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Abstract

Transfer learning is a critical part of real-world
machine learning deployments and has been ex-
tensively studied in experimental works with over-
parameterized neural networks. However, even in
the simplest setting of linear regression a notable
gap still exists in the theoretical understanding
of transfer learning. In-distribution research on
high-dimensional linear regression has led to the
identification of a phenomenon known as benign
overfitting, in which linear interpolators overfit
to noisy training labels and yet still generalize
well. This behavior occurs under specific condi-
tions on the source covariance matrix and input
data dimension. Therefore, it is natural to won-
der how such high-dimensional linear models be-
have under transfer learning. We prove the first
non-asymptotic excess risk bounds for benignly-
overfit linear interpolators in the transfer learning
setting. From our analysis, we propose a taxon-
omy of beneficial and malignant covariate shifts
based on the degree of overparameterization. We
follow our analysis with empirical studies that
show these beneficial and malignant covariate
shifts for linear interpolators on real image data,
and for fully-connected neural networks in set-
tings where the input data dimension is larger
than the training sample size.

1. Introduction

Practical deployments of machine learning models are al-
most always in a transfer learning setting, where models
trained on a source data distribution with noisy labels are
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expected to perform well on a different target data distribu-
tion, referred to as the “out-of-distribution” (OOD) dataset
(Oglic et al., 2022; D’ Amour et al., 2022). There have been
many experimental works on transfer learning with complex
models and datasets (Recht et al., 2019; Koh et al., 2021;
Miller et al., 2021; Hendrycks et al., 2021; Wenzel et al.,
2022; Liang et al., 2023), but remarkably fewer attempts
to study it theoretically, even in the simplest case of linear
models which have been of great interest in recent years
(Dwivedi et al., 2020; Bartlett et al., 2020; Hastie et al.,
2022; Tsigler & Bartlett, 2023).

There has been an extensive “in-distribution” (ID) theo-
retical interest in high-dimensional linear regression and
specifically interpolation, meaning a model reaches zero
training loss (Belkin et al., 2019a;b). Frameworks such as
“benign overfitting”, or “harmless interpolation” (Bartlett
et al., 2020; Muthukumar et al., 2020) emerged as an at-
tempt to explain why interpolating neural networks often
do not overfit catastrophically (Zhang et al., 2017). They
found that, in specific cases, overfitting can be “benign”,
meaning that a model interpolates noisy training labels and
yet has vanishing excess risk. In linear regression, this oc-
curs if and only if the training (source) covariance matrix
satisfies very specific conditions. Under these conditions,
the minimum-norm interpolator (MNI) approximately acts
like a ridge regression solution.

This sparked an initial wave of in-distribution theoretical
research into benign overfitting in high-dimensional linear
models (Chatterji et al., 2022; Tsigler & Bartlett, 2023;
Chatterji & Long, 2023), kernel regression (Rakhlin & Zhai,
2019; Haas et al., 2023; Barzilai & Shamir, 2023; Belkin
et al., 2018), and even some shallow neural networks (Frei
et al., 2022a; Kou et al., 2023; Kornowski et al., 2023; Xu
et al., 2024). Although these works were motivated by a
desire to understand overfitting in modern deep learning,
recent works have shown that in many practical settings
of interest, overfitting is not benign (Mallinar et al., 2022;
Haas et al., 2023; Lai et al., 2023). Thus, deeper investiga-
tions into the generalization behavior of overfit models are
warranted.

Given the increasing prevalence of overparameterized mod-
els, it is natural to ask how such models perform in the
transfer learning setting. There have been some efforts to
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answer this in the theoretically tractable cases of linear re-
gression and random feature and kernel regression (Pathak
et al., 2022; Wang, 2023). However, these works either
provide asymptotic bounds that require the training sample
size and data dimension to go to infinity at the same rate
(Tripuraneni et al., 2021), study minimax settings which
only considers worst-case risk (Lei et al., 2021), or focus on
augmented gradient-based training algorithms, like impor-
tance weighting (Wang et al., 2022).

Summary of contributions. In this paper, we investigate
the generalization behavior of the minimum #5-norm lin-
ear interpolator (MNI) under distribution shifts when the
source distribution satisfies the conditions necessary for be-
nign overfitting. We summarize our main contributions as
follows.

* We provide the first non-asymptotic, instance-wise risk
bounds for covariate shifts in interpolating linear re-
gression when the source covariance matrix satisfies
benign overfitting conditions and commutes with the
target covariance matrix.

* We use our risk bounds to propose a taxonomy of co-
variate shifts for the MNI. We show how the ratio of
target eigenvalues to source eigenvalues and the degree
of overparameterization affect whether a shift is benefi-
cial or malignant, meaning OOD risk is better or worse
than ID risk, respectively. The degree of overparame-
terization is determined by the eigenspectrum’s head
and tail properties.

* We empirically show that our taxonomy of shifts holds:
(1) for the MNI on real image data under natural shifts
like blur (a beneficial shift) and noise (a malignant
shift), underscoring the significance of our findings
beyond the idealized source and target covariances for
which our theory is applicable; (2) for neural networks
in settings where the input data dimension is larger
than the training sample size, showing that our findings
for the MNI are also reflective of the behavior of more
complex models.

1.1. Prior Work and Comparisons to this Work

Excess risk analysis under distribution shifts: Tripu-
raneni et al. (2021) give an asymptotic analysis of high-
dimensional random feature regression in covariate shift.
They require the number of samples, n, data dimension, p,
and random feature dimension to go to oo at the same rate.
In contrast, our non-asymptotic analysis considers finite
sample cases and differing rates. This allows us to draw new
conclusions about how the degree of overparameterization
changes the way in which interpolating linear models ex-
hibit out-of-distribution (OOD) generalization. Additionally,

our bounds let us analyze any sequence of eigenvalues for
the target feature covariance matrix, which is not possible
within their framework.

Lei et al. (2021) study linear regression under distribution
shifts in the minimax setting. Their minimax bounds con-
sider the worst-case risk over an /5-ball of target models,
whereas we compute risk bounds specific to any model in-
stantiation, with no restriction on the target model class.
Furthermore, their experimental results only consider the
underparameterized regime.

Several other works study OOD generalization in more dis-
tant settings. Wang et al. (2022) study linear interpolators
for classification, when trained with gradient descent and
importance weighting, whereas we consider the closed-form
MNI for linear regression. Simchowitz et al. (2023) study
covariate shifts when the target function class is the sum
of two other function classes, and shifts are defined with
regard to metric entropy between classes, whereas we focus
on well-specified linear models. Pathak et al. (2022); Ma
et al. (2023); Feng et al. (2023) consider covariate shift in
kernel regression based on likelihood (“importance”) ratios
between source and target distributions while we consider
source and target eigenvalue ratios which offer granular in-
sights into feature scale changes whereas likelihood ratios
capture shifts that affect the global data distribution. Pathak
et al. (2022); Ma et al. (2023) also analyze worst-case, mini-
max risk for nonparametric function classes. Kausik et al.
(2023) work in the proportional asymptotic regime and con-
sider the error in variables setting with noisy features and
clean labels, while our work focuses on the linear regression
setting with clean features and noisy labels. Finally, we
note that risk bounds in these prior works do not sufficiently
account for the behavior of the high-rank covariance tail
that benign overfitting requires.

Experimental work on distribution shifts: Hendrycks
& Dietterich (2019) propose the CIFAR-10C dataset as an
OOD counterpart to CIFAR-10, featuring test set images
corrupted by visual filters like blurs and noises. Koh et al.
(2021) present benchmarks on more realistic datasets with
modern models that can be seen “in-the-wild”. Miller et al.
(2021) experimentally show a linear relationship between
ID accuracy and OOD accuracy for a wide range of modern
neural networks and datasets, though their results show ID
accuracy is almost always better than OOD accuracy. On
a subset of CIFAR-10C, we find settings in which OOD
accuracy is better than ID accuracy for linear interpolators.

Benign overfitting “in-distribution”: Bartlett et al. (2020)
propose benign overfitting, give a non-asymptotic analysis
of the MNI, and show specific, necessary conditions under
which the MNI achieves zero excess risk in-distribution.
Tsigler & Bartlett (2023) extend this work by considering
benign overfitting in the case of ridge regression. Our proof
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techniques follow most closely to the ideas presented in
these two papers for the in-distribution setting. Frei et al.
(2022a) show benign overfitting in shallow non-linear MLPs
trained with gradient descent on the logistic loss if the data
dimension grows faster than the number of training samples.
Mallinar et al. (2022) experimentally show that interpolating
neural networks do not benignly overfit due to the low input
data dimension. Our experiments build on this by looking at
settings in which n < p and n > p where n is the training
sample size and p is the input data dimension. Other works
study benign overfitting under a variety of conditions (Kou
et al., 2023; Chatterji & Long, 2023; Frei et al., 2023b).

2. Preliminaries

We extend notations in Bartlett et al. (2020) and Tsigler &
Bartlett (2023) to the transfer learning setting with OOD
generalization risk as our performance metric. Appendix A
formalizes our setting of linear regression under distribution
shift, and we provide necessary details here.

2.1. Linear Models for Source and Target Data

Let Ds and D, be source and target distributions over
(z,y) € RP x R. We consider linear regression problems
defined as follows.

Definition 1 (Linear regression). Let the training dataset be
comprised of n i.i.d. pairs (x,y*)"_; ~ DI concatenated
into a data matrix X € R"*P and a response vector y, €
R"™, where n < p. We define

1. the covariance matrix 35 = Ep_[zx ],

2. (centered rows) Ep_[x] = 0,

3. (well-specified) the optimal parameter vector 05 € RP
such that

Y= a:TQ;" + &

Sor (x,y) ~ Ds, where € is a centered random vari-
able with variance v.2 and Ep [y|z] = 2T 0}.

We test on Dy with 34, 05, ¢, defined in the same way. Note
that (x, y) is used to denote single observation pairs for both
source and target data. We will differentiate between the
two by explicitly denoting the distribution from which the
pair is drawn.

To facilitate our analysis, we introduce the following as-
sumptions on the covariance matrices and the distribution
of the data.

Assumption 2.1. For linear regression problems (Def. 1),
with source and target covariance matrices s and Yy €
RPXP we assume:

1. (simultaneously diagonalizability) X5 and 3y commute;
that is, there exists an orthogonal matrix V. € RP*P
such that V'SV and VTS,V are both diagonal:

o= E [xx’] = diag(\1, Nay oy Ap),
Y= E_[za?] = diag(\i, Mg, .y \p),

x~Dy
where Ay > Ay - -+ > A, and /N\Z-)\Z- > 0 forall i,

2. (subgaussianity) the whitened observations z =
Iy, 1/2 are centered i.i.d. vectors with independent
coordinates and subgaussian norm o ; that is, for all
v € RP,

Elexp(v'2)] < exp(a2||71I°/2)

Simultaneous diagonalizability is a common assumption in
recent studies of high-dimensional linear regression (Lei
et al., 2021; Kausik et al., 2023; LeJeune et al., 2024) and
we show in Section 4 with experiments that our results hold
even when this is violated. Subgaussianity is also frequently
used in statistical learning theory research and encompasses
a wide array of distributions of interest (Vershynin, 2018).

2.2. Min-Norm Interpolator and Target Excess Risk

Given a source data matrix X, the minimum-norm interpo-
lator (MNI) for any vector £ € R™ is defined as

4(¢) := argmin {||9\|2 . X0 = g}
=xT(xxT)"1¢.

If we consider £ = y,, then we recover the MNI for the
labels given by the response model, but our analysis will
also involve implicit MNIs for different label vectors in R"™.

The quantity that we seek to bound is the excess risk on the
target distribution, which we define for an estimator § € R?
as,

R(9.Dy) = E (=2"0)" ~ (y-="0;)"] .

We now derive bounds for the target excess risk and its
expectation over the source response noise. The proof of
the following can be found in Appendix C.

Theorem 2.2. (Target excess risk decomposition) The ex-
cess risk of the MNI trained on the source data, when evalu-
ated on the target distribution, satisfies

~

R(0(ys), Dt) <4By +4Bs +2V¢,, @

and

o~

E R(0(ys), D:) = By + Bo +£_EV€S

€s

+2(0; — 05) TS (07 — B(X67)),
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where we define

By = |6 - 6713, 3)
By = |67 —6(X67)|%, )
Ve, == [|0(es) |13, ()

and ||z|3, == & M.

‘We observe that Bj is a deterministic model shift term and
that no further analysis can improve its dependency on 6,
07, or ¥;. The cross-term, (0} — 67) T, (6 — a(XG:)),
is dominated by the bias and variance as evidenced by the
upper bound. Therefore we focus our analysis on By and
Ve,. A useful normalized version of V_ is defined by

V=E[Ve,/vZ]. ©)

Note that By, V' are reminiscent of the ID bias and variance
in prior work (Bartlett et al., 2020; Tsigler & Bartlett, 2023).

2.3. Separation of Components and Effective Ranks

For an index k, we define the following quantities related to
the effective rank of the tail of X5 (Tsigler & Bartlett, 2023):

Zi>k Ai (Zi>k )‘i>2
[PV Disk A7

pr, measures the ratio of the energy of the source covariance
tail to the number of training data observations, after normal-
izing the tail eigenvalues. Rj measures the quantity of noisy
features and how evenly distributed their eigenvalues are.
It is minimized when there is only one nonzero eigenvalue
and maximized when there are many equal eigenvalues.

Pk = Ry =

Benign overfitting occurs if the MNI is overfit to noisy
training labels and yet ID excess risk decays to zero. The
central finding of Bartlett et al. (2020) is that the only way
benign overfitting happens for the MNI is if the following
occurs: (1) there exists a k* = min{k : pp > b} for
a universal constant b > 1, meaning that the last p — k*
components of g have a high effective rank relative to
the number of training samples, n; (2) the magnitudes of
the bottom p — k* eigenvalues are small relative to the top
k*; and (3) k* < n. More formally, consider quantities
p = p(n), a sequence of source covariance matrices ,, =
diag(A1, -+, Ap), £* = k*(n) as defined above, Ry~ =
Ry (X,), and pr = pi(X,). A sufficient condition for
benign overfitting is,

lim po = lim k*/n= lim n/Ry- = 0. ™)
n—oo n—oo n— o0
If this occurs, then the MNI behaves similarly to an esti-

mator with two components. One component has variance
similar to the ordinary least squares (OLS) estimator in k*

dimensions and bias similar to the ridge regression solu-
tion with ridge parameter proportional to ), , A;, a sort
of data-induced regularization. The other component is a
high-dimensional component, which has vanishing variance
when the data is sufficiently high-dimensional and a bias
which is proportional to Y., A;i(6%)7 (Tsigler & Bartlett,
2023). From these conditions, we see that the top k* com-
ponents are like “signal” components of the data and the
bottom p — k* components are “noise” components.

2.4. Spiked Covariance Models

We will consider a special case of the (k, €)-spike model, a
canonical covariance structure that exhibits benign overfit-
ting for the MNI (Chatterji et al., 2022; Chatterji & Long,
2023), to experimentally show properties of interest.

Definition 2 ((k, , €)-spike model). For a source distribu-
tion D, § > 0 and € > 0 such that § >> ¢, let

E [zx”] = diag(Ai, My Abtts o 5 Ap)-

ax~Ds

=0 —c

In this simplified setting, there are k high-energy “signal”
directions and p — k low-energy “noise” directions. For
a target distribution Dy, we use different hyperparameters
/~€, 6, ét0 similarly characterize a shifted covariance matrix.

3. Main Theorems

This section provides upper and lower bounds for the vari-
ance and bias terms in Equation 6 and Equation 4, respec-
tively. Appendix D gives a high-level overview of our
proof techniques. Subsequent appendices provide complete
proofs. The variance bounds are adapted from Bartlett et al.
(2020), while the bias lower bound is derived from Tsigler
& Bartlett (2023). Our contributions include a novel bias
upper bound and a unique characterization of overparame-
terization degrees. We start with the bounds for the variance
term. Appendix E contains a proof of the following theorem.

Theorem 3.1. (Upper and lower bounds for the variance
term) There exist universal constants b,cq > 1 given in
Lemma B.1, a universal constant co given in Lemma B.4
and a constant ¢ > 1 that only depends on o, c1, co, such
that for k € (0,n/c), with probability at least 1 — 10e~"/°,

1 &N A2
V> =S Y min(1,—— 2 ) =v. @3
_Cn;&‘ ( AiH(Pk%—l)Q) Lo

If in addition pj, > b, with probability at least 1 — Te~"/¢,

NN —
(EZZ:M)Q =V/e. 9

k

1=\
< — -
V/c_ng )\i—l—n

i=1
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We first note that the variance lower bound does not depend
on pi > b and so it holds for any interpolating linear model,
even when benign source conditions are not satisfied. How-
ever, we will see that if p;, > b for some £, then the upper
and lower bounds are tight. In the case where Xy = X,
these bounds reduce to their in-distribution counterparts
(Bartlett et al., 2020). Our variance bounds show that the
excess risk contribution of each feature is scaled by the ratio
of the target and source eigenvalues, A /Ai. We immedi-
ately see that scaling down the target eigenvalues will lessen
the overall contribution to variance and that scaling up the
target eigenvalues will increase the contribution. We inves-
tigate these scaling factors and the separation of the first k
components and last p — k components in Section 3.1.

We now state upper and lower bounds for the bias term, Bo,
given in Equation 4. The proof of the following theorem
can be found in Appendix F.

Theorem 3.2. (Upper and lower bounds for the bias term)

For the lower bound only, assume that random models 0 are
obtained from the underlying 0} as (0); = ~;(0%);, where
each ~y; is an independent Rademacher random variable.
There exists a universal constant b > 1, constants ¢, C that
depend only on b and o, and k < n/C such that if p, > b,

—n/c

then with probability at least 1 — 10e ;

.
1 Aio (6

E[Bs| > - —

2 2]—(;(;“

>\k+1ﬁk i>k

If we assume that p is at most exponential in n, then with
probability at least 1 — 5e~"/¢,

p <
\i _
BQ/CSHH* Z}T BQ/C

L+ )\k+1Pk )

Note that while the lower bound is in expectation over the
random models 6, the resulting expression only depends on
the ground-truth 6. This Bayesian approach also appears
in prior work, i.e. Tsigler & Bartlett (2023). In studying the
bias lower bound, we observe a similar separation of signal
and noise components and depence on eigenvalue ratios as
in the variance bounds.

To show tightness of our bounds, we assume there exists a k&
such that p;, > b for some universal constant b > 1. When
this condition is satisfied, the variance bounds are tight up to
constant factors. The bias bounds leave a model-dependent
and source covariance-dependent gap, which we discuss in
the proof overview in Appendix D and in the complete proof
found in Appendix G.

Theorem 3.3. (Tightness of variance and bias bounds) Let
the lower bound and upper bound of V' be given by V_and
V, respectively. There exists a universal constant b > 1,

+Z>\ )::Bz.

and constant ¢ as defined in Theorem 3.1, and k € (0,n/c)
such that if py, > b, then

V/Veb?1+b)2/c1].

Let the lower bound and upper bound of By be given by By
and B, respectively, and the assumptions of Theorem 3.2

be satisfied. Then
min; {(67)? : 0}

BQ/FQE
- 0212 (1+b 1AL )

Note that the gap between our bias upper and lower bounds
is independent of the target distribution.

3.1. A Taxonomy of Shifts

We now present a taxonomy of covariate shifts on the target
distribution inspired by our prior analysis. We first con-
sider OOD generalization and formally categorize shifts as
beneficial or malignant.

Definition 3 (Beneficial and Malignant shifts). For a source
distributiog, Ds, a target distribution, D, excess risk, R,
and MNI, 0, we say that a shift is

1. beneficial if R(9,D,) > R(6,D;),
2. malignant if R(0,D,) < R(9,D;).

We define these shifts for excess risk and note in Appendix
J.1 that, empirically, the variance is the primary contributor
to excess risk and the bias contributions are negligible when
s satisfies benign overfitting conditions. This is in keeping
with prior literature that focuses on studying variance in
interpolating methods (Bartlett et al., 2020). We will thus
focus on variance in the following discussion.

Prior work shows that if n,p — oo at the same rate,
tr(Xs) < tr(X;) results in malignant shifts on excess risk
and tr(Xs) > tr(X;) results in beneficial shifts on excess
risk (Tripuraneni et al., 2021). In this section we generalize
these conditions by considering differing rates of n,p — oo
and measuring overparameterization by the modified “effec-
tive rank” measure Ry /n rather than p. This leads us to a
novel characterization of the role of overparameterization in
covariate shifts. For completeness, we describe their trace
conditions in terms of our shifts in Appendix H.1.

We first consider a simplified example with separate mul-
tiplicative shifts on the signal and noise components to
facilitate intuition. While this is a special case, it provides
valuable insights into the dynamics of overparameterization
and covariate shift that are relevant to practice. Our general
results, which allow for arbitrary multiplicative shifts in
every direction, are presented in Appendix H.3.
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Figure 1. We experiment with the (k, 6, €) spiked covariance mod-
els and examine conditions for beneficial and malignant shifts as
given in Theorem 3.4. We take n = 60,k = 10,6 = 1.0,¢ =
1@76,5 =2.0,6 =1e 7, and vary p. We see a cross-over from
mild to severe overparameterization on the right side of p = n
where both OOD shifts swap between beneficial and malignant.
For both ID and OOD curves, we observe that excess risk is a
decreasing function if input dimension. Curves are averaged over
100 independent runs.

Let 3 be a covariance matrix that satisfes benign source
conditions and denote the ID variance term by V;,4. Define
> by 5\1 = a); fori < k, and :\1 = B\, for i > k with
a, > 0. Let V,,q denote the OOD variance term. By
Theorem 3.1, up to constants,

Vid%k/n—FTb/Rk, (10)
Vood = a(k/n) + B(n/Ry), (1D
where Ry = (3,25 )\i)2/(zi>k, A2).

It is clear that if V,,,q — V4 > 0 then we have a malignant
shift on the variance, and if V,,q — V;4 < 0 then we have a
beneficial shift on the variance. Observe that,

Vood — Via = (e — 1)(k/n) + (8 — 1)(n/Ry). (12)

In this expression, we see that the scales of signal and noise
shifts, & and 3, are important, as is the relationship between
k/n (the “classical” rate) and n/ Ry, (the “high-dimensional”
rate). The quantity n/ Ry, can be interpreted as an inverse
measure of overparameterization, where smaller values cor-
respond to higher levels of overparameterization. The rate
of overparameterization relative to the classical rate of k/n
determines whether the shift on the first k components («)
or the shift on the last p — k components (3) contributes
more to the difference in excess risk.

Based on this intuition, we define two regimes of overpa-
rameterization: mild and severe.

Definition 4 (Mild and severe overparameterization for mul-
tiplicative shifts). Let > be a source covariance that satis-
fies benign source conditions and let k < n. Define 3 as,

5\,; =a\; fori < kands\,; = B\ fori >k, witha,B > 0.

Let Cpp := ‘%‘é .

We are in the mildly overparameterized regime if
n/Ry =w (Cup - k/n).

We are in the severely overparameterized regime if

n/Ri =0(Capg - k/n).

For 8 = 1 we define C,3 = oo and thus are effectively in
the severely overparameterized regime with regard to the
types of shift we observe.

It is clear that k is important in defining regimes of overpa-
rameterization. The aforementioned definitions hold for any
k < n, however we derive our taxonomy of shifts in the case
in which 3 k& < n such that p;, > b for a universal constant
b > 1. We note that even for non-linear models or settings
that do not exhibit benign overfitting we can still think about
a notion of a “k” akin to the intrinsic dimension of the data.
We empirically show in Figures 6 and 7 that our taxonomy
of shifts is reflective of shift behavior in realistic settings by
heuristically taking k£ small enough to sufficiently capture
the low-dimensional signal in the data.

In Equation 12, we see that the limit of the severe over-
parameterization regime would take Rj;, — oo first, while
holding other problem parameters fixed. In this case, we are
only left with « shifts on the top k components, as any shift
on the bottom components is suppressed by the high rank
covariance tail. This leads to behaviors akin to classical
intuitions for an underparameterized linear regression esti-
mator where £ = p < n. In this case, a > 1 leads to more
variance and thus harder learning, whereas o < 1 leads to
less variance and thus easier learning. These notions of hard
vs. easy learning naturally correspond to tr(X;) > tr(%)
and tr(X;) < tr(Xs), respectively. This is shown experi-
mentally in Figs. 1 and 7 by looking at the left and right
sides of the figures.

On the other hand, in the mildly overparameterized regime
covariance tail shifts are not sufficiently suppressed and lead
to non-negligible interactions with shifts on the signal com-
ponents. An increase in energy in the signal components
can be counteracted by a decrease in energy in the noise
components, effectively increasing the contrast between sig-
nal and noise in favor of the signal. Similarly, a decrease
in energy in the signal components can be harmfully coun-
teracted by an increase in energy in the noise components.
This is visible in Figs. 1 and 7 just above the threshold of
interpolation. Interestingly, in the mildly overparameterized
regime we can also define settings in which tr(2;) > tr(X)
and yet still obtain a beneficial shift, and settings in which
tr(Xt) < tr(Xs) and yet still obtain malignant shifts.
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Figure 2. We train 3 layer ReLU dense neural networks with hidden width, A, on n samples from p-dimensional Gaussians. ID test data is
sampled from the same distribution and OOD test sets are constructed based on beneficial and malignant covariate shifts in our theory.
Ground truth models are sampled as 67 ~ SP~!, no model shift is invoked. For training data, X, train labels are given by y, = X0; + €,
with label noise €5 ~ A (0, o). All runs reach train loss < 5e~°. Points are averaged over 20 independent runs with standard error bars

reported.

We formalize these observations in the following theorem,
the proof of which can be found in Appendix H.2.

Theorem 3.4. (Beneficial and Malignant Multiplicative
Shifts on Variance) Let g be a source covariance that
satisfies benign source conditions. That is, 3 k such that
pr > b for a universal constant b > 1. Define ¥ as
\i = al; fori < kand \; = BA; fori >k, with a,, 3 > 0.

L Ifa<1,f<1lora<1,8 < 1 then we obtain a
beneficial shift in variance.

2 Ifa>1,8>1ora > 1,8 > 1then we obtain a
malignant shift in variance.

3. If we are in the mildly overparameterized regime:

e a > land B < 1 leads to beneficial shifts;
e a < landp > 1 leads to malignant shifts.

4. If we are in the severely overparameterized regime:

e a> land B < 1 leads to malignant shifts;
e a < land B > 1 leads to beneficial shifts.

Figs. 1 and 5 demonstrate the relationship between the
n/ Ry, and k/n rates in the case of Cpp = 1.11,Cpp = 1,
respectively, for spiked covariance models. In both, we
clearly see a cross-over from beneficial to malignant shifts
when we transition from mild to severely overparameterized.

Overparameterization improves OQOD robustness Fo-
cusing on just the target excess risk, let « = «a(n) and
I} B(n,p). We say that the benignly-overfit MNI is
robust if its excess risk decays to zero despite the pres-
ence of multiplicative covariate shifts. In order for the
variance upper bound to decay to 0, it is sufficient to
have the shifts in the signal and noise components satisfy,
a =o(n/k), B = o(Ri/n). The condition 8 = o(Ry/n)

allows the shift strength to increase at a rate determined
by the level of overparameterization, so we conclude that
increasing the amount of overparameterization improves
robustness to multiplicative distribution shifts. Note that
o has no dependence on R and so robustness to shifts
on the signal components is independent of the degree of
overparameterization.

4. Experiments

Our theoretical results have provided insight into distribu-
tion shifts in high-dimensional linear regression. We now
present experiments with linear models and neural networks,
relaxing many of the assumptions used for theoretical results.
Specifically, we empirically: (1) observe beneficial and ma-
lignant shifts on synthetic and real data for linear models
(benignly overfit and otherwise) and even high-dimensional
dense neural networks; (2) show the benefit of overparame-
terization in covariate shift for interpolating linear estima-
tors; (3) validate that our findings hold when the source and
target covariance matrices are not simultaneously diagonal-
izable, as well as under model misspecification; (4) provide
experimental insight that high-dimensional neural networks,
i.e. when the input data dimension is large relative to the
training sample size, act similarly to the MNI whereas low-
dimensional neural networks do not, regardless of the level
of overparameterization. Details of experimental setup, data,
and models are given in Appendix I. We now discuss key
observations and takeaways from the experiments.

4.1. Synthetic Data Experiments

Fig. 1 shows excess risk vs. input dimension for data sam-
pled from the (k, d, €)-spike covariance model with k = 10,
5 = 1.0, and € = 1le—%. Beneficial and malignant shifts are
seen in the setting of Theorem 3.4 with « = 2.0, 8 = 0.1.
That is, we see two cross-over points: one in the under-



Minimum-Norm Interpolation Under Covariate Shift

—— In-distribution Severity 1

Severity 2

—-- Severity 3 = ----- Severity 4 - + Severity 5

15

Log eigenvalue, In(A;)

Test Excess Classification Error

0 1000 2000 3000 0.0 0.1
Eigenvalue index, i

(a) Noise then Blur Covariance

Train Label Noise

(b) Noise then Blur n = 500

0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
Train Label Noise

(c) Noise then Blur n = 2k

15 0.50

0.45

-
)

0.40

Log eigenvalue, In(A;)
e

o

Test Excess Classification Error

0.50

0.45

0.40

Test Excess Classification Error

[ 1000 2000 3000 0.0 0.1
Eigenvalue index, i

(d) Blur then Noise Covariance

0.2 0.3
Train Label Noise

(e) Blur then Noise n = 500

0.4 0.5 0.0 0.1 0.4 0.5

0.2 0.3
Train Label Noise

(f) Blur then Noise n = 2k

Figure 3. We experiment with a custom variant of CIFAR-10C in which we apply the blur and noise image filters directly to the test set
images of CIFAR-10 at each severity level, e.g. Severity 1 means that we add a small amount of noise and a small amount of blurring to
the image. In the top row we first use the noise filter and then the blur filter. In the bottom row we first use the blur filter and then the noise
filter. In (a) and (d), we observe that the eigenvalue decay of the shifts are non-monotonic and mirror the o < 1,3 > 1 setting in our
taxonomy. Indeed, we also see in (b) and (e) that when we are severely overparameterized the noisy tail effects appear to be suppressed
and we still obtain beneficial shifts. On the other hand, in (c) and (f) we are in the mildly overparameterized regime and observe that the
noisy tail effects hurt generalization, even for severity 4 in the top row which only adds a small amount of noise in the tail. These results
are exactly in keeping with our taxonomy for the & < 1, 3 > 1 case. All curves are averaged over 50 independent runs.

parameterized regime and one in the overparameterized
regime (going from mild to severe). This suggests that non-
negligible covariance tail effects are a property of shifting
when a model is in a region around the double descent peak.
The further we are from the double descent peak, the more
“classical” our behavior is, in that the top & components
are the only ones that influence shift and the bottom p — k
components either don’t exist or have negligible effects. Ap-
pendix J.1 explores this setup for different values of «, 3
and interpolating linear models for eigendecay rates that
lead to harmful interpolation, i.e. tempered or catastrophic
overfitting (Mallinar et al., 2022).

Figs. 2 and 8 show similar results for 3-layer dense ReLU
neural networks trained until near-interpolation (train MSE
< 5¢7%) on synthetic data with benign overfitting eigende-
cay rates (Bartlett et al., 2020). For the neural network, we
consider p to be the dimension of the input data, rather than
the number of network parameters. From Fig. 2 we observe
similar trends predicted by our theory for beneficial and ma-
lignant shifts when p > n, indicating that while our theory
is developed for linear models we are able to extrapolate
to more complex models. In boththe p > nand p < n

experiments, our results are agnostic to the hidden width of
the network, further suggesting that overparameterization
is qualitatively different from high-dimensionality. When
p > n, a neural network appears to act like the interpolating
MNI under distribution shifts. For p < n the interpolating
dense net does not exhibit the properties of an interpolat-
ing MNI under distribution shift and the ID excess error is
better than both “beneficial” and “malignant” OOD excess
errors. However, the relative difference between beneficial
and malignant shifts is still preserved. Note that we observe
the exact same behavior in Fig. 12 when training ResNets
to interpolation on CIFAR-10 and testing on CIFAR-10C
blur and noise corruptions (Hendrycks & Dietterich, 2019).

4.2. CIFAR-10 Experiments

Next, we consider experiments with linear interpolators
on a binarized CIFAR-10 and CIFAR-10C with Gaussian
noise and blur corruptions at varying levels of corruption
severity. For details, see Appendix I. This experiment breaks
the assumption of simultaneous diagonalizability, and the
well-specified assumption as the labels for CIFAR are not
obtained by a ground-truth linear model.
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Fig. 9 shows empirical results on the MNI fit to this problem.
We plot the eigenspectra of the blur and noise covariances
from CIFAR-10C compared to the eigenspectra of CIFAR-
10 in Figs. 9a, 9b. We identified these two shifts due to their
eigenspectra reflecting what we expect to lead to beneficial
and malignant shifts based on Theorem 3.4. We observe a
tight relationship between changes in the eigenspectra of the
target data and excess classification error when evaluated
by the MNI. We notice that blurs reduce covariance energy
with increased blurring, like a “denoising”-style operation.
Experimentally this leads to improved OOD accuracy. In
contrast, noise corruptions add energy to the covariance tail
and lead to worsened OOD accuracy. Fig. 11 also shows
that further overparameterization in this setting leads to
improved behavior of the MNI on both corruptions.

Fig. 3 extends these results to a more realistic setting with
custom variants of CIFAR-10C that involves applying both
noise and blur filters on test set images. Using both blur
and noise filters together lead to covariate shifts that feature
non-monotonic behaviors when comparing source to target
eigenvalues. This experiment highlights the « < 1,3 > 1
case and we see that the OOD accuracy matches the predic-
tions of our taxonomy based on whether we are in the mildly
overparameterized regime (n = 500) or the severely overpa-
rameterized regime (n = 2k). In Fig. 10 we show plots for
an artificially constructed version of this same experiment
in which Gaussian noise is injected into the high variance
directions of the blur test set, simulating the equivalent of
a > 1,6 < 1 in our taxonomy. We similarly find the OOD
accuracy to match the predictions of our taxonomy.

5. Conclusion and Future Work

Our work provides the first finite-sample, instance-wise
analysis of the MNI under transfer learning with high-
dimensional linear models. We show a taxonomy of benefi-
cial and malignant covariate shifts depending on whether we
are in a mild or severely overparameterized regime. In the
mildly overparameterized regime, variance contributions on
the top £ components interact with that of the bottom p — &
components in non-negligible ways, leading to non-standard
shifts. In the severely overparameterized regime, the high-
rank covariance tail suppresses variance contributions in
the bottom p — k components and so OOD generalization
acts more “classical”, akin to underparameterized linear
regression where k = p < n.

Benign overfitting literature commonly claims to be moti-
vated by “overparameterized” neural networks, referring to
the number of parameters in the network rather than the
dimension of the data. However recent works have chal-
lenged this, suggesting the role of the ambient dimension
and source covariance is more important than parameter
count in determining whether overfitting is benign or catas-

trophic in neural networks (Frei et al., 2023a; Kornowski
et al., 2023). Prior work has also shown that gradient de-
scent on 2-layer neural networks has an implicit bias towards
linear decision boundaries when p > n, independent of the
degree of overparameterization (Frei et al., 2022b).

Our experiments further support the view that high-
dimensional neural networks behave similarly to high-
dimensional linear models, whereas low-dimensional neural
networks do not. They provide a new and important per-
spective on the difference between high-dimensionality and
overparameterization in neural networks in the case of distri-
bution shift, which has yet to be appreciated in the literature.
While dimensionality and degree of overparameterization
are inextricably linked in linear regression, practical deep
learning tends to operate in the overparameterized setting,
not the high-dimensional one.

An important future direction is to investigate the extent
to which our results hold for distribution shifts on more
complex high-dimensional datasets. It is also of interest
to extend our finite-sample theoretical analysis to shallow
ReL.U neural networks, other nonlinear models, and learn-
ing algorithms that overfit in a fempered manner (Mallinar
et al., 2022). Finally, future work might seek to extend our
understanding of neural networks by carefully studying the
interplay between the data dimension, number of network
parameters, number of training samples, and the optimiza-
tion algorithm and loss function, and how this interplay can
affect ID & OOD generalization.

Another important future direction is to relax key assump-
tions in this work. These results rely on a simultaneous diag-
onalizability assumption on the source and target covariance
matrices which frequently appears in related works on high-
dimensional linear regression (Lei et al., 2021; Kausik et al.,
2023; LeJeune et al., 2024). This enables us to highlight the
different effects of covariate shifts in the “signal” compo-
nents vs. in the “noise” components. In contrast, prior works
(including those which can tolerate target covariances which
do not satisfy simultaneous-diagonalizability (Tripuraneni
etal., 2021; Lei et al., 2021)) all rely on averages or traces
over matrices involving the target covariance. Exploring
techniques that can effectively handle non-simultaneously
diagonalizable covariance matrices while preserving the in-
sights gained from separating the impact of covariate shifts
in signal and noise components is a promising avenue for
future work.
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A. Formal assumptions

Definition 5 (Linear regression under distribution shift). We consider a training dataset comprised of n i.i.d. pairs
(z*,y")I_y ~ DI concatenated into a data matrix X € R™*P and a response vector y, € R™. The setting is overparame-
terized, meaning we have more input features than training samples, orn < p.

We define

1. the covariance matrix ¥ = Ep [z ],

2. the optimal parameter vector 0%, € RP, satisfying

I’E [(y - xTQ:Tc)Q] = min@ E [(y - JTTQ)Q] .

We test on the distribution Dy with 3¢ and 0 defined in the same way. We assume

1. (centered rows) Ep_[x] = 0;

2. (well-specified - source) For (X,y) C Ds, y = X0 + €. We assume that the components of the source noise vector
& are i.i.d. centered random variables with positive variance v and that Ep,[y|z] = 2707,

3. (well-specified - target) For (X,y) C D, y = X0 + e.. We assume that the components of the target noise vector &;
are i.i.d. centered random variables with noise variance, v.z, and that Ep, [y|z] = 2707,

4. (simultaneously diagonalizability) 3.5 and Xy commute; that is, there exists an orthogonal matrix V € RP such that
VTIYV and V"%,V are both diagonal. This allows us to fix an orthonormal basis in which we can express the
covariance matrices as

¥ = Eb[xij::cﬁag(Al,AQ,“,Ap%

Y= ED [z2T] = diag( M, Az, ...,;\p)7

where the source eigenvalues are a non-increasing sequence, A\1 > Aa - -+ > \p,. Note that we do not require the target
eigenvalues to be a non-increasing sequence, however we require that \;\; > 0 for all i;

5. (subgaussianity) the whitened data matrix, denoted Z = X35 v % has centered i.i.d. row vectors with independent
coordinates. We assume that the rows are subgaussian with subgaussian norm o, that is, for all v € RP,

Elexp(y" 2)] < exp(az|17I*/2)-

B. Key results from prior work and technical lemmas

For ease on the reader, we replicate some key lemma statements from Bartlett et al. (2020) and Tsigler & Bartlett (2023) and
provide new lemmas and corollaries that we use in our work.

Recall that p, = #M Yok Ain X € R™P and ¥, € RP*P = diag(\1,- -+, Ap). Let Xo € R™** denote the matrix

comprised of the first k feature columns. Similarly, Xj., € R™* (P=F) denote the matrix of the last p — k feature columns.
The Gram matrix of the data, denoted here by

A=XxXxT,

plays a central role in the investigation of high-dimensional linear regression. Analogous to the above, we express
Aok = Xox X2, € R™™ and similarly for Ay, € R"*".

Letting Z = XX /2 ¢ Rn*P and denoting the independent column vectors of Z by z; € R", we have the following
expressions:

9 j#£i i>k
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The following lemma from Bartlett et al. (2020) is key in controlling the largest and smallest eigenvalues of the data Gram
matrix and its variants A_; and Aj. Importantly, it also shows that if the energy in the bottom p — k components of the
covariance matrix is sufficiently large (py, is lower bounded by a constant), then the largest and smallest eigenvalues of Ay
are equal up to constants.

Lemma B.1 (Lemma 5 from Bartlett et al. (2020)). There are constants b, ¢ > 1 such that for any k > 0, with probability at
least 1 — 2e~m/¢,

1. foralli > 1,

prr1(A—i) < prer1(A) < pa(Ax) < C<Z Aj+ )\k+1ﬂ>7

>k
2. foralll <i <k,

,un(A) > MTL(A—z) > /f"n Ak Z)\ - CAk:—i—ln
]>k

3. if px, > b, then
1
E>\k+1pkn < pin(Ar) < p1(Ag) < Apg1prn.

A consequence of the prior eigenvalue bounds is that when py, is lower bounded by a constant, the condition number of Ay,
is upper bounded by a constant. Therefore even as problem parameters such as training sample size and input dimension
grow to oo, Ay, is still well-conditioned. This is important as non-benign overfitting occurs when the condition number
bound on Ay grows with problem parameters. This would happen if the lower bound on the smallest eigenvalue of Ay
decays to zero too quickly which would cause the condition number of Ay, to diverge. If this occurs then the excess risk of
the MNI would be lower bounded. This is shown for the in-distribution case in Bartlett et al. (2020).

Corollary B.2. Following from Lemma B.1, there are constants b, c > 1 such that for any k > 0, with probability at least
1 —2e~ /¢ if pi. > b then
a1 (Ax) < o2
/f"n(Ak)

which is the equivalent of the assumption CondNum(k, 2e~ /¢, c?) as defined in Tsigler & Bartlett (2023).

13)

The following definition and lemma omit all references to NonCritReg and the ridge parameter in Tsigler & Bartlett (2023).

Definition 6 (StableLowerEig(k, d, L) from Tsigler & Bartlett (2023)). Assume that for any j € {1,2,--- ,p} with
probability (separate for every j) at least 1 — 9,

pn(A_j) = pn(BAR) /L= (> A)/L (14)
i>k

We now state key assumptions that are necessary in order to obtain an explicit bias lower bound. Exchangeable coordinates
(ExchCoord) is a weaker assumption than independent components of the data vector. It is used in Tsigler & Bartlett (2023)
instead of independent components. We assume that components of Z are independent and so we immediately satisfy the
ExchCoord, which we define here.

Definition 7 (ExchCoord). Assume the sequence of coordinates of s 1 ’z, forany x € X, is exchangable (any deterministic
permutation of the coordinates of whitened data vectors doesn’t change their distribution).

The PriorSigns assumption is necessary to obtain lower bounds on the bias term. It allows us to use bounds on the expectation
of a quadratic form, E,[v? Mw], in order to separately analyze the contributions of v and M. As the bias takes the form
0:7(I — XTA1X)% (I — XT A1 X)6: we see that such a bound would separate the contributions of the model from
that of data-dependent matrix expressions.

Definition 8 (PriorSigns). Assume that 0" is sampled from a prior distribution in the following way: one starts with vector
0 and flips signs of all its coordinates with probability 0.5 independently.

14



Minimum-Norm Interpolation Under Covariate Shift

Under PriorSigns, the random model vector is obtained by flipping signs on the components of the ground-truth model vector.
This does not affect our bounds as we see in Theorem 3.2 that our bias lower bound only relies on squared components of
the random model vector which are equivalent to the squared components of the ground truth model.

An important consequence of having a bounded condition number and independent coordinates is that with high probability
the smallest eigenvalue of A_; for all i > 1 is lower bounded by nAx11px up to constants. These assumptions allow
Bartlett et al. (2020) to prove Lemma B.1, which in turn allows us to derive the StableLowerEig condition. This is a simple
consequence of B.1 and we provide details here for completeness.

Corollary B.3 (Our variant of StableLowerEig from Tsigler & Bartlett (2023)). For all ¢+ > 1, with probability at least
1 — 2em/e2

1
pa(A=i) 2 (B AL) = ZA

j>k

Proof. By Lemma B.1, for some absolute constant ¢; > 1 with probability at least 1 — 2e~"/¢1

(Ak > —Z}\ — C1 Ag+17.
1>k

The assumption p;, > b for some b > 1 gives us

— g Ai — ClA k411 = *)\k+1npk — C1 k417
“a i>k
1 C1
> — — = | \px1n
> <01 b) k+1MPk

-1z

i>k

Choosing b > ¢} and ¢ = max{cy, (1/¢; — ¢1/b) ™'}, we get that with probability at least 1 — 2e~"/2

n(Ar) >*Z>‘

z>k

The next step is to extend this result to A_; for all i.

For i < k, observe that A_; = Ay, gives us p,(A_;) > un,(Ag). For the case of i > k, we have

A_i = Z )\ijZJ—-r

J#i
_ s s T
= E Ajzjz; + E Ajzjz;
i<k J>k,j#i
T § : T
i )\12121 + )\ijZj
J>k,j#i

t )\1212; + Z )\ijZjT.
J>k,j#i

We assume that the features are independent and z; is centered and whitened, so A; 21 le +> i zjz has the same

>k, g

15
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. . . _ T
distribution as Ay, = > Ajzj zZj . Therefore,

P (,un(Ai) > Cl Z Ai)

ji>k

i>k
2P<un ()\izlle + Z )\jzjij> > 0122)\’)
>k, j#i i>k
=P (,Un(Ak:) > é z; /\i>
i>
>1—2¢ "/,

O

The following corollaries provide high-probability bounds on random subgaussian vectors with independent coordinates.

Corollary B.4 (Corollary 1 from Bartlett et al. (2020)). There is a universal constant c such that for any centered random
vector z € R™ with independent o*-subgaussian coordinates with unit variances, any random subspace £ of R™ of
codimension k that is independent of z, and any t > 0, with probability at least 1 — 3e™¢,

2] < n+ co®(t + Vnt),
ITLez||? > n — co®(k +t+Vnt),

where Il ¢ is the orthogonal projection on .Z.

In our proofs, we will need to control the norm of z; for all 7 < p on the same high-probability event. In these cases we need
to apply a union bound over the events in the summation. The following corollary shows how to invoke a union bound over
¢ of these events in such a way that the probability over the union of all such events holds with high probability that depends
n.

Corollary B.S. There is a universal constant c as defined in Corollary B.4. Let z € R™ be a centered random vector with
o?-subgaussian coordinates and unit variances. Let £ be a random subspace of R™ of codimension k that is independent

of z.
For0 <t <mn/cyandk € (0,n/cy) for cy > co with co sufficiently large, with probability 1 — 3e™ Y,

2] < can
Mg 2]* > n/cs

where ca, c3 only depends on c, ¢y, 0.

We obtain a union bound over the intersection of ¢ of these events so long as In(¢) < n/cy = ¢ < e/ Then for
k € (0,n/c1) for c1 > co with cq sufficiently large, if { < e/ with probability at least 1 — 3¢~/ { of the above events
independently hold.

Proof. Let Corollary B.4 hold with universal constant c. Then, with probability 1 — 3e~t for ¢ > 0,

2] < n+ co®(t + Vnt)
ITez||? > n—co?(k +t+ Vnt).

Lett < % Then we have that,
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Plugging in for || z||?,

2] < n + co(t +Vnt)

<n+teot(L+ L)

o +/Co
=n(l+co*(cg + 061/2))

=cCcin
for c; only dependent on ¢, cg, 0. Now, plugging in for ||IT & z||?,

ITgz||? >n — co?(k+t + Vnt)
Zn—co2(k+£+L)

co  +/co

k _
= ’I’L(l — CO'Q(Z + Cgl + Co 1/2)).

Letk < % for ¢o > ¢g. Then it is clear that —% > —é and,

k _ -
n(l—co®(~ 4oy +og ) 2n(l—co’(e" + o5t %)
=n/cs
for constant c3 that only depends on ¢, 02, co. We finally require that 1 — 002(01_1 +cy by co 1 2) > (0 which we can

achieve by taking c( sufficiently large.

We now proceed to bound the union of ¢ of the complement events, in order to obtain a bound over the intersection of ¢ of
these events.

For multiple z;’s, define by A; the events shown above, that ||2;||> < can and ||Ilg, 2;||> > n/cs where z; and .%; are
defined analogous to z,.Z above. Then

i=1

¢
< Z 3e~t
i=1
= 30t

Then P(N{_, A;) > 1 — 3fe~*. Observing that 3¢e" = 3e(e~t = 3e~tH+n(0) = 3¢=(=1n(5) we can set the per-event ¢
accordingly and obtain the necessary bound. We want 0 < ¢t — In(¢) < n/cq to complete the bound. Therefore, we need
that, per-event, In(¢) < t < n/co + In(¢). If In(¢) < n/cq then this reduces to needing In(¢) < ¢ < 2n/cq. Since each
event is defined for ¢ € (0, n/co] the union bound proof is complete by taking ¢ = n/cy and requiring that In(¢) < n/co.

O

The following lemma is necessary in order to extend a summation over random variables, each lower bounded by a real
number with equal probability, to a unified lower bound over the entire summation.

Lemma B.6 (Lemma 9 from Bartlett et al. (2020)). Suppose n < oo and {n;}?_, is a sequence of non-negative random
variables, {t;}I'_, is a sequence of non-negative real numbers (at least one of which is strictly positive) such that for some
d€(0,1)andanyi <n, P(n; > t;) > 1— 0. Then,

P <Zn:n > ;iu) > 1 — 26.
=1 =1

17
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We now provide a minor generalization of Corollary S.6 in Bartlett et al. (2020) that comes from replacing a; in a non-
increasing sequence of non-negative numbers {a;}’_; with max; a; and only requiring that {a;}?_, is a sequence of
non-negative numbers.

Corollary B.7. There is a universal constant ¢ such that for any sequence {a;}"_, of non-negative numbers such that
> | a; < oo, and any independent, centered, o-subexponential random variables {&;}Y_,, and any x > 0, with probability
at least 1 — 2e™ %,

|Zai&-| < o max & max a;,

K2

Lastly, the following identity will allow us to use the PriorSigns assumption to derive a new form for the bias term, which
will be used for the proof of the lower bound.

Lemma B.8 (Identity for expectation of a quadratic form). Assume M € RP*P is a symmetric matrix. For a random vector
x € R? with mean E[x] and covariance Cov(z),

E[z” Mz] = E[z]" M E[z] + tr(MCov(z)).

Proof.
IE?[:ETMJ:} = E[tr(z” Mz)]
= Eftr(Mz2T)]
= tr(M E[z2"])
= tr(MCov(z) + M E[z] E[z]")
= tr(MCov(z)) + tr(E[z] M E[z]T)
= tr(MCov(x)) + E[z]M E[z]”.

C. Proof of excess risk bound

We start by restating Theorem 2.2.

Theorem 2.2. (Target excess risk decomposition) The excess risk of the MNI trained on the source data, when evaluated on
the target distribution, satisfies

~

R(e(ys)7 Dt) §4Bl + 4B2 + 2V€5; (2)

and

~

IER(Q(ys)7Dt) =B1+ By + IEEVGS

+2(07 — 07) T Su(6; - 0(X6;)),

where we define

By = |67 — 67 1%, A3)
By = (|67 — 0(X67)|3,., 4
Ve, := [|0(es) |2, (5)

and ||33||?VI =z Mzx.

18
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Proof. Let us begin by noting that the excess risk of any 6 is given by,

Ri#) = (:rf-,yH)aDt [(y - xTa)Q} - (m,yﬂ)zw)t [(y a xTH:)Q}
i [(y AR xwﬂ " eren, [<y N fﬁ?ﬂ
= (x,yI)ENDt [(xTet* _ xTQ)Q} 42
CE [To-2"0)]. s

x~Dy

(m,yH;ZN'Dt [(y—2"67) (z70f —270)]

Equality (7) uses that, conditional on z, y — " 6|z is mean-zero, which is given in Assumption 3 (well-specified - target).
So that

( I)E - [(y - xTef) (mTHt* - xTH)] =E [(xTHt* - xTQ) E[(y— xTHt*) z]] =o0.
T,Y)~ e
We now note that the source-data MINI can be decomposed as follows,
Olys) = X T(X.X.) 'y,
= X (XX )THXO: + &)
= 0(X07) + 0(es)
We can thus continue from (15) to characterize the excess risk of the source-data MNI as
~ [ ~ 2
R@w) = 8, | (70 - ")’ |
r ~ ~ 2
- E (;Jet* — T (O(X0) + 9(55))) }
r ~ ~ 2
_ Tripx _ *\\ _ .1
- E (x (0 — 0(X0)) — x 9(65)) }
© Tior 2o )’ Y 2
< E |2 (x (0 — B(X6; ))) +2 (g; 9(55))
I ~ 2 —~ 2
=k |2 (:J(o: — 00— Q(XQ:))) +2 (ﬂe(es)) }
(44) . 2 . 2
< E {4 (@70 —02))* +4 (ﬂ(ag - 9(X9:))) 42 (zTG(es)) } . (16)

In inequalities (7) and (i7), we have used Young’s inequality, which implies (a — b)?> < 2(a — ¢)? + 2(b — ¢)? for any
a, b, c € R. Recalling that
I3y = 2" M,

it is apparent that the first term is just the weighted distance between the source and target vectors,

B @O —00)7 = 0 607 B [aaT] (6 - 02) = 103 - 6013, (17)

The second term looks quite similar to the bias term, B, in Bartlett et al. (2020) and Tsigler & Bartlett (2023).
- 2
E_ [(ﬂ(e: ~9(x62))) ]
- (9: -y (X@:)) E_[s27] (9: -9 (XO:))

= 16z - 6.(X067)|I3,. (18)
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The key difference with the standard supervised setting is that now the quantitiy in the middle is 3, not Y. Equivalently,
the norm on 6} — 0(X67) is induced by X rather than 3.

And finally, the third term is similar to the variance term, C, in Bartlett et al. (2020):

E {(J;Té(ss)f] — ()T E_[zz)0(es)

x~Dy

= [|6(es)|I.. (19)

As in the bias term, the only difference is that the middle term is ¥; rather than ¥s. Equivalently, the norm on 5(55) is
induced by 3; rather than .

Putting it all together, we get the following upper bound for the excess risk of the minimum-norm interpolator on the training
data,

~

R(0(y.)) < 4|07 — 0712, + 4]0 — 0(X07)[13, + 2/10(e) |3,

This completes the upper bound for the risk.

For the lower bound, we have
RO = 2, | (70~ T0lw) |
- E ( (0F — 0(X0%)) — Té(ss))Q}
= B[ (o7 —axe) — 20T 0 - Ax0) 2T (e
+ (No(es))z]
95 [(J(et* _ §<X9:)))2] + B [(mTé\(es))T

The equality (7) uses that, conditional on X, &, is zero-mean. Note that the second term above is just E., ||9(€S) 1%, s0 we
need only deal with the first term. Adding and subtracting 6} inside the square and expanding, we have

B, | (70 - deer) |
— E [T -0)°]+ E [(H(@:é(xag))ﬂ

x~Dy x~Dy

+2 B [0 —0p) w07 - 0(X07)]

z~Dy

= )16 — 0213, + (|62 — O(X62)|12, +2(6; — 02)Te(62 — 6(X0y)).

D. Overview of variance and bias proof techniques

The central pillar of both proofs is controlling the eigenvalues of Ay, which in turn provides certain bounds on the eigenvalues
of Aand A_;. A key finding of Bartlett et al. (2020) is that once py, is large enough, all eigenvalues of Ay, are identical up to
a constant factor. Specifically,

T ~ n2 T A1, -1
2t Az &= nApr1pr, 2V A7z = n(nAg1pk)
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D.1. Variance

Due to independence between the components of &g, the variance term from Eqn. 6 can be expressed as
V =E[V,,/vZ]
Es
= tr(A7IXEXTATY

p
= ZX Nzl A2
=1

Now that we are dealing with a sum of quadratic forms, we consider the first £* signal and last p — k* noise components
separately. Using the Sherman-Morrison formula the former can be written as

3 )\2 TA72 .
Z N\ ZTA 2 = Z )\ =
i<k e A (L iz AT 2i)?
N Z & An (n>\k+1pk)_2
e AZn2(n\g1pr) 2
-y il
An’
i<k*

where \; zTA ; %i dominates 1 for ¢ < k*. For the sum over the noise components the 1 in the denominator dominates the
other term and so we directly analyze the tail contributions as,

Z N, )\2 TA Z —)\ n( n)\;ﬂ_lpk)*z

i>k* Z>k*

The result is that the variance term is upper and lower bounded by

Y A A2
E)T 2)" (”’\ZHP%)

:M—‘

times constant factors.

D.2. Bias
As in Eqn. 4, the bias term is given by
By = [|6; — XTATIX6; 3,
= (07T (I — XTAT ' X)S (I — XT A1 X)07)
<tr(020:7) - tr((I — XTAT' X)5 (1 — XTATIX))
2 ~ X ¢ T a1\’
= 10212 D2 D (el = VAN AT )
i=1 """ j=1

where we use the Cauchy-Scharwz inequality to separate the parameter vector from the quadratic form. A quick application
of the Sherman-Morrison formula allows us to write

. 1
o

i=1
From here, we once again exert control over the eigenvalues of A_; to get

1 N 1
1+ N2l ATz 1+

b

2z
Akt1Pk

21



Minimum-Norm Interpolation Under Covariate Shift

which completes the upper bound proof sketch.

Note that the looseness of the bias bounds largely stems from the application of the Cauchy-Schwarz inequality. The only
situations in which the bound becomes an equality are when

b =(1—XTA ' x)5l/?

for some scalar ¢ € R or when 6 is the zero vector.

Between the upper and lower bounds, the latter is likely tighter due to the use of the PriorSigns assumption. As detailed in
Appendix F.2, it allows us to write

B > 0:" (I — diag(XT A7 X))S (1 — diag(XT A~ X))6z,

where for a matrix @ € R™*™, we use diag(Q) € R™*™ to denote zeroed off-diagonal entries. The contribution of the
off-diagonal entries is non-negative and dominated by the diagonals, so they can be dropped in the lower bound while
preserving tightness under the PriorSigns assumption. In general, non-negative terms cannot be discarded in the proof
of an upper bound, so we resort to the Cauchy-Schwarz inequality in order to avoid addressing the off-diagonals directly.
However, decoupling the model vector 6} from the matrix (I — XTA-1X )Etl /% introduces another degree of looseness,
contributing to the gap between our bounds. Improving our upper bound will require controlling the off-diagonals of this
matrix product with a technique more appropriate than Cauchy-Schwarz.

E. Proof of variance bounds

Theorem 3.1. (Upper and lower bounds for the variance term) There exist universal constants b,c; > 1 given in Lemma
B.1, a universal constant co given in Lemma B.4 and a constant ¢ > 1 that only depends on o, c1,co, such that for
k € (0,n/c), with probability at least 1 — 10e="/¢,

1 p
z—n;

>/‘>/l

22
—_—t | = V. 8
< A (ke 1)2) B ®)

If in addition pj, > b, with probability at least 1 — Te~"™/¢,

1\ S AN —
Vie< =y Lyt e 9)
fes NSy =

Proof. We derive the variance terms necessary here and finish the proof of the upper bound in Appendix E.1 and the lower
bound in Appendix E.2.

We follow the proof techniques in Bartlett et al. (2020); Tsigler & Bartlett (2023). Observe that we can express the variance
term as follows,

V =E[V.,/v]]
Es

= E[|XT(XXT) a5, /02).

Defining A = XX T,
= E[|XTA & |3, /o
=E[(ed AT XE X T A e) /02

Es

=Eftr(e] AT XS X T A7 e) f02).
Es
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Using the trace trick,

€

where z° € R™ and f)lT = z; € R™ are columns of X € R"*P and X% 2 ¢ R™*P, respectively. Continuing the
calculation, we have that

where A_; = XXT — N\z;zl' = i NiZi Z]T This expression will serve as the starting point for the variance term, which
we will now proceed to upper and lower bound.

O
E.1. Upper bound

After isolating the contribution of 2%, most of the components of this proof are as given in the proof of Lemma 6 in Bartlett
et al. (2020). For completeness, we replicate them here and refer the reader to their paper for further details and intuitions.

We start by separating the variance term into the top k£ components and the bottom p — k components as follows,

V =

ko« o i
N Nz ATz 5
ot 771 “A—q + 22,7 42 ).

(2

Fix constants b, c; > 1 as defined in Lemma B.1. Then, with probability 1 — 2e /e if pr > bthen for all z € R™ and
i €1,k
2T ATz < i (AZD) 212
< i (Ai) 72|z 2
lail?
= (nAkg1p8)?
and on the same event,
2] ATz > (g, z) A7 (g, 2:)
> /Jn(A:zl)”HﬁLZZHQ
> pigy1(A) 7T, 22
a2
NC1 A\k+1Pk
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where I, is the orthogonal projection onto the span of the bottom n — k eigenvectors of A_;. It is important to use the
projection onto the bottom eigenvectors of A_; in lower bounding the denominator term because we have to use the fact that
i (AZ ) > 11 (A_;)~1. When we don’t do the projection, then z; is affected by all of A_; and so the largest eigenvalue
that affects this expression is p1 (A—;) = 1. After doing this projection, we no longer have contributions from the top &
eigenvectors / eigenvalues in the summation of zTA ; %i- Therefore, the largest eigenvalue that affects this summation is
now A1 instead of A1, and so we can use this in our lower bound instead, as desired.

Putting it together, for ¢ < k,

NPT A2z, 2FA2z
(14 Xzl AT} z)? ~ (2] AZj2:)?
1
Mg, z|*

We now invoke Corollary B.5 with a union bound over k events. Lett < n/cgo and k € (0,n/c) for ¢ > ¢¢ and ¢y sufficiently
large. Since k < n/c we also satisfy the union bound condition that In(k) < n/c. Then, with probability at least 1 — 3e™?,

|21 < can

MLz, 2% = n/es

for constants cg, c3 that only depend on o, ¢y, and a universal constant ¢ as defined in Corollary B.4.

Altogether, with probability 1 — 5e ="/ for ¢, sufficiently large,

i .
A ALl A <y N Ll
— A\ + 2T A )TN YTz, 244
.
i 4c203
< ZEQT
=1
k

\‘.3

i1
D¥wt

im1
On the same event we use to bound jix41(A_;) via Lemma B.1, we also have that 11 (A~2) < p,(A)~2. As such,

~ )\"1
S N zar Ay < A2 AT
)\ (ad) 1) —

SN (nAgt1p8)?

Then by Corollary B.7, there is a universal constant a such that with probability at least 1 — 2e~% for t < n /co and ¢y > a t,

Z N, AQHZZHQ <o} max(tmax )\ i) \/@T
i>k iSk
<n2/\/\ + 02 max(tmaX/\/\ \/W
i>k i>k

i>k i>k i>k
S CsM E )\2)\2
i>k
=c5n E )\2.
1>k
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Altogether,

Y 2 i 2 2
S N 2 ay) < ALk AN
i e (nAkt1Pk)?

i>k

clcsn
o Z %

ﬂ)\k+1pk

B 062 Ai <n)‘k+1pk> '

By taking ¢ > max(co, c4, ¢g) We have that with probability 1 — 7e="/¢,

"1 N A2
vee(S S (o)

i=1 i>k A1 Pk

l a & Zi>k5‘i>‘i
w2 T S A

E.2. Lower bound

Recall that the variance takes the form,

LA 2TA2,
V=) A\ Ll
; A+ N2T AT z)?

By Cauchy-Schwartz,
(2 Aizi)? = (20, A 2) |? < lal® - (57 AT 20).

We plug this identity into our lower bound, and further multiply by %, resulting in

L. 2T A2
V=S XA
ZI): )’\' )\2 TA_2 ;
=Y
AT+ N 2T A”12)2

Ly A
= 2N PO AT AT

izl P+ Nzl AT z0)2 (Nie] AT 2i) 72

1
(T)szu?(u(szA SIS

<.

Then, let k£ € (0,n) and .%; be the span of the bottom n — k eigenvectors of A_; and Il &, be the projection onto the
orthogonal complement of .%;. We have that

2P AT 2 > (Mg 2) T AT (g, 2:)
> |, 2|2 g1 (A—i) !
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From Lemma B.1, there is a constant ¢; > 1, such that for any & > 0, with probability 1 — 26771/01, tr+1(A—;) <
Cl(Zj>k Aj + Ag+1n). Additionally, by Corollary B.5, lett < n/c3 and k € (0,n/c) for ¢ > ¢3 and c3 sufficiently large.
Then, with probability at least 1 — 3¢

Mg, zi||* > n/ca
where c4 only depends on c3, o, and the universal constant given in Corollary B.4.
Then, for ¢ > max{cy, ¢z}, with probability 1 — Fe—n/c,
7 AZjzi 2 Mz s (A) ™!

n
> .
TPk A+ Akgan)

By again applying Corollary B.5 on the same event we have
llzi|* < esn.
where c5 has the same dependencies as c4.

Altogether, we have for each 7, with probability 1 — 5e~"/¢,

1 1
> ,
||2:]|2(1 + (NizF AT} 2;)~1)2 esn(l + (C4(Za‘>k£1n+/\k+1”)))2
B 1
B Cag ok N
esn(l+ S5Ee (R2E 4 )2
B 1
cscin(1/ca + 252 (o +1))?
1
>

cen(1+ 252 (py +1))?
where cg = c5¢3 and ¢ > max{cy, c3} as defined above.
Finally, we invoke Lemma B.6 and that 1/(a + b)? > min(a~2,b~2)/4 to get that, with probability 1 — 10e="/¢,

1 &\ 22
V> 2 min(1, ——20 ),
= Seen Z , min( A2 (ke + 1)2)

For ¢7 > max{8cg, c} we have that with probability 1 — 10e~"/¢7,

)\2
V>— min(
% o Z xS e 1)

F. Proof of bias bounds

Theorem 3.2. (Upper and lower bounds for the bias term) For the lower bound only, assume that random models 0 are
obtained from the underlying 07 as (0); = ~;(0%);, where each ~; is an independent Rademacher random variable. There
exists a universal constant b > 1, constants ¢, C' that depend only on b and o, and k < n/C such that if p, > b, then with
probability at least 1 — 10e~"/¢,

k 5\ i )
— + Ai(07)
(Z )\ 1+ /\k+1pk) ;

If we assume that p is at most exponential in n, then with probability at least 1 — 5e="™/¢,

§ by
Bofe < 63 ZA (——

=: By/c.
)\k+1pk)
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F.1. Upper bound
Proof. As defined in Eqn. 4,
By = |03 — 6(X63)[3,
= 16s = XTATIXO; |,
=0T (I - XTA'X)% (I — XTAT1X)6:. (20)
The i™ row of I, — X7 A= X is given by ¢; — v/A;z] A~1X. It follows that

T

)T Mo+ = Z§:10j(6z” \/)\ Nzl A7) | % Zf 105(eild] — w//\/\ 2zl A7tz) | i™ row shown

I
>
~ —
[~
>
‘ )
=
|
&
>
<
N
4|
b
L
2
~—

Next we look at i term in the outer sum.

Z 61 i )\ ZTA ) 5\1(1 — )\iZ;rAilzi)2 + ;\z Z)\i)\j(Z;rAilzj)Q
i=1 i
= Ni(1—2X2 A7z + A2 (T AT )2+ ) (2] A7 2)?)
J#i

p
ML= 202l A7 + 37 A (2 A7 )?)

i=1

p
5\,’(1 — 2/\1‘21-71147121 + /\@Z?Ail (Z )\ijZ}-ﬂ)Ailzi)
i=1

(1 - 2)\iziTA_1zi + )\iz;rA_lAA_lzi)
S\i (1 — 2)\1231147121 + )\ZZ;FAil,ZZ)
S\i (1 - )\1231147121) .

(I
>

Using the Sherman-Morrison formula, we get that
1= M2l A7 2 = 1= AT (AL + Nzzl) 7z
_1—AZ(A1 ANAT 2 (1 4+ A2l A ) 2T A )

(Nizf AZjz)?

=1—-NzlA" 4 ™
v - 1 + )\12;1114:1121

1
1+ NTATL

We now provide an upper bound for the remaining term. Let II-, be the orthogonal projection onto the bottom n — k
eigenvectors of A_;. By Lemma B.1, there exist constants b, co > 1 such that if p; > b, then with probability at least
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1 —2e /o,
pr1(A—i) < coXpy1pRm,
so we get
TNzl AT s > 1+ (g, 2)TAZ (T, 24)

X Mg,z

>1+ .
CONk+1MPk

By Corollary B.5, there exist constants ¢; and co with ¢ > ¢; and ¢; sufficiently large such that for 0 < k < n/cs, we have
with probability at least 1 — 3e~"/¢1,

Tz, 2i]* > n/es,
where c3 depends only on ¢; and o.

Plugging these in gives us with probability at least 1 — 5e~"™/¢4,

- i
)\i (1 — )\Z,ZzTA_l,ZZ) S 2\,
(1 )\kilpk )
e Ai
. 2
Ai (1 + Akjdm)
where ¢4 = max(cp, ¢1) and ¢5 = min(cy, c3).
Therefore by union bound over the application of Corollary B.5,
-
A
B < |67 —
<Y Y
i=1 >\k+1ﬁk

0 2
| H Z)\ 1+>\k+1pk)7

where ¢g = min(cZ, 1). Taking ¢ = max(c; ', c4) gives us the result.

F.2. Lower bound
After isolating the contribution of ;\—:, many of the components of this proof are as given in Tsigler & Bartlett (2023). For
completeness, we replicate them here.
Proof. Assume that the vector 6 is randomly distributed according to the PriorSigns(fs) assumption. Using Lemma B.8,
the bias term can be rewritten as
B = E[By:]
o:" e
= E[6; - 0(X07)]3]
=E[(0:)" (I, - XT(XXT) T X)% (L, - XT(XXT) 7' X)6;]

s

= E[(6;)7 M)

o2

= E[6;]" M E[6;] + tx(MCov(6]))

B

= tr(MCov(6y)).
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where M = (I, - X7 (X XT) 71 X )% (1,— X T (X XT) 71 X). The last equality follows from the assumption Eg. [(67)] = 0.
The diagonal elements of Cov(f}) are the component-wise variances of 67, which are given by (67)? = (s)?. The off-

diagonal elements are O since the components of 6 are independent. As such, we need only consider the diagonal elements
of M.

Note that the i** row of I, — XT(X XT) "1 X is equal to e; — v/A; 2] (X XT)~1 X, where e; is the i*"* vector of the standard
orthonormal basis. It follows that the i*" diagonal element of M is given by

p
ZS\ ez \/)\i)\jZZ‘TA_l,Zj)Q

5\ (1 )\ ZTA + Zj\j)\i)\j(z?A_lzj)z.
J#i

Hence, we can express the bias term as

B

I
.MB

s
I
—

(55)? [5\1(1 — )\iZiTAilzi)Q -+ Z S\j/\i/\j(ZiTAil,Zj)z]
J#i

vV
]
|

Il
-

Ni(0:)7(1— Nzl A7 )2,

K2

We are able to eliminate the second term because it is non-negative. Substituting A = A_; + \;z;2] and using the

Sherman-Morrison identity, we have that 1 — \;z] A=1z; = m (see proof of bias upper bound in Appendix F.1).
Then, o

Let’s bound each term in that sum from below with high probability. By Corollary B.3, there exist constants b, cy > 1 such
that for any ¢ > 0 with probability at least 1 — 2¢—n/ o if pg > b, then

1
pn(A—i) > —nXgr1pk-
co

Next,
Ai A
T A1 z Tg"
(I+Xizg AT7zi) 7 (L + A (A=) =1 [|zi]7)?

By Corollary B.3, for constants ¢, ¢o such that k& < n/cs with ¢co > ¢ for sufficiently large ¢; with probability at least
_ 9e—n/c1 112
1-3e we have ||z;||” < e3n, where c3 depends only on ¢; and o.

We obtain that w.p. at least 1 — 5e~"/¢4,

2 Y
(1 + )\zZlTA:ZIZz)g B 2\ 2’
L+ /\k4+10k

where ¢4 = max(co, ¢1,c3). All the terms are non-negative so Lemma B.6 provides a lower bound on their sum. With
probability at least 1 — 10e ="/,

R PR W
= . Z A (1+ 2 )2’
5 i=1 " Ak+1Pk
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where c5 = 2 max(c3, 1).

Finally, we notice that on 7 > k we have pi, > b > 1 and \; < Ap4 giving us,

N N2 N \b?
I SRS e

. Ai = Ai
i>k Ai (14 /\k+lpk)2 i>k Ai (1+ Ak+1)2
Xi \if?
> -
4 i 4
i>k
_ 1 5\ 92
ST
i>k

Letting ¢ = 4 max(cq, ¢5) gives us the result.

G. Proof of tightness of bounds

Theorem 3.3. (Tightness of variance and bias bounds) Let the lower bound and upper bound of V' be given by V and V,
respectively. There exists a universal constant b > 1, and constant ¢ as defined in Theorem 3.1, and k € (0,n/c) such that if
Pk > b, then

V/Ve[b?(1+b)2/21].

Let the lower bound and upper bound of By be given by By and By, respectively, and the assumptions of Theorem 3.2 be
satisfied. Then

min, {(9:)? D (07): # O}

By/B; € X , 1.
- * |2 —1_A1
ozl (1+6-1 25
Proof. We split the proof into the variance proof in Appendix G.1 and the bias proof in Appendix G.2. O

G.1. Variance Proof

Proof. Recall that

I &\ A2
V= 2 min (1, 2
— 8cn Z Ai ( Apg ok + 1)2)

— A1 N[
V= Az A2 ).
C<Z WRP Iy (nAin%))

i>k 7t

Since k is the smallest ¢ such that py > b, it is clear by definition that p;_; < b. Then we observe that

_ 1 = Akt 255k A _ At Mg
Pk—1 )\k . J ’I”L/\k n)\k
j>k—1

A A A A
DY n)\k+1pk < nbhp = A\ > L2 Zbk_'_lpk > n ];:;pk = k—zlpk.
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Oni <k,
— 1 & A2 X ¢
V.V = “min | 1, e —-
8cen ; i A1 (pr +1)2 Ain
k
1 A2
> — min (1, —F"+——|:1
= 866c; < )\iﬂ(plﬁ—l)z)
If the min is 1 then we are okay otherwise, using the identity above and that fact that A\; > A\, we have that
A7 S (Met1p8)?
Ny (o 102 7 AL (4 1)2
P
b*(pr, + 1)
Examining the pj, terms:
P _ 1
(e +1)2 p2(pr +1)2
B 1
(L+p 1)

Aspr >bwehavethatp, ! <b=1+p, ' <1+b= (1+p. ") 2> (1+b)"2

Putting it together we get that

1 & A2 J 1 Z’“: 1
8coc <= Ny (o +1)2 = 8cge = b2(1 + )2
B k
~ 8cge - b2(1 +b)2
1

>
~ 8c¢ge- b2(1 4 b)?

On ¢ > k, it is clear that the min is always given by the second term, as A\; < Ax41, so we get

V:V ~min | L, 50— | e 5
- 8cen Z i e ( /\i+1(Pk + 1)2> C)‘i n)‘iﬂpi

~ 8ege (1+0)2  8cge (1+b)2 7 8cpe(l +b)2°
Finally we note that for b > 1 it is clear that min(b=2(1 + b) =2, (1 + b)~2) = b=2(1 + b) ~2. Therefore,

V.V>

By setting c in the upper bound such that ¢ > 8cg, we get

_ 1 _
szzc—Qb 214672
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G.2. Bias proof

Proof. We will bound the ratio of the lower and upper bounds by bounding the ratios of the corresponding terms in each
sum. Observe that for all 4, the ratio of the terms is equal to

G
10 (1 2 )

Ak41Pk

Oni <k,
(6;)° 1
9* 2 ’ i
0T (1 52
07)2 1
> min ( :)2 . .
ol T CO
Ak41

On i > k, we have \;/Apy1 < 1,80

!
10T (14 52

Ak+1Pk

N
m . .
=M e e

Unfortunately, the looseness in the top k£ components coming from the gap A; /A;11 dominates the tighter ratios in the
bottom p — k components which only contain a model-dependent gap, min; 67 /||6||?. Future work would seek to resolve
this and provide tight upper and lower bounds for the bias terms.

O

H. Proof of beneficial and malignant shifts
H.1. Trace conditions for simple shifts
Let X5 be any source covariance and define X, as 5\,- = a); fori < k and 5\1- = B\; fori > k with a, 8 > 0.

Then tr(Xs) = S0 A + Yoy A and tr(3e) = a5 ) + B0k M)
Fora > 1,8 < 1,if

sk _a—1
2 <

Zi:l )\z ]- - ﬂ
then we have that tr(Xs) < tr(3;) and if the inequality is flipped then we obtain tr(Xs) > tr(Zy).
Fora < 1,8 > 1,if

Zf:l Ai < p-1

Zi>k )\1 11—«
then we have that tr(Xs) < tr(3;) and if the inequality is flipped then we obtain tr(Xs) > tr(Z:).

H.2. Proof of beneficial and malignant shifts for simple shifts

‘We restate the theorem for ease.

Theorem 3.4. (Beneficial and Malignant Multiplicative Shifts on Variance) Let Y5 be a source covariance that satisfies
benign source conditions. That is, 3 k such that p;, > b for a universal constant b > 1. Define ¥ as \; = a); fori < k
and \; = BX\; fori >k, with a, 8 > 0.
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1. Ifa<l,8<1lora<1,pB <1 then we obtain a beneficial shift in variance.
2. Ifa>1,8>1ora> 1,8 > 1 then we obtain a malignant shift in variance.

3. If we are in the mildly overparameterized regime:

e a > land B < 1 leads to beneficial shifts;
e a < landp > 1 leads to malignant shifts.

4. If we are in the severely overparameterized regime:

e a> land B < 1 leads to malignant shifts;
e a < landp > 1 leads to beneficial shifts.

Proof. From Theorem 3.1 and Theorem 3.3, we have that for a universal constant b > 1 if p; > b we get the following
upper and lower bounds on the out-of-distribution variance for some constants ¢y, ca,

ROV SP Y
Vood < ¢ - =y >k T
= <n 25 (Cisr Ai)?

n
i=1""
.- N
1 i Z k/\z/\z
Vood = ¢2 | = Y T4 nZ2
<n ; i (ke Ai)?

where Ry, = (3,4 )2/ Yok A2,

Let X5 be any source covariance model that satisfies benign source conditions. Define ¥; by,
5)\1'7 i>k

fora, 5 > 0.

Beneficial shifts. We use the upper bound to specify requirements for the beneficial shifts.

k n
VOO S - =
d <1 (Oén +3Rk)
n

k
=V —(a—1)4+—(B—-1) .
ata (n(a )+Rk(5 ))
Let o > 1,8 < 1. To obtain a beneficial shift in this setting we need,
n k

F=8)> S(a-1)

Y ot
Rk n 1,5 '

In the case o < 1, 8 > 1, to obtain a beneficial shift we need,

n

E(B_1)<
n k/(1l—-«
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In the case where az = 1 then any /5 < 1 leads to beneficial shifts. Similarly when S = 1, any o < 1 leads to beneficial
shifts.

Malignant shifts. We use the lower bound to specify requirements for the malignant shift.

k
Vood 2 c2 (O/‘Fﬂ " )
n Rk

=Vig + c2 (i(a—1)+£(5—1)).

k
Let @ < 1 and 8 > 1. To obtain a malignant shift in this setting we need,
n - kE(1l—a
Ry, n\f—-1/"
In the case of @ > 1, 8 < 1, to obtain a malignant shift we need,
n < kEfa—1
Rk n \1— ﬁ ’

In the case where oo = 1 then any 5 > 1 leads to malignant shifts. Similarly when 5 = 1, any o > 1 leads to malignant
shifts.

Mild and severe overparameterization. We see that the four cases separate into settings in which we are mildly
overparameterized, meaning

n - kla—1

Ry n|l—=73\"
and settings in which we are severely overparamterized, meaning

n < kla—1

Ry n|l—=73\"

In each of these regimes of overparameterization, the above proof has delineated whether we achieve beneficial or malignant
shifts in all settings of «, f3. O

H.3. Generalized (necessary) conditions for beneficial and malignant shifts

Let X5 be any source covariance matrix that satisfies benign source conditions and define X, as

5\‘ o Oéi)\i 1 < k,
L ﬂz)\z i >k

with «;, 8; > 0 for all 4.

Then the OOD variance upper bound is given by,
k
1 > isk BiX:
Vood < it E ik T
et <n T A

(o) =k, T X6
" (S AP

y 2
= Vig + 1 k M—l + %521_1 7
" K LAND DY
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and the OOD variance lower bound is given by,

) kﬂl
ood>c2< Zaz >)\z)2>

z>k

_ (b ) =k | Y MBi- 1)
~Yate < 1” o (Zki>k Ai)? )

k 21-11 (67 n E’>k ﬁz/\2
con (B ) w (R )

where V4 is the ID variance bound.

Again, we use the upper bounds to prove conditions for beneficial shifts and the lower bounds to prove conditions for
malignant shifts.

Beneficial shifts. From the upper bound we consider two separate cases for non-trivial beneficial shifts:
Lol s <kand Y, Bid? > 30, 4 A
2. 3, @i > kand Dink BN < i A

We start with the case of F | a; < kand 3, , Bix? > 3
shift is if

i~ A7 If this is satisfied, the only way to achieve a beneficial

; i>\12 k " i

We also have in this setting that,

Zf:l @
0<1 2 <1
In Equation 21 we see a notion of severe overparameterization that leads to beneficial shifts. For instance as Ry — oo we
see the left-hand-side (LHS) of Equation 21 — 0. So as R, — oo we have that finite n always leads to a beneficial shift
in this setting. We note that equivalently if 3; = 1 for all ¢ then we also have the LHS — 0, just as in the case of severe
overparameterization. We will return to the definitions of mild and severe overparameterization for arbitrary shifts after
showing the remaining conditions for beneficial and malignant shifts.

Now consider the case of Zle a; >kand ), . Bid2 < >, A2 If this is satisfied, the only way to achieve a beneficial

i>k
shift is if
ﬁ 1—720’“’822 >k i —1]. (22)
Rk Zi>k >‘i n k
In this setting it is clear that
22
0<1— kN

Zz>k )‘2 B

In Equation 22, it is clear that we have a notion of mild overparameterization that leads to beneficial shifts. As above if o; = 1
for all 7 then we always obtain a beneficial shift in this setting. Otherwise if R, does not grow too quickly (as in the case
with mild overparameterization) then this is a necessary condition to achieve beneficial shifts when >, ;A7 < >, A
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Malignant shifts. From the lower bound we once again consider two separate cases for non-trivial malignant shifts:

L. Zf:l a; >k and Zi>k Bi}‘? < Zi>k )‘12’
2. Zf:l a; <kand 30, Bid? > 30, 4 AT

We start with the case of Y%, ; > k and S ion Bir? < 3, A2 If this is satisfied then the only way to achieve a
malignant shift is if,
B2 k F o
n 172%621 PPy ST (23)
Ry Disk A n k

In the case of Zle o <kand Y, , BiA? > >, A? the only way to achieve a malignant shift is if,

- A2 k e
ST
1> (3

We now are ready to define mild and severe overparameterization for arbitrary multiplicative shifts.
Theorem H.1. (Mild and severe overparameterization for arbitrary multiplicative shifts) Let 3¢ be any source covariance

matrix that satisfies benign source conditions, meaning 3 k such that py, > b for a universal constant b > 1. Furthermore,
let 3¢ be defined by \; = ay\; for i < k and \; = B;\; fori > k.

We will define
-1
oo |(Zhres ) (1 - ZoaBXE
' F Zisk A '

Then we are mildly overparameterized if

and we are severely overparameterized if

n k

We now state our taxonomy of covariate shifts for arbitrary multiplicative shifts.

Theorem H.2. (Beneficial and Malignant (Arbitrary) Multiplicative Shifts on Variance) Let X5 be any source covariance
matrix that satisfies benign source conditions, meaning 3 k such that py, > b for a universal constant b > 1. Furthermore,
let 3¢ be defined by \; = ay\; fori < k and \; = B;\; fori > k.

1. Ifo:l o <kand ), ) BiA] < 3,0, A? then we obtain a beneficial shift.
2. Ifo:l o <kand ), ) BiA} < 3,0, A? then we obtain a beneficial shift.
Ifo:l o > kand Y, ) Bid? > 3, A? then we obtain a malignant shift.

Ifo:l o >kand Y, ) BN} > 3, A2 then we obtain a malignant shift.

“uok W

If we are in the mildly overparameterized regime:
. Zle ;> kand ), Bid < Xo,o . AP leads to beneficial shifts,
. Zle o <kandy,_, BiA} > 3, A? leads to malignant shifts.
6. If we are in the severely overparameterized regime:
. Zle o < kand ), BiA] >3, A7 leads to beneficial shifts,
. Zle o > kandy,_, Bid} < X,. . AP leads to malignant shifts.
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I. Experiment details
I.1. Synthetic data experiments

Our synthetic data experiments use source data generated from random Gaussians with covariance structures that are known
to exhibit benign overfitting. These structures include the (k, 4, €) spiked covariance models and eigendecay rates given
by Bartlett et al. (2020) such as \; = ¢~¢ In~* (i4 1) fora =1, > 1. Target data is generated from random Gaussians
with covariances that lead to beneficial and malignant shifts based on our theories and modifications of the aforementioned
source covariance structures.

All ground truth models are sampled uniformly on the p-dimensional hypersphere, as 6 ~ SP~1. Label noise is sampled as
e ~ N(0,1), unless otherwise specified. For a data matrix X € R"™*P, training labels are obtained as y = X607 + ¢. Excess
risk is computed for unseen testing data from source and target distributions of interest using clean labels.

In Figure 4 we take the source to be the (k, 0, €) spiked model with parameters given by k = 70, § = 1, and e = 0.005. The
beneficial shift scales the first k eigenvalues by o = 1.125 and the last p — k eigenvalues by 8 = 0.65. For the malignant
shift we use a = 0.875 and 8 = 1.35. The minimum-norm linear interpolator is fit to 500 data points sampled from a
centered multivariate Gaussian with unit variance and dimension p = 4900. The model vector is sampled from a centered
Gaussian and scaled to unit norm. The x-axis represents the amount of additive label noise in training. All evaluation is
done on clean data. Each point is the average of 40 runs.

In Figure 5, we take the source to be the (k, 6, €) spiked model with source parameters as k = 10,5 = 1.0,e = 1le~°® and
target parameters k = 10,6 = 1.35,¢€ = 6.5e 7. We use n = 50 training data points, 10k held-out testing data points in
each OOD test set, and vary p from 75 to 1000 dimensions. We solve OLS using the closed-form MNI solution on the
source data. Each experiment is averaged over 100 independent runs.

In Figure 2 we train fully-connected neural networks with ReLU activation functions. Data is sampled as above from the
covariance structures given by \; = ¢~ In=" (¢ + 1) with varying S to obtain beneficial and malignant shifts. The network
architecture is 3 hidden layers, with hidden widths 512 and 2048. Networks are trained with stochastic gradient descent with
momentum 0.9 until the training MSE has reached < 5¢~%. We start with a learning rate of 0.01 and decay by a stepped
cosine schedule for 1,500 epochs. We take batch size of 64 and train without weight decay. Each experiment is averaged
over 20 independent runs. We train in PyTorch with a single A100 NVIDIA GPU. In these experiments we take n = 200
and compare p = 20 with p = 2000. Label noise is sampled as A'(0, o%) and we vary % to show the behaviors at varying
train label noise.

In Figure 8 we train full-connected neural networks with ReLU activation functions. Source data is sampled from a
mean-centered Gaussian with diagonal covariance matrix with eigenvalues \; = i~! ln_1‘5(i + 1). Target covariate shifts
are implemented in the style of Theorem 3.4 where the top k source eigenvalues are multiplied by « and the bottom p — &
source eigenvalues are multiplied by /. In this experiment, we take k = 10, « = 2, § = 0.1 and experiment with n = 400
source data samples for p = 200 and p = 4, 000. The network architecture is 3 hidden layers with hidden width 2, 048. Our
training setup is the same as given above for prior MLP experiments.

L.2. CIFAR-10 and CIFAR-10C experiments

In Figures 9 and 11 we use a binary variant of CIFAR-10 and CIFAR-10C. For details on the CIFAR-10C dataset, see
Hendrycks & Dietterich (2019). The binary problem is constructed by selecting only the dog and truck classes. To stay
overparameterized, we subsample n = 500, 1000, 2000 points in a class-balanced manner. Images are flattened into
p = 3072 dimensional vectors. We fit our model using the OLS solution for the MNI against {0, 1} class labels. We test on
the same two classes from CIFAR-10 and CIFAR-10C Gaussian blur and Gaussian noise corruptions. Recall that these two
corruptions were selected for their eigenspectra’s similarity to beneficial and malignant shifts, respectively. Label noise is
injected by flipping class labels with a given probability.

In Figure 12, we train ResNet18 models on the entire CIFAR-10 dataset and evaluate on the CIFAR-10C test sets for
the Gaussian blur and Gaussian noise corruptions. The setting is not high-dimensional because we train on 50000
images with 3072 dimensions. However, the ResNet18 architecture has around 11.7 million parameters, so the level of
overparameterization is very high. The training procedure is similar to that used for our MLP experiments. Networks are
trained with stochastic gradient descent with a learning rate of 0.1 and stepped cosine decay schedule for 60 epochs. Each
point in the plot is an average over 30 independent runs. As before, we train in PyTorch with a single A100 NVIDIA GPU.
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Label noise takes the form of random label flips with probabilities 0.1 to 0.9.

J. Additional experiments

We present a number of additional supporting experiments that show: (1) more cases of the behavior of the MNI and MLPs
under covariate shift on synthetic datasets; (2) underparameterized and overparameterized regimes for linear regression
under covariate shift for more realistic eigendecay rates outside of (k, ¢, €) spiked covariance models; (3) cases in which the
MNI is overfit in a tempered or catastrophic manner and evaluated on OOD datasets constructed based on our results in
Theorem 3.4, indicating that our insights hold up for the MNI even when benign source conditions are not satisfied; (4) the
value of overparameterization for the MNI trained on CIFAR-10 and evaluated on CIFAR-10C; (5) experiments training
ResNet-18 models to interpolation on the full CIFAR-10 dataset and evaluated on CIFAR-10C blur and noise corruptions.

J.1. MNI on Synthetic Data

—— ID:n=1.0,=1.0 -%- OOD (Beneficial): n=0.65, =1.125 - 0OD (Malignant): n=1.35, B = 0.875
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Figure 4. We fit interpolating linear models to random Gaussian data sampled from spiked covariance models with parameters k, d, €.
In this setting, k = 70,n = 500, p = 4900, 6 = 1 and € = 0.005. To illustrate a beneficial shift, we scale the first k eigenvalues
by a = 1.125 and the last p — k eigenvalues by 8 = 0.65. Similarly, for the malignant shift we use o = 0.875 and 8 = 1.35. All
experiments are averaged over 25 independent runs with standard error bars displayed. Note that the bias is consistently below 107*°.

In Figure 4, we experiment with interpolating linear models where 3, 3, are given by (k, J, ¢)-spike covariances with
k =70, n = 500, and p = 4900. We design problem parameters to show settings in which tr(X;) > tr(Xs) and we get a
beneficial shift, and tr(3;) < tr(Xs) and we get a malignant shift. To do this, the source covariance matrix is constructed
using § = 1 and € = 0.005. To illustrate a beneficial shift, we scale the first k eigenvalues by o = 1.125 and the last p — k
eigenvalues by 8 = 0.65. Similarly, for the malignant shift we use & = 0.875 and § = 1.35. The resulting plots are
significant because they highlight the distinct effects that the first £ and last p — k components have on the excess risk.

As illustrated by our main theorems, increasing the energy of an eigenvalue has a negative impact on the risk. Nonetheless,
these plots show that where the increase happens plays an important role on how the shift affects generalization. We are able
to improve performance by decreasing the energy on the tail and increasing the energy on the head in such a way that the
total energy is increased. In short, this setting is a direct connection to our theory and shows clearly that our constructions
for beneficial and malignant shifts, when mildly overparameterized, hold up in low and high train label noise regimes, with
higher noise exacerbating the effects of the shifts. In addition, Figure 4 demonstrates that the variance generally contributes
much more significantly to the overall risk.

38



Minimum-Norm Interpolation Under Covariate Shift

2541
\
\
\
20414
\
\
\

1.5+

Excess MSE

1.0

0.51

45 50 55 60 65 7.0
Ln dimension, In(p)
-4- In-distribution =~ —f— Out-of-distribution

Figure 5. We experiment with the (k, d, €) spiked covariance models and examine conditions for beneficial and malignant shifts as given
in Theorem 3.4. We take n = 50,k = 10,8 = 1.0,e = 1e7%,§ = 1.5,& = 5e ™", and vary p. In all cases, tr(X;) > tr(s), showing
that beneficial shifts of this form can occur. As we increase p while keeping other problem parameters fixed we observe the transition from
mild to severe overparameterization and see the cross-over point between the shift going from beneficial to malignant. For both ID and
OOD excess risk, we observe that excess risk is a decreasing function of input dimension. Curves are averaged over 100 independent runs.

Figure 5 shows another example of the transition from mild overparameterization to severe overparameterization in the
case of (k, 6, ¢) spiked covariance models. In this example we take k = 10,n = 50,5 = 1.0, ¢ = 1e~%. Using our shifts
defined in Theorem 3.4 we set « = 1.5 and 8 = 0.5. We plot excess MSE on both ID and OOD test sets vs. the input data

dimension, while holding all other problem parameters fixed and clearly observe the transition from beneficial to malignant
shifts in keeping with our theorem.

Next, we experimentally show that while our theory is built for benign source covariance structures it holds for non-benign
covariances. In particular, we examine eigendecay rates that are known to lead to tempered overfitting and catastrophic
overfitting (Mallinar et al., 2022). Bartlett et al. (2020) identify the covariance structure given by \; = i_lln_Q(i +1)as
sufficient for benign overfitting. The rate of = for a > 1 is akin to a ridgeless Laplace kernel and corresponds to tempered
overfitting. Finally, the rate of i~ "™(%) is akin to a ridgeless Gaussian kernel and corresponds to catastrophic overfitting. This
relative ordering is determined by how high-dimensional the tail eigenvalues are, in decreasing order.
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Figure 6. Comparing covariate shift in underparameterized vs. overparameterized linear regression for three different eigendecay rates.
In the p > n setting: (a) leads to benign overfitting, (b) leads to tempered overfitting, and (c) leads to catastrophic overfitting. We
implement simple multiplicative shifts with o, 5 as defined in Section 3.1 where we take n = 50, k = 10. Ground truth models are
sampled uniformly from SP ' and training label noise is sampled from A/(0, 2). Every curve is averaged over 50 independent runs.

It is clear that even though Theorem 3.4 is for the case in which X satisfies benign source conditions, the style of beneficial
and malignant shift we identify holds for the MNI even when overfit in a non-benign manner. That is, when ¥ has
eigendecay rates that are tempered or catastrophic we can still obtain non-trivial beneficial and malignant shifts by changing
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the energy on the signal and noise components in a heterogeneous way.

We also notice in Figure 6 that even when varying the dimension up to p = 2000 at n = 50, k¥ = 10 we do not quite observe
the cross-over from beneficial to malignant shifts in the overparameterized regime. However, we observe that in Figure 6(a)
that the two OOD curves begin to cross-over. Given compute budget, we run a variant of Figure 6 where we extend up to
p = 5000 and take smaller n, e.g. n = 20, 30, 40, in order to closer examine the different regimes of overfitting. In addition,
we experimentally show results for p = 5, 10 which we liken to the classical linear regression regime in which k = p < n,

meaning all of the signal is captured in the p components. In this setting, « shifts are all that influence the distribution shift
behavior. We show these behaviors in Figure 7.
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Figure 7. Comparing covariate shift in underparameterized vs. overparameterized linear regression for when \; = i~ *In"2(i + 1). We
implement simple multiplicative shifts with «, 8 as defined in Section 3.1 where we take & = 10 and vary n. Ground truth models are
sampled uniformly from SP~! and training label noise is sampled from (0, 2). Every curve is averaged over 100 independent runs.

J.2. MLP on Synthetic Data

We now show additional results for MLPs trained to interpolation on synthetic datasets. This experiment is analogous to that
of Figure 2 except that we implement shifts in the style of Theorem 3.4.
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(a) n = 400, p = 200, h = 2048 (b) n = 400, p = 4k, h = 2048

Figure 8. We implement multiplicative shifts for interpolating 3-layer ReLU MLPs in the style of Theorem 3.4. Source data, X, is
sampled from a mean-centered Gaussian with diagonal covariance given by A\; = 4~ In™"®(i 4 1). Ground truth models are sampled
as @7 ~ SP~! and training label noise is samples as ¢ = A(0,02). Noisy training labels are obtained as y = X6 + €. The target
covariances are obtained by multiplying the top & = 10 source eigenvalues by « and the bottom p — k source eigenvalues by 8. From our
theory, we expect that « = 2, 8 = 0.1 leads to beneficial shifts while « = 0.1, 8 = 2 leads to malignant shifts. We see this holds up

when p > n, and that h > n does not change this relationship. All curves are averaged over 20 independent runs and each training run
reaches MSE loss < 5e~°.

In Figure 2 we sampled the ID dataset from a mean-centered Gaussian with diagonal covariance that has eigenvalues
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N =it ln_3(i + 1) and we examined the behavior for OOD datasets under covariate shift where the eigenvalues of the
OOD covariance are given by A\; =i~ 'In"2(i41) and \; = i~ " In"*(i +1). In Figure 8 we take the ID data to be sampled
from a mean-centered Gaussian with diagonal covariance that has eigenvalues A\; = i ' In~**(i 4 1). For the covariance of
the OOD datasets, we shift the top k£ = 10 eigenvalues by a factor of « and the bottom p — k eigenvalues by a factor of 3, as
in the setting of Theorem 3.4. We experiment here with & = 2,5 = 0.1 and « = 0.1, 8 = 2. Each model achieves training
MSE < 5¢75. We see the same trends as in Figure 2 with respect to p > n versus h > n. In the p < n case, even though
h > n we do not clearly observe a beneficial shift as predicted by our high-dimensional linear theory. However, when p > n
we do observe beneficial shifts for « = 2, 5 = 0.1, as suggested by our theorem for the mildly overparameterized case.

J.3. MNI on CIFAR-10C Experiments

J.3.1. ADDITIONAL BLUR AND NOISE FILTER EXPERIMENTS
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Figure 9. We fit the MNI to binary CIFAR-10 (dog vs. truck) and test on binary CIFAR-10C under Gaussian blur and noise corruptions. In
(a), (b) we plot the eigenvalues of the covariance matrices for ID test data and on test sets for each severity. To ensure p > n we subsample
the training set to n = 1k and average curves over 50 independent runs. We evaluate the MNI against all 5 corruption severities and plot
excess classification error vs training label noise, which is class label flip probability. We see that the eigenspectra of the OOD datasets is
directly correlated to the OOD performance of the MNI.
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Figure 10. We consider an experiment using a custom variant of the CIFAR-10C out-of-distribution (OOD) test sets while continuing
to train on the original CIFAR-10 dataset with n training samples at varying amounts of training label noise. Our constructions injects
Gaussian noise at varying severity levels into the top 200 high-variance directions of the Gaussian blur test sets at each severity level. In
(a) we plot the log of the spectrum of the covariance matrices of each test set. This results in a covariance spectrum in which the top
eigenvalues of the OOD data are larger than the top eigenvalues of the in-distribution (ID) eigenvalues, and the bottom eigenvalues of the
OOD data are smaller than the bottom eigenvalues of the ID data. This corresponds to the « > 1, 8 < 1 setting in our taxonomy. In (b)
and (c) we plot test excess classification error vs. train label noise. In (b) we show the severely overparameterized setting which results in
malignant shifts, and in (c) we show the mildly overparameterized setting which results in benficial shifts, in keeping with the intuitions
from our taxonomy. Furthermore, the trace of the OOD covariances are larger than the ID covariance and yet in (c) we observe improved
OOD performance, in contrast to intuitions from prior work.
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J.3.2. VARYING LEVELS OF OVERPARAMETERIZATION
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Figure 11. We fit the ridgeless OLS solution to binary CIFAR-10 (dog vs. truck) and test on binary CIFAR-10C under Gaussian blur
and noise corruptions. In the top row, we vary the level of overparameterization as n = 500, 1k, 2k and average each curve over 50
independent runs. In this p > n setting the ridgelss OLS solution results in the MNI. In the bottom row we obtain a non-interpolating,
ridgeless linear solution. Evaluations are done on severity 3 of CIFAR-10C, however the results hold up across all severities. We
plot excess classification error vs training label noise, which is class label flip probability. We see that overparameterization improves
robustness of the MNI at all noise levels.

In Figure 11 (a-c) we show that overparameterization improves OOD excess classification error for the MNI fit to binary
CIFAR-10 and evaluated on binary CIFAR-10C under Gaussian blur and noise corruptions. The details of these datasets
and setups are given in Appendix I. We note that all of the curves in the top row of this figure are in the overparameterized
regime, meaning they are on the right side of the double descent curve. Flattened CIFAR images have p = 3,072 and
so we vary the number of training subsample sizes over n = 500, 1000, 2000 in order to remain in an overparameterized
setting. We find that when we are overparameterized, as we reduce n we obtain improved performance. We average over 50
independent runs in each setting and provide standard error bars to show that this observation is not due to specific random
samples. We also see that at higher levels of overparameterization, the relative difference in excess classification error
between ID, blur, and noise test sets lessens. For example, at 0.0 label noise and n = 2k the average excess error varies
from 0.3028 on the blur set to 0.4668 on the noise set for an absolute difference of 0.164, whereas at n = 500 the average
excess error only varies from 0.252 on the blur set to 0.3131 on the noise set for an absolute difference of 0.0611.

For completeness, in Figure 11 (d - e) we show the above setting in the underparameterized regime where we obtain the
linear solution via the ridgeless OLS solution. As these plots are on the left side of the double descent peak, we see that
adding more data improves OOD excess classification error. While these models are not interpolating, we observe that
noise corruptions lead to nearly catastrophic performance, meaning random guessing, on the OOD test sets, whereas blur
corruptions lead to more benign performance. Finally the ID performance appears to be tempered, in showing a nearly linear
relationship between train label noise and test excess classification error.
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J.4. ResNet on CIFAR-10C Experiments
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Figure 12. We train ResNet18 on clean CIFAR-10 and evaluate on test sets that has been corrupted by Gaussian blur and Gaussian noise,
which correspond to beneficial and malignant shifts, respectively. Labels are flipped with probability 0.1 through 0.9, seen on the x-axis.
The setting is not high-dimensional because the training data contains 50000 images, each of which are 3072-dimensional. ResNet18
contains around 11.7 million parameters, so the setting is very overparameterized. We observe that while both shifts negatively affect
generalization, the beneficial shift isn’t as bad as the malignant shift. This result is similar to those seen in subfigures (a) and (b) in Figure
2, where the data is not high-dimensional but the MLP is overparameterized.

Figure 12 shows the behavior of interpolating ResNets trained on the full CIFAR-10 dataset and evaluated on CIFAR-10C
blur and noise corruptions. While these numbers are suboptimal with respect to CNNs on CIFAR-10 we note that they are
justified in our setting as our goal is to study interpolating models. At 90% label noise it takes a lot of compute to interpolate
the entire CIFAR-10 dataset, especially if using data augmentations, weight decay, or other regularizations. As such, we turn
off weight decay and data augmentations for these models to be able to tractably interpolate CIFAR-10 at high noise levels.
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