; Hu et al., 2020). These
consistency violations represent fundamental obstacles to achieving reliable and theoretically sound
acceleration with dynamic data pruning.

To overcome these critical limitations, particularly the inconsistency biases inherent in scoring
context and temporal gradient dynamics, we propose RePB (Resolving Pruning Biases), a frame-
work characterized by pruning within a batch and rescaling over epochs (As shown in the Figure
1). Specifically, to ensure reliable pruning decisions despite score context drift, it employs local
window pruning (LWP): importance scores (sample losses) used to determine the data for the next
epoch are computed and compared only within short local windows of the current epoch (e.g., one
or a few batches). Leveraging the minimal model drift within these short windows allows for valid
comparisons of scores generated at slightly different steps, enabling reliable identification of less
informative samples relative to their peers within the same window. Complementing this selection
process, RePB maintains data diversity and prevents sample pool collapse through uniform prob-
ability resampling. At the end of each epoch, it explicitly reintroduces samples from the original
dataset that were not part of the current training set with a fixed probability, guaranteeing long-term
exploration. Finally, to counteract the temporal bias in gradient dynamics arising from selecting
potentially non-uniform subsets over epochs, RePB utilizes cumulative temporal rescaling (CTR).
During training in the subsequent epoch, CTR reweights the loss of each sample based on its histor-
ical selection frequency, effectively applying an empirical inverse probability weighting that aims to
align the expected gradient trajectory with that of full-dataset training over time. By systematically
addressing both score comparison validity and long-term gradient bias, this synergistic approach
allows RePB to deliver the efficiency benefits of dynamic pruning without sacrificing the stability
and reliability of standard training.

2 RELATED WORK

Data Selection and Pruning. Selecting informative data subsets is a core theme in machine learn-
ing, pursued for efficiency (Konyushkova et al., 2017), generalization (Jiang et al., 2018). Static
subset selection methods choose data once before training, based on criteria like core-sets (Huggins
et al., 2016), uncertainty (Coleman et al., 2020), or gradient information (Katharopoulos & Fleuret,
2018; Paul et al., 2021). While simpler, they cannot adapt to evolving sample importance. Dynamic
methods, like InfoBatch, update the subset during training (Toneva et al., 2019; Qin et al., 2024).
Early work often focused on identifying forgettable samples (Toneva et al., 2019), while more re-
cent approaches use loss dynamics (Qin et al., 2024; Zhou et al., 2025). RePB falls into the dynamic
category but specifically targets the consistency issues often overlooked by these methods.

Addressing Score Inconsistency and Staleness. The challenge of comparing importance scores
computed across differing model states is recognized in the literature (Jiang et al., 2019; Borsos
et al., 2020). Prior attempts to mitigate this include using score moving averages (Jiang et al., 2019)
or employing infrequent score updates (Borsos et al., 2020). However, these strategies often provide
indirect mitigation rather than a direct structural guarantee of comparable scoring contexts. RePB’s
local window pruning offers a more direct and foundational solution by explicitly restricting score
comparisons to windows of model state stability, thereby ensuring local decision consistency and
tackling the root cause of this specific inconsistency.

Addressing Gradient Bias and Variance. Dynamic subset selection inevitably leads to non-
uniform sampling over time, potentially biasing gradient estimates (Qin et al., 2024). Impor-
tance Sampling (IS) is a classical technique used in stochastic optimization to reduce variance or
correct bias by weighting gradient steps inversely to sampling probabilities (Needell et al., 2016;
Katharopoulos & Fleuret, 2018; Qin et al., 2024). IS often uses instantaneous importance or sam-
pling probabilities to adjust the current gradient step, primarily for variance reduction. CTR, con-
versely, uses cumulative selection frequencies (counts of inclusion in past epochs’ datasets) to cor-
rect the long-term temporal bias introduced by the selection process itself across epochs. It aims to
align the entire training trajectory, not just individual steps (detailed in Appendix A).

In conclusion, RePB offers a refined approach to dynamic data pruning by addressing critical con-
sistency challenges. While methods like InfoBatch (Qin et al., 2024) tackle temporal gradient bias
through instantaneous rescaling, RePB introduces a distinct cumulative temporal rescaling mecha-
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nism. This approach ensures long-term gradient alignment with enhanced applicability, as it operates
effectively without relying on explicit knowledge or modeling of precise selection probability dis-
tributions, which may be intractable or unavailable. Crucially, RePB also identifies and resolves the
challenge of score context drift—a limitation particularly evident in global comparison strategies
like InfoBatch’s—through its local window scoring strategy, which ensures valid importance com-
parisons within stable model contexts. RePB thus provides a more robust, theoretically grounded,
and broadly applicable path to efficient training than prior dynamic pruning methods.

3 REPB: RESOLVING INCONSISTENCY BIASES IN DYNAMIC PRUNING

Dynamic data pruning seeks efficiency gains by training on subsets of data identified as most infor-
mative. However, two fundamental consistency challenges hinder its reliability: (1) Score context
drift: Importance scores (e.g., sample losses) computed at different training stages (with different
model parameters, i.e., different contexts) are not directly comparable, making pruning decisions
unreliable. (2) Temporal gradient bias: Selecting subsets non-uniformly over time alters the ex-
pected cumulative gradient compared to full-dataset training. RePB (Resolving Pruning Biases, as
shown Figure 1) tackles these issues systematically using local window pruning, uniform probability
resampling, and Cumulative Temporal Rescaling (CTR).

3.1 LOCAL WINDOW PRUNING FOR SELECTION CONSISTENCY

During the training process on dataset DE (in epoch E), RePB identifies samples within DE for
potential inclusion in DE+1. Pruning decisions are localized within windows. A window k may
consist of a single batch Bt or span W consecutive batches (e.g., from step tk to tk+W−1); the
latter is particularly useful with small training batch sizes to ensure a sufficient sample pool for
effective pruning. We denote the set of samples processed in window k as Wk ⊆ DE . For each
sample (xi, yi) ∈ Wk processed at step t ∈ [tk, tk+W−1], its importance score is computed using
the model state at that time: si = ℓ(xi, yi; θt). After processing all samples in the window, these
scores {si}(xi,yi)∈Wk

are collected. The core assumption is that the parameter drift ∥θt − θt′∥ for
any t, t′ within the window [tk, tk+W−1] is small. This allows for a meaningful comparison of the
scores si collected across the window.

Within each processing window Wk, importance scores si = ℓ(xi, yi, θwindow) are computed for all
constituent samples (xi, yi) ∈ Wk. The window-specific mean score is then determined as µk =

1
|Wk|

∑
(xj ,yj)∈Wk

sj . Let ρ ∈ [0, 1] be a pre-defined hyperparameter representing the probability
with which a sample (xi, yi) ∈ Wk having si < µk is pruned. For each sample (xi, yi) ∈ Wk, an
independent random variable Ui ∼ U(0, 1) is drawn. The sample is retained and included in the
candidate set D′

E+1 for the subsequent epoch E + 1 if the following condition holds:

(si ≥ µk) ∨ (si < µk ∧ Ui ≥ ρ) (1)

Otherwise, the sample is temporarily pruned. This selection rule is applied to all samples across all
windows processed during epoch E, and the union of retained samples forms D′

E+1.

3.2 UNIFORM PROBABILITY RESAMPLING FOR DIVERSITY

After processing DE and collecting retained samples into D′
E+1 at the end of epoch E, resampling

occurs to ensure diversity and counteract sample pool shrinkage. We identify the set of samples from
the full dataset D that were not part of the training set for the current epoch E, i.e., D \ DE . Every
sample (xj , yj) ∈ D\DE is added to form the final dataset DE+1 with probability ρresample = 1−ρ.

Final DE+1 = D′
E+1 ∪ {(xj , yj) ∈ D \ DE | random(0, 1) < ρresample}. (2)

This step guarantees that samples outside the current training focus have a chance to re-enter, pre-
venting convergence to a empty subset.

3.3 CUMULATIVE TEMPORAL RESCALING FOR GRADIENT ALIGNMENT

Dynamic selection can cause samples to be used with varying frequencies over epochs, deviating
from the uniform usage in standard training and potentially biasing the cumulative gradient. CTR

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

counteracts this during the training phase of epoch E+1 by amplifying the gradient contribution of
under-selected samples and dampening that of over-selected ones.

Let Ni(E) be the total number of times sample (xi, yi) has been included in the training datasets
from epoch 1 to E:

Ni(E) =

E∑
e=1

1[(xi, yi) ∈ De], (3)

where 1[·] is the indicator function. Assuming the initial dataset D1 contains all samples from the
full dataset D, every sample i has Ni(E) ≥ 1 for E ≥ 1.

The core idea of CTR is to reweight each sample’s contribution inversely proportional to its observed
historical selection frequency relative to the baseline (being selected in every epoch). We define the
CTR weight for sample i to be used during epoch E + 1 as: wCTR

i (E) = E/Ni(E). This weight
wCTR

i (E) represents the ratio of the number of epochs elapsed to the number of times sample i was
actually used. If Ni(E) < E, the sample was under-selected, and its weight will be greater than
1. If Ni(E) > E (possible if resampling allows multiple inclusions), it was over-selected, and its
weight is less than 1. If Ni(E) = E, its weight is 1, matching standard training.

During training in epoch E + 1, when processing a mini-batch Bt ⊂ DE+1, the gradient update is
computed using these weights directly:

gt =
1

|Bt|
∑
i∈Bt

wCTR
i (E)∇ℓ(xi, yi; θt). (4)

The standard mini-batch averaging 1/|Bt| is retained, but each sample’s gradient ∇ℓi is scaled by
its individual historical weight wCTR

i (E). This approach directly uses the historical counts Ni(E)
to adjust gradient magnitudes, offering a practical mechanism to mitigate temporal selection bias
without requiring knowledge of the underlying selection probabilities.

4 THEORETICAL FOUNDATIONS

4.1 LOCAL WINDOW PRUNING ENSURES SCORE CONSISTENCY

Proposition: By restricting pruning decisions to comparisons of scores collected within local win-
dows, RePB leverages the bounded and typically small parameter drift within such windows. This
makes the comparison of scores computed at slightly different model states significantly more reli-
able than comparisons across larger time intervals (e.g., epochs), thus mitigating the impact of score
context drift.

Proof: Consider the k-th window Wk spanning steps tk to tk+W−1. For a sample (xi, yi) ∈ Wk

processed at step t ∈ [tk, tk+W−1], its score is si = ℓ(xi, yi; θt). A comparison might involve
si and sj = ℓ(xj , yj ; θt′) where t, t′ ∈ [tk, tk+W−1], or comparing si to the window mean µk =

1
|Wk|

∑
j∈Wk

ℓ(xj , yj ; θt′j ).

The validity of such comparisons relies on the parameter drift within the window being small. As-
sume the loss function ℓ(x, y; θ) is L-Lipschitz continuous with respect to parameters θ. If gradient
norms are bounded by G and learning rate is η, the parameter change between any two steps t, t′

within the window is bounded: ∥θt−θt′∥ ≤ |t− t′|ηG ≤ WηG. The difference in loss for the same
sample i evaluated at two different model states θt, θt′ within the window is bounded:

|ℓ(xi, yi; θt)− ℓ(xi, yi; θt′)| ≤ L∥θt − θt′∥ ≤ LWηG. (5)

If the window size W and learning rate η are sufficiently small, this difference is small. This implies
that the score si = ℓ(xi, yi; θt) is a reasonably stable measure of the sample’s importance relative to
the model states encountered within that window. Comparing si to sj (computed with θt′ ) or to the
mean µk (an average over slightly different θ’s) is meaningful because the score context drift within
the window is limited. The relative ordering of sample importance is likely preserved. The efficacy
of LWP relies on minimal intra-window parameter drift. This is perfectly achieved when a window
is a single batch (W = 1), as scores are computed with a fixed model state before any parameter
update, resulting in zero drift. Since extremely small batch sizes are uncommon in many settings,
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W = 1 often serves as an ideal and practical default for RePB. For windows spanning multiple
batches (W > 1), the anticipated drift (proportional to WηG) remains significantly smaller than
cumulative drift over an entire epoch. Thus, unlike epoch-wide score aggregation which suffers
from substantial score context drift, LWP ensures a much higher degree of score comparability,
providing a more statistically sound basis for selection.

4.2 CUMULATIVE TEMPORAL RESCALING REDUCES GRADIENT BIAS

Proposition: By reweighting gradient contributions during training using weights wCTR
i (E) =

E/Ni(E) derived from empirically observed historical selection counts, CTR ensures that the ex-
pectation of the stochastic gradient updates aligns with the direction of the gradient computed over
the full dataset D, correcting the bias induced by non-uniform dynamic selection frequencies.

Proof: The target unbiased gradient over the full dataset D is g∗(θ) = 1
|D|
∑

i∈D ∇ℓi(θ). The
CTR method computes the stochastic gradient at step t (within epoch E + 1) using the weight
wCTR

i (E) = E/Ni(E) based on history up to epoch E:

gt =
1

|Bt|
∑
i∈Bt

wCTR
i (E)∇ℓi(θt), (6)

where Bt is sampled uniformly from the current epoch’s dataset DE+1. We analyze the expectation
of this gradient E[gt | θt]. First, taking the expectation over the sampling of the batch Bt from a
fixed DE+1:

EBt∼DE+1
[gt | θt,DE+1] =

1

|DE+1|
∑

i∈DE+1

wCTR
i (E)∇ℓi(θt). (7)

Next, we take the expectation over the selection process that generated DE+1. Let pi,e =
P((xi, yi) ∈ De). Let 1i(E + 1) be the indicator that i ∈ DE+1. Assume the size of the selected
dataset is approximately constant, |DE+1| ≈ SE+1 = E[|DE+1|].

E[gt | θt] = EDE+1

[
1

|DE+1|
∑
i∈D

1i(E + 1)wCTR
i (E)∇ℓi(θt)

]
(8)

E[gt | θt] ≈
1

SE+1

∑
i∈D

E[1i(E + 1)]wCTR
i (E)∇ℓi(θt) =

1

SE+1

∑
i∈D

pi,E+1w
CTR
i (E)∇ℓi(θt). (9)

The weight wCTR
i (E) = E/Ni(E) is the reciprocal of the empirical selection frequency

fi(E) = Ni(E)/E. By the Law of Large Numbers, fi(E) → p̄i as E → ∞, where p̄i =

limE→∞
1
E

∑E
e=1 pi,e is the long-term average selection probability of sample i. Thus, wCTR

i (E)
serves as a practical, computable approximation of 1/p̄i, derived solely from observed history with-
out needing to know pi,e or p̄i. Substituting wCTR

i (E) ≈ 1/p̄i:

E[gt | θt] ≈
1

SE+1

∑
i∈D

pi,E+1
1

p̄i
∇ℓi(θt). (10)

As the selection process stabilizes, the current selection probability pi,E+1 will fluctuate around the
long-term average p̄i. In expectation, or assuming pi,E+1 ≈ p̄i, the ratio pi,E+1/p̄i ≈ 1. Then:

E[gt | θt] ≈
1

SE+1

∑
i∈D

∇ℓi(θt) =
|D|
SE+1

(
1

|D|
∑
i∈D

∇ℓi(θt)

)
=

|D|
SE+1

g∗(θt). (11)

This demonstrates that the expected gradient under CTR, E[gt], is approximately proportional to
the true unbiased gradient g∗(θt). The proportionality constant is C ′ = |D|/SE+1, the ratio of the
full dataset size to the expected selected subset size. If the selection strategy maintains a roughly
constant expected subset size fraction α = SE+1/|D|, then C ′ ≈ 1/α, a stable factor.

This factor C ′ acts as a global scaling of the gradient, adjusting the learning rate based on the
data reduction. It does not reintroduce sample-specific bias. The crucial outcome of CTR using
wCTR

i (E) = E/Ni(E) is the correction of the relative contributions of different samples in the ex-
pected gradient, aligning the optimization direction with that of full-dataset training. The resampling
mechanism helps ensure Ni(E) grows over time for all i, keeping the weights well-behaved.
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5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets and Tasks. Our experiments span a multitude of learning paradigms and data modalities.
For image classification, we use CIFAR10, CIFAR100 (Krizhevsky et al.), and ImageNet-1K (Rus-
sakovsky et al., 2015). Vision-language understanding is evaluated on zero-shot captioning with
ToCa (Zhou et al., 2024), cross-domain captioning with SS1M (Feng et al., 2019), image caption-
ing on COCO (Chen et al., 2015), and video captioning on MSR-VTT (Xu et al., 2016). Scene
text recognition experiments utilize the MJ+ST dataset (Jaderberg et al., 2014; Gupta et al., 2016).
We further test RePB on multi-view stereo with WHU-MVS (Liu & Ji, 2020), cross-view geo-
localization with CVACT (Liu & Li, 2019), and image generation on MNIST (Deng, 2012) and
CIFAR10. Finally, we explore supervised and semi-supervised learning for image (EuroSAT (Hel-
ber et al., 2019), CIFAR100), text (AG News (Zhang et al., 2015), Yelp Review (Yelp, Inc.)), and
audio (ESC-50 (Piczak, 2015)).

Models. We demonstrate RePB’s architecture independence by applying it to Convolutional Neural
Networks (CNNs: ResNet18, ResNet50 (He et al., 2016), EfficientNet (Tan & Le, 2019)), Trans-
formers (ViT (Dosovitskiy et al., 2021b), Swin Transformer (Liu et al., 2021), ViECap (Fei et al.,
2023), ABINet (Fang et al., 2021), BERT (Devlin et al., 2019), HuBERT (Hsu et al., 2021), GeoDTR
(Zhang et al., 2023)), State Space Models (Mamba-based Vim (Zhu et al., 2024)), and other task-
specific architectures like Ada-MVS (Liu et al., 2023), VAE Kingma & Welling (2014); Ho & Sali-
mans (2022), DDPM Ho et al. (2020), FixMatch (Sohn et al., 2020), FlexMatch (Zhang et al., 2021),
and Dash (Xu et al., 2021).

Efficiency Metric: Pruning Rate. We use the pruning rate (or Pruned %), defined as the percentage
of data points skipped during training, as our primary indicator of efficiency. RePB’s computational
overhead for score calculation (reusing existing sample losses) and rescaling is minimal and largely
amortized. Therefore, the pruning rate serves as a hardware-independent, and easily comparable
metric that directly reflects the reduction in computational load (e.g., forward/backward passes) and,
consequently, potential training time speedup. Higher pruning rates, while maintaining or improving
task performance, indicate greater efficiency (detailed justification in B)

Table 1: Performance comparison of RePB with state-of-the-art dynamic data pruning methods
on CIFAR10 and CIFAR100 using ResNet18 across various pruning rates. †: Adjusted epochs as
reported in the original paper. ‡: Same number of epochs as other compared methods. \: Indicates
an unattainable pruning rate. Random* indicates dynamic random pruning Qin et al. (2024).

Method CIFAR10 CIFAR100
30% 50% 70% 30% 50% 70%

ResNet18 95.6 78.2
Random 94.6 ↓1.0 93.3 ↓2.3 90.2 ↓5.4 73.8 ↓4.4 72.1 ↓6.1 69.7 ↓8.5

GraNd-4 (Paul et al., 2021) 95.3 ↓0.3 94.6 ↓1.0 91.2 ↓4.4 74.6 ↓3.6 71.4 ↓6.8 68.8 ↓9.4
EL2N-20 (Toneva et al., 2019) 95.3 ↓0.3 95.1 ↓0.5 91.9 ↓3.7 77.2 ↓1.0 72.1 ↓6.1 -

DP (Yang et al., 2023) 94.9 ↓0.7 93.8 ↓1.8 90.8 ↓4.8 77.2 ↓1.0 73.1 ↓5.1 -
Random* 94.8 ↓0.8 94.5 ↓1.1 93.0 ↓2.6 77.3 ↓0.9 75.3 ↓2.9 -

ϵ-greedy Raju et al. (2021) 95.2 ↓0.4 94.9 ↓0.7 94.1 ↓1.5 76.4 ↓1.8 74.8 ↓3.4 -
UCB Raju et al. (2021) 95.3 ↓0.3 94.7 ↓0.9 93.9 ↓1.7 77.3 ↓0.9 75.3 ↓2.9 -

InfoBatch† Qin et al. (2024) 95.6 ↑0.0 95.1 ↓0.5 94.7 ↓0.9 78.2 ↑0.0 78.1 ↓0.1 76.5 ↓1.7

InfoBatch‡ Qin et al. (2024) 95.6 ↑0.0 95.0 ↓0.6 94.4 ↓1.2 78.3 ↑0.1 77.7 ↓0.5 \
RePB 95.6 ↑0.0 95.4 ↓0.2 94.9 ↓0.7 78.4 ↑0.2 78.1 ↓0.1 77.2 ↓1.0

5.2 COMPARATIVE ANALYSIS WITH STATE-OF-THE-ART METHODS

Dynamic Data Pruning Benchmarks. Table 1 presents results on CIFAR10 and CIFAR100 using
ResNet18. RePB consistently outperforms other static or dynamic pruning methods (e.g., GraNd-
4, EL2N-20, DP, Random*, UCB), across all pruning rates. Notably, RePB achieves performance
comparable to or even slightly exceeding full dataset training at 30% and 50% pruning rates. Com-
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pared to InfoBatch (when run for the same number of epochs, denoted by ‡), RePB demonstrates
superior accuracy, especially at higher pruning rates (e.g., 50% on CIFAR100: 78.1% for RePB
vs. 77.7% for InfoBatch‡). Even when InfoBatch uses adjusted (typically more) epochs (†), RePB
often matches or surpasses its performance with less data (e.g., CIFAR10 70%: RePB 94.9% vs.
InfoBatch† 94.7%). This highlights RePB’s ability to effectively prune data without significant per-
formance degradation, showcasing the benefits of its consistency-preserving mechanisms.

Large-Scale Vision-Language Tasks vs. InfoBatch. We further benchmark RePB against In-
foBatch on three challenging large-scale vision-language datasets: ToCa (zero-shot captioning),
MJ+ST (scene text recognition), and SS1M (cross-domain captioning), as detailed in Table 2.
Across these demanding tasks, RePB consistently demonstrates superior efficiency or performance.
For instance, on ToCa (Table 2a), RePB achieves a higher pruning rate (35.8% vs. 34.1% for Info-
Batch) while simultaneously outperforming both InfoBatch and full-dataset training on key metrics
like NoCaps CIDEr (70.5 vs. 69.2 for InfoBatch, 70.5 for full). Similarly, for scene text recogni-
tion on the 15M-sample MJ+ST dataset (Table 2b), RePB prunes a substantial 44.4% of data—a
greater reduction than InfoBatch (38.1%)—while maintaining performance equivalent to full train-
ing across all benchmarks (e.g., 96.1% on IIIT5k). On the SS1M cross-domain captioning task
(Table 2c), RePB again achieves a higher pruning rate (34.8% vs. 23.0%) and yields improved
or comparable CIDEr scores relative to both full training and InfoBatch. These results underscore
RePB’s enhanced effectiveness in handling large-scale, complex datasets where InfoBatch exhibits
more modest pruning or comparatively lower performance. RePB’s capacity for substantial data
reduction while maintaining high fidelity highlights the robustness of its consistency-focused local
pruning and temporal rescaling strategies.

Table 2: Comparative performance of RePB and InfoBatch on diverse large-scale vision-language
and scene text recognition tasks. (a) Zero-shot captioning on 3M samples. (b) Scene text recognition
on 15M samples. (c) Cross-domain captioning on 3M samples.

(a) ViECap on ToCa Dataset

Method Pruned % NoCaps COCO
B@4 C B@4 C

Full - 26.6 70.5 27.1 95.2
InfoBatch 34.1 26.4 69.2 26.9 93.7

RePB 35.8 27.0 70.5 28.0 95.1

(b) ABINet on MJ+ST

Pruned % IIIT5k IC15 SVTP C80
Accuracy %

- 96.1 85.4 88.7 89.2
38.1 95.9 84.2 88.0 88.4
44.4 96.1 85.3 89.1 89.2

(c) ViECap on SS1M

Pruned % COCO Flickr30k
B@4 C B@4 C

- 9.6 45.1 6.5 22.3
23.0 9.2 44.4 6.4 22.4
34.8 9.5 46.3 6.7 22.6

5.3 BROAD GENERALIZATION AND APPLICABILITY OF REPB

A key strength of a principled data pruning framework is its ability to generalize across diverse tasks,
model architectures, and learning settings. We showcase RePB’s wide-ranging applicability through
an extensive set of experiments.

Table 3: Cross-architecture generalization on ImageNet-1K and CIFAR100 with CNNs, Transform-
ers, and Mamba. RePB maintains accuracy while significantly reducing data across architectures.

Method
ImageNet-1K CIFAR100CNN Transformer Mamba

R18 R50 EfficientNet ViT Swin Vim R18 R50

Full 69.5 78.6 76.1 73.3 80.0 75.7 78.2 80.6
+RePB 69.5 / 32.1 78.5 / 30.2 76.1 / 28.0 73.3 / 23.3 80.0 / 38.3 75.6 / 31.3 78.3 / 39.6 80.8 / 49.5

Cross-Architecture Generalization. Table 3 demonstrates RePB’s performance on ImageNet-1K
and CIFAR100 across various architectural families: CNNs (ResNet18, ResNet50, EfficientNet),
Transformers (ViT, Swin, ViECap), and Mamba-based models (Vim). RePB consistently achieves
performance nearly identical to full dataset training while pruning a significant portion of data (e.g.,
23-38% on ImageNet-1K, 38-50% on CIFAR100). This consistent, near-lossless performance across
diverse architectures underscores RePB’s model-agnostic nature, stemming from its fundamental
approach to addressing consistency issues rather than relying on architecture-specific heuristics.
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Diverse Downstream Tasks. Beyond standard classification, RePB exhibits strong performance
across a variety of other vision and vision-language tasks (Tables, 4, 5 6). In multi-view stereo on
WHU-MVS (Table 4), RePB with 37.3% pruning slightly improves MAE (0.1147m vs. 0.1185m)
and coverage. Similarly, for cross-view geo-localization on CVACT (Table 5), RePB prunes 39.2%
of data while maintaining or slightly improving recall metrics. For image captioning on COCO and
video captioning on MSR-VTT (Table 6, bottom panel), RePB achieves improved or comparable
results to full training with substantial pruning (e.g., 24.3% pruned on COCO captioning improving
CIDEr; 48.1% pruned on MSR-VTT video captioning improving BLEU@4 and CIDEr). These
results highlight RePB’s versatility in adapting to tasks with complex objectives and data structures.

Table 4: Performance on the multi-view stereo
task using the Ada-MVS model on the WHU-
MVS dataset (28K image-depth maps).

Method Pruned % MAE (m) ↓ ↑ ¡0.6m (%) ↑

Ada-MVS - 0.1185 97.38
RePB 37.3 0.1147 97.54

Table 5: Performance on the cross-view geo-
localization task using the GeoDTR model on
the CVACT dataset (35K images).

Method Pruned % R@1 R@5 R@10 R@1%

GeoDTR - 86.21 95.44 96.72 98.77
RePB 39.2 86.21 95.68 96.90 98.74

Table 6: Performance of RePB on advanced vision-language tasks including image captioning and
video captioning. RePB demonstrates strong performance with substantial data pruning.

(a) Image Captioning on COCO

Method Pruned % NoCaps Val (CIDEr) COCO
In Near Out Overall B@4 M C S

ViECap - 58.4 63.1 65.3 65.2 27.1 24.6 91.5 18.0
RePB 24.3 58.4 63.7 65.9 65.8 27.6 24.6 92.8 18.0

(b) Video Captioning on MSR-VTT

Pruned % MSR-VTT
B@4 M C S

- 23.4 20.8 27.9 5.0
48.1 25.9 21.6 29.2 5.0

Table 7: Performance in image generation tasks across
different model architectures and datasets: VAE on
MNIST, DDPM and DDPM with CFG on CIFAR10.

Method VAE DDPM DDPM-CFG

Pruned % FID ↓ Pruned % FID ↓ Pruned % FID ↓

Full - 35.34 - 16.38 - 14.89
RePB 39.8 35.33 27.3 16.22 27.3 14.80

Image Generation. Table 7 shows
RePB’s application to image generation.
For VAE on MNIST, DDPM on CIFAR10,
and DDPM with Classifier Guidance on
CIFAR10, RePB prunes 27-40% of the
data while maintaining nearly identical
FID scores compared to full dataset train-
ing. This demonstrates RePB’s utility in
generative modeling where data distribu-
tion fidelity is crucial.

Table 8: Performance in (a) supervised and (b) semi-supervised learning across diverse modalities:
image, text, and audio. RePB consistently maintains accuracy across paradigms and modalities.

(a) Supervised learning

Method
ImageEuroSAT TextAG News AudioESC-50

ViT BERT HuBERT

Pruned % Acc Pruned % Acc Pruned % Acc

Full - 96.8 - 89.6 - 67.5
RePB 35.6 96.9 35.0 89.5 34.3 67.6

(b) Semi-supervised learning

ImageCIFAR100 TextYelp Review AudioESC-50
FixMatch FlexMatch Dash

Pruned % Acc Pruned % Acc Pruned % Acc

- 61.9 - 53.7 - 64.5
39.8 61.9 36.3 54.4 27.3 64.5

Supervised and Semi-Supervised Learning across Modalities. Finally, Table 8 showcases RePB’s
effectiveness in standard supervised and semi-supervised learning scenarios across image, text, and
audio. In supervised learning (Table 8a), RePB applied to ViT (image), BERT (text), and HuBERT
(audio) consistently prunes 35% of the data while maintaining or slightly improving accuracy. In
semi-supervised learning (Table 8b), RePB integrated with FixMatch (image), FlexMatch (text),
and Dash (audio) also demonstrates robust performance, achieving significant pruning (27-40%)
with negligible or even positive impacts on accuracy. These results suggest that RePB’s principles
are broadly beneficial, irrespective of the learning paradigm or data modality.

In summary, the extensive experimental validation demonstrates that RePB not only outperforms
existing dynamic data pruning methods on established benchmarks but also exhibits remarkable
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generalization capabilities across a wide spectrum of tasks, datasets, model architectures, and learn-
ing settings. Its ability to significantly reduce data requirements while preserving or even enhancing
performance underscores its potential as a valuable tool for efficient and reliable machine learning.

5.4 ABLATION STUDY

Table 9: Ablation of proposed op-
eration on CIFAR100.

Operation Accuracy
Res LWP CTR R18 R50

✓ ✓ 19.0 8.7
✓ 77.5 79.9
✓ ✓ 78.1 80.2
✓ ✓ 78.2 80.3
✓ ✓ ✓ 78.4 80.8

Random* 77.3 79.7
Full Dataset 78.2 80.6

Effect of each operation. An ablation study on CIFAR100
(Table 9, R18/R50 at 30%/50% pruning rate) reveals the dis-
tinct contribution of each RePB component. Pruning without
resampling (Res) results in sample pool depletion and per-
formance collapse (19.0%/8.7%). Building on resampling,
adding LWP to address score context drift boosts accuracy to
78.1%/80.2%, while adding CTR to mitigate temporal gradi-
ent bias achieves 78.2%/80.3%. The full RePB framework
attains the highest performance, matching or exceeding full
dataset training and substantially outperforming random prun-
ing (Random*). This demonstrates that the principled strate-
gies of LWP for valid score comparisons and CTR for tempo-
ral dynamic consistency are synergistically vital for achieving
SOTA efficacy.

Figure 2: Impact of window size.

Impact of Window Size. Figure 2 compares RePB (varying
window sizes W , multiples of B = 128) against InfoBatch
(Annealing) and InfoBatch* (No Annealing, for higher prun-
ing limits) on CIFAR100 (ResNet50). RePB consistently out-
performs both InfoBatch variants across most pruning percent-
ages, regardless of its window size. For instance, at 40% prun-
ing, all RePB configurations achieve ∼78%+ accuracy, sur-
passing InfoBatch ( 77.8%) and InfoBatch* ( 78.0%), with this
advantage widening at higher pruning rates (50-70%). Within
RePB, smaller windows (W = 1B to 4B) generally yield
optimal performance, particularly up to 55% pruning. The
W = 1B setting, which theoretically eliminates score con-
text drift by using scores from a single pre-update batch, often
defines the upper performance envelope, validating our core
hypothesis. As W increases (e.g., W ≥ 16B), a marginal
performance decrease is observed, suggesting that even slight
increases in potential intra-window drift can have a subtle impact, further underscoring the benefit of
RePB’s local context approach. Crucially, even RePB with larger windows largely maintains supe-
riority over the global comparison methods of InfoBatch. This indicates RePB’s relative robustness
to the window size hyperparameter, and consistently affirms the advantage of its principled local
pruning strategy over global score aggregation.

6 CONCLUSION

In this work, we addressed two critical consistency challenges in dynamic data pruning: score con-
text drift, which invalidates inter-batch importance comparisons, and temporal gradient bias, which
skews training dynamics. We proposed RePB, a framework that systematically resolves these issues
by integrating local window pruning for valid score comparisons within stable model contexts, and
cumulative temporal rescaling to align the expected gradient trajectory with full-dataset training
via inverse historical sampling frequency weighting. Extensive empirical validation across diverse
datasets, tasks (classification, vision-language, generation), and architectures (CNNs, Transformers,
SSMs) demonstrates RePB’s consistent superiority over state-of-the-art methods like InfoBatch, of-
ten matching or exceeding full-dataset performance with significant data reduction. By offering a
theoretically grounded solution to previously underappreciated consistency violations, RePB estab-
lishes a more principled, robust, and effective paradigm for dynamic data pruning, enabling more
reliable and efficient training of various models across diverse applications.
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A DETAILED COMPARISON WITH INFOBATCH RESCALING

While both RePB and InfoBatch (Qin et al., 2024) employ a form of loss/gradient rescaling in con-
junction with dynamic data pruning, their rescaling mechanisms, theoretical motivations, and practi-
cal implications differ significantly. This appendix elucidates these distinctions, focusing on RePB’s
Cumulative Temporal Rescaling (CTR) versus InfoBatch’s instantaneous expectation rescaling.

A.1 INFOBATCH: INSTANTANEOUS UNBIASED GRADIENT ESTIMATION

InfoBatch aims to achieve an unbiased estimate of the full batch gradient at each training step t.
As described in their work (see Figure 1 and Section 2.3 of Qin et al. (2024)), given a dataset (or a
current epoch’s data pool), InfoBatch maintains scores (e.g., loss values) for samples. It then soft
prunes by stochastically discarding a portion of low-score samples. Specifically, if a sample z has
a score Ht(z) below a threshold Ht (e.g., mean loss) and its pruning probability is r ∈ (0, 1), its
gradient is scaled by 1/(1 − r) if it is kept. Samples with scores Ht(z) ≥ Ht are not modified
(implicitly, their pruning probability is 0, so 1/(1− 0) = 1).

The core objective of InfoBatch’s rescaling is to ensure that the expected gradient computed on the
pruned subset St at step t approximates the gradient that would have been computed on the original
(pre-pruning) data pool Dt for that step:

Ez∼St,Pt(z) [γt(z)∇ℓ(z, θt)] ≈ Ez∼Dt
[∇ℓ(z, θt)] (12)

where Pt(z) is the probability of pruning sample z at step t (if Ht(z) < Ht, Pt(z) = r; otherwise
Pt(z) = 0), and γt(z) = 1/(1 − Pt(z)) is the rescaling factor. The expectation is taken over the
stochastic pruning decisions at step t, conditioned on the model θt and the scores {Ht(z)}. This
strategy focuses on making each individual gradient update step an unbiased estimator relative to the
data available for pruning at that instant. The pruning probabilities and rescaling factors are typically
determined based on the current batch or epoch’s score distribution and are not explicitly dependent
on the long-term selection history of individual samples across multiple epochs. InfoBatch also
employs an annealing schedule, training on the full dataset in the last few epochs to reduce variance
and potential remaining bias.

A.2 REPB: CUMULATIVE TEMPORAL RESCALING FOR LONG-TERM DYNAMIC STABILITY

RePB’s Cumulative Temporal Rescaling (CTR) mechanism serves a different primary purpose: to
ensure the long-term expected cumulative gradient dynamics of training with pruned data align with
those of training on the full dataset uniformly over the entire training trajectory. It addresses the
temporal bias introduced by the fact that dynamic pruning causes different samples to be seen with
varying frequencies across epochs.

In RePB, each sample (xi, yi) in the selected batch S′
t at a global iteration k (where k typically

corresponds to an epoch or a longer period over which rescaling weights are updated) has its loss
ℓ(xi, yi, θt) scaled by wi,k = 1/fi,k, where fi,k = ci/k is the empirical cumulative selection
frequency of sample i up to iteration k (i.e., selected ci times in k rescaling periods). The rescaled
loss is LRePB(S

′
t, θt) =

1
|S′

t|
∑

i∈S′
t
wi,k · ℓ(xi, yi, θt).

The key differences and advantages of RePB’s CTR are:

1. Addressing Long-Term Temporal Bias: CTR explicitly accounts for the entire selection
history of each sample. If a sample has been historically under-selected relative to a uni-
form draw from the dataset, its contribution is up-weighted when it finally appears in a
batch. This aims to correct for biases not just within a single pruning step or epoch, but
over the entire course of training. InfoBatch’s rescaling, being instantaneous, does not in-
herently correct for such long-term under- or over-representation of specific samples across
epochs.

2. Stabilizing Cumulative Gradient Magnitude: By using wi,k ≈
1/(avg. probability of seeing sample i), CTR aims to make the expected total gradi-
ent signal contributed by each sample over many epochs proportional to what it would
have contributed if seen uniformly. This helps to maintain consistent training dynamics
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and prevents the learning trajectory from being unduly skewed by the pruning process
itself. The goal is E[

∑
t ∆θRePB

t ] ≈ E[
∑

t ∆θFull
t ], ensuring the overall learning path

remains faithful to full-dataset training in terms of expected update magnitudes.

3. Independence from Instantaneous Pruning Probabilities: RePB’s CTR relies on ob-
served historical frequencies rather than needing to precisely define or estimate the proba-
bility Pt(z) with which a sample is pruned at the current step t for the purpose of calculating
an inverse probability weight. This can be an advantage because in complex dynamic prun-
ing schemes (especially with local windowing like RePB’s LWP), the exact instantaneous
selection probability of a given sample can be difficult to model precisely, as it depends
on the composition of its current local window and the model state. CTR’s empirical,
historical approach sidesteps this modeling challenge.

4. Synergy with Local Window Pruning (LWP): RePB’s LWP component addresses score
context drift by ensuring score comparisons are valid within a local window. CTR then
complements this by addressing the longer-term consequences of these local (but still po-
tentially non-uniform over the whole dataset) selections. InfoBatch, typically performing
epoch-wide score comparison for pruning, faces the score context drift issue that LWP
is designed to solve. While its rescaling aims for unbiasedness relative to that epoch’s
(potentially flawed) pruning decision, it doesn’t correct the upstream issue of score incom-
parability within the epoch, nor the downstream issue of long-term sample frequency bias
in the same direct way as CTR.

A.3 ILLUSTRATIVE EXAMPLE

Consider a scenario where, due to the dynamics of the model and data, a specific subset of infor-
mative samples (e.g., hard negatives) is consistently assigned low loss scores for several epochs by
InfoBatch’s global scoring, leading to them being frequently pruned (even if stochastically). While
InfoBatch’s rescaling would make the gradient unbiased for the steps where these samples are se-
lected, it doesn’t inherently compensate for their overall reduced exposure across these epochs. In
contrast, RePB’s CTR would track that these samples have low ci values. When they are eventually
selected (perhaps due to resampling or changes in their loss within a local window), their wi,k would
be high, significantly boosting their contribution to compensate for past under-selection. This helps
ensure their cumulative impact on the model is not diminished over the long term. Furthermore,
LWP makes it more likely that their true importance (relative to their local peers) is accurately as-
sessed when they do appear in a window, avoiding premature dismissal based on comparison with
globally easier samples.

A.4 SUMMARY OF ADVANTAGES OF REPB’S APPROACH

In summary, RePB’s dual strategy offers distinct advantages:

• LWP ensures valid score comparisons, mitigating score context drift, a problem not di-
rectly addressed by InfoBatch’s epoch-wide score aggregation for pruning.

• CTR provides long-term dynamic stability, correcting for temporal biases in sample
exposure across epochs, which is a more holistic approach than InfoBatch’s focus on in-
stantaneous unbiasedness at each pruning step.

• CTR is empirically driven by historical data, making it robust and not reliant on explicit
modeling of complex, instantaneous selection probabilities.

These aspects contribute to RePB’s strong performance and generalization, particularly its ability to
maintain high accuracy at significant pruning rates across diverse and large-scale tasks, as demon-
strated in our experiments. While InfoBatch’s annealing (training on full data at the end) can recover
some performance lost due to earlier biases, RePB aims to maintain a more consistent and less biased
training trajectory throughout the pruning phase itself.
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B EFFICIENCY METRIC

B.1 COMPUTATIONAL EFFICIENCY

Reproducing exact wall-clock time reductions for dynamic data pruning methods can be notoriously
challenging due to variations in hardware, software implementations, and system-level optimiza-
tions. We therefore primarily adopt the percentage of data pruned (Pruned %) as our main effi-
ciency metric, reflecting the reduction in samples processed. This choice is strongly supported by
the minimal computational overhead introduced by RePB.

As shown in Table 10, which details the overhead for processing 1 million samples on an NVIDIA
RTX 3090 GPU, RePB’s pruning logic is exceptionally lightweight. Its overhead is measured at
a mere 0.082 seconds, which is even lower than that of InfoBatch (0.236s). More critically, this
overhead is negligible when compared to the backbone processing time for standard architectures.
For ResNet18 (734.1s for 1M samples), RePB’s overhead constitutes only 0.011% of the backbone
time, and for ResNet50 (2122.4s), this ratio drops further to an almost imperceptible 0.004%. This
is substantially lower than InfoBatch’s ratios (0.032% for ResNet18 and 0.011% for ResNet50).

Table 10: Computational overhead of RePB (1M
samples, NVIDIA RTX 3090 GPU). ”Overhead”
is the time for the pruning logic itself. ”Back-
bone Time” is provided for ResNet18 (R18) and
ResNet50 (R50) for processing 1M samples. P/B
is the ratio of Overhead to Backbone Time.

Method Overhead R18 P/B
734.1s

R50 P/B
2122.4s

InfoBatch 0.236s 0.032% 0.011%
RePB 0.082s 0.011% 0.004%

This extremely low overhead ensures that RePB
is compute-positive (Evans et al., 2024); the
computational cost of executing RePB’s prun-
ing and rescaling logic is vastly outweighed
by the significant savings achieved from pro-
cessing a reduced dataset (typically ¿20-30%
pruned in our experiments, often much higher).
For more complex models or those with larger,
slower backbones than ResNet18/50, or tasks
involving multiple intricate components be-
yond a single backbone (e.g., in large vision-
language models), the relative pruning over-
head of RePB would be even smaller, further
amplifying its efficiency benefits. Consequently, the Pruned % serves as a robust, hardware-agnostic,
and readily comparable indicator of the substantial computational savings and training acceleration
potential offered by RePB.

C LIMITATIONS AND FUTURE WORK

While RePB robustly addresses key consistency challenges in dynamic pruning, future work could
explore several refinements. The optimal local window size (W ) for LWP, though RePB shows
good tolerance, might benefit from adaptive selection based on dataset or training phase characteris-
tics. Similarly, while CTR effectively provides long-term gradient alignment, its adaptation speed in
highly non-stationary scenarios could be investigated, potentially by incorporating short-term bias
indicators. Finally, extending LWP to incorporate diverse or multiple importance metrics beyond
sample loss presents an interesting avenue for enhancing its decision-making process. These direc-
tions aim to further broaden RePB’s applicability and refine its efficiency while building upon its
demonstrated strengths in principled, consistent data pruning.

D THE USE OF LARGE LANGUAGE MODELS(LLMS)

The authors affirm that this manuscript was written primarily by human authors. However, sec-
tions of this paper underwent language refinement and grammatical corrections with the assistance
of a LLM, specifically Gemini-2.5 Pro. This tool was used exclusively for improving clarity and
readability and did not contribute to the scientific content, methodology, or core conclusions of the
research. All scholarly responsibility for the content remains with the human authors.
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