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Abstract

Curriculum Learning (CL) is a technique of001
training models via ranking examples in a typi-002
cally increasing difficulty trend with the aim of003
accelerating convergence and improving gen-004
eralisability. However, current approaches for005
Natural Language Understanding (NLU) tasks006
use CL to improve in-domain model perfor-007
mance often via metrics that are detached from008
the model one aims to improve. In this work, in-009
stead, we employ CL for NLU by taking advan-010
tage of training dynamics as difficulty metrics,011
i.e. statistics that measure the behavior of the012
model at hand on data instances during training.013
In addition, we propose two modifications of014
existing CL schedulers based on these statistics.015
Differently from existing works, we focus on016
evaluating models on out-of-distribution data as017
well as languages other than English via zero-018
shot cross-lingual transfer. We show across019
four XNLU tasks that CL with training dynam-020
ics in both monolingual and cross-lingual set-021
tings can achieve significant speedups up to022
58%. We also find that performance can be im-023
proved on challenging tasks, with OOD gener-024
alisation up by 8% and zero-shot cross-lingual025
transfer up by 1%. Overall, experiments indi-026
cate that training dynamics can lead to better027
performing models and smoother training com-028
pared to other difficulty metrics.029

1 Introduction030

Transformer-based language models (Vaswani031

et al., 2017; Devlin et al., 2019, LMs) have re-032

cently achieved great success in a variety of NLP033

tasks (Wang et al., 2018, 2019). However, generali-034

sation to out-of-distribution (OOD) data and zero-035

shot cross-lingual natural language understanding036

(XNLU) tasks still remains a challenge (Linzen,037

2020; Hu et al., 2020). Among existing techniques,038

improving OOD performance has been addressed039

by training with adversarial data (Yi et al., 2021),040

while better transfer across languages has mostly041

focused on selecting appropriate languages to trans- 042

fer from (Lin et al., 2019; Turc et al., 2021) or 043

employing meta-learing with auxiliary language 044

data (Nooralahzadeh et al., 2020). 045

Contrastive to such approaches that take advan- 046

tage of additional training data is Curriculum Learn- 047

ing (Bengio et al., 2009, CL), a technique that aims 048

to train models using a specific ordering of the 049

original training examples. This ordering typically 050

follows an increasing difficulty trend where easy 051

examples are fed to the model first, moving to- 052

wards harder instances. The intuition behind CL 053

stems from human learning, as humans focus on 054

simpler concepts before learning more complex 055

ones, a procedure that is called shaping (Krueger 056

and Dayan, 2009). Although curricula have been 057

primarily used for Computer Vision (Hacohen and 058

Weinshall, 2019; Wu et al., 2021) and Machine 059

Translation (Zhang et al., 2019a; Platanios et al., 060

2019), there are only a handful of approaches that 061

incorporate CL into Natural Language Understand- 062

ing tasks (Sachan and Xing, 2016; Tay et al., 2019; 063

Lalor and Yu, 2020; Xu et al., 2020a). 064

Typically, CL requires a measure of difficulty for 065

each example in the training set. Existing methods 066

using CL in NLU tasks vastly rely on heuristics 067

such as sentence length, word rarity, depth of the 068

dependency tree (Platanios et al., 2019; Tay et al., 069

2019) or external model metrics such as perplex- 070

ity (Zhou et al., 2020), performance (Xu et al., 071

2020a) or information theory (Lalor and Yu, 2020). 072

Although such metrics do make sense for Machine 073

Translation (e.g. longer sentences are indeed harder 074

to be translated), in language abstraction tasks such 075

as Natural Language Inference or Commonsense 076

Reasoning this is not always the case. 077

In this study instead, we propose to adopt Train- 078

ing dynamics (TD) (Swayamdipta et al., 2020) as 079

difficulty measures for CL and fine-tune models 080

with curricula on downstream tasks. TD were re- 081

cently proposed as a set of statistics collected dur- 082
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ing the course of a model’s training to automatically083

evaluate dataset quality, by identifying annotation084

artifacts. These statistics, offer a 3-dimensional085

view of a model’s uncertainty towards each training086

example classifying them into distinct areas–easy,087

ambiguous and hard examples for a model to learn.088

In this work, we test a series of easy-to-hard089

curricula using TD with existing schedulers as090

well as novel modifications of those. We evalu-091

ate both monolingual and multilingual models on092

four XNLU tasks: Natural Language Inference,093

Paraphrase Identification, Commonsense Causal094

Reasoning and Document Classification, focusing095

on zero-shot cross-lingual transfer and OOD data096

performance. To the best of our knowledge, no097

prior work on NLU considers the impact of CL098

on such instances. Our findings suggest that CL099

provides increased zero-shot cross-lingual transfer100

up to 1% over standard random training, especially101

on large datasets in addition to gaining speedups102

up to 58%. In OOD settings, monolingual models103

trained with curriculum learning incorporating TD104

can boost performance up to 8% and compared to105

other metrics provide more stable training.106

2 Related Work107

Curriculum Learning was initially mentioned in the108

work of Elman (1993) who demonstrated the impor-109

tance of feeding neural networks with small/easy110

inputs at the early stages of training. The con-111

cept was later formalised by Bengio et al. (2009)112

where training in an easy-to-hard ordering was113

shown to result in faster convergence and improved114

performance. In general, Curriculum Learning re-115

quires a difficulty metric (also known as the scoring116

function) used to rank training instances, and a117

scheduler (known as the pacing function) that de-118

cides when and how new examples–of different119

difficulty–should be introduced to the model.120

Example Difficulty was initially expressed via121

model loss, in self-paced learning (Kumar et al.,122

2010; Jiang et al., 2015), increasing the contribu-123

tion of harder training instances over time. This124

setting posed a challenge due to the fast-changing125

pace of the loss during training, thus later ap-126

proaches used human-intuitive difficulty metrics,127

such as sentence length or the existence of rare128

words (Platanios et al., 2019) to pre-compute dif-129

ficulties of training instances. However, as such130

metrics often express superficial difficulty, auto-131

matic metrics have been proposed over the years,132

such as measuring the loss difference between two 133

checkpoints (Xu et al., 2020b). In our curricula 134

we use training dynamics to measure example dif- 135

ficulty, i.e. metrics that consider difficulty from 136

the perspective of a model. Example difficulty 137

can be also estimated either in a static or dynamic 138

manner, where in the latter training instances are 139

evaluated and re-ordered at certain times during 140

training, while in the former the difficulty of each 141

example remains the same throughout. In our ex- 142

periments we adopt the first setting and consider 143

static example difficulties. 144

Transfer Teacher CL is a particular family of such 145

approaches that use an external model (namely the 146

teacher) to measure the difficulty of training exam- 147

ples. Notable works incorporate a simpler model 148

as the teacher (Zhang et al., 2018) or a larger-sized 149

model (Hacohen and Weinshall, 2019), as well as 150

using similar-sized learners trained on different 151

subsets of the training data. These methods have 152

considered as example difficulty, either the teacher 153

model perplexity (Zhou et al., 2020), the norm of a 154

teacher model word embeddings (Liu et al., 2020), 155

the teacher’s performance on a certain task (Xu 156

et al., 2020a) or simply regard difficulty as a la- 157

tent variable in a teacher model (Lalor and Yu, 158

2020). In the same vein, we also incorporate Trans- 159

fer Teacher CL via teacher and student models of 160

the same size and type. However, differently, we 161

take into account the behavior of the teacher during 162

the course of its training to measure example diffi- 163

culty instead of considering its performance at the 164

end of training or analysing internal embeddings. 165

Moving on to Schedulers, these can be divided 166

into discrete and continuous. Discrete schedulers, 167

often referred to as bucketing, group training in- 168

stances that share similar difficulties into distinct 169

sets. Different configurations include accumulat- 170

ing buckets over time (Cirik et al., 2016), sam- 171

pling a subset of data from each bucket (Xu et al., 172

2020a; Kocmi and Bojar, 2017) or more sophisti- 173

cated sampling strategies (Zhang et al., 2018). In 174

cases where the number of buckets is not obtained 175

in a straightforward manner, methods either heuris- 176

tically split examples (Zhang et al., 2018), adopt 177

uniform splits (Xu et al., 2020a) or employ sched- 178

ulers that are based on a continuous function. A 179

characteristic approach is that of Platanios et al. 180

(2019) where at each training step a monotonically 181

increasing function chooses the amount of training 182

data the model has access to, sorted by increasing 183
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difficulty. As we will describe later on, we experi-184

ment with two established schedulers and propose185

modifications of those based on training dynamics.186

Other tasks where CL has been employed in-187

clude Question Answering (Sachan and Xing,188

2016), Reading comprehension (Tay et al., 2019)189

and other general NLU classification tasks (Lalor190

and Yu, 2020; Xu et al., 2020a). Others have de-191

veloped curricula in order to train models for code-192

switching (Choudhury et al., 2017), anaphora res-193

olution (Stojanovski and Fraser, 2019), relation194

extraction (Huang and Du, 2019), dialogue (Saito,195

2018; Shen and Feng, 2020) and self-supervised196

NMT (Ruiter et al., 2020), while more advanced ap-197

proaches combine it with Reinforcement Learning198

in a collaborative teacher-student transfer curricu-199

lum (Kumar et al., 2019).200

3 Methodology201

Let D = {(xi, yi)}Ni=1 be a set of training data in-202

stances. A curriculum is comprised of three main203

elements: the difficulty metric, responsible for asso-204

ciating a training example to a score that represents205

a notion of difficulty, the scheduler that determines206

the type and number of available instances at each207

training step t and the curriculum order, i.e. sort-208

ing examples in increasing, decreasing or random209

order of difficulty. In this study, we experiment210

with 3 difficutly metrics we introduce by training211

dynamics, 2 orderings (easy-to-hard and random)212

and 4 schedulers: 2 existing ones and 2 variations213

of those that we also introduce.214

3.1 Difficulty Metrics215

As aforementioned, we use training dynam-216

ics (Swayamdipta et al., 2020), i.e. statistics origi-217

nally introduced to analyse dataset quality, as dif-218

ficulty metrics. The suitability of such statistics219

to serve as difficulty measures for CL is encapsu-220

lated in three core aspects. Firstly, TD are straight-221

forward. They can be easily obtained by training222

a single model on the target dataset and keeping223

statistics about its predictions on the training set.224

Secondly, TD correlate well with model uncertainty225

and follow a similar trend to human (dis)agreement226

in terms of data annotation, essentially combining227

the view of both worlds. Finally, TD manifest a228

clear pattern of separating instances into distinct229

areas–easy, ambiguous and hard examples for a230

model to learn–something that aligns well with the231

ideas behind Curriculum Learning.232

The difficulty of an example (xi, yi) can be 233

determined by a function f , where an example 234

i is considered more difficult than example j if 235

f(xi, yi) > f(xj , yj). We list three difficulty met- 236

rics that use statistics during the course of a model’s 237

training, as follows: 238

CONFIDENCE of an example xi is the average prob- 239

ability assigned to the gold label yi by a model with 240

parameters θ across a number of epochs E. This is 241

a continuous metric with higher values correspond- 242

ing to easier examples. 243

fCONF(xi, yi) = µi =
1

E

E∑
e=1

pθ(e)(yi|xi) (1) 244

VARIABILITY of an example xi is the standard 245

deviation of the probabilities assigned to the gold 246

label yi across E epochs. It is a continuous metric 247

with higher values indicating greater uncertainty 248

for a training example and as such higher difficulty. 249

250

fVAR(xi, yi) =

√∑E
e=1 (pθ(e) (yi|xi)− µi)

2

E
(2) 251

CORRECTNESS is the number of times a model 252

classifies example xi correctly across its training. It 253

takes values between 0 and E. Higher correctness 254

indicates easier examples for a model to learn. 255256

fCORR(xi, yi) =
E∑

e=1

o
(e)
i , 257

o
(e)
i =

{
1 if argmax pθ(e)(xi) = yi

0, otherwise
(3) 258

Confidence and correctness are the primary met- 259

rics that we use in the curricula that we test since 260

low and high values correspond to hard and easy 261

examples respectively. On the other hand, vari- 262

ability is used as an auxiliary metric since only 263

high variability scores clearly represent ambigu- 264

ous examples while low scores offer no important 265

information on their own. 266

3.2 Schedulers 267

In our experiments, we consider both discrete and 268

continuous schedulers g, described below. 269

The ANNEALING (AnnealTD) scheduler proposed 270

by Xu et al. (2020a), assumes that training data 271

are split into buckets {d1 ⊂ D, . . . , dK ⊂ D} 272

with possibly different sizes |di|. In particular, we 273

group examples into the same bucket if they have 274

the same correctness score (see Equation (3)). In 275
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total, this results in E+1 buckets, which are sorted276

in order of increasing difficulty. Training starts277

with the easiest bucket. We then move on to the278

next bucket by also randomly selecting 1/(E + 1)279

examples from each previous bucket. This provides280

a smooth transition between buckets. Following281

prior work, we train on each bucket for one epoch.282

The COMPETENCE (CompTD) scheduler was orig-283

inally proposed by Platanios et al. (2019). Here,284

we sort examples based on the confidence metric285

(see Equation (1)), and use a monotonically increas-286

ing function to obtain the percentage of available287

training data at each step. The model can use only288

the top K most confident examples as instructed289

by this function. A mini-batch is then sampled290

uniformly from the available examples1.291

In addition to those schedulers, we introduce292

the following modifications that take advantage of293

the variability metric. ANNEALING VARIABIL-294

ITY (AnnealVarTD) is a modification of the An-295

nealing scheduler and COMPETENCE VARIABIL-296

ITY (CompVarTD) is a modification of the Com-297

petence scheduler. In both variations, instead of298

sampling uniformly across available examples, we299

give higher probability to instances with high vari-300

ability scores (Equation (2)). We assume that since301

the model is more uncertain about such examples302

further training on them can be beneficial. For all303

curricula, after the model has finished the curricu-304

lum stage, we resume training as normal, i.e. by305

random sampling of training instances.306

3.3 Transfer Teacher Curriculum Learning307

In a transfer teacher CL setting a teacher model308

is used to obtain the difficulty of training exam-309

ples (Matiisen et al., 2019). As such, the previ-310

ously presented difficulty metrics are suitable to be311

used in this setting, due to their nature, where we312

first need to fine-tune a model for a few epochs on313

a given dataset to get training dynamics for each314

training example. Then, a student model can be315

trained with the curriculum defined by the teacher.316

The two-step procedure that we follow in this317

study is depicted in Figure 1. Initially a model318

(the teacher) is fine-tuned normally on a target319

dataset and training dynamics are collected during320

the course of training. The collected dynamics are321

1The competence curriculum that we test is slightly differ-
ent from that proposed in prior work. Here, we simply use the
competence function to select a portion of data at each step
ordered by increasing difficulty, instead of selecting examples
with scores less than the output of the competence function.

 Training 
Data

Student
Model

Teacher
Model

Stage 1: Collecting Training Dynamics

Training
Dynamics

Stage 2: Transfer Teacher Curriculum fine-tuning

confidence  
correctness 
variabilityScheduler Difficulty

Metrics

ft

Figure 1: Transfer Teacher Curriculum Learning used
in our study. A teacher model determines the difficulty
of training examples by collecting training dynamics
during fine-tuning (Stage 1). The collected dynamics
are converted into difficulty metrics and into a student
model via a scheduler (Stage 2).

PAWS-X XNLI XCOPA MLDoc

# Languages 7 15 12 8
Training set PAWS MultiNLI SIQA Reuters

ID
# Train 49,401 392,702 33,410 10,000
# Dev. 2,000 2,490 100 1,000
# Test 2,000 5,010 500 4,000

OOD
TwitterPPBD NLI Diag. CSQA -

# Test 9,324 1,105 1,221 -

Table 1: Datasets statistics. ID and OOD denote in-
distribution and out-of-distribution, respectively. ID
Development and Test statistics are per language.

then converted into difficulty metrics, following 322

Equations (1)-(3). In the second stage, the difficulty 323

metrics and the original training data are fed into a 324

scheduler that re-orders the examples according to 325

their difficulty (in our case from easy-to-hard) and 326

feeds them into another model (the student) that is 327

the same in size as the teacher. 328

4 Experimental Setup 329

4.1 Datasets 330

In this work we focus on four XNLU tasks: Natu- 331

ral Language Inference, Paraphrase Identification, 332

Commonsense Causal Reasoning and Document 333

Classification. The datasets that we use include 334

XNLI (Conneau et al., 2018), PAWS-X (Yang 335

et al., 2019), XCOPA (Ponti et al., 2020) and 336

MLDoc (Schwenk and Li, 2018) that combined 337

cover 25 languages. We also use OOD test sets, 338

including NLI Diagnostics (Wang et al., 2018), 339

TwitterPPBD (Lan et al., 2017) and Common- 340

SenseQA (Talmor et al., 2019) for each dataset 341

respectively, except for MLDoc. The correspond- 342

ing statistics are shown in Table 1 and more details 343

can be found in Appendix A. 344
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4.2 Curriculum Parameters345

In order to collect TD we first fine-tune either a346

RoBERTa or an XLM-R model on the English train-347

ing set of each dataset. TD for each example are348

collected over 10 epochs on XNLI, PAWS-X and349

SIQA, while for MLDoc we train for 5 epochs. The350

COMPETENCE and COMPETENCE VARIABILITY351

schedulers require to set in advance the number of352

steps, i.e. total duration of the curriculum phase.353

We employ the same parameters as in Platanios354

et al. (2019) and set this value to 90% of steps that355

the baseline model requires to achieve its best per-356

formance on the development set. The initial com-357

petence is set to 0.01 for all datasets. We evaluate358

each model at the end of each epoch and at regular359

intervals (Dodge et al., 2020), every 500 updates360

for XNLI (corresponding to 24 times per epoch)361

and 10 times per epoch for the rest of the datasets.362

Performance is reported over three random seeds.363

4.3 Evaluation Settings364

For all datasets, we report accuracy as the main365

evaluation metric on the following settings.366

ZERO-SHOT: Constitutes the zero-shot cross-367

lingual transfer setting, where a multilingual model368

(e.g. XLM-R) is trained on English data only369

and tested on languages other than English (Hu370

et al., 2020). OOD: Monolingual models (e.g.371

RoBERTa) are evaluated on out-of-distribution372

datasets with and without curriculum learning.373

In all experiments, we select the best checkpoint374

based on the English development set performance.375

We use the pre-trained versions of RoBERTa (Liu376

et al., 2019) and XLM-R (Conneau et al., 2020)377

from the HuggingFace library2 (Wolf et al., 2020).378

4.4 Model Comparisons379

We primarily compare all curricula that use training380

dynamics against each other and against a baseline381

(Random) that does not employ any curriculum and382

is using standard random order training.383

We also compare with another teacher-transfer384

curriculum proposed by Xu et al. (2020a), namely385

Cross-Review (indicated as AnnealCR in the next386

sections). This curriculum uses the annealing387

scheduler, but does not employ training dynam-388

ics as difficulty scores. Instead, the method splits389

the training set into subsets and a model is trained390

on each subset containing 1/N of the training set.391

2https://huggingface.co/roberta-base,
https://huggingface.co/xlm-roberta-base

The resulting models are then used to evaluate all 392

examples belonging in different subsets and the dif- 393

ficulty score of an example is considered the sum 394

of its correct classifications across teachers. 395

The difference between this metric and the cor- 396

rectness metric is that Cross-Review uses N fully 397

trained teacher models on subsets of data, while 398

the latter uses E epochs of a single model trained 399

on the entire training set to obtain the number of 400

correct classifications for each training example. 401

We split each training set into 10 subsets for all 402

datasets, except MLDoc where we split into 5 due 403

to its smaller size, following prior work. 404

We denote curricula that employ Training 405

Dynamics as difficulty metrics with the TD sub- 406

script and curricula employing the Cross Review 407

metric with CR. Finally, when comparing models 408

on the same dataset we make sure that all of them 409

are trained for the same number of total steps, i.e. 410

after the end of the entire curriculum phase, train- 411

ing continues as normal for the remaining steps. 412

5 Experiments 413

5.1 Training Time 414

Since CL can typically achieve faster convergence, 415

we first report the training time required by each 416

model to achieve its best performance on the En- 417

glish development set. Results on Table 2 show the 418

training time required for multilingual (Table 2a) 419

and monolingual models (Table 2b). In particular, 420

the reported numbers are calculated as the ratio 421

Ncurric/Nrandom, i.e. the number of steps the cur- 422

riculum needs to reach best performance (Ncurric) 423

divided by the number of steps the random training 424

needs to reach its best performance (Nrandom). By 425

default, random training has a ratio of 1.0 and a 426

lower score indicates a larger speedup. In addi- 427

tion, we report in parentheses the minimum time 428

obtained across 3 random seeds. 429

Looking across the board in the majority of 430

datasets AnnealVarTD (our proposed Annealing 431

scheduler modification with sampling examples 432

based on variability) is the curriculum that offers 433

the most speedup in XLM-R models, with 24% 434

in PAWS-X, 22% in XNLI and 20% in MLDoc 435

on average and 49% in PAWS-X, 57% in XNLI 436

and 58% in MLDoc in the best case. Other cur- 437

ricula require a few more training steps compared 438

to random on average. Compared to AnnealCR 439

our proposed variability sampling achieves higher 440

speedups both on average and in the best scenario. 441
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TRAIN
PAWS-X XNLI

SIQA
MLDOC

TEST XCOPA

Random 1.00 1.00 1.00 1.00

AnnealTD 1.04 (0.70) 1.12 (0.94) 0.80 (0.38) 0.91 (0.81)
AnnealVarTD 0.76 (0.51) 0.78 (0.43) 1.14 (0.38) 0.81 (0.42)
CompTD 1.43 (1.03) 1.15 (0.46) 0.49 (0.32) 1.12 (1.03)
CompVarTD 1.47 (0.94) 1.18 (0.93) 0.56 (0.13) 0.99 (0.71)

AnnealCR 1.08 (0.65) 1.02 (0.86) 0.39 (0.22) 0.82 (0.74)

(a) Zero-shot cross-lingual training time across 4 datasets using XLM-R
models with and without CL.

PAWS-X XNLI SIQA
TWITTERPPDB NLI DIAG. CSQA

1.00 1.00 1.00

0.79 (0.63) 0.87 (0.51) 0.85 (0.68)
0.97 (0.64) 1.61 (1.34) 0.44 (0.23)
1.71 (0.58) 1.32 (1.11) 0.79 (0.31)
1.64 (1.51) 1.47 (1.33) 0.92 (0.61)

1.56 (0.89) 1.31 (0.63) 0.69 (0.55)

(b) OOD training time across 3 datasets using
RoBERTa models with and without CL.

Table 2: Numbers correspond to the ratio Ncurric/Nrandom, where the numerator is the number steps a curriculum needs to
reach the reported performance and the denominator is the number of steps the Random training baseline requires to
reach its performance. Results are reported as mean over 3 random seeds, with the minimum shown in parentheses.

An exception is the case of XCOPA where cross-442

review appears to be much faster. We speculate443

that maybe the examples sampled for this partic-444

ular task could not offer meaningful information445

for better performance earlier. However, looking446

at the best performance achieved by this scheduler447

(shown later on in Table 3), we see that despite the448

speedup AnnealCR offers, it results in lower per-449

formance than the random baseline. In the case450

of OOD data with RoBERTa models, we find that451

in CSQA all curricula offer significant speedup,452

while the AnnealTD curriculum achieves the high-453

est speedup, 21%, 13% on average and 37%, 49%454

in the base case, on TwitterPPDB and NLI Diag-455

nostics, respectively.456

5.1.1 Learning Curves457

In order to examine the behavior of the curricula458

during the course of training, we further plot the459

average language development performance as a460

function of the number of training steps when us-461

ing XLM-R models. In Figure 2 we draw verti-462

cal lines to show the exact step that training with463

CL achieves higher performance to that of random464

training for the first time.465

For all datasets, there are curricula that always466

achieve similar performance earlier than the ran-467

dom training, i.e. AnnealVarCR and AnnealCR.468

However, for AnnealCR we observe a performance469

drop around 3K steps in PAWS-X and a much more470

evident one around 20K steps in XNLI. Further in-471

vestigation revealed that during these steps the cur-472

riculum is going through the examples of the last473

bucket–which is the hardest one. This drop in per-474

formance possibly indicates that buckets created by475

cross-review do not necessarily contain examples476

that help the model prepare for the hardest exam-477

Figure 2: Average development set accuracy across
languages as a function of learning steps (in thousands)
with XLM-R models as student and teacher. The vertical
lines indicate the best performance of random training
order (red) and the next closest (higher) performance of
one of the tested curricula (color shown is based on best
curriculum). Results are reported over 3 random seeds.
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TRAIN
PAWS-X XNLI

SIQA
MLDOC

TEST XCOPA

Prior Work 84.90∗ 75.00∗ 60.72 77.66
Random 84.49 ±0.08 73.93 ±0.18 60.62 ±0.54 86.74 ±0.46

AnnealTD 84.70 ±0.15 73.92 ±0.11 60.95 ±0.40 86.47 ±0.64

AnnealVarTD 84.52 ±0.27 74.66 ±0.06 61.68 ±0.51 86.14 ±0.23

CompTD 84.51 ±0.45 74.32 ±0.41 61.09 ±0.28 86.30 ±0.70

CompVarTD 84.03 ±0.65 74.43 ±0.18 61.04 ±0.31 85.78 ±0.74

AnnealCR 84.35 ±0.46 74.57 ±0.40 60.44 ±0.39 86.59 ±0.29

(a) Zero-shot cross-lingual transfer performance of XLM-R models between
curricula as the average accuracy across languages.

PAWS-X XNLI SIQA
TWITTERPPDB NLI DIAG. CSQA

- - -
72.80 ±5.45 61.87 ±1.36 44.61 ±0.96

71.97 ±2.69 62.15 ±0.94 45.81 ±1.40

72.62 ±1.17 62.57 ±1.32 44.31 ±0.88

75.18 ±6.71 61.31 ±1.00 43.93 ±1.59

81.33 ±2.10 61.82 ±0.98 45.84 ±0.67

72.83 ±6.65 61.78 ±0.27 44.85 ±0.72

(b) Zero-shot accuracy results of RoBERTa
models on out-of-distribution (OOD) data.

Table 3: Test set accuracies on cross-lingual and monolingual settings with and without CL. Mean and standard
deviation across 3 random seeds. We also report prior work results for reference as follows: PAWS-X (Chi et al.,
2021), XNLI (Chi et al., 2021), XCOPA (Ponti et al., 2020), MLDoc (Keung et al., 2020) (mBERT). ∗Note that Chi
et al. (2021) tune on the target languages validation sets.

ples adequately, compared to training dynamics478

that instead result in smooth training.479

Regarding the continuous schedulers (CompTD480

and CompVarTD) we observe that in the largest481

dataset (XNLI) after a certain point CompVarTD is482

able to surpass random training (steps 70K-120K),483

despite having an initial performance much lower484

than the other schedulers. In addition, on SIQA485

it is superior to other schedulers by consistently486

improving performance for almost half of training487

(from step 8K and after) as well as obtaining higher488

performance faster compared to CompTD that does489

not employ variability sampling.490

5.2 Cross-lingual & OOD Performance491

In addition to the speedup offered by CL and the ob-492

servations from the learning curves, we test for po-493

tential improvements in test set performance. Table494

3 shows accuracies for both multilingual and mono-495

lingual models when tested for zero-shot cross-496

lingual transfer or OOD data.497

Initially we observe that CL with XLM-R seems498

to have a larger impact in terms of performance499

primarily on XNLI and XCOPA, gaining 0.73 and500

1.06 points respectively with the AnnealVarTD cur-501

riculum. As for the remaining datasets, CL is502

unable to achieve any performance improvement503

on MLDoc (as also shown in Figure 2) while on504

PAWS-X it has incremental improvement of 0.2505

points with the cost of no speedup3. Other sched-506

ulers can offer smaller performance improvement507

but higher speedup, e.g. in the case of XCOPA508

with +0.42 points and 87% speedup in the base509

3We report complete tables with one-to-one association
between performance and speedup in Appendix C.

case with CompVarTD. Finally, comparing with 510

the Cross-Review method, we observe that perfor- 511

mance is on par with other curricula, however it 512

cannot surpass our proposed variability sampling. 513

As another drawback, it is more resource demand- 514

ing since it needs N teacher models instead of 1. 515

To evaluate OOD generalisation we test a 516

RoBERTa model with and without CL on OOD 517

data. Table 3b shows zero-shot accuracies on 518

different OOD datasets. The behavior of CL in 519

these cases is not as consistent as in zero-shot 520

cross-lingual transfer, where CompVarTD achieves 521

the best performance on TwitterPPDB (+8.5 522

points) and CommonSenseQA (+1.23 points) 523

while AnnealVarTD performs best for NLI Diagnos- 524

tics (+0.7 points). We speculate that CompVarTD 525

achieves higher OOD performance thanks to its 526

slow pacing learning that trains models adequately 527

on easy and ambiguous examples before moving on 528

to harder ones, something that is crucial for OOD 529

generalisation as also noted by Swayamdipta et al. 530

(2020). This though comes at the cost of speedup 531

by requiring another 50% of training steps. 532

5.3 Training with limited budget 533

Since training a teacher model can add overhead 534

to the general training process (training a teacher 535

model plus a similar-sized student), we further con- 536

duct a minimal experiment on PAWS-X, where we 537

collect training dynamics for a teacher XLM-Rbase 538

model for different number of epochs (stopping 539

training early) and then train a student XLM-Rbase 540

model for 10 epochs. Results are reported in Table 541

4 for standard random training as well as for our 542

best overall curriculum AnnealVarTD as the aver- 543
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Teacher
Epochs

Random AnnealVarTD Time ↓

3

85.28 ± 0.18

85.20 ± 0.17 0.88 (0.51)
4 85.46 ± 0.25 0.98 (0.64)
5 84.94 ± 0.30 0.90 (0.70)
10 85.34 ± 0.19 0.76 (0.52)

Table 4: Development set performance (average across
languages) on PAWS-X with XLM-R teacher and stu-
dent. Student is trained for 10 epochs, while training
dynamics are collected from the teacher for different
number of epochs. Time for the Random setting is 1.0.

age of the development set languages performance.544

We observe that it is not actually necessary to545

collect training dynamics for a long period of train-546

ing (e.g. 10 epochs) as even with much less train-547

ing, for instance just 3 epochs, we can still get548

close performance to the random order baseline for549

12% speedup on average and almost 50% in the550

best case. This adds minimal overhead to training,551

suitable when one wants to train with a limited bud-552

get. Compared to Cross-Review, that essentially553

requires full training of N teacher models plus the554

student model, TD offer a much more efficient solu-555

tion. Ultimately, even having less accurate dynam-556

ics (by training the teacher for less epochs) we can557

achieve a small speedup on the student model and558

result in overall less training time for both models.559

Longer teacher training might be proven beneficial560

for future training of different student versions.561

5.4 Analysing Data Maps562

Finally, to better understand the reason for the re-563

ported CL benefits we plot data maps that result564

from training an XLM-R model on each dataset in565

Figure 3, with confidence in the y-axis, variability566

in the x-axis and correctness in the legend. As ob-567

served, the easiest overall datasets, i.e. PAWS-X568

(3a) and MLDoc (3d) result in quite crisp maps569

with very few hard-to-learn examples, while in570

XNLI (3b) and SIQA (3c) the data maps are very571

dense and the number of difficult examples is high.572

This can potentially explain why CL with XLM-R573

models was more beneficial on those datasets in574

terms of performance, confirming that CL can be575

used to better prepare a model for harder instances.576

6 Conclusion577

We presented a set of experiments using training578

dynamics (Swayamdipta et al., 2020) as difficulty579

(a) PAWS-X data map (b) XNLI data map

(c) SIQA data map (d) MLDoc data map

Figure 3: Data map for the training set of each dataset
using an XLM-Rbase model. We plot maximum 25K
examples for clarity. For the first 3 datasets (3a)-(3c)
correctness obtains values in [0, 10].

metrics for CL on (X)NLU tasks. Differently from 580

existing works, we focus our evaluation on zero- 581

shot cross-lingual transfer and OOD data–testing 582

existing discrete and continuous schedulers as well 583

as modifications of those in a transfer-teacher cur- 584

riculum setting. 585

Our findings on four cross-lingual datasets of- 586

fer evidence that simply reordering the training 587

examples in a meaningful way can have an impact 588

on both zero-shot cross-lingual transfer and OOD 589

data. In particular, we found that datasets with- 590

out a clear distinction between training instances 591

in data maps are mostly benefited from CL, with 592

speedup improvements up to 58%, while others 593

have incremental improvements in zero-shot cross- 594

lingual transfer. Our proposed Continuous sched- 595

uler with variability sampling provided a boost up 596

to 8% on a challenging OOD dataset potentially 597

thanks to its slow pacing learning. Comparing our 598

proposed application of training dynamics to other 599

transfer-teacher curriculum methods that are using 600

more than 1 teacher model, we observed greater 601

speedups, effeciency and more stable training. 602

Overall, our experiments suggest there is no cur- 603

riculum outperforming others by a large margin 604

which is consistent with findings in Zhang et al. 605

(2018). However we show that training dynamics 606

are potentially better difficulty metrics for CL in 607

both monolingual and multilingual models, easily 608

obtained by fine-tuning a single teacher model for 609

a minimal number of epochs. 610
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Tom Kocmi and Ondřej Bojar. 2017. Curriculum learn- 705
ing and minibatch bucketing in neural machine trans- 706
lation. In Proceedings of the International Confer- 707
ence Recent Advances in Natural Language Process- 708
ing, RANLP 2017, pages 379–386, Varna, Bulgaria. 709
INCOMA Ltd. 710

Kai A Krueger and Peter Dayan. 2009. Flexible shap- 711
ing: How learning in small steps helps. Cognition, 712
110(3):380–394. 713

Gaurav Kumar, George Foster, Colin Cherry, and 714
Maxim Krikun. 2019. Reinforcement learning based 715
curriculum optimization for neural machine trans- 716
lation. In Proceedings of the 2019 Conference of 717
the North American Chapter of the Association for 718
Computational Linguistics: Human Language Tech- 719
nologies, Volume 1 (Long and Short Papers), pages 720
2054–2061, Minneapolis, Minnesota. Association for 721
Computational Linguistics. 722

9

https://www.aclweb.org/anthology/W17-7509
https://www.aclweb.org/anthology/W17-7509
https://www.aclweb.org/anthology/W17-7509
https://www.aclweb.org/anthology/W17-7509
https://www.aclweb.org/anthology/W17-7509
https://www.aclweb.org/anthology/W17-7509
https://www.aclweb.org/anthology/W17-7509
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/D18-1269
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
http://proceedings.mlr.press/v97/hacohen19a.html
http://proceedings.mlr.press/v97/hacohen19a.html
http://proceedings.mlr.press/v97/hacohen19a.html
http://proceedings.mlr.press/v97/hacohen19a.html
http://proceedings.mlr.press/v97/hacohen19a.html
https://doi.org/10.18653/v1/D19-1037
https://doi.org/10.18653/v1/D19-1037
https://doi.org/10.18653/v1/D19-1037
https://doi.org/10.18653/v1/D19-1037
https://doi.org/10.18653/v1/D19-1037
https://doi.org/10.18653/v1/2020.emnlp-main.40
https://doi.org/10.18653/v1/2020.emnlp-main.40
https://doi.org/10.18653/v1/2020.emnlp-main.40
https://doi.org/10.18653/v1/2020.emnlp-main.40
https://doi.org/10.18653/v1/2020.emnlp-main.40
https://www.aclweb.org/anthology/C12-1089
https://www.aclweb.org/anthology/C12-1089
https://www.aclweb.org/anthology/C12-1089
https://doi.org/10.26615/978-954-452-049-6_050
https://doi.org/10.26615/978-954-452-049-6_050
https://doi.org/10.26615/978-954-452-049-6_050
https://doi.org/10.26615/978-954-452-049-6_050
https://doi.org/10.26615/978-954-452-049-6_050
https://doi.org/10.18653/v1/N19-1208
https://doi.org/10.18653/v1/N19-1208
https://doi.org/10.18653/v1/N19-1208
https://doi.org/10.18653/v1/N19-1208
https://doi.org/10.18653/v1/N19-1208


M. Kumar, Benjamin Packer, and Daphne Koller. 2010.723
Self-paced learning for latent variable models. In724
Advances in Neural Information Processing Systems,725
volume 23. Curran Associates, Inc.726

John P. Lalor and Hong Yu. 2020. Dynamic data se-727
lection for curriculum learning via ability estimation.728
In Findings of the Association for Computational729
Linguistics: EMNLP 2020, pages 545–555, Online.730
Association for Computational Linguistics.731

Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. 2017.732
A continuously growing dataset of sentential para-733
phrases. In Proceedings of the 2017 Conference on734
Empirical Methods in Natural Language Processing,735
pages 1224–1234, Copenhagen, Denmark. Associa-736
tion for Computational Linguistics.737

Yu-Hsiang Lin, Chian-Yu Chen, Jean Lee, Zirui Li,738
Yuyan Zhang, Mengzhou Xia, Shruti Rijhwani, Junx-739
ian He, Zhisong Zhang, Xuezhe Ma, Antonios Anas-740
tasopoulos, Patrick Littell, and Graham Neubig. 2019.741
Choosing transfer languages for cross-lingual learn-742
ing. In Proceedings of the 57th Annual Meeting of743
the Association for Computational Linguistics, pages744
3125–3135, Florence, Italy. Association for Compu-745
tational Linguistics.746

Tal Linzen. 2020. How can we accelerate progress747
towards human-like linguistic generalization? In748
Proceedings of the 58th Annual Meeting of the Asso-749
ciation for Computational Linguistics, pages 5210–750
5217, Online. Association for Computational Lin-751
guistics.752

Xuebo Liu, Houtim Lai, Derek F. Wong, and Lidia S.753
Chao. 2020. Norm-based curriculum learning for754
neural machine translation. In Proceedings of the755
58th Annual Meeting of the Association for Compu-756
tational Linguistics, pages 427–436, Online. Associ-757
ation for Computational Linguistics.758

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-759
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,760
Luke Zettlemoyer, and Veselin Stoyanov. 2019.761
Roberta: A robustly optimized bert pretraining ap-762
proach. arXiv preprint arXiv:1907.11692.763

Ilya Loshchilov and Frank Hutter. 2017. Decou-764
pled weight decay regularization. arXiv preprint765
arXiv:1711.05101.766

Tambet Matiisen, Avital Oliver, Taco Cohen, and John767
Schulman. 2019. Teacher–student curriculum learn-768
ing. IEEE transactions on neural networks and learn-769
ing systems, 31(9):3732–3740.770

Farhad Nooralahzadeh, Giannis Bekoulis, Johannes771
Bjerva, and Isabelle Augenstein. 2020. Zero-shot772
cross-lingual transfer with meta learning. In Proceed-773
ings of the 2020 Conference on Empirical Methods774
in Natural Language Processing (EMNLP), pages775
4547–4562, Online. Association for Computational776
Linguistics.777

Emmanouil Antonios Platanios, Otilia Stretcu, Graham 778
Neubig, Barnabas Poczos, and Tom Mitchell. 2019. 779
Competence-based curriculum learning for neural 780
machine translation. In Proceedings of the 2019 781
Conference of the North American Chapter of the 782
Association for Computational Linguistics: Human 783
Language Technologies, Volume 1 (Long and Short 784
Papers), pages 1162–1172, Minneapolis, Minnesota. 785
Association for Computational Linguistics. 786

Edoardo Maria Ponti, Goran Glavaš, Olga Majewska, 787
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A Datasets975

In this study, we use the following datasets:976

PAWS-X (Yang et al., 2019) is the cross-lingual977

version of the English Paraphrase Adversaries from978

Word Scrambling dataset (Zhang et al., 2019b)979

containing paraphrase identification pairs from980

Wikipedia. It consists of human translated pairs981

in six topologically distinct languages. The train-982

ing set contains only English examples taken from983

the original PAWS dataset. As OOD we use the984

TwitterPPDB dataset (Lan et al., 2017).985

XNLI is the cross-lingual NLI dataset (Conneau986

et al., 2018), an evaluation set created by extend-987

ing the development and test sets of the MultiNLI988

dataset (Williams et al., 2018) and translating it989

into 14 languages. Training data constitutes the990

original MultiNLI English training set. A OOD991

we use NLI Diagnostics (Wang et al., 2018), a set992

of human-annotated examples that reveal model993

behavior on particular semantic phenomena.994

XCOPA is the Cross-lingual Choice of Plausible995

Alternatives (Ponti et al., 2020), a typologically996

diverse multilingual dataset for causal common997

sense reasoning in 11 languages. The dataset con-998

sists of development and test examples for each999

language, which are translations from the English1000

RoBERTabase XLM-Rbase

XNLI 7.5 h 11.5 h
PAWS-X 1.0 h 1.8 h
SIQA 1.0 h 1.3 h
MLDoc - 1.0 h

Table 5: Training time required for a full model training.

COPA (Roemmele et al., 2011) validation and test 1001

sets. Following Ponti et al. (2020) we use the So- 1002

cial IQA dataset (Sap et al., 2019) as training data 1003

(containing 3 possible choices), and the English 1004

COPA development set as validation data (contain- 1005

ing 2 possible choices). For OOD, we consider the 1006

CommonSenseQA (CSQA) dataset (Talmor et al., 1007

2019) that contains 5 possible choices. 1008

MLDoc is a document classification dataset with 4 1009

target categories: corporate/industrial, economics, 1010

government/social, and markets (Schwenk and Li, 1011

2018). The dataset is an improved version of the 1012

Reuters benchmark (Klementiev et al., 2012) con- 1013

sisting of 7 languages and comes with 4 different 1014

sets of English training data (1k, 2k, 5k, 10k). Here, 1015

we use the 10k following prior work (Keung et al., 1016

2020). 1017

B Training Details 1018

Hyper-parameter Settings: For all the reported ex- 1019

periments we used the HuggingFace Transformers 1020

library with PyTorch4. We use base models, XLM- 1021

R and RoBERTa with 470M and 340M parameters 1022

respectively. We fix sentence length to 128 for all 1023

datasets except MLDoc where we use 256. We did 1024

minimal learning rate tuning on each dataset’s En- 1025

glish validation set, searching among [7e-6, 1e-5, 1026

2e-5, 3e-5] and choosing the best performing one 1027

(1e-5 for PAWS-X, 7e-6 for SIQA and XNLI, 3e-5 1028

for MLDoc). We clip gradients to 1.0 after each 1029

update, use AdamW optimizer (Loshchilov and 1030

Hutter, 2017) without any warmup and a batch size 1031

of 32 for PAWS-X, XNLI and MLDoc and 8 for 1032

SIQA/XCOPA. All reported experiments use the 1033

same 3 random seeds and all models were trained 1034

on a single Nvidia V100 16GB GPU. In terms of 1035

training time, Table 5 shows the training time re- 1036

quired for each dataset with the above parameters. 1037

1038

Multiple Choice QA: We treat SIQA-XCOPA as a 1039

sentence-pair classification task and feed the model 1040

4https://pytorch.org/
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a (premise-question, choice) tuple converting each1041

cause into “What was the cause?" and each ef-1042

fect into “What was the effect?" question which1043

is concatenated to the premise. Similar to prior1044

work (Ponti et al., 2020) we use a feed forward1045

linear layer on top of the input’s first special token1046

(<s> in the case of RoBERTa and XLM-R) to pro-1047

duce a score for each of the possible choices. In1048

the case of CSQA that does not have a premise, we1049

simply feed the network the question-choice pair.1050

C Detailed Results1051

In Tables 6 and 7 we report detailed results with1052

test set accuracy and time speedup for each curricu-1053

lum on zero-shot cross-lingual transfer and OOD1054

generalisation, respectively.1055
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PAWS-X XNLI XCOPA MLDOC

Test Time ↓ Test Time ↓ Test Time ↓ Test Time ↓

Prior Work 84.90∗ - 75.00∗ - 60.72 - 77.66 -
Random 84.49 ±0.08 1.00 73.93 ±0.18 1.00 60.62 ±0.54 1.00 86.74 ±0.46 1.00

AnnealTD 84.70 ±0.15 1.04 (0.70) 73.92 ±0.11 1.12 (0.94) 60.95 ±0.40 0.80 (0.38) 86.47 ±0.64 0.91 (0.81)
AnnealVarTD 84.52 ±0.27 0.76 (0.51) 74.66 ±0.06 0.78 (0.43) 61.68 ±0.51 1.14 (0.38) 86.14 ±0.23 0.81 (0.42)
CompTD 84.51 ±0.45 1.43 (1.03) 74.32 ±0.41 1.15 (0.46) 61.09 ±0.28 0.49 (0.32) 86.30 ±0.70 1.12 (1.03)
CompVarTD 84.03 ±0.65 1.47 (0.94) 74.43 ±0.18 1.18 (0.93) 61.04 ±0.31 0.56 (0.13) 85.78 ±0.74 0.99 (0.71)

AnnealCR 84.35 ±0.46 1.08 (0.65) 74.57 ±0.40 1.02 (0.86) 60.44 ±0.39 0.39 (0.22) 86.59 ±0.29 0.82 (0.74)

Table 6: Zero-shot performance between curricula as the average accuracy across languages (mean and standard
deviation over 3 random seeds). Time corresponds to the ratio Ncurric/Nrandom, where the numerator is the number steps
a curriculum needs to reach the reported performance and the denominator is the number of steps the Random
training baseline requires to reach its performance. The value in parentheses corresponds to the minimum time
across seeds (lower is better). All curricula use XLM-Rbase as the underlying model. We also report prior work
results for reference as follows: PAWS-X (Chi et al., 2021), XNLI (Chi et al., 2021), XCOPA (Ponti et al., 2020),
MLDoc (Keung et al., 2020) (mBERT). ∗Note that Chi et al. (2021) tune on the target languages validation sets.

Train (ID) PAWS-X XNLI SIQA
Test (OOD) TwitterPPDB Time ↓ NLI Diag. Time ↓ CSQA Time ↓

Random 72.80 ±5.45 1.00 61.87 ±1.36 1.00 44.61 ±0.96 1.00

AnnealTD 71.97 ±2.69 0.79 (0.63) 62.15 ±0.94 0.87 (0.51) 45.81 ±1.40 0.85 (0.68)
AnnealVarTD 72.62 ±1.17 0.97 (0.64) 62.57 ±1.32 1.61 (1.34) 44.31 ±0.88 0.44 (0.23)
CompTD 75.18 ±6.71 1.71 (0.58) 61.31 ±1.00 1.32 (1.11) 43.93 ±1.59 0.79 (0.31)
CompVarTD 81.33 ±2.10 1.64 (1.51) 61.82 ±0.98 1.47 (1.33) 45.84 ±0.67 0.92 (0.61)

AnnealCR 72.83 ±6.65 1.56 (0.89) 61.78 ±0.27 1.31 (0.63) 44.85 ±0.72 0.69 (0.55)

Table 7: Zero-shot accuracy results of monolingual models on out-of-distribution (OOD) data. All curricula use
RoBERTabase as the underlying model. Time corresponds to the ratio Ncurric/Nrandom with N being the number of steps
a model achieves the reported performance. Results are reported over 3 random seeds and in parenthesis we include
the minimum time required across these seeds.
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